
HAL Id: hal-00335730
https://hal.science/hal-00335730

Submitted on 30 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Third-Order Idealized Algol with Iteration is Decidable
Andrzej Murawski, Igor Walukiewicz

To cite this version:
Andrzej Murawski, Igor Walukiewicz. Third-Order Idealized Algol with Iteration is Decidable. The-
oretical Computer Science, 2008, 390 (2-3), pp.214-229. �hal-00335730�

https://hal.science/hal-00335730
https://hal.archives-ouvertes.fr

Third-Order Idealized Algol with Iteration is

Decidable

Andrzej S. Murawski1? and Igor Walukiewicz2??

1 Oxford University Computing Laboratory, Parks Road, Oxford OX1 3QD, UK
2 LaBRI, Université Bordeaux-1, 351, Cours de la Libération, 33 405, Talence, France

Abstract. The problems of contextual equivalence and approximation
are studied for the third-order fragment of Idealized Algol with iteration
(IA∗

3). They are approached via a combination of game semantics and
language theory. It is shown that for each IA

∗

3-term one can construct
a pushdown automaton recognizing a representation of the strategy in-
duced by the term. The automata have some additional properties ensur-
ing that the associated equivalence and inclusion problems are solvable in
Ptime. This gives an Exptime decision procedure for contextual equiv-
alence and approximation for β-normal terms. Exptime-hardness is also
shown in this case, even in the absence of iteration.

1 Introduction

In recent years game semantics has provided a new methodology for constructing
fully abstract models of programming languages. By definition, such models
capture the notions of contextual equivalence and approximation and so offer
a semantic framework in which to study these two properties. In this paper
we focus on the game semantics of Idealized Algol, a language proposed by
Reynolds as a synthesis of functional and imperative programming [1]. It is
essentially the simply-typed λ-calculus extended with constants for modelling
arithmetic, assignable variables and recursion. This view naturally determines
fragments of the language when the typing framework is constrained not to
exceed a particular order. Many versions of Algol have been considered in the
literature. Typically, for decidability results, general recursion has to be left out
completely or restricted to iteration, e.g. in the form of while-loops as will be
the case in this paper. For similar reasons, base types are required to be finite.

In game models, terms of a programming language are modelled by strategies.
These in turn can sometimes be represented by formal languages, i.e. sets of finite
words, such that equivalence and approximation are established by verifying
respectively equality and inclusion of the induced languages. This approach to
modelling semantics is interesting not only because it gives new insights into
the semantics but also because it opens up the possibility of applying existing
algorithms and techniques developed for dealing with various families of formal

? Supported by British EPSRC (GR/R88861) and St John’s College, Oxford.
?? Supported by the European Community Research Training Network Games.

languages [2]. Therefore, it is essential that the class of languages one uses is as
simple as possible – ideally its containment problem should be decidable and of
relatively low complexity.

In this paper we show how to model terms of third-order Idealized Algol
with iteration (IA∗3) using variants of visibly pushdown automata [3]. One of
the advantages of taking such specialized automata is that the instances of the
containment problem relevant to us will be decidable in Ptime. Another is the
relative simplicity of the inductive constructions of automata for the constructs
of the language. We give the constructions only for terms in β-normal form
taking advantage of the fact that each term can be effectively normalized. The
automata constructed by our procedure have exponential size with respect to
the size of the term, which leads to an exponential-time procedure for checking
approximation and equivalence of such terms. We also provide the matching
lower bound by showing that equivalence of third-order terms, even without
iteration, is Exptime-hard.

Ghica and McCusker [4] were the first to show how certain strategies can
be modelled by languages. They have defined a procedure which constructs a
regular language for every term of second-order Idealized Algol with iteration.
Subsequently, Ong [5] has shown how to model third-order Idealized Algol with-
out iteration using deterministic pushdown automata. Our work can be seen as
an extension of his in two directions: a richer language is considered and a more
specialized class of automata is used (the latter is particularly important for
complexity issues). In contrast to the approach of [5], we work exclusively with
the standard game semantics and translate terms directly into automata, while
the translation in [5] relies on an auxiliary form of game semantics (with explicit
state) in which strategies are determined by view-functions. In the presence of
iteration these functions are no longer finite and the approach does not work
any more (in yet unpublished work Ong proposes to fix this deficiency by con-
sidering view-functions whose domains are regular sets and which act uniformly
with respect to the regular expressions representing these sets). It should also
be noted that our construction yields automata without pushdowns for terms of
order two, hence it also subsumes the construction by Ghica and McCusker.

Our results bring us closer to a complete classification of decidable instances
of Idealized Algol and their complexity. Since the fourth-order fragment without
iteration was shown undecidable in [6], the only unresolved cases seem to be those
of second- and third-order fragments with recursively defined terms of base types
(of which iteration is a special case). Recursive functions lead to undecidability
at order two as shown in [5].

The outline of the paper is as follows. We present Idealized Algol and its third-
order fragment IA

∗
3 in Section 2. Then we recapitulate the game model of the

language. Next the class of simple terms is defined. These are terms that induce
plays in which pointers can be safely omitted which makes it possible to represent
their game semantics via languages. In Section 4 we introduce our particular class
of automata and give an inductive construction of such an automaton for every
simple term in β-normal form. In Section 5 we show how to deal with terms

that are not simple. The last section concerns the Exptime lower bound for the
complexity of equivalence in IA

∗
3.

