
HAL Id: hal-00335723
https://hal.science/hal-00335723

Submitted on 30 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimizing variants of visibly pushdown automata
Patrick Chervet, Igor Walukiewicz

To cite this version:
Patrick Chervet, Igor Walukiewicz. Minimizing variants of visibly pushdown automata. MFCS’07,
2007, Ceský Krumlov, Czech Republic. pp.135-146. �hal-00335723�

https://hal.science/hal-00335723
https://hal.archives-ouvertes.fr

Minimizing variants of visibly pushdown
automata

Patrick Chervet and Igor Walukiewicz

LaBRI, Université de Bordeaux and CNRS
351, Cours de la Libération

F-33 405, Talence cedex, France

Abstract. The minimization problem for visibly pushdown automata
(VPA) is studied. Two subclasses of VPA are introduced: call driven
automata, and block automata. For the first class, minimization results
are presented unifying and generalizing those present in the literature.
A drawback of this class, and all the other classes known till now, is
that it is exponentially less succinct than VPA. The second class, block
automata, is introduced to address this problem. These automata are
as succinct as VPA. A minimization procedure for them is presented
that requires one additional parameter to be fixed. An example of an
exponential gain in succinctness is presented.

Introduction

The class of visibly pushdown languages is the class of languages defined by
pushdown automata where an input letter determines a stack action of the
automaton. It seems that this class was first studied by Melhorn under the
name of input driven automata. In [11] he shows that the parsing problem is in
O(log2(n)). Alur and Madhusudan [2] exhibit many good properties of this class.
It is closed under boolean operations and it contains some interesting previously
studied classes as: parenthesis languages [10] and balanced grammars [5]. Visibly
pushdown languages have several different characterizations. One is via syntac-
tic congruences in a style of Myhill-Nerode congruence for regular languages [3].
This characterization permits to obtain a canonical visibly pushdown automaton
for a given language. Unfortunately, this canonical automaton is not always the
minimal visibly pushdown automaton for the language.

In this paper we study the minimization problem for deterministic VPA.
Our research is motivated by the presence of two different subclasses in the
literature: SEVPA [3] and MEVPA [8]. These are two subclasses of VPA for
which some minimization results are known. We introduce two new classes: call
driven automata (CDA), and their expanded version (eCDA). The class CDA is
a superset of both SEVPA and MEVPA; while eCDA is included in these two
classes. We prove a minimization result for eCDA and show how it can be used
to get known and new minimization results for other three classes. This gives a
unified picture of the previous studies of the minimization problem.

The drawback of all of the above results is that translation from deterministic
VPA to automata in one of these classes may incur exponential blowup. This is
due to structural constraints on the form of automata. We propose a new subclass
of VPA, called block VPA (BVPA) which is much better in this respect. The
translation from VPA to a BVPA results in at most quadratic blowup. Thus
a minimization result for BVPA would give an approximative minimization of
VPA. Unfortunately, we are able to show minimization of BVPA only when some
additional parameter is fixed. The advantage of this result is that minimizations
of eCDA and SEVPA are its special cases. It makes also evident that minimizing
VPA is related to optimizing the one parameter that we exhibit.

Since the paper of Alur and Madhusudan [2], VPA has appeared in several
contexts: XML [14, 7], verification [9, 1], learning [8], semantics of programing
languages [13]. It is in particular this last paper that motivated the current
work. In that paper an algorithm is given for constructing a VPA describing the
semantics of a given program expression. This way comparing program expres-
sions is reduced to VPA equivalence. For the feasibility of the translation from
programs to VPA it is essential to be able to reduce the size of intermediate au-
tomata during construction. This leads directly to the problem of minimization.
It is worth noting that in other applications mentioned above minimization can
also play an important role.

Let us comment on the importance and feasibility of minimization in gen-
eral. Small canonical ways of representing objects are omnipresent. Consider two
examples from verification: Binary Decision Diagrams [12] (BDD’s) are nothing
else but minimal automata for languages of bit strings; difference bounded ma-
trices [6] (DBM’s) are canonical representations of sets clock valuations. Good
representations are rare. For example, nondeterministic automata are in prin-
ciple more succinct than deterministic automata, still it seems very difficult to
obtain, with a reasonable computational effort, a nondeterministic automaton of
size close to a minimal one. Similar problems appear with two way deterministic
automata, or even with two-pass deterministic automata that read the word first
from left to right and then from right to left. In this context having minimal
automata even for a restricted class of VPA is rather unusual. The general mini-
mization of VPA seems at least as difficult as minimization of automata two-pass
automata.

