
HAL Id: hal-00335736
https://hal.science/hal-00335736

Submitted on 30 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterizing EF and EX tree logics
Mikolaj Bojanczyk, Igor Walukiewicz

To cite this version:
Mikolaj Bojanczyk, Igor Walukiewicz. Characterizing EF and EX tree logics. Theoretical Computer
Science, 2006, 358 (2-3), pp.255-272. �hal-00335736�

https://hal.science/hal-00335736
https://hal.archives-ouvertes.fr

Characterizing EF and EX tree logics

Mikolaj Bojańczyk and Igor Walukiewicz

Warsaw University and

Laboratoire Bordelais de Recherche en Informatique

Abstract

We describe the expressive power of temporal branching time logics
that use the modalities EX and EF. We give a forbidden pattern char-
acterization of the tree languages definable in three logics: EX, EF and
EX+EF. The properties in these characterizations can be verified in
polynomial time when given a minimal deterministic bottom-up tree
automaton.

We consider the definability problem for logics over binary trees: given a
regular tree language decide if it can be expressed by a formula of the logic in
question. The main motivation for considering this problem is to understand
the expressive power of tree logics. Although a very old question, definability
has gained new relevance with the XML community’s burgeoning interest
in tree models [8]. Indeed, numerous new formalisms for describing tree
properties have been recently proposed.

For words the definability question is well studied and understood. Start-
ing from the celebrated Schutzenberger theorem [12], characterizing star-free
word languages by aperiodicity, numerous other language classes have been
classified. In particular, we now have a good understanding of the expressive
power of LTL and its fragments [14, 18]. This is in sharp contrast with the
case of trees where much less is known.

We feel that the major goal in the study of the definability problem for
trees is to characterize the expressive power of first-order logic, or equiva-
lently CTL∗[1] (we consider finite binary trees here). It seems however that
this is a difficult problem whose solution demands new tools and expertise.
This is why we have decided to consider fragments of CTL∗ where the prob-
lem is easier. The fragments in question use the modalities EX (there is a
successor) and EF (there is a descendant). Apart from being a step towards
solving the first-order definability problem, these fragments are interesting
on their own. The model-checking problem for them is easier than for CTL∗,

1

and even than for CTL: for example when a model is given by a BPP [2] or
by a a push-down system [16]. The modalities EX and EF are also closely
related to operators in XPath [5, 4].

We prove the definability problem decidable for three logics: EX, EF
and EX+EF. These are built by using the eponymous modalities along with
boolean connectives. Our decision procedures use a sort of forbidden pattern
characterizations. These forbidden patterns are expressed in terms of the
minimal leaves-to-root automaton recognizing a given tree language. The
resulting algorithms are polynomial in the number of states of the minimal
automaton. If, on the other hand, we assume that the input is a CTL
formula or a nondeterministic tree automaton then we obtain the Exptime

upper bound matching the obvious lower bound for the problem.
As mentioned above not much is known about the definability problem

for trees. There exist basic results: characterizations of the class of regu-
lar tree languages by monadic second-order logic [15] or the µ-calculus [9];
equivalence of first-order logic and CTL∗ over finite binary trees [6]. Yet
there is no equivalent of the Schutzenberger theorem for trees; in fact de-
cidability of first order definability is still open. There has been some work
in this direction; in particular borrowing the notion of aperiodicity from the
word case is known to be insufficient [11, 7].

It is also a valid question to compare the characterizations presented
in this paper with the ones in [18] for the corresponding word logics X,
F and X + F. Although there is some resemblance between the two, our
results need more than a straightforward extension of the forbidden pattern
characterizations from the word case. This is in a way unfortunate because
it suggests that an equivalent of the Schutzenberger theorem for trees may
also require an intricate extension of the aperiodicity.

The plan of the paper is as follows. After a preliminary section we briefly
state a characterization of EX logic. This is very similar to a characteriza-
tion of modal logics presented in the literature [10], so we mention the result
mostly for completeness. In the next two sections we respectively charac-
terize the logics EF and EX+EF. Maybe counterintuitively, the argument
for the weaker EF logic is longer. In the penultimate section we summa-
rize the results, showing how they imply decidability algorithms. Finally,
we justify our characterizations by pointing out why the forbidden patterns
known from the word case do not adapt directly to the tree case.

A tree domain is any nonempty finite prefix-closed subset of {0, 1}∗. A
Σ-tree is any mapping from some tree domain to Σ. We denote by dom(t)
the domain of t (as a function), elements of this set are called nodes. The
root is another name for the node ε. Nodes in a tree are ordered by the

2

prefix relation, which is denoted ≤. Leaves are nodes that are maximal with
respect ≤. The subtree of a tree t rooted in the node v is the tree that
assigns to a node w the label t(v · w). This tree is denoted as t|v and its
domain is the set of nodes w such that v ·w is a node of t. The left subtree
of t is the tree t|0, the right subtree is t|1. A Σ-context is any Σ tree with
a distinguished leaf, which is called the hole. We denote contexts by C[],
D[]. We write C[t] to denote the tree obtained from the context C[] by
substituting the tree t for the hole.

A Σ-language is any set of Σ-trees. Given a language L, two trees s and
t are said to be L-equivalent if for every context C[], either both or none
of the trees C[s] and C[t] belong to L. This is an equivalence relation. An
equivalence class of this relation is called an L-type. We will denote types
using the letters α, β, γ. Given two L-types α, β and a letter a, the L-type
a[α, β] is uniquely defined and contains the trees equivalent to any tree with
a in the root, s in the left son and t in the right son. A language is regular

if it has a finite number of types.

1 EX+EF Formulas

EX+EF formulas are CTL∗ formulas which use boolean connectives, letter
symbols and where the temporal modalities are allowed only in the forms
EX (exists next) and EF (exists finally).

Below follows a more formal definition along with the semantics. Let Σ
be an alphabet. The set of EF+EX formulas over Σ is the smallest set of
formulas such that:

• Every letter a ∈ Σ is a formula.

• Boolean combinations ¬ψ, ψ∧ϕ and ψ∨ϕ of formulas are also formulas.

• If ϕ is a formula then EX0ϕ, EX1ϕ and EFϕ are formulas.

The set of EF formulas is the fragment obtained by disallowing EX0 and
EX1, while the set of EX formulas is obtained by disallowing EF. We now
define the semantics, which with every formula associates a set of Σ-trees
that satisfy it:

• A tree satisfies the formula a if its root is labeled by a;

• Satisfaction for boolean operations is defined in the standard way;

• A tree satisfies EX0ϕ (resp. EX1ϕ) if its left (resp. right) subtree
satisfies ϕ;

3

• A tree satisfies EFϕ if it has a proper subtree that satisfies ϕ.

We call EF, EX0 and EX1 the modalities. Observe that the modality EF

has strict semantics here: the appropriate subtree has to be proper. The
formula AXϕ is used as an abbreviation of ¬EX¬ϕ, while AGϕ is used as an
abbreviation of ¬EF¬ϕ.

A tree language L is definable in EF+EX if there is a formula satisfied
in exactly the trees in L. Similarly we define languages definable in EF and
in EX.

