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ARITHMETIC FUJITA APPROXIMATION

Huayi Chen

Abstract. — We prove an arithmetic analogue of Fujita’s approximation theorem,

conjectured by Moriwaki, by using slope method and measures associated to R-

filtrations.
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1. Introduction

Fujita approximation is an approximative version of Zariski decomposition of
pseudo-effective divisors [29] which holds for smooth projective surfaces but fails
in general. Let X be a projective variety defined over a field K and L be a big line
bundle on X , i.e., the volume of L, defined as

vol(L) := lim sup
n→∞

rkK H0(X,L⊗n)

ndim X/(dimX)!
,

is strictly positive. The Fujita’s approximation theorem asserts that, for any ε > 0,
there exists a projective birational morphism ν : X ′ → X , an integer p > 0, together
with a decomposition ν∗(L⊗p) ∼= A⊗E, where A is an ample line bundle, E is effective,
such that p−dim Xvol(A) > vol(L)−ε. This theorem had been proved by Fujita himself
[14] in characteristic 0 case, before its generalization to any characteristic case by
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Takagi [27]. It is the source of many important results concerning big divisors and
volume function in algebraic geometry context, such as volume function as a limit,
its log-concavity and differentiability, etc. We refer readers to [18, 11.4] for a survey,
see also [13, 12, 7, 19].

The arithmetic analogue of volume function and the arithmetic bigness in Arakelov
geometry has been introduced by Moriwaki [20, 21]. Let K be a number field and
OK be its integer ring. Let X be a projective arithmetic variety of total dimension
d over SpecOK . For any Hermitian line bundle L on X , the arithmetic volume of
L is defined as

(1) v̂ol(L ) := lim sup
n→∞

ĥ0(X ,L
⊗n

)

nd/d!
,

where

ĥ0(X ,L
⊗n

) := log #{s ∈ H0(X ,L ⊗n) | ∀σ : K → C, ‖s‖σ,sup 6 1}.

Similarly, L is said to be arithmetically big if v̂ol(L ) > 0. In [21, 22], Moriwaki

has proved that the arithmetic volume function is continuous with respect to L , and

admits a unique continuous extension to P̂ic(X )R. In [21], he asked the following
question (Remark 5.9 loc. cit.): does the Fujita approximation hold in the arithmetic
case?

The validity of arithmetic Fujita approximation has many interesting consequences.
For example, assuming that the arithmetic Fujita approximation is true, then by
arithmetic Riemann-Roch theorem [16, 30], the right side of (1) is actually a limit
(see [21, Remark 4.1]).

In [11], the author proved that the sequence which defines the arithmetic volume
function converges. This gives an affirmative answer to a conjecture of Moriwaki [21,
Remark 4.1]. Rather than applying the arithmetic analogue of Fujita approximation,
the proof uses its classical version on the generic fiber and then appeals to an earlier
work of the author on the convergence of normalized Harder-Narasimhan polygons,
generalizing the arithmetic Hilbert-Samuel formula (in an inexplicit way).

One of the difficulty for establishing arithmetic Fujita approximation is that, if
A is a ample Hermitian line subbundle of L which approximates well A , then in
general the section algebra of AK does not approximate that of LK at all. In fact, it
approximates only the graded linear series of L generated by small sections.

In this article, we prove the conjecture of Moriwaki on the arithmetic Fujita
approximation by using Bost’s slope theory [3, 4, 5] and the measures associated
to R-filtrations [10, 11]. The strategy is similar to that in [11] except that, instead
of using the geometric Fujita approximation in its classical form, we apply a recent
result of Lazarsfeld and Mustaţǎ [19] on a very general approximation theorem for
graded linear series of a big line bundle on a projective variety, using the theory of
Okounkov bodies [23]. It permits us to approximate the graded linear series of the
generic fiber generated by small sections. Another important ingredient in the proof
is the comparison of minimum filtration and slope filtration (Propositions 3.6 and
3.11 infra), which relies on the estimations in [1, 6] for invariants of Hermitian vector
bundles. By the interpretation of the arithmetic volume function by integral with
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respect to limit of Harder-Narasimhan measures established in [11], we prove that
the arithmetic volumes of these subalgebras approximate the arithmetic volume of the
Hermitian line bundle, and therefore establish the arithmetic Fujita approximation.

It seems that the arithmetic analogue of the theorem of Lazarsfeld and Mustaţǎ
does not follow directly from our method. As suggested by [19], this might be a
consequence of a (conjectural) arithmetic analogue of Okounkov body method for
Hermitian line bundles on arithmetic varieties.

The organization of this article is as follows. In the second section, we introduce
the notion of approximable graded algebras and study their asymptotic properties.
This is inspired by [19]. We then recall the notion of Borel measures associated to
filtered vector spaces. At the end of the section, we establish a convergence result for
filtered approximable algebras, which generalizes my previous results in [10, 11]. The
third section is devoted to a comparison of filtrations on metrized vector bundles on
a number field, which come naturally from the arithmetic properties of these objects.
We begin by a reminder on Bost’s slope method. Then we introduce the R-indexed
minimum filtration and slope filtration for metrized vector bundles and compare them.
We also compare the asymptotic behaviour of these two types of filtrations. In the
fourth section, we recall the theorem of Lazarsfeld and Mustaţǎ on the approximability
of certain graded linear series. We then describe some approximable graded linear
series which come from the arithmetic of a big Hermitian line bundle on an arithmetic
variety. The main theorem of the article is established in the fifth section. We prove
that the arithmetic volume of a big Hermitian line bundle can be approximated by
the arithmetic volume of its graded linear series of finite type. We then deduce the
Moriwaki’s conjecture by developing an arithmetic analogue of an argument in [19].
Finally in the sixth section, we prove that, if a graded linear series generated by small
sections approximates well a big Hermitian line bundle L , then it also approximates
well the asymptotic measure of L truncated at 0.

Acknowledgement I would like to thank J.-B. Bost, S. Boucksom and A. Chambert-
Loir for discussions and for their valuable remarks.

2. Approximable algebras and asymptotic measures

In [10, 11], the author has used measures associated to filtered vector spaces to
study asymptotic invariants of Hermitian line bundles. Several convergence results
have been established for graded algebras equipped with R-filtrations, either under the
finite generating condition on the underlying graded algebra [10, Theorem 3.4.3], or
under the geometric condition [11, Theorem 4.2] that the underlying graded algebra
is the section algebra of a big line bundle. However, as we shall see later in this
article, some graded algebras coming naturally from the arithmetic do not satisfy
these two conditions. In this section, we generalize the convergence result to a so-
called approximable graded algebra case.

2.1. Approximable graded algebras. — In the study of projective varieties,
graded algebras are natural objects which often appear as graded linear series of a line
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bundle. In general, such graded algebras are not always finitely generated. However,
according to approximation theorems due to Fujita [14], Takagi [27], Lazarsfeld and
Mustaţǎ [19] etc., they can often be approximated arbitrarily closely by its graded
subalgebras of finite type. Inspired by [19], we formalize this observation as a notion.
In this section, K denotes an arbitrary field.

Definition 2.1. — Let B =
⊕

n>0Bn be an integral graded K-algebra. We say
that B is approximable if the following conditions are verified:

(a) all vector spaces Bn are finite dimensional and Bn 6= 0 for sufficiently large n;
(b) for any ε ∈ (0, 1), there exists an integer p0 > 1 such that, for any integer p > p0,

one has

lim inf
n→∞

rk(Im(SnBp → Bnp))

rk(Bnp)
> 1 − ε,

where SnBp → Bnp is the canonical homomorphism defined by the algebra
structure on B.

Remark 2.2. — The condition (a) serves to exclude the degenerate case so that
the presentation becomes simpler. In fact, if an integral graded algebra B is not
concentrated on B0, then by choosing an integer q > 1 such that Bq 6= 0, we obtain
a new graded algebra

⊕
n>0Bnq which verifies (a). In most cases, this new algebra

contains all information about B which interests us.

Example 2.3. — The following are some examples of approximable graded algebras.

1) If B is an integral graded algebra of finite type such that Bn 6= 0 for sufficiently
large n, then it is clearly approximable.

2) LetX be a projective variety over SpecK and L be a big line bundle onX . Then by
Fujita’s approximation theorem, the total graded linear series

⊕
n>0H

0(X,L⊗n)
of L is approximable.

3) More generally, Lazarsfeld and Mustaţǎ have shown that, with the notation of
2), any graded subalgebra of

⊕
n>0H

0(X,L⊗n) containing an ample divisor and

verifying the condition (a) above is approximable.

We shall revisit the examples 2) and 3) in §4.1.

The following properties of approximable graded algebras are quite similar to
classical results on big line bundles.