2 Idealized Algol

We consider a finitary version IAf of Idealized Algol with active expressions [7]. It
can be viewed as a simply typed λ-calculus over the base types com, exp, var (of
commands, expressions and variables respectively) augmented with the constants

skip : com i : exp (0 ≤ i ≤ max) ΩB : B
succ : exp → exp pred : exp → exp ifzeroB : exp → B → B → B
seqB : com → B → B deref : var → exp assign : var → exp → com
cellB : (var → B) → B mkvar : (exp → com) → exp → var

where B ranges over base types and exp = { 0, · · · ,max }. Each of the constants
corresponds to a different programming feature. For instance, sequential compo-
sition of M and N is expressed as seqBMN , assignment of N to M is represented
by assignMN and cellB(λx.M) amounts to creating a local variable x visible
in M . Other features can be added in a similar way, e.g. while-loops will be
introduced via the constant while : exp → com → com . In order to gain control
over multiple occurrences of free identifiers during typing (cf. Definition 9) we
shall use a linear form of the application rule and the contraction rule:

Γ ` M : T → T ′ ∆ ` N : T

Γ, ∆ ` MN : T ′

Γ, x1 : T, x2 : T ` M : T ′

Γ, x : T ` M [x/x1, x/x2] : T ′ .

The linear application simply corresponds to composition: in any cartesian-closed
category JΓ, ∆ ` MN : T ′K is equal (up to currying) to

J∆ ` N : T K ; J ` λxT .λΓ.Mx : T → (Γ → T ′)K
J∆K ⇒ JT K JT K ⇒ (JΓ K ⇒ JT ′K).

Thanks to the applicative syntax and the above decomposition the process of
interpreting the language can be divided into simple stages: the modelling of
base constructs (free identifiers and constants), composition, contraction and
currying.

The operational semantics of IAf can be found in [7]; we will write M ⇓ if M
reduces to skip. We study the induced equivalence and approximation relations.

Definition 1. Two terms Γ ` M1, M2 : T are equivalent (Γ ` M1
∼= M2) if

for any context C[−] such that C[M1], C[M2] are closed terms of type com, we
have C[M1] ⇓ if and only if C[M2] ⇓. Similarly, M1 approximates M2 (Γ `
M1

@
∼ M2) iff for all contexts satisfying the properties above whenever C[M1] ⇓

then C[M2] ⇓.

In general, equivalence of IAf terms is not decidable [6]. To obtain decidability
one has to restrict the order of types, which is defined by:

ord(B) = 0 and ord(T → T ′) = max(ord(T) + 1, ord(T ′)).

Definition 2. An IAf term Γ ` M : T is an ith-order term provided its typing
derivation uses sequents in which the types of free identifiers are of order less
than i and the type of the term has order at most i. The collection of ith-order
IAf terms will be denoted by IAi.

To establish decidability of program approximation or equivalence of ith-order
terms it suffices to consider ith-order terms in β-normal form. To type such
terms, one only needs a restricted version of the application rule in which the
function term M is either a constant or a term of the form fM1 · · ·Mk, where
f : T is a free identifier (and so ord(T) < i).

In this paper we will be concerned with IA3 enriched with while, which we
denote by IA

∗
3 for brevity.

3 Game semantics

Here we recall the basic notions of game semantics and discuss how to code
strategies in terms of languages. To that end we investigate when it is not neces-
sary to represent pointers in plays and obtain the class of simple terms for which
pointers can be disregarded. We use the game semantics of Idealized Algol as
described in [7]. The games are defined over arenas which specify the available
moves and the relationship between them.

Definition 3. An arena A is a triple 〈MA, λA,`A 〉, where MA is the set of
moves, λA : MA → {O, P } × { q, a } indicates whether a move is an O-move or
a P-move and whether it is a question or an answer, and `A⊆ (MA+{ ? })×MA

is the enabling relation which must satisfy the following two conditions.

– For all m, n ∈ MA if m `A n then m and n belong to different players and
m is a question.

– If ? `A m then m is an O-question which is not enabled by any other move.
Such moves are called initial; the set containing them will be denoted by IA.

The permitted scenarios in a given arena are required to be legal justified se-
quences of moves. A justified sequence s over an arena A is a sequence of moves
from MA equipped with pointers so that every non-initial move n (in the sense
of Definition 3) in s has a pointer to an earlier move m in s with m `A n (m is
then called the justifier of n). Given a justified sequence s, its O-view xsy and
P-view psq are defined as follows, where o and p stand for an O-move and a
P-move respectively:

xεy = ε xsoy = xsyo xso t py = xsyo p
pεq = ε psoq = o (if o is initial) pspq = psqp psp t oq = psqp o.

Definition 4. A justified sequence s is legal if it satisfies the following:

– players alternate (O begins),
– the visibility condition holds: in any prefix tm of s if m is a non-initial O-

move then its justifier occurs in xty and if m is a P-move then its justifier
is in ptq,

– the bracketing condition holds: for any prefix tm of s if m is an answer then
its justifier must be the last unanswered question in t.

The set of legal sequences over arena A is denoted by LA.

Formally, a game will be an arena together with a subset of LA. This makes it
possible to define different games over the same arenas.

Definition 5. A game is a tuple 〈MA, λA,`A, PA 〉 such that 〈MA, λA,`A 〉 is
an arena and PA is a non-empty, prefix-closed subset of LA (called the set of
positions or plays in the game)3.