2 Languages Definable in EX

In this section we state a characterization of languages definable in EX. We
do this for the sake of completeness since the characterization is essentially
the same as in [10].

Definition 1 Two trees are identical up to depth k if they are the same
when restricted to {0, 1}≤k . We say that a language L is dependent on

depth k if every two trees which are identical up to depth k have the same
L-type.

A context is nontrivial if its hole is not in the root.

Definition 2 Let L be a language and let α, β be two distinct L-types.
We say that the language L contains an {α, β}-loop if for some nontrivial
context C[], both C[α] = α and C[β] = β hold.

Theorem 3

For a regular language L, the following conditions are equivalent:

1. L is definable in EX;

2. For some k ∈ N , L is dependent on depth k;

3. L does not have an {α, β}-loop for any two L-types α, β .

Proof

The equivalence of the first two conditions is obvious, as is the implication
from 2 to 3. To end the proof of the theorem, we will show that if the
language L is not dependent on any depth k, then a loop can be found.

Let k > |Types(L)|2 and assume that L is not dependent on depth k.
This means there are trees s and t which are identical up to depth k but

4

have different types. Let v1, . . . , vn be all the nodes of depth k in the tree s
(or equivalently in t). We define a sequence of trees s = s0, . . . , sn = t which
gradually morphs from the tree s to the tree t:

s0 = s and si = si−1[vi := t|vi
] for i > 0 .

Since the trees s0 and sn have different types, there must be some i ∈
{1, . . . , n} such that si−1 and si have different types. These two latter trees
differ only below the node vi. Let w0 < . . . < wk−1 be all the ancestors of
the node vi. Given j < k, let

αj = type(si−1|wj
) and βj = type(si|wj

).

Since the node vi is at depth k > |Types(L)|2, there must be some two
indices j < k such that the equalities αj = αk and βj = βk hold. Since the
types of si−1 and si are distinct, so are the types αj and βj . But this means
that the part of si−1 whose root is in wj and whose hole is in wk provides
an {αj , βj}-loop. �

3 Languages definable in EF

In this section we show a characterization of languages definable in EF. This
is the most involved section of the paper, with a long technical proof.

The characterization result, Theorem 5, shows that definability in EF is
equivalent to a certain (decidable) property of the language’s types. This
property, however, is not directly stated in terms of types, but using an
intermediate concept called the delayed type. The intuition behind a delayed
type is that it is supposed to contain all the information about a tree that
does not depend on the root label.

Given a Σ-tree t and a letter a ∈ Σ, we write t〈a〉 to denote the tree
obtained from t by relabeling the root with the letter a. With every Σ-tree t
we associate its delayed type, which is the function that assigns to a letter
a ∈ Σ the L-type of the tree t〈a〉. We will denote delayed types using the
letters x, y, z. Note that the delayed type of a tree is uniquely determined
by the types of its left and right subtrees. We write (x, a) EL y if there is a
tree of delayed type y having a subtree of type x(a). We also write xEL y if
(x, a) EL y for some a ∈ Σ. This relation is a quasiorder but not necessarily
a partial order, since it need not be antisymmetric.

For delayed types x, y and letters a, b ∈ Σ, we write dtypeL(x, a, y, b) for
the delayed type which assigns to a letter c the type c[x(a), y(b)]. In other

5

words, this is the delayed type of a tree whose left and right subtrees have
types x(a) and y(b) respectively. The set of neutral letters of a delayed type
x is the set

NL
x = {a : x = dtypeL(x, a, x, a)}.

This set may be empty.

Definition 4 A Σ-language L is EF-admissible if it is a regular tree lan-
guage such that all delayed types x, y and all letters a, c ∈ Σ satisfy:

P1 The relation EL on delayed types is a partial order;

P2 dtypeL(x, a, y, b) = dtypeL(x, a, y, b′) for all b, b′ ∈ NL
y ;

P3 if (x, a) EL y then dtypeL(x, a, y, c) = dtypeL(y, c, y, c);

P4 dtypeL(x, a, y, c) = dtypeL(y, c, x, a).

Another important concept used in Theorem 5 is that of typeset depen-
dency. The typeset of a tree is the set of types of its proper subtrees. We
say that a regular language is typeset dependent if the delayed type of a tree
depends only on its typeset.

Our characterization of EF is presented in the following theorem:

Theorem 5

For every language L, the following conditions are equivalent:

1. L is definable in EF,

2. L is typeset dependent,

3. L is EF-admissible.

The proof of this theorem is long and will be spread across the next three
sections; the implications 1 ⇒ 2, 2 ⇒ 3 and 3 ⇒ 1 being proved in Sections
3.1, 3.2 and 3.3 respectively. For the remainder of Section 3 we assume that
an alphabet Σ along with a regular Σ-language L are fixed, hence we will
omit the L qualifier from the notation, writing for instance E instead of EL.
We may assume regularity since all conditions 1, 2 and 3 imply this.

6

3.1 A Language Definable in EF Is Typeset Dependent

In this section, we will show that the language L is typeset dependent using
the assumption that it is defined by some EF formula ψ.

Definition 6 By cl(ψ) we denote the smallest set of formulas that contains
ψ and is closed under negations and subformulas.

It is not difficult to see that the type of a tree is determined by the set of
those formulas from cl(ψ) which it satisfies (although this correspondence
need not be injective). Our first step is to show that for the delayed type,
even less information is sufficient

Definition 7 An existential formula is a formula of the form EFϕ. The
signature Sig(t) of a tree t is the set of existential formulas from cl(ψ) that
it satisfies.

Lemma 8 The signature of a tree determines its delayed type.

Proof

Take two trees s and t with the same signatures. For a given letter a ∈ Σ,
an easy induction on formula size shows that for all ϕ ∈ cl(ψ):

s〈a〉 |= ϕ iff t〈a〉 |= ϕ.

This is due to the fact that the modality EX is strict. Since the two trees
s〈a〉 and t〈a〉 satisfy the same formulas from cl(ψ), their types must be the
same. As the choice of the letter a was arbitrary, this implies that the trees
s and t have the same delayed types. �

Given two trees t0, t1 and a letter a ∈ Σ, we write Sig(t0, t1) instead
of Sig(a[t0, t1]). This notation is unambiguous since Sig(a[t0, t1]) does not
depend on the letter a.

Given two types α and β, we denote by dtype(α, β) the delayed type
which assigns to a letter a the type a[α, β]. A type α is reachable from a
type β, denoted β 4 α, if C[β] = α holds for some context C[]. This relation
is a quasiorder and we use ≈ for the accompanying equivalence relation. The
following simple lemma is given without a proof:

Lemma 9 If t′ is a subtree of t, then Sig(t′, s) ⊆ Sig(t, s). If α 4 β then
dtype(α, β) = dtype(β, β).

The following lemma shows that for languages definable in EF, the rela-
tion ≈ is a congruence with respect to the function dtype(α, β):

7

Lemma 10 If α0 ≈ β0 and α1 ≈ β1 then dtype(α0, α1) = dtype(β0, β1).