Proposition 2.4. — Let B =
⊕

n>0Bn be an integral graded algebra which is ap-

proximable. Then there exists a constant a ∈ N \ {0} such that, for sufficiently large
integer p, the algebra

⊕
n>0 Im(SnBp → Bnp) has Krull dimension a. Furthermore,

denote by d(B) := a− 1. The sequence

(2)
( rkBn

nd(B)/d(B)!

)
n>1

converges in R+.
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Proof. — Assume that Bm 6= 0 for all m > m0, where m0 ∈ N. Since B is integral,
for any integer n > 1 and any integer m > m0, one has

(3) rk(Bn+m) > rk(Bn).

For any integer p > m0, denote by a(p) the Krull dimension of
⊕

n>0 Im(SnpBp →
Bnp), and define

(4) f(p) := lim inf
n→∞

rk(Im(SnBp → Bnp))

rkBnp
.

The approximable condition shows that lim
p→∞

f(p) = 1. Recall that the classical result

on Hilbert polynomials implies

rk(Im(SnBp → Bnp)) ≍ na(p)−1 (n→ ∞).

Thus, if f(p) > 0, then rkBnp ≍ na(p)−1, and hence by (3), one has rkBn ≍ na(p)−1

(n→ ∞). Thus a(p) is constant if f(p) > 0. In particular, a(p) is constant when p is
sufficiently large. We denote by a this constant, and by d(B) = a− 1.

In the following, we shall establish the convergence of the sequence (2). It suffices
to establish

(5) lim inf
n→∞

rkBn

nd(B)
> lim sup

n→∞

rkBn

nd(B)
.

By (3), for any integer p > 1, one has

(6) lim sup
n→∞

rk(Bn)

nd(B)
= lim sup

n→∞

rk(Bnp)

(np)d(B)
and lim inf

n→∞

rk(Bn)

nd(B)
= lim inf

n→∞

rk(Bnp)

(np)d(B)

Suppose that f(p) > 0. Then one has

lim sup
n→∞

rk(Bnp)

(np)d(B)
=

(
lim sup

n→∞

rk(Bnp)

rk(Im(SnBp → Bnp))

)
·
(

lim
n→∞

rk(Im(SnBp → Bnp))

(np)d(B)

)

= f(p)−1 lim
n→∞

rk(Im(SnBp → Bnp))

(np)d(B)
6 f(p)−1 lim inf

n→∞

rk(Bnp)

(np)d(B)
.

Combining with (6) and the approximable hypothesis, we obtain (5).

Corollary 2.5. — For any r ∈ N, one has

lim
n→∞

rk(Bn+r)

rk(Bn)
= 1.

Definition 2.6. — Let B be an integral graded K-algebra which is approximable.
We denote by vol(B) the limit

vol(B) := lim
n→∞

rk(Bn)

nd(B)/d(B)!
.

Note that, if B is the total graded linear series of a big line bundle L, then vol(B) is
just the volume of the line bundle L.

Remark 2.7. — It might be interesting to know whether any approximable graded
algebra can always be realized as a graded linear series of a big line bundle.
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2.2. Reminder on R-filtrations. — Let K be a field and W be a vector space of
finite rank over K. For filtration on W we mean a sequence F = (FtW )t∈R of vector
subspaces of W , satisfying the following conditions:

1) if t 6 s, then FsW ⊂ FtW ;
2) FtW = 0 for sufficiently positive t, FtW = W for sufficiently negative t;
3) the function t 7→ rk(FtW ) is left continuous.

The couple (W,F) is called a filtered vector space.
IfW 6= 0, we denote by ν(W,F) (or simply νW if this does not lead to any ambiguity)

the Borel probability measure obtained by taking the derivative (in the sense of
distribution) of the function t 7→ − rkFtW/ rkW . If W = 0, then there is a unique
filtration on W and we define ν0 to be the zero measure by convention. Note that the
measure νW is actually a linear combination of Dirac measures.

All filtered vector spaces and linear maps preserving filtrations form an exact
category. The following proposition shows that mapping (W,F) 7→ ν(W,F) behaves
well with respect to exact sequences.

Proposition 2.8. — Assume that

0 // (W ′,F ′) // (W,F) // (W ′′,F ′′) // 0

is an exact sequence of filtered vector spaces. Then

νW =
rkW ′

rkW
νW ′ +

rkW ′′

rkW
νW ′′ .

Proof. — For any t ∈ R, one has

rk(FtW ) = rk(F ′
tW

′) + rk(F ′′
t W

′′),

which implies the proposition by taking the derivative in the sense of distribution.

Corollary 2.9. — Let (W,F) be a non-zero filtered vector space, V ⊂W be a non-
zero subspace, equipped with the induced filtration, ε = 1 − rk(V )/ rk(W ). Then for
any bounded Borel function h on R, one has

∣∣∣∣
∫
h dνW −

∫
h dνV

∣∣∣∣ 6 2ε‖h‖sup.

Proof. — The case where W = V is trivial. In the following, we assume that
U := W/V is non-zero, and is equipped with the quotient filtration. By Proposition
2.8, one has

νW = (1 − ε)νV + ενU = νV + ε(νU − νV ).

Therefore
∣∣∣∣
∫
h dνW −

∫
h dνV

∣∣∣∣ = ε

∣∣∣∣
∫
h dνU −

∫
h dνV

∣∣∣∣ 6 2ε‖h‖sup.
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Let (W,F) be a filtered vector space. We denote by λ : W → R ∪ {+∞} the
mapping which sends x ∈W to

λ(x) := sup{a ∈ R |x ∈ FaW}.
The function λ takes values in supp(νW )∪{+∞}, and is finite on W \ {0}. We define

(7) λmax(W ) = max
x∈W\{0}

λ(x) and λmin(W ) = min
x∈W

λ(x).

Note that when W 6= 0, one always has λmin(W ) 6
∫
x νW (dx) 6 λmax(W ). However,

λmin(0) = +∞ and λmax(0) = −∞.
We introduce an order “≺” on the space M of all Borel probability measures on

R. Denote by ν1 ≺ ν2, or ν2 ≻ ν1 the relation:

for any bounded increasing function h on R,
∫
h dν1 6

∫
h dν2.

For any x ∈ R, denote by δx the Dirac measure concentrated at x. For any a ∈ R,
let τa be the operator acting on the space M which sends a measure ν to its direct
image by the map x 7→ x+ a.

Proposition 2.10. — Let (V,F) and (W,G) be non-zero filtered vector spaces. As-
sume that φ : V →W is an isomorphism of vector spaces and a is a real number such
that φ(FtV ) ⊂ Gt+aW holds for all t ∈ R, or equivalently, ∀x ∈ V , λ(φ(x)) > λ(x)+a,
then νW ≻ τaνV .

See [10, Lemma 1.2.6] for proof.

2.3. Convergence of measures of an approximable algebra. — Let B be an
integral graded algebra, assumed to be approximable. Let f : N → R+ be a mapping.
Assume that, for each integer n > 0, the vector space Bn is equipped with an R-
filtration F such that B is f -quasi-filtered, that is, there exists n0 ∈ N such that, for
any integer l > 2, and all homogeneous elements x1, · · · , xl in B of degrees n1, · · · , nl

in Z>n0 , respectively, one has

λ(x1 · · ·xl) >

l∑

i=1

(
λ(xi) − f(ni)

)
,

where λ is the function defined in (7).
For any ε > 0, let Tε be the operator acting on the space M of all Borel probability

measures which sends ν ∈ M to its direct image by the mapping x 7→ εx.
The purpose of this subsection is to establish the following convergence result,

which is a generalization of [11, Theorem 4.2].

Theorem 2.11. — Let B be an approximable graded algebra equipped with filtrations
as above such that B is f -quasi-filtered. Assume in addition that

sup
n>1

λmax(Bn)/n < +∞ and lim
n→∞

f(n)/n = 0.

Then the sequence (λmax(Bn)/n)n>1 converges in R, and the measure sequence
(T 1

n
νBn

)n>1 converges vaguely to a Borel probability measure on R.
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Remark 2.12. — We say that a sequence (νn)n>1 of Borel measures on R converges
vaguely to a Borel measure ν if, for any continuous function h on R whose support is
compact, one has

lim
n→+∞

∫
h dνn =

∫
h dν.

Proof. — The first assertion has been established in [10, Proposition 3.2.4] in a more
general setting without the approximable condition on B. Here we only prove the
second assertion.

Assume that Bn 6= 0 holds for any n > m0, where m0 > n0 is an integer, and
denote by νn = T 1

n
νBn

. The supports of νn are uniformly bounded from above since

supn>1 λmax(Bn)/n < +∞. Let p be an integer such that p > m0. Denote by A(p)

be the graded subalgebra of B generated by Bp. For any integer n > 1, we equipped

each vector space A
(p)
np with the induced filtration, and denote by ν

(p)
n := T 1

np
ν

A
(p)
np

.

