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Idealized Algol with Ground Recursion,

and DPDA Equivalence?
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2 LaBRI, Université Bordeaux-1, 351, Cours de la Libération, 33 405, Talence, France

Abstract. We prove that observational equivalence of IA3 + Y0 (3rd-
order Idealized Algol with 0th-order recursion) is equivalent to the DPDA
Equivalence Problem, and hence decidable. This completes the classifi-
cation of decidable fragments of Idealized Algol. We also prove that ob-
servational approximation of IA1 + Y0 is undecidable by reducing the
DPDA Containment Problem to it.

1 Introduction

Observational equivalence is an extensional notion of program equivalence. Two
program phrases are observationally equivalent if one can be replaced by the
other in any program without causing any observable difference to the compu-
tational outcome. Reynolds’s Idealized Algol (IA) is an elegant and compact
programming language that combines imperative programming with high-order
features, mediated by a simple type theory. Observational equivalence in IA
is in general undecidable even when ground types are finite sets. This paper
is concerned with the question of decidability of observational equivalence for
appropriate fragments of IA.

We begin with a quick review of IA. Ground types of IA, which are ranged
over by β, are exp (expressions), com (commands) and var (assignable variables).
Types of IA, ranged over by θ, θ′ etc., are generated from ground types by the
function space constructor θ → θ′. The order of a type is defined by ord(β) = 0
and ord(θ → θ′) = max(ord(θ) + 1, ord(θ′)). Finitary Idealized Algol, IAf , is just
recursion-free Idealized Algol over finite ground types. An IAf -term, Γ ` M : θ, reference to Figure 2

removedis an ith-order term provided the types of the free identifiers in Γ are of order
less than i and ord(θ) ≤ i. The collection of ith-order IAf terms will be denoted
by IAi. We can extend IAf with iteration by adding the rule

Γ ` M : exp Γ ` N : com

Γ ` while M do N : com

and with general recursion by adding the rule

Γ, x : θ ` M : θ

Γ ` µxθ.M : θ
.
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ing Network GAMES and St John’s College, Oxford.



We write IAi + Yj to mean IAi augmented by the collection of ith-order termsj < i removed

of the shape Γ ` µxθ .M : θ where ord(θ) ≤ j. We tabulate all known results on
the complexity of observational equivalence of β-normal terms in IA [1–4]:

pure +while +Y0 +Y1

IA1 coNP Pspace ? undecidable
IA2 Pspace Pspace ? undecidable
IA3 Exptime Exptime ? undecidable
IA4 undecidable undecidable undecidable undecidable

The same results as above also hold for observational approximation.
This paper addresses the cases marked with question marks. In IAi +Y0 only

programs of ground type can call themselves recursively. For example, while-
loops while bdo c can then be defined by

b : exp, c : com, z ` µzcom . ifzero b skip (c; z).

We show that observational equivalence in IAi +Y0 is decidable for i = 1, 2, 3
by giving a reduction to the DPDA Equivalence Problem (recently proved decid-
able by Sénizergues [8]). This does not tell much about the complexity, though.
At the moment it is only known that the complexity of DPDA Equivalence is
bounded by a primitive recursive function [5]. We also show that already for
i = 1 observational equivalence is at least as hard as DPDA Equivalence. In
consequence, no advance on the complexity of the former problem can be made
without an advance on the latter. Another result is that observational approxi-
mation in IAi +Y0 is undecidable for i = 1, 2, 3, because the undecidable DPDA
Containment Problem [6] can be reduced to it.

Let us comment on the relationship of our results to a recent paper [4] showing
decidability of IA3 +while. In that paper a simpler language was considered but
it was translated to a weaker form of pushdown automata. This was essential to
get a precise complexity bound. In this paper we model a richer language but
do not concentrate on complexity, hence our constructions are not designed to
optimize the size of the resulting automata. In [4] most constructions relied on
parallel composition of automata. This is not possible here as DPDAs are not
closed under that operation.

2 Game semantics: complete plays

We assume familiarity with the treatment of game semantics of IA as presented,
for example, in [7]. Recall that the multiplicative composition σ;m τ : A ( C
of two strategies σ : A ( B and τ : B ( C is defined by parallel composi-
tion with hiding by letting the strategies interact in the shared subgame B and
subsequently hiding the B-moves.