Proof

Since a language definable in EF satisfies dtype(α, β) = dtype(β, α), it is
sufficient to prove the case where β1 = α1. Let C[] be a context such that
C[α0] = β0 and let D[] be a context such that D[β0] = α0. Both contexts
exist by assumption that α0 ≈ β0. Let s0 be a tree of type α0 and let s1 be
a tree of type α1. Consider the two sequences of trees {si

0}i≥0 and {ti0}i≥0

defined by induction as follows:

s00 = s0;
ti0 = C[si

0] for i ≥ 0;

si
0 = D[ti−1

0] for i ≥ 1.

By a simple induction one can prove that for all i ≥ 0,

type(si
0) = α0 and type(ti0) = β0 .

From Lemma 9 we obtain the following inclusions:

Sig(s00, s1) ⊆ Sig(t00, s1) ⊆ Sig(s10, s1) ⊆ Sig(t10, s1) ⊆ . . .

Since there are only finitely many signatures, there must be some i > 0 such
that Sig(si

0, s1) = Sig(ti0, s1). Consequently, by Lemma 8, the delayed types
dtype(α0, α1) and dtype(β0, α1) are equal. �

We are now ready to show that the language L is typeset dependent.
Let s and t be two trees with the same typeset. We want are going to show
that they have the same delayed type.

If this typeset is empty, then both trees have one node and, consequently,
the same delayed type. Otherwise one can consider the following four types,
which describe the left and right subtrees of s and t:

α0 = type(s|0) α1 = type(s|1) β0 = type(t|0) β1 = type(t|1).

We need to prove that dtype(β0, β1) = dtype(α0, α1). By assumption that
the typesets of s and t are equal, both β0 and β1 occur in nonroot nodes of
s and both α0 and α1 occur in nonroot nodes of t. Thus β0 4 α holds for
some α ∈ {α0, α1} and similarly for β1, α0 and α1. The result follows from
the following case analysis:

• β0, β1 4 α for some α ∈ {α0, α1}. By assumption we must have α 4 β

for some β ∈ {β0, β1}. Hence α ≈ β. By Lemma 10 we get

dtype(α, α) = dtype(β, β) . (1)

8

As β0, β1 4 α 4 β, from Lemma 9 we obtain

dtype(β0, β1) = dtype(β, β) . (2)

Similarly one proves the equality

dtype(α1, α2) = dtype(α, α) . (3)

The three equations (1), (2) and (3) yield the desired result.

• α0, α1 4 β for some β ∈ {β0, β1}. As in the case above.

• A short analysis reveals that if neither of the above holds then β0 4

αi 4 β0 and β1 4 α1−i 4 β1 for some i ∈ {0, 1}. Therefore β0 ≈ αi

and β1 ≈ α1−i and an application of Lemma 10 yields the desired
result.

3.2 A Typeset Dependent Language Is EF-Admissible

This step of the proof consists of verifying that all the properties P1 to P4
are satisfied if the language is typeset dependent.

Lemma 11 L satisfies the property P1.

Proof

Condition P1 states that E is a partial order on delayed types. The relation
E is obviously transitive and reflexive. We will show that xE y E x implies
that the delayed types x and y are equal. Assume then that x E y E x. In
this case, for arbitrary n we can find a tree t with nodes v1 ≤ w1 ≤ v2 ≤
w2 ≤ · · · ≤ vn such that subtrees rooted in the vi nodes have type x and
subtrees rooted in the wi nodes have type y. Clearly for all 0 ≤ i < n we
have

TS(t|vi
) ⊆ TS(t|wi

) ⊆ TS(t|vi+1
).

If we take n to be bigger than the number of types in L then we can find
some i such that TS(t|vi

) = TS(t|wi
), which by typeset dependency implies

x = y. �

Lemma 12 L satisfies the property P2.

Proof

Condition P2 states that if b, b′ are neutral letters for a delayed type y, then
the delayed types dtype(x, a, y, b) and dtype(x, a, y, b′) are equal. To show

9

that this condition is satisfied, we define by induction a sequence of trees
t0, t1, . . . in the following manner. For t0 we take some tree of delayed type
y with b in the root, while ti+1 is defined as b[b′[ti, ti], b

′[ti, ti]], see Fig. 1.
Because b and b′ are neutral letters for the delayed type y, all the trees ti
have delayed type y. Moreover, for some j > 0, the typesets of the trees tj
and b′[tj , tj] are equal.

Figure 1: The tree ti+1.

Take now some tree t of delayed type x and with the label a in the root.
Let s be a tree with t as the left subtree and tj as the right subtree. Similarly
we define s′, but with b′[tj, tj] in the right subtree. We do not specify the
root letters, since we are interested in delayed types. By assumption on tj
and b′[tj, tj], the trees s and s′ have the same typesets. Since L is typeset
dependent, their delayed types must be equal. Therefore,

dtype(x, a, y, b) = dtype(s) = dtype(s′) = dtype(x, a, y, b′).

�

The last two properties P3 and P4 are obviously satisfied in every typeset
dependent language.

3.3 A EF-Admissible Language Is Definable EF

We now proceed to the most difficult part of the proof, where a defining EF
formula is found based only on the assumption that the properties P1 to P4
are satisfied. We start by stating a key property of EF-admissible languages
which shows the importance of neutral letters.

Lemma 13 If the delayed type of a tree t is y, then its every proper subtree
with delayed type y has its root label in Ny.

Proof

Consider some proper subtree t|v of delayed type y and its root label b =

10

t(v). Let w be the brother of the node v and let z, c be its delayed
type and label, respectively. Obviously (z, c) E y. By property P3 we get
dtype(y, b, z, c) = dtype(y, b, y, b) and consequently dtype(y, b, y, b)Ey. As E

is a partial order by P1 and since yE dtype(y, b, y, b) holds by definition, we
get dtype(y, b, y, b) = y. Hence b belongs to set Ny of neutral letters of y. �

Note that if the trees t and t|v have delayed type y, then so does the
tree t|w for any w < v, because E is a partial order. In particular, the
above lemma says that nodes with delayed type y form cones whose non-
root elements have labels in Ny.

Formulas Defining Delayed Types

A delayed type x is definable if there is some EF formula θx true in exactly
the trees that have delayed type x. The construction of the θx formulas will
proceed by induction on the E order.

A set A of delayed types is downward closed if it contains every delayed
type E-smaller than an element of A. The first step is the following lemma:

Lemma 14 Let x be a delayed type and let A 63 x be a downward closed
set of definable delayed types. There is a EF formula fork A

x such that:

t � forkA
x iff dtype(t) = x and for all w > ε, dtype(t|w) ∈ A.

A fork formula is satisfied in a maximal node of delayed type x, where
moreover all descendants have delayed types in A.

We postpone the technical proof of this Lemma until Section 3.4. Mean-
while, we will use this lemma to construct a formula θx defining x. For the
rest of Section 3.3 we fix the delayed type x and assume that every delayed
type y C x is definable by a formula θy.