Games can be combined by a number of constructions, notably ×,⊗, !, (,⇒.
We describe them briefly below. In the first three cases the enabling relation
is simply inherited from the component games. As for plays, we have PA×B =
PA + PB in the first case. In contrast, each play in PA⊗B is an interleaving of a
play from A with a play from B (and only O can switch between them). Similarly,
positions in P!A are interleavings of a finite number of plays from PA (again only
O can jump between them). The (construction is more complicated: we have
MA(B = MA + MB but the ownership of A moves in MA(B is reversed. The
enabling relation is defined by `A(B=`A + `B +{ (b, a) | b ∈ IB ∧ a ∈ IA }
and plays of A (B are interleavings of single plays from A and B. This time,
however, each such play has to begin in B and only P can switch between the
interleaved plays. The game A ⇒ B is defined as !A (B.

Example 1. The underlying arena of ((JcomK ⇒ JcomK) ⇒ JcomK) ⇒ JcomK has
the following shape:

d3

r3

d2

r2

d1

r1

d0

r0

Definition 6. In arenas corresponding to IAf types we can define the order of a
move inductively (we denote it by ordA(m)). The initial O-questions have order
0. For all other questions q we define ordA(q) to be ordA(q′) + 1 where q′ ` q
(this definition is never ambiguous for the arenas in question). Answers inherit
their order from the questions that enable them. The order of an arena is the
maximal order of a question in it.

For instance, in the example above r3 is a third-order move. We will continue to
use subscripts to indicate the order of a move.

The next important definition is that of a strategy. Strategies determine
unique responses for P (if any) and do not restrict O-moves.

Definition 7. A strategy in a game A (written as σ : A) is a prefix-closed
subsets of plays in A such that: (i) whenever sp1, sp2 ∈ σ and p1, p2 are P-
moves then p1 = p2; (ii) whenever s ∈ σ and so ∈ PA for some O-move o then

3 PA also has to satisfy a closure condition [7] which we omit here.

so ∈ σ. We write comp(σ) for the set of non-empty complete plays in σ, i.e.
plays in which all questions have been answered.

An IAf term Γ ` M : T , where Γ = x1 : T1, · · · , xn : Tn, is interpreted by a
strategy (denoted by JΓ ` M : T K) for the game

JΓ ` T K = JT1K× · · · × JTnK ⇒ JT K =!(JT1K)⊗ · · · ⊗!(JTnK) (JT K.

Remark 1. From the definitions of the ⊗ and (constructions we can deduce
the following switching properties. A play in JΓ ` T K always starts with an initial
O-question in JT K. Subsequently, whenever P makes a move in JTiK or JT K, O
must also follow with a move in JTiK or JT K respectively. We also note that the
arenas used to interpret ith-order terms are of order i.

The interpretation of terms presented in [7] gives a fully abstract model in the
sense made precise below.

Theorem 1. Γ ` M1
@
∼ M2 iff comp(JΓ ` M1K) ⊆ comp(JΓ ` M2K). Conse-

quently, Γ ` M1
∼= M2 iff comp(JΓ ` M1K) = comp(JΓ ` M2K).

In the sections to follow we will show how to represent strategies defined by
β-normal IA

∗
3-terms via languages. The simplest, but not always faithful, repre-

sentation consists in taking the underlying set of moves.

Definition 8. Given P ⊆ PG we write L(P) for the language over the alphabet
MG consisting of the sequences of moves of the game G underlying positions in P .

While in L(P) we lose information about pointers, the structure of the alphabet
MG remains unchanged; in particular each letter has an order as it is a move
from MG.

Some β-normal IA
∗
3 terms define strategies σ for which L(σ) constitutes a

faithful representation. This will be the case if pointers are uniquely recon-
structible. To identify such terms it is important to understand when pointers
can be ignored in positions over third-order arenas and when they have to be
represented explicitly in some way. Due to the well-bracketing condition, point-
ers from answer-moves always lead to the last unanswered question, hence they
are uniquely determined by the underlying sequence of moves. The case of ques-
tions is more complicated. Initial questions do not have pointers at all, however
all non-initial ones do, which is where ambiguities might arise. Nevertheless it
turns out that in the positions of interest pointers leading from first-order and
second-order questions are determined uniquely, because only one unanswered
enabler will occur in the respective view. Third-order questions do need pointers
though, the standard example [8] being λf.f(λx.f(λy.x)) and λf.f(λx.f(λy.y)).
The terms define the following positions respectively:

q0 q1 q2 q1 q2 q3 q0 q1 q2 q1 q2 q3 .

Here pointers from third-order questions cannot be omitted, because several
potential justifiers occur in the P-view. To get around the difficulties we will
first focus on terms where the ambiguities for third-order questions cannot arise.

Definition 9. A β-normal IA
∗
3-term will be called simple iff it can be typed

without applying the contraction rule to identifiers of second-order types.

Clearly, the two terms above are not simple.

Lemma 1. Suppose Γ ` M : T is simple and sq3 ∈ JΓ ` M : T K. Then psq
contains exactly one unanswered occurrence of an enabler of q3.

Consequently, the justifiers of all third-order moves in positions generated by
simple terms are uniquely determined so, if σ denotes a simple term, L(σ)
uniquely determines σ. In the next section we focus on defining automata ac-
cepting L(comp(σ)).