Furthermore, we choose, for any r ∈ {p+ 1, · · · , 2p− 1}, a non-zero element er ∈ Br,
and define

M (p)
n,r = erBnp ⊂ Bnp+r, N (p)

n,r = e3p−rM
(p)
n,r ⊂ B(n+3)p,

a(p)
n,r =

λ(e3p−r) − f(np+ r) − f(3p− r)

np
, b(p)

n,r = a(p)
n,r +

λ(er) − f(np) − f(r)

np
,

ν(p)
n,r = T 1

np
ν

M
(p)
n,r
, η(p)

n,r = T 1
np
ν

N
(p)
n,r
.

Note that, for all x ∈ Bnp, y ∈M
(p)
n,r , one has

λ(erx) > λ(x) + λ(er) − f(np) − f(r),

λ(e3p−ry) > λ(y) + λ(e3p−r) − f(3p− r) − f(np+ r).

By Proposition 2.10, one has

η(p)
n,r ≻ τ

a
(p)
n,r
ν(p)

n,r ≻ τ
b
(p)
n,r
νnp.

Let h(x) be a bounded increasing and continuous function on R whose support is
bounded from below, and which is constant when x is sufficiently positive. One has

(8)

∫
h dη(p)

n,r >

∫
h dτ

a
(p)
n,r
ν(p)

n,r >

∫
h dτ

b
(p)
n,r
νnp.

Note that |h(x+ εx)− h(x)| converges uniformly to zero when ε→ 0. By Corollaries
2.9 and 2.5, we obtain

lim
n→∞

∣∣∣∣
∫
h dη(p)

n,r −
∫
h dν(n+3)p

∣∣∣∣ = 0,(9)

lim
n→∞

∣∣∣∣
∫
h dν(p)

n,r −
∫
h dνnp+r

∣∣∣∣ = 0.(10)
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Note that |h(x+u)−h(x)| converges uniformly to zero when u→ 0. Combining with

the fact that lim
n→∞

a(p)
n,r = lim

n→∞
b(p)
n,r = 0, we obtain

lim
n→∞

∣∣∣∣
∫
h dτ

a
(p)
n,r
ν(p)

n,r −
∫
h dν(p)

n,r

∣∣∣∣ = 0,(11)

lim
n→∞

∣∣∣∣
∫
h dτ

b
(p)
n,r
νnp −

∫
h dνnp

∣∣∣∣ = 0.(12)

Thus

lim sup
n→∞

∣∣∣∣
∫
h dνnp+r −

∫
h dνnp| = lim sup

n→∞

∣∣∣∣
∫
h dτ

a
(p)
n,r
ν(p)

n,r −
∫
h dτ

b
(p)
n,r
νnp

∣∣∣∣

6 lim sup
n→∞

∣∣∣∣
∫
h dη(p)

n,r −
∫
h dτ

b
(p)
n,r
νnp

∣∣∣∣ = lim sup
n→∞

∣∣∣∣
∫
h dν(n+3)p −

∫
h dνnp

∣∣∣∣,
(13)

where the first equality comes from (10), (11) and (12). The inequality comes from
(8), and the second equality results from (9) and (12).

Let ε ∈ (0, 1). By the approximability condition on B, there exists two integers
p > m0 and n1 > 1 such that, for any integer n > n1, one has

rkA
(p)
np

rkBnp
> 1 − ε.

Therefore, by Corollary 2.9, one has

(14)

∣∣∣∣
∫
h dνnp −

∫
h dν(p)

n

∣∣∣∣ 6 8ε‖h‖sup.

As A(p) is an algebra of finite type, by [10, Theorem 3.4.3], the sequence of measures

(ν
(p)
n )n>1 converges vaguely to a Borel probability measure ν(p). Note that the

supports of measures νp
n are uniformly bounded from above. Hence (

∫
h dν

(p)
n )n>1

is a Cauchy sequence. After the relations (13) and (14), we obtain that, there exists
an integer n2 > 1 such that, for any integers m and n, m > n2, n > n2, one has

∣∣∣∣
∫
h dνn −

∫
h dνm

∣∣∣∣ 6 2ε‖h‖sup + ε.

Since ε is arbitrary, the sequence (
∫
h dνn)n>1 converges in R. Denote by C∞

0 (R) the
space of all smooth functions of compact support on R. Since any function in C∞

0 (R)
can be written as the difference of two continuous increasing and bounded functions
whose supports are both bounded from below, we obtain that

h 7−→ lim
n→∞

h dνn

is a well defined positive continuous linear functional on (C∞
0 (R), ‖ · ‖sup). As C∞

0 (R)
is dense in the space Cc(R) of all continuous functions of compact support on R with
respect to the topology induced by ‖ · ‖sup, the linear functional extends continuously
to a Borel measure ν on R. Finally, by Corollary 2.9 and by passing to the limit, we
obtain that for any p > m0, one has

|1 − ν(R)| = |ν(p)(R) − ν(R)| 6 1 − f(p),
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where f(p) was defined in (4). As lim
p→∞

f(p) = 1, ν is a probability measure.

3. Comparison of filtrations on metrized vector bundles

Let K be a number field and OK be its integer ring. Denote by δK the degree of
K over Q. For metrized vector bundle on SpecOK we mean a projective OK-module
E together with a family (‖ · ‖σ)σ:K→C, where ‖ · ‖σ is a norm on Eσ,C, assumed to be

invariant by the complex conjugation. We often use the expression E to denote the
couple (E, (‖ · ‖σ)σ:K→C). If for each σ, ‖ · ‖σ is a Hermitian norm, we say that E is
a Hermitian vector bundle. Any metrized vector bundle of rank one is necessarily a
Hermitian vector bundle, and we call it a Hermitian line bundle.

As pointed out by Gaudron [15, §3], the category of metrized vector bundles on
SpecOK is equivalent to that of adelic vector bundles on SpecK.

On a metrized vector bundle on SpecOK , one has a natural filtration defined by
successive minima. On a Hermitian vector bundle, there is another filtration defined
by successive slopes. In this section, we compare these two filtrations.

3.1. Reminder on the slope method. — In this section, we recall some notions
and results of Bost’s slope method. The references are [3, 4, 8, 5].

Let L be a Hermitian line bundle on SpecOK . The Arakelov degree of L is defined
as

d̂eg(L) := log #(L/OKs) −
∑

σ:K→C

log ‖s‖σ,

where s is an arbitrary non-zero element in L. This definition does not depend on
the choice of s, thanks to the product formula. An equivalent definition is

(15) d̂eg(L) = −
∑

p∈SpmOK

log ‖s‖p −
∑

σ:K→C

log ‖s‖σ,

this time s could be an arbitrary element in LK , ‖ · ‖p is induced by the OK-module

structure on L. For a Hermitian vector bundle E of arbitrary rank, the Arakelov

degree of E is just d̂eg(E) := d̂eg(Λrk EE), where the metrics of Λrk EE are exterior
product metrics. The Arakelov degree of the zero vector bundle is zero. Furthermore,
it is additive with respect to short exact sequences.

When E is non-zero, the slope of E is by definition the quotient

µ̂(E) :=
d̂eg(E)

δK rk(E)
,

where δK = [K : Q]. As in the case of vector bundles on curves, the maximal slope
µ̂max(E) and the minimal slope µ̂min(E) of E are defined as the maximal value of
slopes of all non-zero Hermitian subbundles of E and the minimal value of all non-zero
Hermitian quotient bundles of E, respectively. The existence of these extremal slopes

are due to Stuhler [26] and Grayson [17]. One has µ̂min(E) = −µ̂max(E
∨
). A non-

zero Hermitian vector bundle is said to be semistable if the equality µ̂max(E) = µ̂(E)
holds. The results of Stuhler and of Grayson mentioned above permit to establish the
analogue of Harder-Narasimhan filtration in Arakelov geometry:
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Proposition 3.1. — There exists a unique flag

0 = E0 ( E1 ( · · · ( En = E

of E such that each subquotient Ei/Ei−1 (1 ∈ {1, · · · , n}) is semistable, and that, by

writing µi = µ̂(Ei/Ei−1), the inequalities of successive slopes µ1 > µ2 > · · · > µn

hold.

Let E and F be two Hermitian vector bundles. The height of a homomorphism φ :
EK → FK is defined as the sum of the logarithms of norms of all local homomorphism
induced from φ by extending scalars, divided by δK , that is,

h(φ) :=
1

δK

( ∑

p

log ‖φp‖p +
∑

σ:K→C

log ‖φ‖σ

)
.

It is negative or zero notably when φ is effective, i.e., φ gives rise to an OK-linear
homomorphism, and ‖φσ‖ 6 1 for any embedding σ : K → C.

The following slope inequality compares the slopes of two Hermitian vector bundles,
given an injective homomorphism between them.