The first case is when x has no neutral letters. Let x− denote the set
{y : yCx}. By Lemma 13, in a tree of delayed type x both sons have delayed
types in x−, since there are no neutral letters for x. In this case we can set

θx = forkx−
x . (4)

The correctness of this definition follows immediately from Lemma 14.
The definition of θx is more involved when the set of neutral letters for

x is not empty. The rest of Section 3.3 is devoted to this case.
Consider first the following formula:

θ 6x =
(
EF

∨

{b ∧ θy : y C x ∧ (y, b) 5 x}
)
∨

∨

{forkx−
y : y 5 x}

11

The intention of this formula is to spell out evident cases when the delayed
type of a node cannot be x. The first disjunct says that there is a descendant
with a delayed type and a label that prohibit its ancestors to have type x.
The second disjunct says that the type of the node is not x but the types of
all descendants are Ex.

This formula works correctly only when some assumptions about the tree
are made. These assumptions use the following definition: given a delayed
type x, we define OKx to be the set of tree t such that:

dtype(t) C x or dtype(t) = x and t(ε) ∈ Nx .

Note that by Lemma 13 the set OKx is closed under taking subtrees.

Lemma 15 Let t be a tree with the left and right subtrees in OKx. This
tree satisfies θ 6x if and only if dtype(t) 5 x.

Proof

The left to right implication was already discussed and follows from the
assumptions on the θy formulas used in θ 6x and from Lemma 14.

For the right to left implication, let dtype(t) = dtype(y, b, z, c) with
y, b, z, c describing delayed types and labels of the left and right subtrees
of t. We consider three cases:

• y = z = x. This is impossible because both the left and right subtrees
of t belong to OKx, so the labels a, b must belong to Nx, and thus
dtype(t) = x.

• y = x and z C x. Since the left subtree of t belongs to OKx, the label
b belongs to Nx. If the inequality (z, c) E x were true (which is not
necessarily implied by our assumption that z C x), then by property
P3 we would have

dtype(t) = dtype(y, b, z, c) = dtype(x, b, z, c) = dtype(x, b, x, b) = x ,

a contradiction with dtype(t) 5 x. Therefore we have (z, c) 5 x and
hence the first disjunct of θ 6x holds. The case where z = x and y C x

is symmetric.

• y, z C x. In this case the second disjunct in the definition of θ 6x must
hold by Lemma 14.

�

12

Let θCx stand for
∨

yCx θy and consider the formula

ϕx = θCx ∨ (¬θ 6x ∧
∨

{a : a ∈ Nx}) .

This formula will be used to define the set OKx. We use AG
∗ as the non-

strict version of AG, i.e. AG
∗ϕ is an abbreviation for the formula ϕ ∧ AGϕ.

Lemma 16 A tree satisfies AG
∗ϕx if and only if it belongs to OKx.

Proof

By induction on the depth of the tree.

⇒ If t satisfies ϕx because it satisfies θCx, then it obviously belongs to
OKx. Otherwise we have

t(ε) ∈ Nx and t 2 θ 6x .

By induction assumption all proper subtrees of t belong to OKx. But
then, by Lemma 15, dtype(t) E x. This, together with t 2 θCx shows
that the delayed type of t is x and therefore t belongs to OKx.

⇐ Let t be a tree in OKx. By induction assumption we have AGϕx. We
need to prove that t satisfies ϕx. If type(t) C x holds, then t satisfies
θCx and we are done. Otherwise, as OKx(v) holds, dtype(t) = x and
t(ε) ∈ Nx. Hence, by Lemma 15, t satisfies the second disjunct in ϕx.

�

Since the type of a tree can be computed from its delayed type and root
label, the following lemma ends the proof that every EF-admissible language
is definable in EF:

Lemma 17 Every delayed type is definable.

Proof

By induction on the depth of a delayed type x in the order E. If x has no
neutral letters then the defining formula θx is as in (4). Otherwise, we set
the defining formula to be

θx = ¬θCx ∧ ¬θ 6x ∧ AGϕx .

Let us show why θx has the required properties. By Lemma 16,

t � AGϕx iff t|0, t|1 ∈ OKx . (5)

13

If t � θx then we get dtype(t) = x using Lemma 15 and (5). For the other
direction, if dtype(t) = x then clearly ¬θCx holds in t. By Lemma 13 the left
and right subtrees of t are in OKx, therefore t satisfies AGϕx by (5). But
then the formula ¬θ 6x holds by Lemma 15. �

3.4 A fork Formula

Recall Lemma 14 which was used in Section 3.3, but not proved there:

Lemma 14 Let x be a delayed type and let A 63 x be a downward closed
set of definable delayed types. There is a EF formula fork A

x such that:

t � forkA
x iff dtype(t) = x and for all w > ε, dtype(t|w) ∈ A.

The rest of Section 3.4 is devoted to a proof of this lemma. We fix a
delayed type x and a downward closed set of delayed types A. We assume
that x 6∈ A and that all the delayed types in A are definable.

For a delayed type y ∈ A and a letter b ∈ Σ, we say that the pair (y, b)
is sufficient if dtype(y, b, y, b) is our fixed delayed type x. Given a delayed
type y, we define the following equivalence relation ∼y over Σ:

a ∼y b iff a = b or a, b ∈ Ny .

Remember that we want an EF formula expressing the fact that a tree
t has delayed type x, though its proper subtrees only have smaller delayed
types. Let y,b and z,c be the delayed types and root labels of the left and
right subtrees of t. If the language is EF-admissible then there are essentially
two possible reasons for this:

(i) The pair (y, b) is sufficient and (z, c)Ey holds (or the other way round);

(ii) Neither (y, b) nor (z, c) is sufficient but dtype(y, b, z, c) = x.

If we had the next modality EX, expressing the above properties would be
very simple. Unfortunately this is not the case and we will need to use some

14

rather complicated coding, which involves the following formulas:

θCy =
∨

zCy θz for y ∈ A ∪ {x};

θEy =
∨

zEy θz for y ∈ A;

θb
y = EF(θy ∧ b) ∧ AG(θy ⇒ (b ∨Ny)) for y ∈ A, b ∈ Σ;

θEy =
∨
{θz ∧ c : (z, c) E y} for y ∈ A;

ϕb
y = θb

y ∧ AGθEy ∧ AG(θCy ⇒ θEy) for y ∈ A, b ∈ Σ.

Observe that these formulas are well defined because we have assumed that
all delayed types in A are definable, hence the appropriate θy formulas exist.

Lemma 18 If (y, b) is sufficient, a tree satisfying ϕb
y has delayed type x.

Proof

Let t be a tree that satisfies ϕb
y. First we will show that either the left or

right subtree must have delayed type y and a root label ∼y-equivalent to
b. Let Y be the proper subtrees of t with delayed type y; this set is not
empty because t satisfies EF(θy ∧ b). Since E is a partial order and AGθEy

holds, every tree with a subtree in Y also belongs to Y . If b 6∈ Ny then by
EF(θy ∧ b), there is a tree in Y with the root labelled b. This must be either
the left or right subtree of t as Lemma 13 says that all trees in Y apart
from t|0 and t|1 must have labels in Ny. If the letter b belongs to Ny then,
by AG(θy ⇒ (b ∨Ny)) the root label of every tree in Y is in Ny and hence
∼y-equivalent to b. But this holds for either the left or right subtree, since
Y is nonempty.