Let σ : A ⇒ B and τ : B ⇒ C. Recall that A ⇒B =!A ( B and B ⇒ C =
!B ( C. In order to compose the strategies, one first defines σ† :!A (!B by

σ† = { s ∈ L!A(!B | for all initial m, s � m ∈ σ },



where s � m stands for the subsequence of s (pointers included) whose moves are
hereditarily justified by m. Then σ; τ : A ⇒ C is taken to be σ†;m τ .

Given a set σ of positions on G we write L(σ) for the set of the underlying
sequences of moves from MG. For a given strategy σ, we write compσ for the set
of its non-empty plays in which the number of questions matches the number of
answers; such plays are called complete.

Remark 1. We will be interested in the † construction when B = JθK and
ord(θ) ≤ 1. Then σ† can be characterized explicitly as follows.

– B = JβK: Then σ† = (comp σ)∗ σ, i.e. σ† simply iterates σ.
– B = Jβ1 → β0K: Then the switching conditions in the game !A (!B imply

that a new copy of σ can be started each time σ is finished (as above)
and, additionally, after each question q1 from β1. We can thus capture K =
{ ε } ∪ comp (σ†) by the equation below.

K = {ε}∪
⋃
{q0Uq1Ka1U · · · q1Ka1Ua0K | q0Uq1a1U · · · q1a1Ua0 ∈ compσ},

where U ’s stand for (possibly empty and possibly different) segments of
moves from A.

The operational semantics of IA can be found in [7]. We write M⇓ if the closed
term M reduces to skip. Recall that two terms Γ ` M1, M2 : θ are observationally

equivalent, written Γ ` M1
∼= M2, if for any context C[−] such that C[M1] and

C[M2] are closed terms of type com , we have C[M1]⇓ iff C[M2]⇓. Similarly, M1

observationally approximates M2, written Γ ` M1
@
∼ M2, just if for all contexts

satisfying the properties above, C[M1]⇓ implies C[M2]⇓.

Theorem 1 ([7]). Γ ` M1
@
∼ M2 iff comp JΓ ` M1K ⊆ comp JΓ ` M2K. Conse-

quently, Γ ` M1
∼= M2 iff comp JΓ ` M1K = comp JΓ ` M2K.

3 Simple terms and pointer-free representation

Suppose θ = θ1 → · · · → θn → β. Then we write tail (θ) = β. Given Γ ` M : θ,
depending on whether tail(β) is com , exp or var respectively, we define the sets

of sequences of moves LΓ ` M : θM by the following decompositions:

L(comp JΓ ` M : θK) = run · LΓ ` MM · done

L(comp JΓ ` M : θK) = q ·

max∑

j=0

(LΓ ` MMj · j)

L(comp JΓ ` M : θK) =

max∑

j=0

write(j) · LΓ ` MMw
j · ok + read ·

max∑

j=0

(LΓ ` MMr
j · j).

It will turn out convenient to define automata accepting L· · ·M instead of
L(comp J· · ·K), because then it will be not necessary to interpret hiding in many



cases (an operation under which DCFLs are not closed in general). Since L· · ·M
are sets of sequences of moves, they do not always represent comp J· · ·K faithfully
because they ignore pointers. Nevertheless, we are going to identify a sufficiently
rich class of terms for which comp J· · ·K can be recovered from L· · ·M.

First, we note that to establish decidability it suffices to consider β-normal
terms only. This does not solve the pointer problem though. To address it we
replace the application rule with its multiplicative version (left) and contraction
(right):

Γ ` M : θ → θ′ ∆ ` N : θ

Γ, ∆ ` MN : θ′
Γ, x1 : θ, x2 : θ ` M : θ′

Γ, x : θ ` M [x/x1, x/x2] : θ′
.

All β-normal terms in IA3+Y0 are typable if we allow the above rules for ord(θ) ≤
2. We will call a β-normal IA3 + Y0 term simple if it can be typed by using the
contraction rule only for θ such that ord(θ) < 2. For instance, λf.f(λx.f(λy.x))
is not simple. Note that pointer reconstruction is uniquely defined for all moves
except third-order questions (pointers for answers can be reconstructed uniquely
thanks to the bracketing condition; first-order moves must point to the unique
initial move; finally, because of Visibility, second-order questions must point to
the necessarily unique first-order question in the appropriate O-view). As made
precise in the lemma below, for simple terms, we can still recover comp J· · ·K from
L· · ·M.