Proposition 3.2. — Let E and F be two non-zero Hermitian vector bundles and
φ : EK → FK be an injective K-linear homomorphism. Then then following inequality
holds:

µ̂max(E) 6 µ̂max(F ) + h(φ),

where h(φ) is the height of φ.

By passing to dual Hermitian vector bundles, we obtain the following corollary.

Corollary 3.3. — Let E and F be two non-zero Hermitian vector bundles and ψ :
EK → FK be a surjective homomorphism. Then

µ̂min(F ) > µ̂min(E) − h(ψ).

3.2. Minimum filtration and slope filtration. — Let E be a metrized vector
bundle on SpecOK . Let r be the rank of E and i ∈ {1, · · · , r}. Recall the ith

(logarithmic) minimum of E is defined as

ei(E) := − log inf{a > 0 | rk(VectK{B(E, a)}) > i},
where B(E, a) = {s ∈ E | ∀σ : K → C, ‖s‖σ 6 a}. Denote by emax(E) = e1(E) and
emin(E) = er(E). Define an R-filtration FM on EK as

FM
t EK := VectK{B(E, e−t)},

called the minimum filtration of E. Note that λmax(EK ,FM ) = emax(E) and
λmin(EK ,FM ) = emin(E).

Assume that E is a Hermitian vector bundle, we define another R-filtration FS on
EK such that

(16) FS
t EK :=

∑

F⊂E
µ̂min(F )>t

FK ,
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where µ̂min(0) = +∞ by convention. The filtration FS is called the slope filtration
of E. The slope filtration is just a reformulation of the Harder-Narasimhan filtration
of E in considering the successive slopes at the same time. In particular, if Et is the
saturated Hermitian vector subbundle of E such that Et,K = FS

t EK , then one has

(17) µ̂min(Et) > t.

Moreover, one has

λmax(EK ,FS) = µ̂max(E), λmin(EK ,FS) = µ̂min(E).

See [10, §2.2] for details.

Remark 3.4. — É. Gaudron has generalized the notions of maximal slope, minimal
slope and Harder-Narasimhan filtration for metrized vector bundles, cf. [15, §5.2].
However, it is not clear if the R-indexed version of his definition of Harder-Narasimhan
filtration (by using maximal slopes) coincides with (16) when the metrized vector
bundle is not Hermitian.

The slope filtration has the following functorial property, which is an application
of the slope inequality. For proof, see [10, Proposition 2.2.4].

Proposition 3.5. — Let E and F be two Hermitian vector bundles on SpecOK ,
φ : EK → FK be a homomorphism. Then for any real number t, one has

(18) φ(FS
t EK) ⊂ FS

t−h(φ)FK .

Let E be a non-zero projective OK-module of finite rank. Let g = (‖ · ‖σ)σ:K→C

and g′ = (‖ · ‖′σ)σ:K→C be two families of norms on E. We assume that all metrics
‖ · ‖′σ are Hermitian. Define

D(E, g, g′) := max
σ:K→C

sup
06=s∈Eσ,C

∣∣ log ‖s‖σ − log ‖s‖′σ
∣∣

Denote by FM the minima filtration of (E, g), and by FS the slope filtration of (E, g′).

Proposition 3.6. — One has, for any t ∈ R,

FM
t EK ⊂ FS

t−αEK ,

where α = log
√
r +D(E, g, g′).

Proof. — Without loss of generality, we assume that FM
t EK 6= 0. Let F be the

saturation of FM
t EK in E, equipped with metrics induced from g′. Thus F becomes

a Hermitian vector subbundle of (E, g′). Let a be the rank of F . As F is generated
by elements in B((E, g), e−t), there exists non-zero elements s1, · · · , sa in F which
form a basis of FK and such that ‖si‖σ 6 e−t for any σ : K → C. One has ‖si‖′σ 6

e−t+D(E,g,g′). Let φ : O⊕a

K → F be the homomorphism defined by (s1, · · · , sa), where
the Hermitian metrics on OK are trivial. One has

h(φ) 6 log
√
a− t+D(E, g, g′) 6 log

√
r − t+D(E, g, g′),

where r = rk(E). By Corollary 3.3, the inequality µ̂min(F ) > t− log
√
r−D(E, g, g′)

holds. Therefore, FK ⊂ FS
t−αEK .
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In order to establish the inverse comparison, we need some notation. Let f :
SpecOK → Spec Z be the canonical morphism. For any Hermitian vector bundle F
on SpecOK , denote by f∗F the Hermitian vector bundle on Spec Z whose underlying
Z module is F and such that, for any s = (sσ)σ:K→C ∈ F ⊗Z C =

⊕
σ:K→C F ⊗OK,σ C,

one has

‖s‖2 =
∑

σ:K→C

‖sσ‖2
σ.

Proposition 3.7. — The inequality emin(F ) > emin(f∗F ) holds.

Proof. — Let s be an arbitrary element in F . By definition, one has ‖s‖ > ‖s‖σ for
any σ : K → C. Thus, for any u > 0, one has B(F , u) ⊃ B(f∗F , u). Furthermore,
if B(f∗F , u) generates FQ as a vector space over Q, it also generates FK as a vector

space over K. Therefore, emin(F ) > emin(f∗F ).

Recall some results in [1] and [6].

Proposition 3.8. — 1) Let G be a Hermitian vector bundle on Spec Z. Then

(19) emin(G) + emax(G
∨
) > − log(3 rk(G)/2).

2) Let F be a Hermitian vector bundle on SpecOK . Then

(20) µ̂max(F ) − 1

2
log(δK · rk(F )) − log |∆K |

2δK
6 emax(F ) 6 µ̂max(F ) − 1

2
log(δK),

where ∆K is the discriminant of K.

Proof. — See [1, Theorem 3.1 (iii)] For 1) and [6, (3.23), (3.24)] for 2).

Denote by ωOK
:= HomZ(OK ,Z) the canonical module of the number field K.

Note that the trace map trK/Q is a non-zero element in ωOK
. We equip ωOK

with the
norms such that ‖trK/Q‖σ = 1 for any σ : K → Q. Thus we obtain a Hermitian line
bundle ωOK

. The Arakelov degree of ωOK
is log |∆K |, where ∆K is the discriminant

of K. By [6, Proposition 3.2.2], for any Hermitian vector bundle F over SpecOK ,
one has a natural isomorphism

(21) f∗(F
∨ ⊗ ωOK

) ∼= (f∗F )∨.

The following lemma compares the logarithmic last minimum and the minimal
slope.

Lemma 3.9. — Let F be a Hermitian vector bundle on SpecOK . One has

emin(F ) > µ̂min(F ) − log |∆K | − 1

2
log δK − log(3/2)− log(rk(F )).
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Proof. — In fact,

emin(f∗F ) > −emax((f∗F )∨) − log(3δK/2)− log(rkF )

= −emax(f∗(F
∨ ⊗ ωOK

)) − log(3δK/2) − log(rkF )

> −µ̂max(F
∨ ⊗ ωOK

) +
1

2
log(δK) − log(3δK/2) − log(rkF )

= µ̂min(F ) − log |∆K | − 1

2
log δK − log(3/2)− log(rkF ),

where the two inequalities comes from (19) and (20), the first equality results from
(21).

Remark 3.10. — The comparison of minima and slopes has been discussed in [25,
2, 15, 6]. Let F be an arbitrary Hermitian vector bundle on SpecOK . Up to now,
the best upper bound for

max
16i6rk F

∣∣ei(F ) − µi(F )
∣∣

is of order rk(F ) log rk(F ), where µi(F ) is the ith slope of F (see [15, Definition 5.10]).
It should be interesting to know if this upper bound can be improved to be of order
log rk(F ).

Proposition 3.11. — With the notation of Proposition 3.6. One has, for any t ∈ R,

FS
t EK ⊂ FM

t−βEK ,

where β = D(E, g, g′) + log |∆K | + 1
2 log δK + log(3/2) + log(rkE).

Proof. — Let F be the saturated Hermitian vector subbundle of (E, g′) such that
FK = FS

t EK . By [10, Proposition 2.2.1] one has µ̂min(F ) > t. Lemma 3.9 implies

emin(F ) > t− log |∆K | − 1

2
log δK − log(3/2) − log(rkF ).

Denote by (F, g) the metrized vector bundle whose metrics are induced from (E, g).
One has

emin(F, g) > emin(F ) −D(E, g, g′) > t− β,

which implies that FK ⊂ FM
t−βEK .

3.3. Comparison of asymptotic measures. — Let B =
⊕

n>0Bn be an approx-

imable graded algebra. For any integer r > 2 and any element n = (ni) ∈ Nr, denote
by

φn : Bn1 ⊗ · · · ⊗Bnr
−→ Bn1+···+nr

the canonical homomorphism defined by the algebra structure of B.
For each n > 0, let (Bn, gn = (‖·‖σ)) be a metrized vector bundle on SpecOK such

that Bn = Bn,K . Let (Bn, g
′
n = (‖ · ‖′σ)) be a Hermitian vector bundle on SpecOK .