4 Automata for simple terms

This section presents the construction of automata recognizing the languages
defined by simple terms. The construction proceeds by induction on the term
structure. The only difficult case is application. We have chosen to pass through
the intermediate step of linear composition to make the technical details more
transparent.

4.1 Automata model

The pushdown automata we are going to use to capture simple terms are special-
ized deterministic visibly pushdown automata [3]. Their most important feature
is the dependence of stack actions on input letters. Another important point
in the following definitions is that the automata will use the stack only when
reading third-order moves.

Definition 10. A strategy automaton is a tuple

A = 〈Q, Mpush , Mpop , Mnoop , Γ, i, δpush , δpop , δnoop , F 〉

where Q is a finite set of states; (Mpush , Mpop, Mnoop) is the partition of the
input alphabet into push, pop and noop (no stack change) letters; Γ is the stack
alphabet; i is the initial state and F ⊆ Q is the set of final states. The transitions
are given by the partial functions:

δpush : Q×Mpush
·
→ Q×Γ δpop : Q×Mpop×Γ

·
→ Q δnoop : Q×Mnoop

·
→ Q.

Observe that while doing a push or a noop move the automaton does not look
at the top symbol of the stack. We will sometimes use an arrow notation for

transitions: s
a/x
−−→ s′ for δpush (s, a) = (s′, x), s

a,x
−−→ s′ for δpop(s, a, x) = s′, and

s
a
−→ s′ for δnoop(s, a) = s′.

The definitions of a configuration and a run of a strategy automaton are
standard. A configuration is a word from QΓ ∗. The initial configuration is i (the
initial state and the empty stack). The transition functions define transitions

between configurations, e.g. the transition s
a/x
−−→ s′ of the automaton gives

transitions sv
a
−→ s′xv for all v ∈ Γ ∗. A run on a word w = w1 . . . wn is a

sequence of configurations: c0
w1−−→ c1

w2−−→ . . .
wn−−→ cn where c0 = i is the initial

configuration. A run is accepting if the state in cn is from F . We write L(A) for
the set of words accepted by A.

Since we want to represent sequences that are not necessarily positions, no-
tably interaction sequences, we make the next definition general enough to ac-
count for both cases.

Definition 11. Let ρ be a prefix-closed subset of sequences over a set of moves
M , and let comp(ρ) be the subset of ρ consisting of non-empty sequences with an
equal number of question- and answer-moves4. We say that a strategy automaton
A is proper for ρ if the following conditions hold.

(A1) L(A) = comp(ρ).
(A2) Every run of A corresponds to a sequence from ρ (as A is deterministic

each run uniquely specifies the input sequence).
(A3) The alphabets Mpush and Mpop consist of third-order questions and an-

swers from M respectively.

A is almost proper for ρ if L(A) = { ε } ∪ comp(ρ) and (A2) is satisfied.

Remark 2. If A is proper or almost proper for ρ = L(σ) then thanks to (A2)
we can then make a number of useful assumptions about its structure.

1. If there is a transition on a P-move from a state, then it is either the unique
transition from this state or it is a pop transition and the other transitions
are pop transitions on different stack letters. This is because strategies are
deterministic and the push and noop moves do not look at the contents of
the stack.

2. If the game in question is well-opened, i.e. none of its plays contains two
initial moves, then A will never return to the initial state. Otherwise σ would
contain just such a play. Hence, we can assume that the initial state does
not have any incoming transitions and that it does not have any outgoing
pop transitions.

Our first goal will be to model simple terms. The following remark summarizes
what needs to be done.

Remark 3. Recall the linear application rule from Section 2. Whenever it is
applied when typing β-normal IA

∗
3 terms we have ord(T) ≤ 1 and if ord(T) = 1

then M is cellB, mkvar or a term of the shape fM1 · · ·Mk where the order of f ’s
type is at most 2. Consequently, the corresponding instances of composition are
restricted accordingly. To sum up, the following semantic elements are needed
to model β-normal simple IA

∗
3-terms.

4 Note that this coincides with the concept of a complete play when ρ = L(σ) for some
strategy σ.

– A strategy for each of the constants.
– Identity strategies idJT K (ord(T) ≤ 2).
– Composition of σ : JT K ⇒ JT ′K and τ : JT ′K ⇒ JT ′′K where ord(T) ≤ 2,

ord(T ′) ≤ 1 and ord(T ′′) ≤ 3; moreover, if ord(T ′) = 1 then either τ =
JcellBK, or τ = JmkvarK, or τ = Jλx.λΓ.fM1 · · ·MkxK.

– A way of modelling contraction up to order 1.

We have not included (un)currying in the list because in the games setting they
amount to identities (up to the associativity of the disjoint sum).

The strategies for the constants and identities up to order 1 do not contain third-
order moves and it is easy to construct finite automata (without stack) which are
proper for each of them. The strategy automata for identity strategies at order
2 can be constructed using the † construction (to be introduced shortly) and

the equality idA⇒B = id
†
A (idB . Contraction up to order 1 can be interpreted

simply by relabelling, so in the remainder of this section we concentrate on
composition.

4.2 Composition

Let σ : A ⇒ B and τ : B ⇒ C. Recall that A ⇒ B =!A (B and B ⇒ C =
!B (C. In order to compose the strategies, one first defines σ† :!A (!B by

σ† = { s ∈ L!A(!B | for all initial m, s � m ∈ σ },

where s � m stands for the subsequence of s (pointers included) whose moves are
hereditarily justified by m. Then σ; τ : A ⇒ C is taken to be σ†;lin τ , where ;lin
is discussed below.