Lemma 1. Suppose Γ ` M : θ is simple. If sq3 ∈ JΓ ` M : θK, and q3 is a

third-order question then q3’s justifier in sq3 is the last unanswered enabler of

q3 in s.

Proof. By induction on the structure of simple terms. The crucial point is that
if σ : A ( B satisfies the Lemma for B = JθK such that ord(θ) ≤ 1, so does σ†.
This follows from the description in Remark 1.

On the other hand, simple terms are good representatives of β-normal terms.
Any β-normal term of IA3 + Y0 can be typed by extending a typing derivation
of a simple term with a number of applications of the contraction rule for θ of
order 2 followed by a number of applications of the λ-abstraction rule.

4 G-automata

We are going to use a variant of deterministic pushdown automata. Their states
will be divided into O-states and P-states and the stack will be modified and
inspected only during ε-moves.

– In O-states the automaton will only be able to read an O-move from the
input without inspecting or changing the stack; after the transition the state
will always change to a P-state.

– In P-states the automaton will either: read a single P-move without modi-
fying the stack and move to an O-state, or perform an ε-move and go to a
P-state having a possibility to modify a stack.
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Fig. 1. Transitions in G-automata

The constraints are summarized in Figure 1 and captured formally below.

Definition 1. Let G be a game. A G-automaton A is a tuple 〈Q, Ω, i, F, δ 〉
such that

– Q = QO + QP is the set of states partitioned into QO and QP , called the

sets of O-states and P-states respectively;

– Ω is the stack alphabet;

– i ∈ QP is the initial state, i does not have any incoming transitions;

– F ⊆ QP is the set of final states, final states do not have any outgoing

transitions;

– δ : [QO ⇀ (MO
G ⇀ QP )]+[QP ⇀

(
(MP

G×QO)+QP +(Ω×QP )+(Ω ⇀ QP )
)
]

is the transition function.

The interpretation of a transition δ(qO) ∈ MO
G → QP is that the automaton

reads a letter a ∈ MO
G from the input and changes the state to δ(qO)(a). Similarly

for δ(qP ) = (b, qO) ∈ MP
G ×QO, the automaton expects to see b as the input and

then changes its state to qO . On a transition δ(qP ) = q′P the automaton changes
its state but does not consume the input or change the stack. On a transition
δ(qP ) = (γ, q′P ) the automaton changes the state and pushes γ to the stack. On
a transition δ(qP ) ∈ Ω ⇀ QP the automaton makes a pop move and changes
its state depending on the letter that was popped. We will use arrow notation
for transitions as in Figure 1. Note that slash and comma denote push and pop
operations, respectively.

We write L(A) for the language that A accepts by final state and the empty
stack. It is easy to see that G-automata are DPDAs. They have a particularity
that they look at the stack only when doing a pop move. We make this restriction
to simplify the definitions that follow. It is not difficult to see that for every
deterministic pushdown automaton there is an equivalent one with this property.

By a G-automaton configuration, we mean a pair qw, where q is a state and
w ∈ Ω∗ is the content of the stack.

Definition 2. We say that a G-automaton is productive if every non-initial

reachable configuration is productive, i.e. the configuration occurs in some ac-

cepting run of the automaton.

Lemma 2. For every G-automaton there is an equivalent productive automaton. G-added



Proof. Let A = 〈Q, Ω, i, F, δ 〉 be a G-automaton. Consider the function β :
Ω∗ → P(Q) which for all contents of the stack w ∈ Ω∗ returns the set of states
q such that the configuration qw is productive. We will first modify A so that
it keeps the current value of β in its state. Note that it is easy to update β
after push-transitions, because β(wa) depends only on β(w) and a: q ∈ β(wa)
iff there exists q′ such that q′ ∈ β(w) and when A starts with a on the stack in
state q it can end up in q′ with empty stack (states q′ with this property can be
precomputed at the very beginning of the construction). In order to handle pop-
transitions, we simply force the automaton to push the old value of β in addition
to the pushed stack symbol. Finally, it now suffices to suppress all transitions
that are not consistent with β to obtain a productive automaton.

Remark 2. (i) The productiveness of the automaton will play an important role
in our constructions for several reasons. One is that when A is productive
we can be sure that when running as a subautomaton of some automaton
construction (as in the proof of Theorem 2), it will only use the symbols it
pushed (it cannot try to make a pop operation on the empty stack as that
would be an unproductive configuration). Another consequence of produc-
tiveness is that the automaton cannot enter an accepting state while the
stack is not empty. Indeed, since there are no outgoing transitions from an
accepting state, the resulting configuration would not be productive. Fur-
ther, as the automaton stack is necessarily empty whenever it reaches a final
state, we also know that when it finishes the stack will be exactly as before
it has started.