Define

Dn := D(Bn, gn, g
′
n) = max

σ:K→C
sup

06=s∈Bn,σ,C

∣∣ log ‖s‖σ − log ‖s‖′σ
∣∣.
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Denote by FM the minima filtration of (Bn, gn) and by FS the slope filtration of
(Bn, g

′
n). Let

νM
n = T 1

n
ν(Bn,FM) and νS

n = T 1
n
ν(Bn,FS).

In this subsection, we study the asymptotic behaviour of measure sequences (νM
n )n>1

and (νS
n )n>1.

Proposition 3.12. — Assume that the following conditions are satisfied:

(i) there exists an integer n0 > 1 and a function f : N → R+ such that f(n) = o(n)
(n → ∞) and that, for any integer l > 2 and any element n = (ni)

l
i=1 ∈ Zl

>n0
,

the height of φn is bounded from above by f(n1) + · · · + f(nl);
(ii) sup

n>1
µ̂max(Bn, g

′
n)/n < +∞.

Then the sequence ( 1
n µ̂max(Bn, g

′
n))n>1 converges in R, and the sequence of measures

(νS
n )n>1 converges vaguely to a Borel probability measure ν on R.

Proof. — For any n ∈ N and any t ∈ R, denote by Bn,t the Hermitian vector
subbundle of (Bn, g

′
n) such that Bn,t,K = FS

t Bn. Let l > 2 be an integer, n =
(ni)

l
i=1 ∈ Zl

>n0
and (ti)

l
i=1 ∈ Rl. By using the dual form of [9, Theorem 1.1], one

obtains

µ̂min(Bn1,t1 ⊗ · · · ⊗ Bnl,tl
) >

l∑

i=1

(
µ̂min(Bni,ti

) − log rk(Bni
)
)

>

l∑

i=1

(
ti − log rk(Bni

)
)
.

Furthermore, by the assumption (i), the height of φn is no grater than f(n1) + · · · +
f(nl). Therefore, the canonical image of FS

t1Bn1 ⊗ · · · ⊗ FS
tl
Bnl

in Bn1+···+nl
lies in

FS
t Bn1+···+nl

with

t =

l∑

i=1

(
ti − f(ni) − log rk(Bni

)
)
.

Let f̃ : N → R+ such that f̃(n) = f(n)+ log rk(Bn). The argument above shows that

the graded algebra B is f̃ -quasi-filtered. Moreover, by assumption (i) and Proposition

2.4, one has lim
n→+∞

f̃(n)/n = 0. By Theorem 2.11, the sequence of measures converges

vaguely to a certain Borel probability measure ν.

Corollary 3.13. — Under the assumption of Proposition 3.12, if lim
n→∞

Dn/n = 0,

then the sequence ( 1
nemax(Bn, gn))n>1 converges to lim

n→∞

1
n µ̂max(Bn, g

′
n); and the

sequence of measures (νM
n )n>1 converges vaguely to ν.

Proof. — By Proposition 2.10, 3.6 and 3.11, for any integer n > 1, one has

ταn
νS

n ≻ νM
n ≻ τ−βn

νS
n ,
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where

αn =
1

2n
log rk(Bn) +

Dn

n
, βn =

1

n

(
log |∆K | + 1

2
log δK − log(3/2) − log rk(Bn)

)
.

As lim
n→∞

αn = lim
n→∞

βn = 0, the assertions result from Proposition 3.12.

Remark 3.14. — The assumptions of Proposition 3.12 is fulfilled notably when the
following conditions are satisfied:

(a) the K-algebra structure on B gives rise to an OK-algebra structure
on

⊕
n>0 Bn;

(b) for any (m,n) ∈ N2, any σ : K → C and for all s ∈ Bn,σ,C,
s′ ∈ Bm,σ,C, one has ‖ss′‖σ 6 ‖s‖σ‖s′‖σ;

(c) emax(Bn, gn) = O(n) (n→ ∞).

Note that, under the conditions (a) and (b) above, the height of φn, n = (ni)
l
i=1 ∈

Zl
>n0

, does not exceed 1
2

∑l
i=1 log rk(Bni

). The equivalence of the condition (c) and

the condition (ii) in Proposition 3.12 results from (20). See [10, Remark 4.1.6] for
details. One can also compare the conditions above with those in [24, page 12].

In this particular case, the graded algebra B, equipped with minimum filtration, is
actually 0-quasi-filtered. So we may deduce the convergence of ( 1

nemax(Bn, gn))n>1

and (νM
n )n>1 directly from Theorem 2.11. However, as we shall see in the proof of

Proposition 4.6, the comparison of limits established in Corollary 3.13 will play an
important role in the study of arithmetic volume function. So we have chosen an
indirect approach to emphasis this comparison.

4. Approximable graded linear series in arithmetic

In this section, we recall a result on Fujita approximation for graded linear series
due to Lazarsfeld and Mustaţǎ [19]. We then give several examples of approximable
graded linear series which come naturally from the arithmetic setting.

4.1. Reminder on geometric Fujita approximation. — Let K be a field and
X be a projective variety (i.e. integral projective scheme) defined over K. Let L be
a big line bundle on X . Denote by B :=

⊕
n>0H

0(X,L⊗n) the graded K-algebra of
global sections of tensor powers of L. For graded linear series of L we mean a graded
sub-K-algebra of B. The following definition is borrowed from [19].

Definition 4.1. — We say that a graded linear series W =
⊕

n>0Wn of L contains
an ample divisor if there exists an integer p > 1, an ample line bundle A and an
effective line bundle M on X , together with a non-zero section s ∈ H0(X,M), such
that L⊗p ∼= A⊗M , and that the homomorphism of graded algebras

⊕

n>0

H0(X,A⊗n) −→
⊕

n>0

H0(X,L⊗np)

induced by s factors through
⊕

n>0Wnp.
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Remark 4.2. — In [19, Definition 2.9], this condition was called the “condition
(C)”. As a big divisor is always the sum of an ample divisor and an effective one, the
total graded linear series B contains an ample divisor.

Definition 4.3. — Let W =
⊕

n>0Wn be a graded linear series of L. Denote by

vol(W ) the number

(22) vol(W ) := lim sup
n→∞

rk(Wn)

ndimX/(dimX)!
.

Note that vol(B) = vol(L). For a general linear series W of L, one has vol(W ) 6

vol(L). By using the method of Okounkov bodies introduced in [23], Lazarsfeld
and Mustaţǎ have established the following generalization of Fujita’s approximation
theorem.

Theorem 4.4 (Lazarsfeld-Mustaţǎ). — Assume that W =
⊕

n>0Wn is a graded
linear series of L which contains an ample divisor and such that Wn 6= 0 for suffi-
ciently large n. Then W is approximable.

In particular, the total graded linear series B is approximable. In [19, Remark
3.4], the authors have explained why their theorem implies the Fujita’s approximation
theorem in its classical form. We include their explanation as the corollary below.

Corollary 4.5 (Geometric Fujita approximation). — For any ε > 0, there ex-
ists an integer p > 1, a birational projective morphism ϕ : X ′ → X, an ample line
bundle A and an effective line bundle M such that

1) one has ϕ∗(L⊗p) ∼= A⊗M ;
2) vol(A) > pdim X(vol(L) − ε).

Proof. — For any integer p such that Bp 6= 0, let ϕp : Xp → X be the blow-up
(twisted by L) of X along the base locus of Bp. That is

Xp = Proj
(
Im

(⊕

n>0

Sn(π∗Bp) −→
⊕

n>0

L⊗np
))
.

Denote by Ep the exceptional divisor and by s the global section of O(Ep) which
trivializes O(Ep) outside the exceptional divisor. Let OXp

(1) be the canonical sheaf
of Xp. By definition, one has OXp

(1) ∼= ϕ∗
pL

⊗p ⊗ O(−Ep). On the other hand, the
canonical homomorphism ϕ∗

pπ
∗Bp → OXp

(1) is surjective, therefore corresponds to
a morphism of schemes ip : Xp → P(Bp) such that i∗pOP(Bp)(1) = OXp

(1). The
restriction of global sections of OP(Bp)(n) on Xp gives an injective homomorphism

Im(SnBp → Bnp) −→ H0(Xp,OXp
(n)),

where we have identified H0(Xp,OXp
(n)) with a subspace of H0(Xp, ϕ

∗
pL

⊗n) via s.
Since the total grade linear series B is approximable, one has

sup
p

lim inf
n→∞

rk(Im(SnBp → Bnp))

rkBnp
= 1,
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which implies

sup
p

lim
n→∞

rkH0(Xp,OXp
(n))

(np)d/d!
= vol(L).

The line bundle OXp
(1) constructed above is actually nef and big. However, a

slight perturbation of L permits to conclude.