The plan of the paper is as follows. We start with basic definitions on VPA. In
the following section we introduce the new classes CDA and eCDA. We also show
the minimization result for eCDA and point out how it implies a minimization
result for CDA. Section 3 discusses relations with MEVPA and SEVPA. Finally,
we present BVPA, discuss their properties and present a minimization procedure
for them.

2

1 Visibly Pushdown Automata

A visibly pushdown alphabet Σ̂ = (Σcall, Σret, Σint) consists of three disjoint
finite sets where Σcall is a set of calls, Σret is a set of returns and Σint is a set
of internal actions.

For any such Σ̂, let Σ denote Σcall∪Σret∪Σint. In the following we will use:
c, c1, . . . for elements of Σcall; r, r1, . . . for elements of Σret; i, i1, . . . for elements
of Σint.

Definition 1. A visibly pushdown automaton (VPA) is a pushdown automaton
A = 〈Q, Σ̂, q0, Γ, δ,QF 〉, where Q is a finite set of states, Σ̂ = (Σcall, Σret, Σint)
is a visibly pushdown alphabet, q0 ∈ Q is an initial state, Γ is a (finite) stack
alphabet, QF is a set of final states and δ = δcall ∪ δret ∪ δint is a transition
function, such that: δcall : Q × Σcall → Q × Γ , δret : Q × Σret × Γ → Q and
δint : Q×Σint → Q.

A stack over Γ will be represented by a finite word over Γ with the top on
the left of the word. We will write σσ′ for the concatenation of stacks σ and σ′.
In particular γσ denotes a stack with the top letter being γ. A configuration is
a pair (q, σ) where q is a state and σ is a stack.

An execution of a VPA A as above on a word w = a1 · · · ak from Σ∗ is a
sequence of configurations (q0, σ0), . . . , (qk, σk) where σ0 is the empty stack ε,
and for every j ∈ [1, k]:

– if aj is a call then δcall(qj , aj) = (qj+1, γ) and σj+1 = γσj ,
– if aj is an internal action then δint(qj , aj) = qj+1 and σj = σj+1,
– if aj is a return then δret(qj , aj , γ) = qj+1 and σj = γσj+1.

Intuitively, on reading a call the automaton is obliged to do a push operation
and moreover it cannot look at the top of the stack. On internal actions the
automaton cannot change the stack, neither it can look at the top of it. When
reading a return, the automaton has to do a pop, but this time it can use the

information on the top of the stack. We will write q
c/γ7−→ q′, q

i7−→ q′, and q
r/γ7−→ q′

for push, internal, and pop transitions, respectively.
An execution (q0, σ0), . . . , (qk, σk) is accepting if qk is a final state (qk ∈ QF).

A word w ∈ Σ∗ is recognized by an automaton A if the unique execution of A
on w is accepting. The language recognized by A, denoted L(A), is the set of
all words of Σ∗ recognized by A. A language L over an alphabet Σ̂ is a VPL if
there is a visibly pushdown automaton over the alphabet Σ̂ recognizing L.

If A is a VPA and δ its transition function, we will write δ(u) to denote the
state reached by A after the reading of u ∈ Σ∗. We will sometimes also use →A

to denote the transition function of A.

Remark 1. A visibly pushdown automaton is a deterministic pushdown automa-
ton with one important restriction that input letters determine stack actions.
The restrictions disallowing to look at the top of the stack when doing push or
internal actions are not essential if recognizability is concerned as one can always
remember the top of the stack in a state. One can also consider nondeterministic
visibly pushdown automata, but we will not do it here.

3

Remark 2. Without a loss of generality, one can assume that Γ = Q×Σcall and
that in a state q when reading a call c the automation pushes (q, c) on the stack.
This works as (q, c) is the maximal information the automaton has when doing
the push. In the following we will use this form of Γ when convenient.