The linear composition σ;lin τ : A (C of two strategies σ : A (B and τ :
B (C is defined in the following way. Let u be a sequence of moves from arenas
A, B and C with justification pointers from all moves except those initial in C.
The set of all such sequences will be denoted by int(A, B, C). Define u � B, C
to be the subsequence of u consisting of all moves from B and C (pointers
between A-moves and B-moves are ignored). u � A, B is defined analogously
(pointers between B and C are then ignored). Finally, define u � A, C to be the
subsequence of u consisting of all moves from A and C, but where there was
a pointer from a move mA ∈ MA to an initial move mB ∈ MB extend the
pointer to the initial move in C which was pointed to from mB . Then given two
strategies σ : A (B and τ : B (C the composite strategy σ;lin τ : A (C is
defined in two steps:

σ||τ ={u ∈ int(A, B, C) | u � A, B ∈ σ, u � B, C ∈ τ },

σ;lin τ ={u � A, C | u ∈ σ||τ }.

Thus in order to carry out the composition of two strategies we will study sep-
arately: the dagger construction σ†, interaction sequences σ||τ , and finally the
hiding operation leading to σ;lin τ .

4.3 Dagger

Recall from Remark 3 that to model β-normal IA
∗
3-terms we only need to ap-

ply † for B = JT K where ord(T) ≤ 1. It is possible to describe precisely what
this construction does in this case; we will write qi, ai to refer to any ith-order
question and answer from B (i = 0, 1). The definition of σ† describes it as an
interleaving of plays in σ but much more can be said about the way the copies of
σ are intertwined thanks to the switching conditions, cf. Remark 1, controlling
the play on !A (!B. For instance, only O will be able to switch between dif-
ferent copies of σ and this can only happen after P plays in B. Consequently, if
ord(T) = 0 (no q1, a1 is available then) a new copy of σ can be started only after
P plays a0, i.e. when the previous one is completed. Thus σ† in this case consists
of iterated copies of σ. If ord(T) = 1 then a new copy of σ can be started by
O each time P plays q1 or a0. An old copy of σ can be revisited with a1, which
will then answer some unanswered occurrence of q1. However, due to the brack-
eting condition, this will be possible only after all questions played after that
q1 have been answered, i.e. when all copies of σ opened after q1 are completed.
Thus, σ† contains “stacked” copies of σ. Thanks to this we can then characterize
K = { ε } ∪ comp(σ†) by the (infinite) recursive equation

K = {ε} ∪
⋃
{q0�q1Ka1� . . . q1Ka1�a0K : q0�q1a1� . . . q1a1�a0 ∈ comp(σ)},

where �’s stand for (possibly empty and possibly different) segments of moves
from A. Note that q1 is always followed by a1 in a position of σ due to switching
conditions and the fact that B represents a first-order type.

Lemma 2. Let T ′ = Bk → · · · → B1 → B0 be a type of order at most 1. If
there exists a proper automaton A for σ :!JT K (JT ′K then there exists an almost
proper automaton A† for σ†. In this automaton the questions and answers from
MJBkK, · · · , MJB1K become push and pop letters respectively.

Proof. We will refer to the questions and answers of JB0K by q0, a0 respectively
and to those from JBiK (i > 0) by q1 and a1. Let L = comp(σ) and K =
{ ε } ∪ comp(σ†). Recall that K satisfies the equation given above.

Let i and f be the initial and final states of A respectively. As A is proper
for σ, we can assume that there are no transitions to i (Remark 2(2.)). Because
A accepts only well-opened plays we can assume that all the transitions to f are
of the form s

a0−→ f and there are no transitions from f . In order to define A†

we first “merge” f with i or, more precisely, change each transition as above to
s

a0−→ i and make i the final state. This produces an automaton accepting L∗

(observe that L∗ ⊆ K). Then we make the following additional modifications:

replace s
q1

−→ s′ by s
q1/s′

−−−→ i and replace s′
a1−→ s′′ by i

a1,s′

−−−→ s′′.

The intuition behind the construction of A† is quite simple. When A† reads q1

it goes to the initial state and stores the return state s′ on the stack (the return
state is the state A would go to after reading q1). After this A† is ready to

process a new copy of K. When finished with this copy it will end up in the
state i. From this state it can read a1 and at the same time the return state
from the stack which will let it continue the simulation of A. Consequently, it is
not difficult to see that A† satisfies (A2).

Next we argue that A† is deterministic. Because A was, the modifications
involving a0 could not introduce nondeterminism. Those using q1 and a1 might,
if A happened to have an outgoing noop transition from i on a1. However, since
!JT K (JT ′K is well-opened, by Remark 2 (2.) we can assume that this is not the
case.

Finally, observe that A† currently accepts a superset of K. To be precise, it
accepts a word from K iff both a final state is entered and the stack is empty.
Thus, in order to accept by final state only, we have to make the automaton aware
of whether the stack is empty. The solution is quite simple. The automaton
starts with the empty stack. When it wants to put the first symbol onto the
stack it actually puts this symbol with a special marker. Now, when popping,
the automaton can realize that there is a special marker on the symbol being
popped and learn this way that the stack becomes empty. This information will
then be recorded in the state. The solution thus requires doubling the number of
stack symbols (one normal copy and one marked copy) and doubling the number
of states (information whether stack is empty or not is kept in the state).