Now we can prove that t has delayed type x. By the reasoning above, a
tree s ∈ {t|0, t|1} has delayed type y and a root label ∼y-equivalent to b. If
both the left and right subtrees have delayed type y and labels ∼y-equivalent
to b then, by property P2, t is of delayed type x. If the brother of s has
delayed type y but a root label c that is not ∼y-equivalent to b then c must
belong to Ny, because AG(θy ⇒ (b∨Ny)) holds. By definition of Ny we have
(y, c) E y. By property P3 we get dtype(y, b, y, c) = dtype(y, b, y, b) = x.
Otherwise, by AGθEy, the brother of s is of delayed type z C y and has a
root label c such that (z, c)Ey (because AG(θCy ⇒ θEy) holds). By property
P3 dtype(y, b, z, c) = dtype(y, b, y, b) = x. �

15

Given two delayed types y, z ∈ A and letters b, c ∈ Σ, we define

ϕ(y,b,z,c) =







ϕb
y if (z, c) E y;

ϕc
z if (y, b) E z and not the above;

θb
y ∧ θ

c
z ∧ AG(θEy ∨ θEz) otherwise.

Note that this formula corresponds to the two cases (i) and (ii) described
before Lemma 18.

Lemma 19 If dtype(y, b, z, c) = x and a tree t satisfies ϕ(y,b,z,c), then its
delayed type is x.

Proof

If (z, c) E y then by property P3, the pair (y, b) is sufficient and the lemma
follows from Lemma 18. Similarly if (y, b) E z. It remains to consider the
case when

(z, c) 5 y and (y, b) 5 z . (6)

Let s1 be a proper subtree satisfying θy ∧ b and s2 be a proper subtree
satisfying θz ∧ c. These exist since t satisfies both θb

y and θc
z. Let t1 be the

son of t containing s1, similarly we define t2 for s2. By (6), the tree t1 does
not satisfy θEz, while t2 does not satisfy θEy. Hence it must be the case that

t1 |= θEy and t2 |= θEz .

In particular t1 and t2 are different subtrees. By a reasoning similar to the
one in Lemma 18, one shows that the delayed type and root label of t1 are
y, b and the delayed type and root label of t2 are z, c. By property P2, the
delayed type of the tree t is x. �

Lemma 20 Let y,b and z,c be the delayed types and root labels of the left
and right subtrees of t. If dtype(y, b, z, c) = x and y, z ∈ A then t |= θ(y,b,z,c).

Proof

If (z, c) E y then z E y and an easy analysis shows that t satisfies ϕb
y and

hence also θ(y,b,z,c). A similar reasoning shows that if (y, b)Ez then t satisfies
θ(y,b,z,c). The last case is when (z, c) 5 y and (y, b) 5 z. But then t satisfies

the formula θb
y ∧ θ

c
z ∧ AG(θEy ∨ θEz). �

But Lemmas 19 and 20 are exactly what we need to show that the fork

formula defined below satisfies the properties postulated in Lemma 14:

forkA
x = (AG

∨

y∈A

θy) ∧
∨

{ϕ(y,b,z,c) : x = dtype(y, b, z, c)}

16

4 Languages Definable in EX+EF

The last logic we consider in this paper is EX+EF. As in the previous
sections, we will present a characterization of languages definable in EX+EF.
For the rest of the section we fix an alphabet Σ along with a Σ-language L
and will henceforth omit the L qualifier from notation.

Recall the type reachability quasiorder 4 along with its accompanying
equivalence relation ≈, which were defined on p. 7. The ≈-equivalence class
of a type α is called here its component. We extend the relation 4 to
components by setting:

∆ 4 Γ if α 4 β for some α ∈ ∆ and β ∈ Γ;

α 4 Γ if α 4 β for some β ∈ Γ.

We use the standard notational shortcuts, writing ∆ ≺ Γ when ∆ 4 Γ but
not Γ = ∆; similarly for α ≺ Γ.

Let Γ be some component and let k ∈ N . The (Γ, k)-view of a tree t is
the tree view(Γ, k, t) whose domain is the set of nodes in t at depth at most
k and where a node v is labeled by:

• t(v) if v is at depth smaller than k;

• type(t|v) if v is at depth k and type(t|v) ≺ Γ;

• ? otherwise.

Let views(Γ, k) denote the set of possible (Γ, k)-views. The intuition behind
the (Γ, k)-view of t is that it gives exact information about the tree t for
types which are ≺ smaller than Γ, while for other types it just says “I don’t
know”. The following definition describes languages where this information
is sufficient to pinpoint the type within the strongly connected component Γ.

Definition 21 Let Γ be a component and let k ∈ N . The language L is
(Γ, k)-solvable if every two trees s and t with types in Γ and the same (Γ, k)
view have the same type. The language is k-solvable if it is (Γ, k)-solvable
for every component Γ and it is component solvable if it is k-solvable for
some k.

It turns out that component solvability is exactly the property which char-
acterizes the languages definable in EX+EF:

Theorem 22

A regular language is definable in EX+EF if and only if it is component

solvable.

17

The proof of both implications in this theorem will be presented in the two
subsections that follow.

4.1 A Component Solvable Language Is Definable in EX+EF

In this section we show that one can write EX+EF formulas which compute
views. Then, using these formulas and the assumption that L is component
solvable, the type of a tree can be found.

Fix some k such that L is k-solvable. Let α be a type in a component Γ.
We write views(α) to denote set of possible (Γ, k)-views that can be assumed
in a tree of type α. By assumption on L being k-solvable, we have:

Fact 23 Let α be a type in component Γ and let t be a tree such that
type(t) 4 α. The type of t is α if and only if its (Γ, k)-view belongs to the
set views(α).

The following lemma states that views can be computed in EX+EF.

Lemma 24 Suppose that for every type β ≺ Γ, there is a EX+EF formula
θβ defining it. Then for every i ∈ N and every s ∈ views(Γ, i) there is a
formula ψs satisfied in exactly the trees whose (Γ, i)-view is s.

Proof

By induction on i. �

We define below a set of views which certainly cannot appear in a tree
with a type in a strongly connected component Γ:

Bad(Γ) = {a[s, t] : s ∈ views(α), t ∈ views(β),where α, β 4 Γ, a[α, β] 64 Γ} ∪

∪{t : type(t) 64 Γ and dom(t) = {ε}}

Observe that Bad(Γ) is a set of (Γ, k+1)-views. The following lemma shows
that the above cases are essentially the only ones.

Lemma 25 For a tree t and a component Γ, the following equivalence holds:

type(t) 64 Γ iff view(Γ, k + 1, t|v) ∈ Bad(Γ) for some v ∈ dom(t).

Proof

Both implications follow easily from Fact 23 if one considers the maximal
possible node v satisfying the right hand side. �

The following lemma completes the proof that L is definable in EX+EF.

18

Lemma 26 Every type of L is definable in EX+EF.