Definition 2 (Matched calls and returns). Let Σ̂ be a pushdown alphabet,
and u be a word in Σ∗.

The word u is matched calls if every call has a matching return, i.e. if for
every suffix u′ of u the number of call symbols in u′ is at most the number of
return symbols of u′.

Similarly, the word u is matched returns if every return has a matching call,
i.e. if for every prefix u′ of u the number of return symbols in u′ is at most the
number of call symbols in u′.

The word u is well-matched if it is matched calls and matched returns. Ob-
serve that being well matched means being well bracketed when call symbols
are considered as opening brackets and return symbols are considered as clos-
ing brackets.

Let then MC(Σ̂), MR(Σ̂) and WM(Σ̂) be respectively the set of matched
calls, matched returns and well-matched words. A language L is well-matched if
L ⊆WM(Σ̂).

Remark 3. As we forbid return transitions on empty stack, visibly pushdown
automata can accept only matched returns words.

Given a VPL L over a visibly pushdown alphabet Σ̂ = (Σcall, Σret, Σint), let
us define the equivalence relation ≈L on well-matched words:

w1 ≈L w2 if for all u, v ∈ Σ∗ : uw1v ∈ L iff uw2v ∈ L.

Observe that ≈L is a congruence with respect to the concatenation. We will
sometimes omit the subscript L if it is clear from the context.

Theorem 1 ([3]). A language L ⊆WM(Σ̂) is a VPL iff ≈L has finitely many
equivalence classes.

2 Call Driven Automata and their minimization

In this section we introduce the class of call driven automata. A call driven
automaton is a special kind of visibly pushdown automaton where we require
that a call letter determines uniquely the state to which the automaton goes. We
will show later that this subclass of VPA is larger than previously introduced
subclasses.

Definition 3. A VPA A = 〈Q, Σ̂, q0, Γ, δ,QF 〉 is a Call Driven Automaton
(CDA) if there is a function Target : Σcall 7→ Q and an equivalence relation Q↔
on Q such that :

– for all c ∈ Σcall, q0
Q= Target(c)

4

– if q
i→ q′ then q

Q↔ q′,

– if q
c/(q,c)−→ q′ then q′ = Target(c),

– if q
r/(q′,c)−→ q′′ then q′

Q↔ q′′.

This definition essentially says that the set of states is divided into equiva-
lence classes of Q↔. An internal transition stays in the same equivalence class. A
call transition goes to the class determined by the call letter. A return transition
goes back to the class from which the matching call was done. The first condition
says that the equivalence class of q0 is not the target of any call, so being in this
class we know that the stack is empty.

An interesting subclass of CDA, which we call expanded CDA, is obtained by
requiring that each call leads to a different equivalence class. We will show in the
next subsection that eCDA are very easy to minimize. Moreover, minimization
of CDA can be done via minimization of eCDA (cf. Theorem 2).

Definition 4. A VPA A is an expanded Call Driven Automaton (eCDA) if
it is a CDA for some function Target and equivalence relation Q↔ such that if
Target(c) Q↔ Target(c′) then c = c′.

2.1 Minimization of eCDA

Due to the restriction on their structure, minimization of eCDA resembles very
much minimization of finite automata. Later, we will show that minimizations
of other subclasses of visibly pushdown automata can be obtained via reduction
to minimization of eCDA. As usual, by the size of an automaton we mean the
number of its states.

Theorem 2. Let Σ̂ be a visibly pushdown alphabet. For every VPL L ⊆WM(Σ̂)
there is a unique (up to isomorphism) minimum-size eCDA recognizing L.

Proof. The proof uses the same method as minimization of SEVPA [3] but it
is notationaly simpler, due to the simpler structure of eCDA. Let Σ̂ and L be
as in the assumption of the theorem. The proof is done in two steps. First, we
construct a syntactic eCDA A recognizing L. We then prove its minimality by
showing for any eCDA recognizing L a surjective homomorphism from it to A.

To construct a syntactic eCDA, we define the following equivalence relations
on well-matched words:

w1 ∼0 w2 iff ∀v ∈ Σ∗. w1v ∈ L⇔ w2v ∈ L,

and, for every c ∈ Σcall:

w1 ∼c w2 iff ∀u, v ∈ Σ∗. ucw1v ∈ L⇔ ucw2v ∈ L.