Note that by (A3) A does not change the stack when reading q1 and a1

(which are first-order moves). In A† these letters become push and pop letters
respectively. ut

4.4 Interaction sequences: σ
†||τ

The next challenge in modelling composition is to handle the interaction of two
strategies. Recall from Remark 3 that in all instances of composition that we
need to cover we have B = JT K, where either ord(T) = 0 or ord(T) = 1 and
τ = JcellBK, JmkvarK, Jλx.λΓ.fM1 · · ·MkxK.

Lemma 3. Suppose τ :!B (C is as above. Let q1, a1 denote any first-order
question and answer from B respectively (note that in !B (C they are second-
order moves). If τ = JcellBK, JmkvarK then, in positions from τ , q1 is always
followed by a1 and a1 is always preceded by q1. In the remaining case, q1 will be
followed by a third-order question from C and each third-order answer to that
question will be followed immediately by a1.

Lemma 4. Suppose there exist proper automata for σ :!A (B and τ :!B (C.
If τ is as before then there exists a proper automaton A|| for σ†||τ . Moreover, if
there is a transition on a B move from a state of A|| then it is a noop transition
and there is no other transition from that state.

Proof. Let A1 be the almost proper automaton for σ† :!A (!B constructed
in Lemma 2 and let A2 be proper for τ :!B (C. We use indices 1 and 2 to

distinguish between the components of A1 and A2. The set of states and the
stack alphabet of A|| will be given by

Q = (Q1 ×Q2) ∪ ({i1} ×Q1 ×Q2) and Γ = Γ1 ∪ Γ2 ∪ (Γ2 ×Q1).

i = (i1, i2) and F = F1 × F2 will be respectively the initial state and the set of
final states. The alphabet of A|| will be partitioned in the following way.

Mpush = (M1
push −MB) ∪M2

push Mpop = (M1
pop −MB) ∪M2

pop

Mnoop = M1
noop ∪M2

noop

The definitions are not symmetric because first-order moves from B are push
or pop letters for A1 and noop letters for A2. Note that moves from B are in
Mnoop . Finally, we define the transitions of A|| in several stages starting from
those on A- and C-moves:

(s1, s2)
m�
−−→ (s′1, s2) if m ∈ MA and s1

m�
−−→ s′1,

(s1, s2)
m�
−−→ (s1, s

′
2) if m ∈ MC and s2

m�
−−→ s′2 .

� denotes an arbitrary stack action (push, pop or noop). Intuitively, for the
letters considered above A|| just simulates the move of the appropriate compo-
nent.

Next we deal with moves from B. Moves of order 0 are noop letters both for
A1 and A2. So, we can simulate the transitions componentwise:

(s1, s2)
m
−→ (s′1, s

′
2) if s1

m
−→ s′1, s2

m
−→ s′2, m ∈ MB and ordB(m) = 0.

First-order moves from B are noop letters in A2 but push or pop letters in A1.
We want them to be noop letters in A||, so we memorize the push operation in
the state:

(s1, s2)
q1

−→ (i1, s, s
′
2) if q1 ∈ MB , ordB(q1) = 1, s1

q1/s
−−−→ i1 and s2

q1

−→ s′2,

(i1, s, s2)
a1−→ (s′1, s

′
2) if a1 ∈ MB , ordB(a1) = 1, i1

a1,s
−−→ s′1 and s2

a1−→ s′2.

Observe that we know that the transition on q1 in A1 is a push transition
leading to the initial state i1, because A1 comes from Lemma 2. In order for the
construction to work the information recorded in the state has to be exploited
by the automaton in future steps. By Lemma 3, q1 is always followed either by
a1 or by a third-order question from C. The above transitions take care of the
first case. In the second case we will arrange for the symbol to be preserved on
the stack together with the symbol pushed by the third-order question. Dually,
when processing third-order answers we should be ready to process the combined
symbols and decompress the information back into the state to be used by the
following a1. Thus we add the following transitions

(i1, s, s2)
q3/(X,s)
−−−−−→ (i1, s

′
2) if q3 ∈ MC and s2

q3/X
−−−→ s′2,

(i1, s2)
a3,(X,s)
−−−−−→ (i1, s, s

′
2) if a3 ∈ MC and s2

a3,X
−−−→ s′2,

which complete the definition of A||. It is not difficult to verify that A|| is proper

for σ†||τ . Note that for each state (s1, s2) with an outgoing transition on a B-
move m there is no other transition, because m is always a P -move either for
A1 or for A2 and we can then appeal to Remark 2 for that automaton. ut

4.5 Rounding up

We are now ready to interpret the linear application rule introduced in Section 2.
Assuming we have proper automata for σ = J∆ ` N : T K : J∆K ⇒ JT K and
τ = JλxT .λΓ.MxK : JT K ⇒ (JΓ K ⇒ JT ′K) respectively, we would like to find
an automaton Alin which is proper for σ†;lin τ = JΓ, ∆ ` λΓ.MN : Γ → T ′K.
To that end it suffices to consider the automaton A|| from Lemma 4 and hide
the moves from JT K. Recall that by Lemma 4 if there exists a transition on a
move from JT K from a state of A|| then it is a noop transition and no other

transitions leave that state. Hence, the automaton for σ†;lin τ can be obtained
by “collapsing” the sequences of JT K transitions in A||. This can be done by first

replacing each transition s0
m�
−−→ s1 by s0

m�
−−→ sk+1 when there is a sequence of

transitions in A|| of the form:

s0
m�
−−→ s1

m1−−→ s2
m2−−→ . . .