Proof

The proof is by induction on depth of the type in the quasiorder 4. Consider
a type α and its component Γ. By induction assumption, for all types β ≺ Γ,
there is a formula θβ which is satisfied in exactly the trees of type β. Using
the θβ formulas and Lemma 24 we construct the following EX+EF formula
(recall that AG

∗ is the non-strict version of AG defined on page 13):

θΓ = AG
∗

∧

t∈Bad(Γ)

¬ψt.

By Lemma 25, a tree t satisfies θΓ if and only if type(t) 4 Γ. Once we know
that the component of the tree is Γ, we can use Fact 23 to pinpoint the exact
type:

θα = θΓ ∧
∨

t∈views(α)

ψt.

�

4.2 A Language Definable in EX+EF is Component Solvable

In this section, we are going to show that a language which is not component
solvable is not definable in EX+EF. For this, we introduce an appropriate
Ehrenfeucht-Fräısé game, called the EX+EF game, which characterizes trees
indistinguishable by EX+EF formulas.

The game is played over two trees and by two players, Spoiler and Dupli-
cator. The intuition is that in the k-round EX+EF game, the player Spoiler
tries to differentiate the two trees using k moves.

The precise definition is as follows. At the beginning of the k-round
game, with k ≥ 0, the players are faced with two trees t0 and t1. If these
have different root labels, Spoiler wins. If they have the same root labels and
k = 0, Duplicator wins; otherwise the game continues. Spoiler first picks
one of the trees ti, with i ∈ {0, 1}. Then he chooses whether to make an EF
or EX move. If he chooses to make EF move, he needs to choose some non-
root node v ∈ dom(ti) and Duplicator must respond with a non-root node
w ∈ dom(t1−i) of the other tree. If Spoiler chooses to make an EX move, he
picks a son v ∈ {0, 1} of the root in ti and Duplicator needs to pick the same
son w = v in the other tree. If a player cannot find an appropriate node
in the relevant tree, this player immediately looses. Otherwise the trees ti|v
and t1−i|w become the new position and the (k − 1)-round game is played.

19

The modality nesting depth of a formula is defined by induction in the
natural fashion. Formulas that correspond to letters have depth zero, the
depth of a boolean combination is the maximal depth of the formulas in-
volved, while applying EX or EF to a formula increases the depth by one.

Lemma 27 Duplicator wins the k-round EX+EF game over t0 and t1 iff t0
and t1 satisfy the same EX+EF formulas of modality nesting depth k.

Proof

A standard proof by induction on k. The case of k = 0 is obvious. Let us
assume that we have proved the statement for some k and consider k + 1.

Consider first the left to right implication. We show that if a formula ϕ
distinguishes the trees t0 and t1, then a winning strategy for Spoiler can be
found. If ϕ distinguishes the trees t0 and t1, then one of its subformulas of
the form EXψ or EFψ distinguishes them too. Let us consider the case of
EFψ and assume without loss of generality that EFψ holds only in t0. This
means that there is a nonroot node v0 in the tree t0 such that

t0|v0
|= ψ and t1|v1

6|= ψ for all nonroot nodes v1 of t1

The winning strategy for Spoiler is, of course, to pick an EF move, the tree
t0 and the vertex v0. Since ψ is of modality nesting depth k, no matter
what vertex v1 Duplicator picks, Spoiler has – by induction assumption – a
winning strategy in the k-round game over the trees t0|v0

and t1|v1
. A similar

argument is used when the distinguishing formula is of the form EXψ.
For the right to left implication, we show how to write a distinguishing

formula ψ of nesting depth k+1 based on the assumption that Spoiler wins
the k+ 1-round game. Consider a winning strategy of Spoiler in this game.
We assume without loss of generality that Spoiler chooses the tree t0 to
make his move. Two cases need be considered. The first is when Spoiler
chooses an EF move and a subtree t0|v0

. Since his strategy is winning, for
every possible choice of a node v1 in the tree t1, the k-round game over the
trees t0|v0

and t1|v1
can be won by Spoiler. By induction assumption this

means that for every node v1 in the tree t1, there is a formula ψv1
of nesting

depth k such that

t0|v0
|= ψv1

and t1|v1
6|= ψv1

.

Note that in order to have ψv1
satisfied in t0|v0

and not in t1|v1
, we may have

negated the formula from the induction assumption. Let ψ be a conjunction
of all the ψv1

formulas for all choices of v1. The appropriate formula that

20

distinguishes the trees t0 and t1 is then EFψ. A similar reasoning is used
for EX. �

A multicontext is like a context but it may have more than one hole.
Given a multicontext C and a function ν which to every hole in C assigns a
tree, we define the tree C[ν] in the natural way. Similarly we proceed when
ν assigns types instead of trees: in this case C[ν] is a type. The hole depth

of a multicontext C is the minimal depth of a hole in C.
For two types α, β in a component Γ we define an (α, β)-context to be a

multicontext C with holes V such that there are two valuations να, νβ : V →
Γ giving the types C[να] = α and C[νβ] = β. A multicontext C is k-bad for

component Γ if it has hole depth at least k and is an (α, β)-context for two
different types α, β ∈ Γ. The following Lemma shows that (α, β)-contexts
are just a reformulation of component solvability:

Lemma 28 L is not component solvable if and only if for some component
Γ and every k ∈ N , it contains multicontexts which are k-bad for Γ.

Proof

A k-bad context exists for Γ if and only if L is not (Γ, k)-solvable. �

The following lemma concludes the proof that no EX+EF formula can
recognize a language which is not component solvable:

Lemma 29 If L is not component solvable then for every k there are trees
s ∈ L and t 6∈ L such that Duplicator wins the k-round EX+EF game over
s and t.

Proof

Take some k ∈ N . If L is not component solvable then, by Lemma 28,
there is a multicontext C which is k-bad for some component Γ. Let
V = {v1, . . . , vn} be the holes of C, let να, νβ : V → Γ be the appropri-
ate valuations and α = C[να], β = C[νβ] the resulting types. We will use
this multicontext to find trees s ∈ L and t 6∈ L such that Duplicator wins
the k-round EX+EF game over s and t.

Since all the types used in the valuations να and νβ are from same

component, there are contexts Cα
1 [], . . . , Cα

n [] and Cβ
1 [], . . . , Cβ

n [] such that

Cα
i [α] = νβ(vi) C

β
i [β] = να(vi) for all i ∈ {1, . . . , n}.

This means there are two contexts Dα and Dβ with n holes each, such
that: 1) Dα and Dβ agree over nodes of depth less than k; 2) when all holes

21

of Dα are plugged with β, we get the type α; and 3) when all holes of Dβ

are plugged with α, we get the type β. These are obtained by plugging the
appropriate “translators” Cα

i [] and Cβ
i [] into the holes of the multicontext C.

Let t0 be some tree of type α. The trees tj for j > 0 are defined by induction
as follows:

t2i+1 = Dβ[

n times
︷ ︸︸ ︷

t2i, . . . , t2i] t2i+2 = Dα[

n times
︷ ︸︸ ︷

t2i+1, . . . , t2i+1].