We denote their equivalence classes by [w]0 and [w]c, respectively. All these
relations include ≈L so by Theorem 1 they have finite index.

States of the syntactic eCDA will be the equivalence classes of theses rela-
tions. The formal construction of A = 〈Q, Σ̂, q0, Γ, δ,QF 〉 is as follows

5

– Q = {(a, [w]a) : a ∈ Σcall ∪ {0}, w ∈WM(Σ̂)},
– Γ = Q, q0 = (0, [ε]0), QF = {(0, [w]0) : w ∈ L},
– the transitions δ are as below (here a ∈ Σcall ∪ {0}):
• (a, [w]a) i→ (a, [wi]a), for i ∈ Σint;

• (a, [w]a)
c/(a,[w]a)−→ (c, [ε]c), for c ∈ Σcall;

• (a, [w]a)
r/(b,[w′]b)−→ (b, [w′awr]b), for r ∈ Σret and b ∈ Σcall ∪ {0}.

We need to check that A is well defined which comes to checking that δ is
well defined. This in turn follows from the fact that for every a, b ∈ Σcall ∪ {0},
i ∈ Σint, r ∈ Σret, every w1 ∼a w2, and every w′

1 ∼b w′
2 we have:

w1i ∼a w2i and w′
1aw1r ∼b w′

2aw2r.

It is also straightforward to check that A is an eCDA when we define Target(c) =
(c, [ε]c) and (a, [w]a) Q↔ (b, [w′]b) iff a = b.

To prove that A recognizes L, it is sufficient to observe that the following
invariant is maintained during an execution: after reading a word u ∈ MR(Σ̂)
the automaton A reaches the configuration (q, σ) where:

– if u ∈WM(Σ̂) then q = (0, [u]0) and σ is empty stack.
– otherwise u has a unique decomposition u = w0c1w1 · · · clwl, where each

wj ∈WM(Σ̂) and each cj ∈ Σcall; in this case q = (cl, [wl]cl
) and the stack

is σ = (cl−1, [wl−1]cl−1) · · · (c1, [w1]c1)(0, [w0]0).

As L is a well-matched VPL, any u ∈ L is well matched. The invariant
implies that after the reading of u ∈ L, the state of A is (0, [u]0), which is a final
state by definition. Conversely, if when reading a word u, A reaches a final state
(0, [w]0), then u is matched returns (otherwise the execution stops before reading
the whole word u). Then the invariant shows that u needs to be well matched
and thus after reading u the state is (0, [u]0). As (0, [u]0) is a final state, we have
u ∈ L. Hence, the above invariant guarantees that u ∈ L iff A recognizes u.

The second step is to show that A is the unique minimal eCDA recognizing
L. Let A′ = 〈Q′, Σ̂, Γ ′, q0, δ

′, Q′
F 〉 be an eCDA recognizing L. We will construct

a surjective function from Q′ to the states of A preserving the structure of A′.
We define:

f(q′) =

(0, [w]0) if there is w ∈WM(Σ̂) such that δ′(w) = q′

(c, [w]c) if there are u ∈ Σ∗, c ∈ Σcall, w ∈WM(Σ̂) such that
δ′(ucw) = q′

First, we have to verify that f is well defined.

– If δ′(w) = δ′(w′), then the automaton is in the same configuration after
reading w and w′. Hence, for every u, δ′(wu) = δ′(w′u), and w ∼0 w′.

6

– If δ′(ucw) = δ′(u′cw′) then for every u′′, δ′(u′′cw) = δ′(u′′cw′), as when
reading well matched words w and w′ automaton cannot look at the parts of
the stack created when reading uc, u′c or u′′c. Hence, for every u′′, v ∈ Σ∗,
δ′(u′′cwv) = δ′(u′′cw′v), and w ∼c w′.

Obviously, f is surjective. It is also straightforward to verify the following
four conditions saying that f preserves the structure of A′:

1. f(q′0) = q0 and for every c ∈ Σcall, f(Target ′(c)) = Target(c).
2. For every i ∈ Σint, if p′

i→A′ q′ then f(p′) i→A f(q′).

3. For every c ∈ Σcall, if p′
c/(p′,c)−→ A′ q′ then f(p′)

c/(f(p′),c)−→ A f(q′).