4.2. Arithmetic volume of approximable graded linear series. — In the
sequel, K denotes a number field and OK denotes its integer ring. Let δK := [K : Q]
be the degree ofK over Q. Let π : X → SpecOK be a projective arithmetic variety of
total dimension d and X = XK . Let L be a Hermitian line bundle on X , supposed
to be big in the sense of Moriwaki [20]. Let L = LK . Note that L is a big line bundle
on X .

Let B be a graded linear series of L. For any integer n > 0, denote by Bn the
saturation of Bn in π∗(L

⊗n). For any embedding σ : K → C, denote by ‖ · ‖σ,sup

the sup-norm on Bn,σ,C. Thus we obtain a metrized vector bundle (Bn, gn) with
gn = (‖ · ‖σ,sup)σ:K→C.

Inspired by [20], we define the arithmetic volume function of B as follows:

v̂ol(B) := lim sup
n→∞

ĥ0(Bn, gn)

nd/d!
,

where for any metrized vector bundle E = (E, (‖ · ‖σ)) on SpecOK , ĥ0(E) is defined
as

ĥ0(E) := log #{s ∈ E | ∀σ : K → C, ‖s‖σ 6 1}.
Proposition 4.6. — Assume that the graded linear series B is approximable. Then
the sequence ( 1

nemax(Bn, gn))n>1 converges in R. Furthermore, for any integer n > 1,
let νn := T 1

n
ν(Bn,FM) be the normalized probability measure associated to the minimum

filtration of (Bn, gn), then the sequence of measures (νn)n>1 converges vaguely to a
Borel probability measure νB. Moreover, one has

(23)

∫

R

max{x, 0} νB(dx) =
v̂ol(B)

δKd vol(B)
.

Proof. — To establish the convergence of ( 1
nemax(Bn, gn))n>1 and (νn)n>1, it suffices

to prove that (Bn, gn) verify the conditions in Remark 3.14, where (a) and (b) are
straightforward. In order to prove the condition (c), we introduce, for any integer
n > 1, an auxiliary family g′n = (‖ · ‖σ)σ:K→C of Hermitian norms on π∗(L

⊗n),
invariant under complex conjugation, and such that, for any 0 6= s ∈ H0(Xσ(C), Lσ,C).

(24) log ‖s‖σ − 3

2
log(rkπ∗(L

⊗n)) 6 log ‖s‖σ,sup 6 log ‖s‖σ − 1

2
log(rkπ∗(L

⊗n)).

This is always possible by the argument of the ellipsoids of John or Löwner, see [15,
§2]. It suffices to establish the estimation µ̂max(π∗(L

⊗n), g′n) ≪ n. Let Σ be a generic
family (i.e., Σ is dense in X) of algebraic points in X . Each point P in Σ extends
in a unique way to a OK(P ) point of X , where K(P ) is the field of definition of P .
Therefore we may consider elements in Σ as points of X valued in algebraic integer
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rings. Now consider the evaluation map π∗(L
⊗n) −→ ⊕

P∈Σ P
∗L . It is generically

injective since Σ is dense in X . Therefore, there exists a subset Σn of Σ whose cardinal
is rk(π∗(L

⊗n)) and such that the evaluation map

φn : π∗(L
⊗n) −→

⊕

P∈Σn

P ∗
L

is still generically injective. Therefore, after suitable extension of the ground field,
the slope inequality asserts that

µ̂max(π∗(L
⊗n), g′n) 6 sup

P∈Σn

nh
L

(P ) + h(φn) 6 n sup
P∈Σ

h
L

(P ).

Since Σ is arbitrary, we obtain that 1
n µ̂max(π∗(L

⊗n), g′n) is bounded from above by

the essential minimum of L (see [30, §5 ] for definition. Attention, in [30], the author

denoted it as e1(L )).
The equality (23) comes from the following Lemma.

Lemma 4.7. — Let (E, g = (‖·‖σ)) be a metrized vector bundle and (E, g′ = (‖·‖′σ))
be a Hermitian vector bundle on SpecOK . Assume that r := rk(E) > 0. Let

D = max
σ:K→C

sup
06=s∈Eσ,C

∣∣ log ‖s‖σ − log ‖s‖′σ
∣∣.

Denote by ν the Borel probability measure associated to the Harder-Narasimhan fil-
tration of E := (E, g′). Then there exists a function C0 : N∗ → R+, independent of
all data above, satisfying C0(n) ≪ n logn, and such that

∣∣∣∣δKr
∫

R

max{x, 0} ν(dx) − ĥ0(E, g)

∣∣∣∣ 6 (δKD + log |∆K |)r + C0(r).

Proof of the Lemma. — Denote by M = (OK , (‖ · ‖M
σ )) the Hermitian line bundle on

SpecOK such that ‖1‖M
σ = e−D, where 1 is the unit element in OK . By définition,

one has ĥ0(E ⊗ M
∨
) 6 ĥ0(E, g) 6 ĥ0(E ⊗ M). Moreover, the Borel probability

measures associated to the Harder-Narasimhan filtrations of E ⊗M and E ⊗M
∨

are
respectively τDν and τ−Dν. By [11, Lemma 7.1 and Proposition 3.3], there exists a
function C0 : N∗ → R+, independent of E, satisfying the estimation Cn(n) ≪ n logn,
and such that

ĥ0(E ⊗M
∨
) > δKr

∫

R

max{x, 0} τ−Dν(dx) − r log |∆K | − C0(r)

ĥ0(E ⊗M) 6 δKr

∫

R

max{x, 0} τDν(dx) + r log |∆K | + C0(r)

Since max{x+D, 0} 6 max{x, 0}+D and max{x−D, 0} > max{x, 0}−D, we obtain
the desired inequality.

By using Lemma 4.7, we obtain
∣∣∣∣ĥ0(Bn, gn) − nrnδK

∫

R

max{x, 0} ν′n(dx)

∣∣∣∣ 6
3

2
δKrn log(rn) + rn log |∆K | + C0(rn),
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where rn = rk(Bn), and ν′n is the Borel probability measure associated to (Bn, g
′
n)

(here we still use g′n to denote the metrics on Bn induced from (π∗(L
⊗n), g′n)). We

have shown that (ν′n)n>1 also converge vaguely to νB. Furthermore, Proposition 2.4
show that rn = vol(B)nd−1/(d−1)!+o(nd−1). By passing to limit, we obtain (23).

4.3. Examples of approximable graded linear series. — In this subsection,
we give some examples of approximable graded linear series of L which come from
the arithmetic.

Denote by B =
⊕

n>0H
0(X,L⊗n) the sectional algebra of L. For any real number

λ, let B[λ] be the graded sub-K-module of B defined as follows:

(25) B
[λ]
0 := K, B[λ]

n := VectK

(
{s ∈ Bn | ∀σ : K → C, ‖s‖σ,sup 6 e−λn}

)
.

The following property is straightforward from the definition.

Proposition 4.8. — For any λ ∈ R, B[λ] is a graded linear series of L.

Note that B[0] is noting but the graded linear series generated by effective sections.

For any integer n > 0 and any real number λ, denote by Bn = π∗(L
⊗n) and by B

[λ]
n

the saturation of B
[λ]
n in Bn. We shall use the symbol gn to denote the family of

sup-norms on Bn or on B
[λ]
n . By definition, for any integer n > 1 and any λ ∈ R,

one has

B[λ]
n = FM

nλBn,

where FM is the minimum filtration of (Bn, gn).
Since we have assumed L to be arithmetically big, the line bundle L is also

big (see [21, Introduction] and [28, Corollary 2.4]). Hence by Theorem 4.4, the
total graded linear series B is approximable. By Corollary 3.13, we obtain that
the sequence ( 1

nemax(Bn, gn))n>1 converges to a real number which we denote by

µ̂π
max(L ). Note that, if M is a Hermitian line bundle on SpecOK , then µ̂π

max(L ⊗
π∗(M)) = µ̂π

max(L ) + δ−1
K d̂eg(M).

For any real number λ, denote by Oλ the Hermitian line bundle on SpecOK whose
underlying OK-module is trivial, and such that ‖1‖σ = e−λ. Note that the Arakelov

degree of Oλ is d̂eg(Oλ) = δKλ.

Proposition 4.9. — Let λ be a real number such that λ < µ̂π
max(L ). Then the

graded linear series B[λ] contains an ample divisor, and for sufficiently large n, one

has B
[λ]
n 6= 0.