mk−−→ sk+1

where m is not from JT K, m1, . . . , mk are from JT K, and sk+1 does not have an
outgoing transition on a move from JT K (note that k is bounded by the number
of states in A||). After this it is enough to remove all the transitions on letters

from JT K. It is easy to see that the resulting automaton Alin is proper for σ†;lin τ .
This completes the description of the construction of automata for simple

terms. It remains to calculate the size of the resulting automata. For us the
size of an automaton, denoted |A|, will be the sum of the number of states and
the number of stack symbols. We ignore the size of the alphabet because it is
determined by types present in a sequent and hence is always linear in the size
of the sequent. The number of transitions is always bounded by a polynomial in
the size of the automaton.

The strategy automata for simple terms have been constructed from au-
tomata for base strategies using composition and contraction (λ-abstraction be-
ing the identity operation). Contraction does not increase the size of the au-
tomaton so it remains to calculate the increase due to composition. Suppose we
have two automata Aσ and Aτ . Let Qσ, Γσ (Qτ , Γτ) stand for the sets of states
and stack symbols of Aσ (Aτ). Examining the dagger construction we have that
|Q†

σ| = 2|Qσ| and |Γ †
σ | = 2(|Γσ |+ |Qσ|). For A|| we have |Q||| = 2|Q†

σ ×Qτ | and

|Γ||| = |Γ †
σ |+ |Γτ |+ |Γτ ×Qσ|. Putting the two together and approximating both

the number of states and stack symbols with |Aσ | and |Aτ | we obtain: |Qlin| ≤
4|Aσ ||Aτ | and |Γlin| ≤ 5|Aσ ||Aτ |. Thus |Alin| ≤ 9|Aσ ||Aτ | which gives us:

Lemma 5. For every simple term Γ ` M : T there exists an automaton which
is proper for JΓ ` M : T K and whose size is exponential in the size of Γ ` M : T .

5 Beyond simple terms

In this section we address the gap between simple terms and other β-normal
IA
∗
3-terms.

Lemma 6. Any IA
∗
3-term Γ ` M : T in β-normal form can be obtained from a

simple term Γ ′ ` M ′ : T ′ by applications of the contraction rule for second-order
identifiers followed by λ-abstractions.

Hence, in order to account for all β-normal terms we only need to show how to
interpret contraction at second order, because λ-abstraction is easy to interpret
by renaming. As already noted at the end of Section 3, interpreting contrac-
tion will require an explicit representation scheme for pointers from third-order
moves. Given a position sq3 ending in a third-order move q3 let us write α(s)
(resp. α(s, q3)) for the number of open second- and third-order questions in s
(resp. between q3 and its justifier in s; if the justifier occurs immediately before
q3 then α(s, q3) = 0).

Definition 12. Suppose σ = JΓ ` M : T K, where Γ ` M : T is an IA
∗
3-term.

The languages P(σ) and P ′(σ) over MJΓ`T K+{ check , hit } are defined as follows:

P(σ) = { s checkα(s,q3) hit checkα(s)−α(s,q3)−1 | sq3 ∈ L(σ) }

P ′(σ) = { s checkα(s,q3) hit checkα(s)−α(s,q3)−1 | ∃s′. sq3s
′ ∈ L(comp(σ)) }.

Note that q3 is always a P-move, so s uniquely determines q3. Clearly, L(σ)∪P(σ)
represents σ faithfully in the sense that equality of representations coincides
with equality of strategies. The subtlety is that we should compare only com-
plete positions in strategies. This is why we introduce P ′(σ). Using the results
from the previous section, we first show how to construct automata recognizing
L(comp(σ))∪P(σ) and L(comp(σ))∪P ′(σ), where σ denotes a simple term. For
this we will need to consider the nondeterministic version of strategy automata
defined in the obvious way by allowing transition relations in place of functions.

By Lemma 1, in any position from σ the pointer from a third-order move
q3 points to the unique unanswered enabler visible in the P-view and hence is
uniquely determined. Below we give a different characterization of the justifier
relative to the whole position rather than to its P-view.

Lemma 7. If sq3 ∈ JΓ ` M : T K, where Γ ` M : T is simple, and q3 is a
third-order question then q3’s justifier in sq3 is the last open enabler of q3 in s.

Lemma 8. For any simple term Γ ` M : T let σ = JΓ ` M : T K. Then there
exist a strategy automaton recognizing L(comp(σ))∪P(σ) and a nondeterministic
strategy automaton accepting L(comp(σ)) ∪ P ′(σ) such that the push and pop
letters are respectively questions and answers of order at least 2 and check , hit
are pop letters. Their sizes are exponential in the size of Γ ` M : T .

Proof. By Lemma 5 there exists a proper automaton A for L(σ). First we mod-
ify A so that second-order questions are pushed on the stack when read and

taken off the stack when the corresponding second-order answers are processed.
Note that the resulting automaton, let us call it A′, still accepts L(comp(σ)),
because σ satisfies the bracketing condition. Due to the modification above, the
symbols present on the stack during a run of A′ will correspond exactly to the
unanswered second- and third-order questions in the sequence of moves read by
the automaton (of course in the case of second-order questions these symbols
are the questions themselves).