(ii) From an O-state there are in principle several input letters from MO
G that

can make the automaton advance. However, because of productiveness, in
general, not every playable O-move can label an outgoing transition from
the O-state. From a P-state there is only one input letter from MP

G that
the automaton is prepared to read. We have this asymmetry because G-
automata are designed to accept strategies. Thus, an automaton works in
cycles: it reads a letter from MP

G , then a letter from MO
G and then does some

internal manipulations on the stack.

Definition 3. We say that an automaton is careful if whenever it reaches a

configuration qw after reading the sequence of moves s then the sequence of open

second-order questions in s appears in the stack w. More formally, there is aΓ replaced by Ω

function πA : Ω → MG ∪ {ε} such that π∗A(w) is the sequence of open second-π by π∗

order questions in s.

The final definition of this section makes it precise what kind of automata we
want to construct. Below, by A(F ′) we will denote the automaton A with F ′ as
the set of accepting states.

Definition 4. We say that a tuple of G-automata 〈A1, · · · ,An 〉, where each

Aj = 〈Qj , Ωj , ij , F j , δj 〉, is fully productive for Γ ` M : θ just if each Aj is

productive and careful; further

– suppose tail(θ) = com: we have n = 1 and L(A1) = LΓ ` M : θM



– suppose tail (θ) = exp: we have n = 1, F 1 = ⊕max

j=0 Fj and L(A1(Fj)) = LΓ `
M : θMj for any 0 ≤ j ≤ max;

– in case tail (θ) = var : we have n = max +2, F 1 = ⊕max

j=0 Fj and L(A1(Fj)) =
LΓ ` M : θMr

j for any 0 ≤ j ≤ max; for each 0 ≤ k ≤ max, we have

L(Ak+2) = LΓ ` M : θMw
k .

5 Modelling simple terms

Here we focus on simple terms. The extension to other β-normal terms is dis-
cussed in Section 6.

Theorem 2. For any simple IA3 + Y0 term Γ ` M : θ there exists a fully pro-

ductive tuple of JΓ ` θK-automata for Γ ` M : θ.

Proof. We use structural induction. Whenever our constructions fail to preserve
productiveness, we simply appeal to Lemma 2 to obtain an equivalent productive
automaton.

Thanks to the equalities below and the fact that productive G-automata
compose well (see Remark 2 (i))

LΓ ` λx.M M =LΓ, x ` MM

LΓ `!MMj =LΓ ` MMr
j

LΓ ` M ; NM =LΓ ` MM · LΓ ` NM

LΓ ` M :=NM =
∑

max

j=0 (LΓ ` NMj · LΓ ` MMw
j )

LΓ ` if M then N1 else N2M =LΓ ` MM0 · LΓ ` N2M+

(
∑

max

j=1 LΓ ` MMj) · LΓ ` N1M

the corresponding cases are easy. We can simply appeal to the inductive hypoth-
esis and construct the new automata by connecting suitable final states with
suitable initial states with ε-transitions. Note that this does not violate deter-
minism as final states do not have outgoing transitions. Equivalently, one could
“glue” final states with initial ones suitably. If one performs the constructions
for reachable final states only, productiveness will be preserved. The remaining
cases are treated as follows:

The case of Γ ` new X in M : β. Suppose β = com and 〈A 〉 is fully produc-
tive for Γ, X : var ` M : β. Let us construct max + 1 copies of A denoted by
A0, · · · ,Amax . We will use superscripts to refer to their states. The unique au-
tomaton B in the fully productive tuple for Γ ` new X in M will consist of all
these copies, the idea being that the index of the copy corresponds to the interim
value stored in the variable X . The new initial state will be i0, i.e. the initial
state of A0. The set of final states will be H =

⋃max

h=0 F h, i.e. the set of final
states from all the copies Ah of A. We make the following changes to the copies
of A. Because A is productive, we can assume that each A-transition using the
P-moves readX or write(k)X (0 ≤ k ≤ max) originating from the distinguished
copy of var is followed by transitions on i1X , · · · , idX and okX respectively, where



{ i1, · · · , id } ⊆ { 0, · · · ,max }. To construct B we redirect transitions in the var-
ious copies of A as shown below

ph

readX
��

ph

ε

��

oh
i1
X

����
��

id

X

��
??