Proof. — Note that µ̂π
max(L ⊗ π∗O−λ) > 0. Since L is big, by [11, Theorem 5.4],

L ⊗ π∗O−λ is arithmetically big. Therefore, for sufficiently large n, L ⊗n has a
non-zero global section sn such that ‖sn‖σ,sup 6 e−λn for any σ : K → C, which

proves that B
[λ]
n 6= 0. Furthermore, since L ⊗ π∗O−λ is arithmetically big, by [28,

Corollary 2.4], there exists an integer p > 1 and two Hermitian line bundles A and

M , such that A is ample in the sense of Zhang [30], M has a non-zero effective global

section s, and that (L ⊗ π∗O−λ)⊗p ∼= A ⊗ M . By taking p sufficiently divisible, we
may assume that the graded K-algebra

⊕
n>0H

0(X,A ⊗n
K ) is generated by effective
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sections of A . These sections, viewed as sections of A ⊗ π∗O⊗p

λ , have sup-norms
6 e−pλ. Therefore the homomorphism

⊕

n>0

H0(X,AK) −→
⊕

n>0

H0(X,L⊗np)

induced by s factors through
⊕

n>0B
[λ]
np .

Corollary 4.10. — For any real number λ such that λ < µ̂π
max(L ), the graded linear

series B[λ] of L is approximable.

Proof. — This is a direct consequence of Proposition 4.9 and Theorem 4.4.

5. Arithmetic Fujita approximation

In this section, we establish the conjecture of Moriwaki on the arithmetic analogue
of Fujita approximation. Let π : X → SpecOK be an arithmetic variety of total
dimension d and L be a Hermitian line bundle on X which is arithmetically big.

Write L = LK and denote by B :=
⊕

n>0H
0(X,L⊗n) the total graded linear

series of L. For any integer n > 1, let Bn be the OK-module π∗(L
⊗n) equipped with

sup-norms. Define by convention B0 as the trivial Hermitian line bundle on SpecOK .
Denote by µ̂π

max(L ) = lim
n→∞

1
nemax(Bn).

For any real number λ, let B[λ] be the graded linear series of L defined in (25).

For any integer n > 0, let B
[λ]

n be the saturation of B
[λ]
n in Bn equipped with induced

metrics. For any integer p > 1 such that B
[0]
p 6= 0, let B(p) be the graded sub-K-

algebra of B generated by B
[0]
p . For any integer n > 1, let B

(p)

np be the saturated

Hermitian vector subbundle of Bnp such that B
(p)
np,K = B

(p)
np .

Theorem 5.1. — The following equality holds:

v̂ol(L ) = sup
p

v̂ol
(
B(p)

)
,

where B(p) is the graded linear series of L generated by B
[0]
p defined above.

Proof. — For any integer n > 1, let νn = T 1
n
ν(Bn,FM), where FM is the minimum

filtration of Bn. We have shown in Proposition 4.6 that the sequence (νn)n>1

converges vaguely to a Borel probability measure which we denote by ν. Similarly, for

any integer n > 1, let ν
(p)
n = T 1

np
ν
(B

(p)
np ,FM)

. The sequence (ν
(p)
n )n>1 also converges

vaguely to a Borel probability measure which we denote by ν(p).
For any subdivision D : 0 = t0 < t1 < · · · < tm < µ̂π

max(L ) of the interval

[0, µ̂π
max(L )[ such that

(26) ν({t1, · · · , tm}) = 0,
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denote by hD : R → R the function such that

hD(x) =

m−1∑

i=0

ti 11[ti,ti+1[(x) + tm 11[tm,∞[(x).

After Corollary 4.10, for any ε > 0, there exists a sufficiently large integer p =
p(ε,D) > 1 such that B(p) approximates simultaneously all algebras B[ti] (i ∈
{0, · · · ,m}). That is, there exists N0 ∈ N such that, for any n > N0, one has

inf
06i6m

rk
(
Im(SnB

[ti]
p → B

[ti]
np )

)

rk(B
[ti]
np )

> 1 − ε.

We then obtain that

rk(FM
npti

B(p)
np ) > rk

(
Im(SnB[ti]

p → B[ti]
np )

)
> (1 − ε) rk(B[ti]

np ).

Note that

np rk(B(p)
np )

∫

R

max{t, 0} ν(p)
np (dt) = −

∫

R

max{t, 0} d rk(FM
t B(p)

np )

>

m−1∑

i=0

npti

(
rk(FM

npti
B(p)

np ) − rk(FM
npti+1

B(p)
np )

)
+ nptm rk(FM

nptm
B(p)

np ).

By Abel’s summation formula, one obtains

rk(B(p)
np )

∫

R

max{t, 0} ν(p)
np (dt) >

m∑

i=1

(ti − ti−1) rk(FM
npti

B(p)
np )

> (1 − ε)

m∑

i=1

(ti − ti−1) rk(B[ti]
np ).

Still by Abel’s summation formula, one gets

rk(B(p)
np )

∫

R

max{t, 0} ν(p)
np (dt) > (1 − ε) rkK(Bnp)

∫
hD(x) νnp(dt).

By (23), one has

lim
n→∞

δKd

(np)d−1/(d− 1)!
rk(B(p)

np )

∫

R

max{t, 0}ν(p)
np (dt)

= δKdvol(B(p))

∫

R

max{t, 0} ν(p)(dt) = v̂ol(B(p)).

Therefore,

v̂ol(B(p)) > lim
n→∞

δKd

(np)d−1/(d− 1)!
(1 − ε) rk(Bnp)

∫

R

hD dνnp

= δKd(1 − ε)vol(L)

∫

R

hD dν.
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Choose a sequence of subdivisions (Dj)j∈N verifying the condition (26) and such that

hDj
(t) converges to max{t, 0} − max{t− µ̂π

max(L ), 0} when j → ∞, one obtains

v̂ol(B(p)) > δKd(1 − ε)vol(L)

∫

R

max{t, 0} ν(dt) = (1 − ε)v̂ol(L ),

thanks to (23). The theorem is thus proved.

In the following, we explain why Theorem 5.1 implies the Fujita’s arithmetic
approximation theorem in the form conjectured by Moriwaki. Our strategy is quite
similar to Corollary 4.5, except that the choice of metrics on the approximating
invertible sheaf requires rather subtle analysis on the superadditivity of probability
measures associated to a filtered graded algebra, which we put in the appendix.

Theorem 5.2 (Arithmetic Fujita approximation). — For any ε > 0, there ex-
ists a birational morphism ν : X ′ → X , an integer p > 1 together with an decompo-
sition ν∗L ∼= A ⊗ M such that

1) M is effective and A is arithmetically ample;

2) one has p−dv̂ol(A ) > v̂ol(L ) − ε.

Proof. — For any integer p > 1 such that B
[0]
p 6= 0, let φp : Xp → X be the blow up

(twisted by L ) of X along the base locus of B
[0]
p . In other words, Xp is defined as

Xp = Proj
(

Im
(⊕

n>0

π∗
B

(np)
p −→

⊕

n>0

L
⊗np

))
.

Let Ap = OXp
(1) be the canonical sheaf of Xp, and let Mp be the invertible sheaf

defined by the exceptional divisor. Let s be the global section which trivialize Mp

outside the exceptional divisor. By definition, one has φ∗pL
⊗p ∼= Ap ⊗ Mp. On

the other hand, the canonical homomorphism φ∗pπ
∗B

[0]
p → Ap induces a morphism

ip : Xp → P(B
[0]
p ) such that i∗p(Lp) ∼= Ap, where Lp denotes the canonical sheaf of

P(B
[0]
p ). The restriction of global sections of L⊗n

p gives an injective homomorphism

(27) Im(Sn
B

[0]
p → Bnp) = B

(p)
np −→ H0(Xp,A

⊗n
p ),

where the last OK-module is considered as a submodule of H0(Xp, φ
∗
pL

⊗p) via s.
For any integer n > 1 and any embedding σ : K → C, denote by ‖ · ‖σ,n the

Hermitian norm on Ap,σ such that, for any section u of Ap,σ, ‖u‖n
σ,n coincides with

the quotient norm of u⊗n induced by the surjective homomorphism φ∗pπ
∗B

(p)
np → A ⊗n

p .
Now let σ : K → C be an embedding and x be a complex point of Xp outside the

exceptional divisor. It corresponds to an one-dimensional quotient of B
[0]
p,σ, which

induces, for any integer n > 1, an one-dimensional quotient ln,x of B
(p)
np,σ. By classical

result on convex bodies in Banach space, there exists an affine hyperplane parallel to

the Ker(B
(p)
np,σ → ln,x) and tangent to the closed unit ball of B

(p)
np,σ. In other words,

there exists v ∈ B
(p)
np,σ whose image in A ⊗n

p,σ (x) has norm ‖v‖σ,sup. Note that, as a

section of L⊗n
σ over Xσ(C), one has ‖vx‖σ 6 ‖v‖σ,sup. Therefore, for any section u

of Ap,σ over a neighbourhood of x, one has ‖ux‖σ,n > ‖ux ⊗ sx‖σ. Therefore, if we
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equip Ap with metrics αn = (‖ ·‖σ,n)σ:K→C and define (Mp, βn) := φ∗pL ⊗ (Ap, αn)∨.
Then the section s of Mp is an effective section. Note that, for any σ : K → C

and any element v ∈ B
(p)
np,σ, considered as a section in H0(Xp,σ(C),A ⊗n

p,σ ) via (27),
the sup-norm of v relatively to the metric in αn coincides with the sup-norm of v
considered as a section of Lσ with respect to the metric of L . Thus Corollary A.2
combined with (23) implies that

sup
n
p−dv̂ol(Ap, αn) > v̂ol(B(p)).