4. For every r ∈ Σret, if p′
r/(s′,c)−→ A′ q′ then f(p′)

r/(f(s′),c)−→ A f(q′).

The construction described in the proof above can be done in cubic time. We
will not analyse it precisely but refer the reader to [4] where the cubic complexity
of a more complicated construction is shown.

Corollary 1. Given an eCDA, in cubic time it is possible to find a minimal
equivalent eCDA.

2.2 Minimization of CDA

An obvious question is whether one can minimize CDA in the same way as
eCDA. The answer is negative as there is no unique minimal CDA for the lan-
guage (see Example 2.2 below). Without much work though we can obtain an
approximative minimization of CDA, i.e., minimization up to the factor |Σcall|.
The construction uses the minimization of eCDA.

Lemma 1. Given a CDA of size n, an equivalent eCDA of size O(n × |Σcall|)
can be constructed in linear time.

Proof. Let A = 〈Q, Σ̂, q0, Γ, δ,QF 〉 be a CDA for Target and Q↔ recognizing
L ⊆ WM(Σ̂). We define an equivalent eCDA B recognizing L. We need to
duplicate states so that Q↔ relates no two states in the range of Target . Formally,
B = 〈Q′, Σ̂, q′0, Γ

′, δ′, Q′
F 〉 is such that:

– Q′ = {(q, a)|a ∈ Σcall ∪ {0}, q ∈ Q};
– Γ ′ = Γ × (Σcall ∪ {0}), q′0 = (q0, 0), Q′

F = {(q, 0) : q ∈ QF };
– the transitions δ′ are defined as follows (here a, b ∈ Σcall ∪ {0}):
• (p, a) i−→B (q, a) if p

i−→A q,

• (p, a)
c/(γ,a)−→ B (q, c) if p

c/γ−→A q,

• (p, a)
r/(γ,b)−→ B (q, b) if p

r/γ−→A q.

TargetB is defined by TargetB(c) = (TargetA(c), c) and Q↔B is defined by:
(p, a) Q↔B (q, b) iff a = b. It is easy to check that B is an eCDA and recognizes
the same language as A. By definition its size is |Q| × |Σcall|.

7

Given a CDA, this lemma together with the Theorem 2 alow us to find the
smallest equivalent eCDA. More, due to the Lemma 1, the smallest equivalent
eCDA is in size O(n×|Σcall|), where n is the minimal size of an equivalent CDA.
So we get the following corollary.

Corollary 2. Given a CDA in a cubic time it is possible to find a CDA of size
|Σcall| × n where n is the size of a minimal equivalent CDA.

The following example shows a language L such that there is no unique
minimal CDA recognizing L. We take for L the VPL c1(1 · 1)∗r + c21∗r over the
visibly pushdown alphabet ({c1, c2}, {r}, {1}).

q0 qf

c1/
c1

c2/c2

r/c1 ,c2

r/c2

1 q0 qf

c1/
c1,

c2/
c2 r/c1 ,c2

r/c2

1

Fig. 1. Two non-isomorphic minimal CDA recognizing L (each automaton also has a
sink that is not represented)

3 Comparison between different VPA subclasses

In this section we discuss the relations between CDA and two other classes
of VPA introduced in the literature: single entry visibly pushdown automata
(SEVPA) [3] and multi-entry visibly pushdown automata (MEVPA) [8]. Not
only these two classes are included in CDA, but we can recover minimization
results for them from our basic minimization result for eCDA.

A SEVPA is a CDA when every equivalence class of Q↔ has a single entry,
i.e. only one state in a class is a target of a push transition.

Definition 5. A CDA with Target and Q↔ is a single entry visibly pushdown
automaton (SEVPA) if, for all call actions c and c′:

if Target(c) Q↔ Target(c′) then Target(c) = Target(c′).

Multi-entry automata (MEVPA) represent another kind of restriction on
CDA. In general we can assume that the stack alphabet of a visibly pushdown
automaton is Q×Σcall (cf. remark 2) as a push transition depends only on the
current state and a letter being read. In MEVPA we assume that the symbol
pushed on the stack depends only on the state and not on the input letter.