??
7→

ph
i1

· · · ph
id ph

h

ph

write(k)X
��

ph

ε

��

oh

okX��

7→

ph
0 pk

0

where 0 ≤ h ≤ max . These transformations redirect only the transition form
ph, while the transitions from oh remain as they were. In the first case the
transformation is performed only if h = ic for some 1 ≤ c ≤ d. Otherwise, the
transition from ph is just erased. Note that in the second case the new transition
connects Ah to Ak. After all the transitions on P-moves are dealt with, we
delete the transitions from oh. It is clear that the B is careful if A is. Using
Lemma 2 we can make it productive. If β = exp the same construction can beline break removed

performed to give us a fully productive tuple for Γ ` new X in M . To define
the required partition of states H = ⊕max

j=0 Hj we simply take Hj =
⋃

max

h=0 F h
j ,

where F = ⊕max

j=0 Fj is the partition given by the inductive hypothesis. The case
of β = var combines the previous two cases.ditto

The case of Γ ` µxβ .M : β. Suppose β = com and 〈A 〉 is a fully productive
tuple for Γ, x : β ` M : β, where A = 〈Q, Ω, i, F, δ 〉. The unique automaton B
in the fully productive tuple for Γ ` µx.M will be constructed from two copies
A0,A1 of A. Intuitively, A1 will be used to process recursive calls from M ,
whereas A0 will correspond to the base copy of M . Accordingly, the initial state
will be i0 and the final states will be those from F 0. The stack alphabet of B
will, in addition to the stack alphabet of A, contain two copies of the set of
O-states of A. By productiveness of A, we can assume that each transition on
runx is followed by a transition on donex. In order to define B, for each h = 0, 1

and for each block of the shape ph runx−−−→ oh donex−−−−→ ph
done

we erase the transition

from ph and add the transitions: ph ε/oh

−−−→ i1 and f1 ε,oh

−−→ ph
done

for any f ∈ F .inlined

The case of β = exp is similar but, additionally, we have to pass on the result ofditto

the recursive call. The notion of a productive tuple will make that easy. Suppose
F = ⊕max

j=0 Fj . Then we first create two copies A0,A1 of A and for h = 0, 1 and
for each block

ph

qx

��

oh
i1
x

����
��

id

x

��
??

??

��

ph
i1

· · · ph
id

we erase the transition from ph and add the transitions: ph ε/oh

−−−→ i1 and f1
ic

ε,oh

−−→inlined

ph
ic for any 1 ≤ c ≤ d and fic ∈ Fic . The initial state of the new automaton is i0,



the final states are those in F 0 = ⊕max

j=0 F 0
j . The remaining case of β = var is moreno line break

tedious but completely analogous to the previous two. Given a fully productive
tuple 〈A1, · · · ,Amax+2 〉 for Γ, x ` M , blocks write(j)xokx are replaced with
calls to Aj+2 as for com , while blocks readxjx are replaced by calls to A1. It is
easy to see that the obtained automaton is careful. After the above constructions
we can apply Lemma 2 to make the resulting automaton productive.

The case of fM1 · · ·Mk. For demonstration we assume that k = 1, M1 = M and
fM : com and f does not occur in M , i.e. f : θ → com , Γ ` fM : com . Let us
write rf , df and r, d for the JcomK-moves on the left and right respectively. Ob-
serve that because fM is interpreted by interaction of the identity strategy (cor-
responding to f) with (JΓ ` MK)† we have comp Jf : θ → com, Γ ` fM : comK = inlined

r rf ({ ε } ∪ L) df d, where L = φ(comp JΓ ` M : θK†) and φ is the (injective)
renaming map which acts like identity on moves from JΓ K and maps JθK-moves
to their copies in Jθ → comK. Below we examine two representative examples
in detail and give the precise shape of φ. We use subscripts to refer to (moves
from) various copies of com .

– Suppose Γ ` M : com0 and f : comf,1 → comf , Γ ` fM : com. Then L =
comp JΓ ` MK†[r0 7→ rf,1, d0 7→ df,1].

– Suppose Γ ` M : com1 → com0 and f : (comf,2 → comf,1) → comf , Γ `
fM : com. Then L = comp JΓ ` MK†[r0 7→ rf,1, d0 7→ df,1, r1 7→ rf,2, d1 7→
df,2].