Thus, by Theorem 5.1, for any ε > 0, there exist certain integers p > 1 and n > 1

such that p−dv̂ol(Ap, αn) > vol(L ) − ε. Here (Ap, αn) is rather nef and big since it

is generated by effective global sections. However, a slight perturbation of L permits
to conclude.

6. Approximating subalgebras

We keep the notation in §5. In this section, we show that if a positive finite
generated subalgebra of B approximates well the arithmetic volume of L , then it
also approximates well the asymptotic measure of L truncated at 0.

Let p > 1 be an integer. Assume that L
⊗p

is decomposed as A ⊗M , where A is
arithmetically ample and M has a non-zero effective section s. Through the section
s we may consider the section algebra

⊕
n>0H

0(X,A ⊗n
K ) as a graded sub-K-algebra

of B. As A is ample, for sufficiently large n, one has H0(X,A ⊗n
K ) ⊂ FM

0 (Bnp).

Proposition 6.1. — Let p > 1 be an integer and S be a graded subalgebra of B
generated by a subspace of Bp. For any integer n > 1, let S n be the saturated sub-
OK-module of Bn, equipped with induced metrics, and such that Sn,K = Sn; let ν

S n

be the measure associated to the minimum filtration of S n. Denote by ν the vague
limit of the measure sequence (T 1

np
ν

S np
)n>1. The for any x ∈ R, one has

(28) vol(S)ν([x,+∞[) 6 vol(L)ν
L

([x,+∞[),

where ν
L

is the vague limit of (T 1
n
ν

Bn
)n>1, νBn

being the measure associated to the

minimum filtration of Bn. Furthermore, if emin(S np) > 0 holds for sufficiently large
n, then

(29) vol(S) 6 vol(L)ν
L

([0,+∞[)

Proof. — For any x ∈ R, one has

rk(Snp)νS np
([npx,+∞[) 6 rk(Bnp)νBnp

([npx,+∞[),

since these two quantities are respectively the ranks of FM
npxSnp and FM

npxBnp. By
passing n→ +∞, one obtains that, for any x ∈ R,

vol(S)ν([x,+∞[) 6 vol(L)ν
L

([x,+∞[).

Since the positivity condition on last minima implies that ν([0,+∞[) = 1, one obtains
(29).
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Corollary 6.2. — With the notation of Proposition 6.1, assume that

v̂ol(S) := lim
n→∞

d̂eg(S np)

(np)d/d!
> (1 − ε)v̂ol(L ),

where 0 < ε < 1 is a constant. Then one has

(30) δKd

∫ +∞

0

∣∣∣vol(S)ν([x,+∞[) − vol(L)ν
L

([x,+∞[)
∣∣∣ dx 6 εv̂ol(L ).

Proof. — By (23), one obtains

v̂ol(L ) = δKd vol(L)

∫

R

max{t, 0}ν
L

(dt) = δKd vol(L)

∫ +∞

0

ν
L

([x,+∞[) dx.

Similarly,

v̂ol(S) = δKd vol(S)

∫ +∞

0

ν([x,+∞[) dx.

Hence the inequality (30) results from (28).

Appendix A

Comparison of filtered graded algebras

Let B =
⊕

n>0 be an integral graded algebra of finite type over an infinite field K

and f : N → R be a function such that lim
n→+∞

f(n)/n = 0. We suppose that the Krull

dimension of B is > 1 and that B is generated as K-algebra by B1. Assume that
each Bn is equipped with an R-filtration F such that B becomes a f -quasi-filtered
graded algebra (see §2.3 for definition). For all integers m,n > 0, let F (m) be another
R-filtration on Bn such that B equipped with R-filtrations F (m) is f -quasi-filtered.

For all integers m,n > 1, let νn = T 1
n
ν(Bn,F) and ν

(m)
n = T 1

n
ν(Bn,F(m)). Assume

in addition that λmax(Bn,F) ≪ n and λmax(Bn,F (m)) ≪m n. By Theorem 2.11,

the sequence of measures (ν
(m)
n )n>1 (resp. (νn)n>1) converges vaguely to a Borel

probability which we denote by ν(m) (resp. ν).
The purpose of this section is to establish the following comparison result:

Proposition A.1. — Let ϕ be an increasing, concave and Lipschitz function on R.

Assume that, for any m > 1 and any t ∈ R, one has FtBm ⊂ F (m)
t Bm, then

(31) lim sup
m→+∞

∫

R

ϕdν(m)
>

∫

R

ϕdν.

Proof. — By Noether’s normalization theorem, there exists a graded subalgebra A
of B such that A is isomorphic to the polynomial algebra generated by A1. We still
use F (m) (resp. F) to denote the induced filtrations on A. Let ν̃n = T 1

n
ν(An,F)

and ν̃
(m)
n = T 1

n
ν(An,F(m)). For any integer m > 1 and any t ∈ R, one still has

FtAm ⊂ F (m)
t Am. Furthermore, by [10, Proof of Theorem 3.4.3], the sequence of

measures (ν̃
(m)
n )n>1 (resp. (ν̃n)n>1) converges vaguely to ν(m) (resp. ν). Therefore,
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we may suppose that B = A is a polynomial algebra. In this case, [10, Proposition
3.3.3] implies that

nm

∫
ϕdν(m)

nm > nm

∫
ϕdν(m)

m − n‖ϕ‖Lipf(m) > nm

∫
ϕdνm − n‖ϕ‖Lipf(m).

since ν
(m)
m ≻ νm. By passing n→ ∞, we obtain

∫
ϕdν(m)

>

∫
ϕdνm − n‖ϕ‖Lip

f(m)

m
,

which implies (31).

In the following, we apply Proposition A.1 to study algebras in metrized vector
bundles. From now on, K denotes a number field. We assume given an OK-algebra
B =

⊕
n>0 Bn, generated by B1, and such that

1) each Bn is a projective OK-module of finite type;
2) for any integer n > 0, Bn = Bn,K ;
3) the algebra structure of B is compatible to that of B.

For each integer n > 1, assume that g is a family of norms on Bn such that (Bn, g)
becomes a metrized vector bundle on SpecOK . For all integers n > 1 and m > 1, let
g(m) be another metric structure on Bn such that (Bn, g

(m)) is also a metrized vector
bundle on SpecOK . Denote by ν(Bn,g) and ν(Bn,g(m)) be the measure associated to

the minimum filtration of (Bn, g) and of (Bn, g
(m)), respectively.

Corollary A.2. — With the notation above, assume in addition that

1) (B, g) and all (B, g(m)) verify the three conditions in Remark 3.14;
2) all local heights of Id : (Bm, g) → (Bm, g

(m)) is 6 0.

Let ν and ν(m) be respectively the limit measure of (T 1
n
ν(Bn,g))n>1 and (T 1

n
ν(Bn,g(m)))n>1.

Then for any increasing, concave and Lipschtiz function ϕ on R, one has

lim sup
m→∞

∫

R

ϕdν(m)
>

∫

R

ϕdν.

In particular, if emin(Bn, g) > 0 and emin(Bn, g
(m)) > 0 hold for all integers n > 1

and m > 1, then

lim sup
m→∞

∫

R

max{x, 0}, ν(m)(dx) >

∫

R

max{x, 0} ν(dx).

Proof. — The first assertion is a direct consequence of Proposition A.1. The second
one results from the fact that the integral of max{x, 0} equals that of x if the support
of the measure is bounded from below by 0.
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[25] C. Soulé – Successive minima on arithmetic varieties, Compositio Mathematica 96

(1995), no. 1, p. 85–98.

[26] U. Stuhler – Eine Bemerkung zur Reduktionstheorie quadratischen Formen, Archiv
der Mathematik 27 (1976), p. 604–610.

[27] S. Takagi – Fujita’s approximation theorem in positive characteristics, Journal of
Mathematics of Kyoto University 47 (2007), no. 1, p. 179–202.

[28] X. Yuan – Big line bundles over arithmetic varieties, Inventiones Mathematicae 173

(2007), no. 3, p. 603–649.

[29] O. Zariski – The theorem of Riemann-Roch for high multiples of an effective divisor
on an algebraic surface, Annals of Mathematics, Second Series 76 (1962), p. 560–615.

[30] S. Zhang – Positive line bundles on arithmetic varieties, Journal of the American
Mathematical Society 8 (1995), no. 1, p. 187–221.

30th October 2008
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