By an obvious induction, all the trees t2i have type α and all the trees
t2i+1 have type β. As β 6= α, there exists a context D[] such that D[α] ∈ L
and D[β] 6∈ L (or the other way round).

Figure 2: The tree t2i+2.

To finish the proof of the lemma, we will show that Duplicator wins the
k-round EX+EF game over the trees

s = D[t2k+2] and t = D[t2k+1] .

The winning strategy for Duplicator is obtained by following an invariant.
This invariant is a disjunction of three properties, one of which always holds
when the i-round game is about to be played:

1. The two trees are identical;

2. The two trees are s|v and t|v for some |v| ≤ k − i;

3. The two trees are tm|v and tm−2|v for

m ≥ k + i+ 1 and

{

v ∈ dom(Dα) if m is even;

v ∈ dom(Dβ) if m is odd.

22

The invariant holds at the beginning of the first round, due to 2, and one
can verify that Duplicator can play in such a way that it is satisfied in all
rounds. Item 2 of the invariant will be preserved in the initial fragment of
the game when only EX moves are made, then item 3 will hold until either
the game ends or item 1 begins to hold. �

5 Decidability

In this section we round up the results by showing that our characterizations
are decidable.

Theorem 30

It is decidable in time polynomial in the number of types if a language is

definable in any one of the logics EX, EF or EX+EF.

Proof

Using a simple dynamic algorithm, one can compute in polynomial time all
tuples (α, β, α′, β′) such that for some context C[], C[α] = α′ and C[β] = β ′.
Using this, we can find in polynomial time:

• Whether L contains an {α, β}-loop;

• The 4L and ≈L relations on types.

Since the delayed type of a tree depends only on the types of its imme-
diate subtrees, the number of delayed types is polynomial in the number of
types. The relation EL on delayed types can then be computed in polyno-
mial time from the relation 4L. Having the relations 4L and EL, one can
check in polynomial time if L is EF-admissible.

This, along with the characterizations from Theorems 3 and 5, proves
decidability for the logics EX and EF. The remaining logic is EX+EF.

By Theorem 22, it is enough to show that component solvability is de-
cidable. In order to do this, we present an algorithm that detects if a given
component Γ admits bad multicontexts of arbitrary size, cf. Lemma 28. Fix
a component Γ. We define by induction a sequence B i of subsets of Γ× Γ.

• B0 consisits of all pairs (α, β) such that α, β ∈ Γ and α 6= β.

• A pair (α, β) belongs to Bi+1 if it belonged to Bi and either

– there are a pair (α′, β′) ∈ Bi, a type γ 4 Γ and a letter a ∈ Σ
such that

type(a[α′, γ]) = α and type(a[β ′, γ]) = β ; or

23

– there are pairs (α′, β′), (α′′, β′′) ∈ Bi and a letter a ∈ Σ such that

type(a[α′, α′′]) = α and type(a[β ′, β′′]) = β .

The sequence Bi is decreasing so it reaches a fix-point B∞ in no more than
|Γ|2 steps. The following lemma yields the algorithm for EX+EF:

Lemma 31 Γ admits bad multicontexts of arbitrary size iff B∞ 6= ∅.

For the left-to-right implication suppose that B∞ is not empty. By
induction on k we show that for every k and (α, β) ∈ B∞, we can construct
(α, β)-context of hole depth k. Take (α, β) ∈ B∞. We have one of the two
cases from the definition above. The first is when there are a pair (α′, β′) ∈
B∞, a type γ 4 Γ and a letter a ∈ Σ such that type(a[α′, γ′]) = α and
type(a[β ′, γ′]) = β. By induction assumption we have an (α′, β′)-context C ′

of hole depth k− 1. Using this multicontext, we construct the multicontext
a[C ′, s], where s is a tree of type γ. It is a required (α, β)-context of hole
depth k. The other case is similar.

For the right-to-left implication we show that if (α, β) ∈ B i−Bi+1 then
all (α, β)-contexts have hole depth bounded by i. This is also done by
induction on i.

�

Corollary 32 If the input is a CTL formula or a nondeterministic tree
automaton, all of the problems in Theorem 30 are Exptime-complete.

Proof

Since, in both cases, the types can be computed in time at most exponen-
tial in the input size, the Exptime membership follows immediately from
Theorem 30. For the lower bound, we will use an argument analogous to
the one in [17], reducing the Exptime-hard universality problems for both
CTL [3] and nondeterministic automata [13] to any of these problems.

We will only show here the Exptime-hardness of the problem:

Is a given CTL formula equivalent to one in EF? (*)

Let ψ be a CTL formula over some alphabet Σ. By [3], the question whether
ψ is satisfied in all Σ-trees is Exptime-hard. We show the Exptime-
hardness of the problem (*) by presenting a formula ϕ which is definable in
the logic EF if and only if the formula ψ is true in all Σ-trees. This formula is

24

obtained by using ψ and some fixed formula φ – say, E(aUb) – not definable
in EF:

ϕ = EX0ψ ∨ EX1φ

Clearly if ψ is true in all Σ-trees, then, by its first disjunct, ϕ is true in
all Σ-trees with more than one node. This language is defined by the EF

formula EX>.
Finally, we need to prove that if ψ is not true in all Σ-trees, then ϕ is

not definable in EF. Let us assume for the sake of contradiction that ϕ is
equivalent to some EF formula θ. Let Ψ be all the subformulas of θ. By
assumption that the formula φ is not definable in EF, there exist two trees
t1 and t2 that satisfy the same formulas in Ψ, but one satisfies φ and the
other does not (otherwise an appropriate boolean combination of formulas
in Ψ would be equivalent to φ). Therefore exchanging t1 with t2 in any
subtree does not affect the satisfaction of θ. Let s be a tree that does not
satisfy ψ, obtained by the assumption on ψ not being satisfied in all Σ-trees.
Obviously for any letter a ∈ Σ we have

a[s, t1] |= ϕ a[s, t2] 6|= ϕ ,

but either both these trees satisfy θ or both do not. �

6 Why Forbidden Patterns from the Word Case

Do not Work

In the survey [18], one can find decidable characterizations for several frag-
ments of LTL. These fragments can be seen as the word equivalents of the
logics EX, EF and EX+EF considered here. One naturally asks the ques-
tion: how are the word and tree cases related? In the case of the logic
EX, the loop characterization from Theorem 3 is an exact analogue of the
characterization corresponding to the fragment of LTL that only uses the X

modality.
For the two remaining logics, however, the word and tree cases diverge.

This section is devoted to showing why.

Case of EF. First we need to introduce the appropriate definitions for
words. The delayed type of a word w is the function which assigns to a
letter a the type of the word a · w. Two word types α, β are in the same
component if there are word types α′, β′ such that α′ ·α = β and β ′ · β = α.
In [18] it is shown that a word language is definable using only the modality

25

F if and only if the delayed type of a word is determined by the component
of its type.