Consequently, the main difficulty is the construction of an automaton accepting
comp (σ†) ∪ {ε}, where σ = JΓ ` M : θK and ord(θ) ≤ 1. What is constructed in
the following is not a JΓ ` θK-automaton (the initial state, which is an O-state,
will coincide with the final one and it will have both incoming and outgoing
transitions), but the crucial fact is that it becomes one when the transitions on
rf and df (which will become the new initial and final moves respectively) are
added. We consider the case of θ = com1 → com0 for illustration.

Suppose 〈A 〉 is fully productive for Γ ` M : θ, A = 〈Q, Ω, i, F, δ 〉 and
ord(θ) ≤ 1. Recall from Remark 1 that in this case † iterates as well as stacks
copies of the original strategy and a new copy can start either if the previous
one finished or after r1. To model that, we create two copies A0,A1 of A with
the aim of delegating the copies started after r1 to A1. The outermost iterated
copies will be processed by A0.

First we define a few new states: i0new (which will be the initial and final state
of the automaton) and (◦, q), (•, q), where q ∈ Q0 + Q1 + { i0new }. We make the
following additions to A0,A1:

– i0new
r0−→ (•, i0new)

ε/(i0
new

,r0)
−−−−−−−→ i0 and f0 ε,(i0

new
,r0)

−−−−−−−→ (◦, i0new)
d0−→ i0new for any

f ∈ F .
– Observe that r1 is always followed by d1 in σ. By productiveness of A, we can

assume that each transition ph r1−→ oh (h = 0, 1) is followed by oh d1−→ ph
0 .

Then we add oh r0−→ (•, oh)
ε/(oh,r0)
−−−−−−→ i1. This makes it possible for the



automaton to start processing a new copy of σ, the return state is saved on

the stack. To process call returns, we add f 1 ε,(oh,r0)
−−−−−→ (◦, oh)

d0−→ oh for any
f ∈ F .

Note that in addition to return addresses in the form of O-states we have also
arranged for the questions r0 to be pushed on the stack. They will remain there
as long as they are not answered in the corresponding position. These questions
are redundant for accepting comp (σ†) ∪ {ε}, but are necessary for the resulting
automaton to be careful. Since r0 will be substituted by rf,1, the questions r0

are exactly the second-order questions contributed by f . The case of fM1 · · ·Mk

is analogous, except that we need to apply † to
∑k

i=1JΓ ` MiK.

The contraction rule. The contraction rule for free identifiers of type θ, where
ord(θ) = 0, 1, is interpreted simply by identifying moves from the two copies of
JθK. In general this might lead to nondeterminism, but thanks to the structure
of our automata this can never happen in our case. There is no problem with
P-moves as from each P-state the automaton can read at most one letter. Sup-
pose that a nondeterminism arises from some O-state reachable from the initial
configuration. This means that there exists a position s such that the automaton
can read both s o1 and s o2, where o1 and o2 are the O-moves from two different
copies of θ. However, this contradicts that fact that at most one of s o1 and s o2

can satisfy Visibility (because only one first-order question is O-visible in s).
Consequently, contraction can be interpreted without loss of determinacy.

6 Representing pointers

We are going to introduce a representation of pointers for simple terms by fol-
lowing Lemma 1. Consider a position sq3, where q3 is a third-order question.
We define π(s, q3) = k − j + 2 where qj

2 is the last enabler of q3 in the sequence
q1
2 , · · · , qk

2 of all second-order unanswered questions in s (written in the order
they appear in s).

Definition 5. Suppose σ = JΓ ` M : θK, where Γ ` M : θ is an IA3 + Y0

term. The language P(σ) over the alphabet MJΓ`θK + { check } is defined by

P(σ) = { s checkπ(s,q3) | sq3s
′ ∈ comp σ for some s′ }.

Lemma 3. For any simple term Γ ` M : θ there exists a DPDA accepting

L(comp σ) ∪ P(σ), where σ = JΓ ` M : θK.