Next we modify A′ to recognize L(comp(σ))∪P(σ). We add new transitions
so that when the new automaton sees a check letter while being in state s it
enters into a special mode. If A′ could not read a third-order question q3 from s,
the new automaton rejects immediately. Otherwise there is precisely one question
q3 that can be read from s (Remark 2 (1.)). By Lemma 7 it suffices to make the
new automaton read check letters and pop the stack as long as the stack symbol
is not an enabler of q3. When the first one comes, the automaton should read
hit and subsequently continue accepting check as long as the stack is not empty.

The construction of a nondeterministic automaton accepting L(comp(σ)) ∪
P ′(σ) is similar except that while reading check and hit the automaton will need
to guess how to extend sq3 to a complete position accepted by A. For this the
automaton uses a pre-calculated table of triples (s1, x, s2) such that there is a
computation of A from the state s1 with only x on the stack to the state s2

with the empty stack. The nondeterministic automaton uses this table during
the last phase to guess a possible extension of the computation of A.

As all these modifications increase the size of the automaton only by a linear
factor we obtain the complexity bound required by the lemma. ut

Lemma 8 can be extended to all IA
∗
3-terms in β-normal form. By Lemma 6, it suf-

fices to be able to interpret λ-abstraction and contraction. Both can now be done
by a suitable relabelling. Note that by identifying moves originating from the
two distinguished copies of T in the contraction rule we do not lose information
about pointers any more, because these are now represented explicitly.

Theorem 2. For any IA
∗
3-term Γ ` M : T in β-normal form there exist a strat-

egy automaton accepting L(comp(σ)) ∪ P(σ) and a nondeterministic strategy
automaton accepting L(comp(σ)) ∪ P ′(σ), where σ = JΓ ` M : T K. Their sizes
are exponential in the size of the term.

Suppose the strategies σ1, σ2 denote two β-normal IA
∗
3-terms. Observe that

comp(σ1) ⊆ comp(σ2) is equivalent to L(comp(σ1)) ∪ P
′(σ1) ⊆ L(comp(σ2)) ∪

P(σ2). We can verify the containment in the same way as for deterministic fi-
nite automata using complementation and intersection. Because the strategy
automaton representing the rhs is deterministic, complementation does not in-
cur an exponential increase in size. For intersection we can construct a product
automaton in the obvious way because stack operations are determined by the
input and, for a given input letter, will be of the same kind in both automata.
From this observation and the above theorem we obtain our main result.

Corollary 1. The problems of contextual equivalence and approximation for IA
∗
3

terms in β-normal form are in Exptime.

6 Lower bound

We show Exptime-hardness of the equivalence problem for IA
∗
3 terms in β-

normal form. This implies Exptime-hardness of the approximation problem.
We use a reduction of the equivalence problem of nondeterministic automata on
binary trees [9].

Labelled binary trees will be represented by positions of the game Jexp →
((com → com) → com) → comK. The sequence of moves S(t) corresponding to
a given binary tree t is defined as follows

S(x) = r2 q x d2 S(y(t1, t2)) = r2 q y r3 S(t1) d3r3 S(t2) d3 d2

where x, y range over nullary and binary labels respectively. Observe that S(t)
corresponds to a left-to-right depth-first traversal of t. Note that the term
λf.f(λx.x; x) defines complete positions of the shape r0r1Ud1d0 where U ::=
ε | r2r3Ud3r3Ud3d2, i.e. λf.f(λx.x; x) generates all possible sequences of ri, di

(0 ≤ i ≤ 3) corresponding to trees. In order to represent a given tree automaton
we can decorate the term with code that asks for node labels and prevents the
positions incompatible with trees from developing into complete ones.

Lemma 9. For any tree automaton A there exists a β-normal IA3 term MA

such that comp(JMAK) = { r0 r1 S(t) d1 d0 | t ∈ T (A) }, where T (A) is the set of
trees accepted by A.

Corollary 2. The contextual equivalence and approximation problems for β-
normal IA3-terms are Exptime-hard. Thus the two problems for IA

∗
3 terms in

β-normal form are Exptime-complete.

References

1. Reynolds, J. C.: The essence of Algol. In: Algorithmic Languages. North Holland
(1981) 345–372

2. Abramsky, S., Ghica, D. R., Murawski, A. S., Ong, C.-H. L.: Applying game se-
mantics to compositional software modelling and verification. In Proc. of TACAS,
LNCS 2988 (2004) 421–435

3. Alur, R., Madhusudan, P.: Visibly pushdown languages. Proc. of STOC (2004)
202–211

4. Ghica, D. R., McCusker, G.: Reasoning about Idealized Algol using regular expres-
sions. Proc. of ICALP, LNCS 1853 (2000) 103–115

5. Ong, C.-H. L.: Observational equivalence of 3rd-order Idealized Algol is decidable.
Proc. of LICS (2002) 245–256

6. Murawski, A. S.: On program equivalence in languages with ground-type references.
In Proc. of LICS (2003) 108–117

7. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol with active expressions. In: Algol-like languages.
Birkhaüser (1997) 297–329

8. Hyland, J. M. E., Ong, C.-H. L.: On full abstraction for PCF. Information and
Computation 163(2) (2000) 285–408

9. Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19(3)
(1990) 424–437