Definition 6. A CDA A = 〈Q, Σ̂, q0, Γ, δ,QF 〉 is a Multi Entry Visibly Push-

down Automaton (MEVPA) when for all transitions q1
c1/γ1−→ q′1 and q2

c2/γ2−→ q′2:
if q1 = q2 then γ1 = γ2.

8

Remark 4. Without a loss of generality one can assume that Γ = Q and that
in a state q when reading a call c the automaton pushes q on the stack. In the
following we will use this form of Γ when convenient.

By definition, CDA includes all other classes: eCDA, SEVPA, MEVPA. Also
by definition, eCDA is included in SEVPA. The class eCDA is also included in
MEVPA. Indeed, if (A,Target , Q↔) is an eCDA: each state of A is related in Q↔
to at most one state Target(c), so the machine always knows what is the last
call read, and does not need to put this information on the stack. This gives the
following graph of inclusions between the subclasses.

CDA
↗ ↖

SEVPA MEVPA
↖ ↗

eCDA

For every VPA there is an equivalent CDA (cf. Theorem 2). The question is
how small this CDA can be. The following example shows that the blow-up can
be exponential; which is also an upper bound.

Example Consider an alphabet Σ̂ = ({c}, {r}, {a1, . . . , ak}) with one call sym-
bol c and one return symbol r. Let Lk = a1cLa1r + · · · + akcLak

r, where
Lai ⊆ {a1, . . . , an}∗ is the set of words where the number of ai is even. By
counting equivalence classes one can show that the minimal eCDA recognizing
Lk is of size bigger than 2k. Lemma 1 gives the same bound also for CDA . On
the other hand, Lk can be recognized by a VPA of size in O(k2) (see figure 3
below).

q0

1

k

⊥

qf

a 1

a
k

a1

ak

c/∗

c/∗

r/∗

r/∗

Fig. 2. VPA of size in O(k2) recognizing Lk

4 Other results on MEVPA and SEVPA

The object of this section is to show how to reprove known minimization results
on MEVPA and SEVPA using the result about eCDA. The main idea is to use an
appropriately chosen injective morphism Φ : Σ∗ → Λ∗ where Λ is some alphabet.
The idea of the construction is presented in the schema in Figure 3. Given an

9

automaton A from a class C, one constructs an eCDA A recognizing Φ(L). Then
one finds the minimal eCDA B equivalent to A, and finally translates B to an
automaton B recognizing L. If Φ is suitably chosen then the size of A can be
bounded by a small polynomial in the size of A and usually the translation from
B to B does not introduce extra states.

A ∈ C recognizing L Φ-translation A ∈ eCDA recognizing Φ(L)−→ size ≤ p(|A|)

eCDA↓ minimization

B ∈ C recognizing L ←− B ∈ eCDA recognizing Φ(L)

size ≤ |B| back translation

Fig. 3. Translation method: p(n) is a fixed polynomial.

4.1 MEVPA

We explain how to obtain a minimization of MEVPA using eCDA.

Theorem 3 (Kumar, Madhusudan & Viswanathan). [8] Let Σ̂ be a vis-
ibly pushdown alphabet. For every VPL L ⊆ WM(Σ̂), there is a unique (up to
isomorphism) minimum-size equivalent MEVPA. Moreover, it can be constructed
in a cubic time from a given MEVPA recognizing L.

Proof. We apply the translation method for some homomorphism Φ.
Let L ⊆ WM(Σ̂) be a VPL. Every VPA is equivalent to some eCDA (cf

Theorem 2). Now an eCDA is in particular a MEVPA (see section 3 for a dis-
cussion of relations between different classes of VPA). Hence L is recognizable
by some MEVPA. So let us fix a MEVPA A = 〈Q, Σ̂, q0, Γ = Q, δ,QF 〉 together
with Target and Q↔, such that L(A) = L. Λ̂ is the visibly pushdown language
defined by Λint = Σint ∪ Σcall, Λcall = {1}, Λret = Σret, and Φ is a morphism
that is an identity on all letters but on the call letters where we put Φ(c) = 1c.
Φ(L) is a WM(Λ̂) language.

p

p

q

qE

c/γ

1/γ c

SPLIT INTO

Fig. 4. c → 1c translation.