Proof. By Theorem 2 there is a fully productive tuple for Γ ` M : θ. By adding
transitions on the missing initial and final moves, we can construct an automaton
A accepting L(comp σ). Though A is not, strictly speaking, a G-automaton,
it is nonetheless a DPDA that is productive and careful. (The definitions of
productive and careful do carry over in this case.) Next, we will construct a
DPDA accepting L(comp σ) ∪ P(σ). Suppose that the automaton A reads the
sequence sq3 where q3 is a third-order question. Note that q3 is always a P-move,



so it is uniquely determined by s and σ. As A is productive, we know that sq3

can be extended to a complete position. It remains to take care of check letters.
As A is careful, all second-order questions that are open in sq3 will be stored on
the stack. Hence, in order to accept the right number of check ’s after reading
s, the automaton can move to a fresh state (reading the letter check ) and enter
a new mode in which it will repeatedly pop the stack reading check whenever
the topmost stack symbol contains a second-order question and ε otherwise. It
accepts exactly after it encounters the first enabler of q3.

Now that we can represent the semantics of simple terms with pointers, the
semantics of other β-normal terms can be obtained by renaming, because in
order to type such terms we only need to perform contraction at order 2 and
λ-abstraction. The former is done by relabelling (in the same manner as at order
0 or 1; the previous argument that determinism is preserved remains valid), the
latter amounts to identity in the games setting. Consequently, we get:

Theorem 3. For any IA3 +Y0 term Γ ` M : θ in β-normal form there exists a

DPDA accepting L(comp σ)∪P(σ), where σ = JΓ ` M : θK. Hence, the theorem

also holds for any IA3 + Y0 term.

By Lemma 1, L(comp σ) ∪ P(σ) is a faithful representation of comp σ. Thus, by
Theorem 3 and the decidability of DPDA equivalence [8], we get

Theorem 4. Observational equivalence is decidable for terms in IA3 + Y0.

7 Hardness

A DPDA [6] is a tuple B = 〈Q, Σ, Γ, δ, q0, Z0 〉, where δ : Q× (Σ ∪ { ε })× Γ ⇀
Q × Γ ∗. Additionally, whenever δ(q, a, X) is defined for some a ∈ Σ, δ(q, ε, X)
must be undefined. We consider acceptance by empty stack (initially the stack
contains Z0) and write N(B) for the language accepted by B. For simplicity, we
further assume that B can either pop the stack or push one symbol onto it, i.e.
if δ(q, a, X) = (q′, α) then α = ε or α = α0α1 (α0, α1 ∈ Γ ) and α0 = X . Any
DPDA can be easily converted into this form.

We identify values of type exp with Σ. Consider the game G = JexpK ⇒ JcomK

so that we have MG = { q } ∪ Σ ∪ { r, d }. Given L ⊆ Σ∗ define L̂ ⊆ M∗
G by

L̂ = { rqx1 · · · qxnd | x1 · · ·xn ∈ L }. Note that L̂1 = L̂2 iff L1 = L2.

Lemma 4. For any DPDA B there exists a term x : exp ` MB : com such that

L(comp Jx : exp ` MB : comK) = N̂(B).

Proof. Push transitions are simulated by recursive calls, pop moves by call re-
turns. Before each call, the symbol to be pushed is stored in the variable TOP



which is used to initialize the local copy of X after the call. Take MB to be

x : exp ` new Q := q0, TOP := Z0, CH in
µzcom . newPOP := 0, X := !TOP in

while (not !POP) do
(if δ(!Q, ε, !X) = (q′, α) then

(Q := q′;
if α = ε then POP := 1 else ((TOP :=α1); z))

else
(CH := x;
if δ(!Q, !CH , !X) = (q′, α) then
(Q := q′;
if α = ε then POP := 1 else ((TOP :=α1); z))

else Ωcom)) : com

Proposition 1. For any DPDAs B1,B2 we have N(B1) ⊆ N(B2) iff MB1

@
∼ MB2

.

Observe that the term used in Lemma 4 is from IA1+Y0. Since the Containment
Problem for DPDAs is undecidable [6] we have:

Corollary 1. Observational approximation is undecidable for IA1 + Y0 terms;

observational equivalence is at least as hard as DPDA Equivalence.

Our results complete the classification of decidable and undecidable fragmentssection header re-
moved of IA. The exact complexity of observational equivalence for β-normal terms

is known in most cases, as shown in the table in Section 1. The complexity of
IAi + Y0 depends on the complexity of DPDA Equivalence, which is not known
at present. Our construction, when suitably optimized, yields DPDAs that are
doubly exponentially larger than the given term in β-normal form. It is also not
yet understood how the presence of β-redexes affects the complexity.Figure 2. erased
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