Hence a natural question: is a tree language definable in EF if and only
if the delayed type of a tree is determined by the components of its two
sons? This can be understood in two ways: the ordered pair of components,
or the set of components. The first idea can be immediately disproved, for
instance using the language “there is an a in the left subtree”. The idea
that uses sets requires a more elaborate example, which is presented here.

a b

x> > >

xa α γ

xb γ β

xγ γ γ

Figure 3: The delayed types of L along with the trees s and t

Consider the {a, b}-language L defined by the formula (which uses the
non-strict versions of AG and EF):

ψ = EF
∗[EX(AG

∗a) ∧ EX((EF
∗a) ∧ (EF

∗b))]

A tree t satisfies this formula if it contains two nodes v and w which are
siblings and t|v contains only a’s, while t|w contains both a’s and b’s. This
language has four types α, β, γ and >, which are defined by the formulas:

α = AG
∗a; β = AG

∗b; γ = (EF
∗a) ∧ (EF

∗b) ∧ ¬ψ; + = ψ.

Each of these types is its own component. There are also four delayed types
{x+, xa, xb, xγ}, which are defined in Figure 3.

Consider now the two trees s and t drawn in Figure 3 (we do not specify
the root letters since we are interested only in delayed types). These trees
show that the language L is not typeset dependent and therefore not in EF,
since:

TS(s) = TS(t) = {α, β, γ} but xγ = dtype(s) 6= dtype(t) = x+.

However, if the components of both sons are known, then the types of both
sons are known and hence so is the delayed type of the tree.

26

Case of EX+EF. In [18] it is shown that a word language is definable
using the modalities F and X if and only if one cannot find two distinct types
α, β in the same component and a nonempty word w such that:

α = w · α and β = w · β. (7)

We will show that a straightforward generalization of this condition obtained
by considering contexts instead of words does not work in the tree case.
Consider the language K over the alphabet {a, b, c} defined by the formula

ψ = AG
∗

∨

σ 6=τ∈{a,b,c}

ψσ,τ where ψσ,τ = [EX> ⇒ (σ ∧ A(σUτ))] .

This language consists of those trees where for every node v, all the minimal
nodes in the set {w : w > v and t(w) 6= t(v)} have the same label. The ten
types of the language are:

0 = ¬ψ; ασ = σ∧AX⊥; βσ,τ = ψ∧ψσ,τ for all σ 6= τ ∈ {a, b, c}.

There are five components in this language: a component Γ containing the
six βσ,τ types, while each of the remaining types is its own component.

The language K is not k-solvable for any k ∈ N , and hence is not
definable in EX+EF. We will show, however, that if in the condition (7) one
considers nontrivial contexts instead of nonempty words w, the resulting
condition on tree languages is satisfied by K. This goes to show that in a
bad multicontext one sometimes needs the use of more than one hole.

Let C[] be a nontrivial context, i.e. one with the hole not in the root.
We will show that one cannot find two distinct types in the component Γ
such that

C[γ1] = γ1 and C[γ2] = γ2. (8)

Let σ be the letter in the parent v of the hole, and let w be the brother of
the hole. Let V = {u : u ≥ w and C(u) 6= σ}. If V = ∅, or nodes in V have
two different labels, then C[γ] = 0 for all types γ. Otherwise, let τ be the
unique label of all nodes in V . This means that for any tree t, the type in
v of C[t] is either 0 or βσ,τ , which proves that (8) cannot be satisfied.

7 Open Problems

This paper solves the question of definability for the logics EX, EF and
EX+EF. One possible continuation are logics where instead of EF we use

27

the non-strict modality EF
∗. The resulting logics are weaker than their

strict counterparts (for instance the language EFa is not definable using
only EF

∗) and therefore decidability of the their definability problems can
be investigated.

Another question is what happens if we enrich these logics with past
quantification (there exists a point in the past)? This question is particularly
relevant since the resulting logics are related to first-order logic with two
variables.

Finally, there is CTL (and of course CTL∗). Providing a decidable char-
acterization of CTL would be a valuable achievement, since this is a widely
used logic. Note that on words CTL collapses to LTL and hence first-order
logic, so such a characterization would subsume first-order definability for
words.

References

[1] E. A. Emerson and J. Y. Halpern. ’Sometimes’ and ’not never’ revisited:
on branching versus linear time temporal logic. Journal of the ACM,
33(1):151–178, 1986.

[2] J. Esparza. Decidability of model-checking for infinite-state concurrent
systems. Acta Informatica, 34:85–107, 1997.

[3] M. Fischer and R. Ladner. Propositional dynamic logic of regular pro-
grams. Journal of Computer and System Sciences, 18:194–211, 1979.

[4] M. Franceschet, L. Afanasiev, M. de Rijke, and M. Marx. CTL model
checking for processing simple XPath queries. In Temporal Presentation

and Reasoning.

[5] C. Koch G. Gottlob. Monadic queries over tree-structured data. In
Logic in Computer Science, pages 189–202, 2002.

[6] T. Hafer and W. Thomas. Computation tree logic CTL and path quan-
tifiers in the monadic theory of the binary tree. In International Collo-

quium on Automata, Languages and Programming, volume 267 of Lec-

ture Notes in Computer Science, pages 260–279, 1987.

[7] U. Heuter. First-order properties of trees, star-free expressions, and
aperiodicity. In Symposium on Theoretical Aspects of Computer Sci-

ence, volume 294 of Lecture Notes in Computer Science, pages 136–148,
1988.

28

[8] F. Neven. Automata, logic, and XML. In Julian C. Bradfield, editor,
Computer Science Logic, volume 2471 of Lecture Notes in Computer

Science, pages 2–26, 2002.

[9] D. Niwiński. Fixed points vs. infinte generation. In Logic in Computer

Science, pages 402–409, 1988.

[10] M. Otto. Eliminating recursion in the µ-calculus. In Symposium on

Theoretical Aspects of Computer Science, volume 1563 of Lecture Notes

in Computer Science, pages 531–540, 1999.

[11] A. Potthoff. First-order logic on finite trees. In Theory and Practice

of Software Development, volume 915 of Lecture Notes in Computer

Science, pages 125–139, 1995.

[12] M. P. Schützenberger. On finite monoids having only trivial subgroups.
Information and Control, 8:190–194, 1965.

[13] H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal

of Computing, 19:424–437, 1990.

[14] H. Straubing. Finite Automata, Formal Languages, and Circuit Com-

plexity. Birkhäuser, Boston, 1994.

[15] J. W. Thatcher and J. B. Wright. Generalized finite automata the-
ory with an application to a decision problem of second-order logic.
Mathematical Systems Theory, 2(1):57–81, 1968.

[16] I. Walukiewicz. Model checking CTL properties of pushdown systems.
In Foundations of Software Technology and Theoretical Computer Sci-

ence, volume 1974 of Lecture Notes in Computer Science, pages 127–
138, 2000.

[17] I. Walukiewicz. Deciding low levels of tree-automata hierarchy. In
Workshop on Logic, Language, Information and Computation, vol-
ume 67 of Electronic Notes in Theoretical Computer Science, 2002.

[18] T. Wilke. Classifying discrete temporal properties. In Symposium on

Theoretical Aspects of Computer Science, volume 1563 of Lecture Notes

in Computer Science, pages 32–46, 1999.

29