10

We now construct from A an eCDA A recognizing Φ(L). The idea of the
translation is that each call transition on a letter c is split into a 1 transition
that does the push and goes to state E and then a c transition (see figure 4.1),
that is now an internal transition. We do not need to make copies of A, because
when a push is done the automaton does not need to remember which call symbol
is read. We will only add three distinguished states: an entry state E and two
sinks ⊥0 (empty stack sink) and ⊥1 (non-empty stack sink). The construction
of A = 〈Q′, Λ̂, q0, Γ

′, δ′, QF 〉 is as follows:

– Q′ = Q ∪ {E,⊥0,⊥1};
– Γ ′ = Q′;
– the transitions δ′ are defined as follows:
• p

i−→A q if p
i−→A q,

• E
c−→A Target(c) if c ∈ Σcall,

• s
1/s−→A E if s ∈ Q′,

• p
r/q−→A s if p

r/q−→A s,
• If not otherwise specified a transition goes to ⊥0 if the stack gets empty

and to ⊥1 otherwise.

It is straightforward to check that A is an eCDA when TargetA(1) = E and
Q↔A has two equivalence relations: one is {q|∃c ∈ Σcall, q

Q↔ Target(c)}∪{E,⊥1}
and the other one contains the rest of the states of Q′. The fact that the language
recognized by the eCDA A is L comes from the following property, which is easy
to prove by induction. For every v ∈WM(Λ̂):

– if there is u ∈MR(Σ̂) such that v = Φ(u) then δ′(v) = δ(u),
– if there is u ∈MR(Σ̂) such that v = Φ(u)1 then δ′(v) = E,
– otherwise δ′(v) is a sink.

Let B be the minimal eCDA recognizing Φ(L) (here we use Theorem 2).
An eCDA is in particular a MEVPA (again, see section 3), so without a loss of
generality the stack alphabet of B can be supposed to be its set of states. We now
convert B to a MEVPA B recognizing L. The construction is very similar to that
for minimization of CDA. To fix the notation suppose that B = 〈Qb, Λ̂, qb

0, Γ
b =

Qb,→B, Q
b
f 〉 and that it comes with Target and Q↔ defined. Automaton B will

be obtained by changing just →B into →B as follows:

– q
c/q−→B Target(c), where Target(c) = q if Target(1) c−→B q;

– →B is the same as →B on Σint and Σret.

By definition B is a CDA with Target defined as above and Q↔. Here, transi-
tions that had been split during translation have been collapsed back. Then the
language recognized by B is obviously L. Note that both B and B are the same
no matter what A we start with. So the size of B is bounded from the above
by n + 3, where n is the minimal size of a MEVPA equivalent to A. Note that

11

during back translation some states of B could become inaccessible. So we sup-
pose every inaccessible states of B have been removed in the end of the back
translation.

To prove that B is the unique (up to isomorphism) minimal MEVPA rec-
ognizing L, we show for every such A a surjective function from states of A to
states of B that preserves the structure of A. Without a loss of generality one
can assume that all the states of A are accessible. Let in be the injection from
states of A to states of A that maps q to (q, 0). We denote by f the function
defined in the proof of Theorem 2 mapping states of A to states of B. Then we
define f = f ◦ in. To conclude, it is enough to prove the following facts (where
QA and QB are respectively the set of states of A and B):

1. f(QA) ⊆ QB.
2. f : QA 7→ QB is surjective.
3. f preserves the structure of A.

Let u be a word in MR(Σ̂). When proving that A recognizes Φ(L) we got
δA(Φ(u)) = in(δA(u)). Then, together with the definition of f (cf proof of Theo-
rem 2), this implies: δB(Φ(u)) = f(in(δA(u))) = f(δA(u)). Now it is straightfor-
ward by induction to prove that: δB(u) = δB(Φ(u)). Hence, for every u ∈MR(Σ̂),
δB(u) = f(δA(u)). Then: as every state of A is accessible, 1 is verified; 2 is ob-
viously verified; if we normalize stack alphabets of A and B (cf remark 2), the
four conditions saying that a function preserves the structure of an automaton
(cf proof of Theorem 2) are obviously verified, and 3 is verified too.

Note that the minimization of A into B and the accessibility test can be done
in O(|A|3), and other steps of this algorithm in linear time. So it is possible to
construct B in O(|A|3) time, where A is any CDA recognizing L.

4.2 SEVPA

In [3] Alur, Kumar, Madhusudan and Viswanathan give a mimization of SEVPA
provided some additional structure is preserved. We show how to obtain this
result using the method of translations. Before doing this we present two remarks.
The first shows that preserving the structure can result in exponential blowup.
The second points out that our result on CDA gives approximative minimization
that avoids the blow-up.

For a SEVPA A = 〈Q, Σ̂, q0, Γ, δ,QF 〉 with Target and Q↔ we define an equiv-
alence relation Σ↔ on call actions Σcall by:

c
Σ↔ c′ iff Target(c) = Target(c′).

We then call A a Σ↔-SEVPA. Equivalence relation Σ↔ fixes bit more of the struc-
ture of automaton. One can consider eCDA as SEVPA with Σ↔ that is the identity
relation.

Remark 5. It may happen that minimal SEVPA for one Σ↔ relation can be
much bigger than an equivalent SEVPA for some other relation. Consider vis-
ibly pushdown alphabet Σ̂ = ({c1, . . . , ck}, {r}, {a1, . . . , ak}), and a language

12

L′k = a1c1La1r + · · · + akckLak
r, where Lai

⊆ {a1, . . . , ak}∗ is the set of words
with even number of occurences of ai. When Σ↔ is the identity relation, the min-
imal size of a Σ↔-SEVPA recognizing L is in O(k2). If on the other hand Σ↔ is a
complete relation where every pair of call letters is related then the size of the
minimal Σ↔-SEVPA is bigger than 2k .

Remark 6. Lemma 2 implies that taking Σ↔ to be the identity relation is not far
from optimal. Indeed, every SEVPA is a CDA, so the minimal eCDA for a given
language is only |Σcall| bigger than the minimal equivalent SEVPA. As noted
above an eCDA is a Σ↔-SEVPA when Σ↔ is the identity relation. So modifying
Σ↔ relation we can gain at most a |Σcall| factor.

The following result is the main minimization result of [3].

Theorem 4 (Alur & Madhusudan). Let Σ̂ be a visibly pushdown alphabet
and let Σ↔ be an equivalence relation over Σcall. For every VPL L ⊆ WM(Σ̂)
there is a unique (up to isomorphism) minimum-size Σ↔-SEVPA recognizing L.
Moreover it can be constructed in a cubic time given a Σ↔-SEVPA for the lan-
guage.

Proof. The proof is very similar to that for minimization of MEVPA, but uses
a different homomorphism Φ for the translation.

Let Σ̂ be a visibly pushdown alphabet, let L ⊆WM(Σ̂) be a VPL, and let Σ↔
be an equivalence relation over Σcall. Due to Theorem 2, every VPA is equivalent
to some eCDA. Now, an eCDA is in particular a SEVPA (see Section 3) with
respect to the identity relation on Σcall. With a simple transformation, which
we will not detail here, an eCDA can be transformed to Σ↔-SEVPA for arbitrary
equivalence relation Σ↔. Hence, L is recognizable by some Σ↔-SEVPA. We fix a
SEVPA A = 〈Q, Σ̂, q0, Γ, δ,QF 〉 together with Target and relations Q↔, Σ↔, such
that L(A) = L.

We will use the method of translations (see Figure ??) but to SEVPA in place
of CDA. Let T ⊆ Q be the range of Target , and let Λ̂ be the visibly pushdown
alphabet defined by:

Λint = Σint ∪Σcall, Λcall = T, Λret = Σret

(where T is supposed to be disjoint from Σ). We take a homomorphism Φ that
is an identity on all the letters but Σcall for which we let Φ(c) = ct where
t = Target(c). It is easy to verify that Φ(L) is a WM(Λ̂) language.

We now construct an eCDA A over Λ̂ recognizing Φ(L). When reading c we
need to remember this letter in the state, so for every q ∈ Q we will encode
each call c ∈ Σcall in a new state (q, c) and also add an associated sink (q,⊥).
For notational reasons, a state q ∈ Q will be renamed into (q, 0). The formal
construction of A = 〈Q′, Λ̂, q′0, Γ

′, δ′, Q′
F 〉 is as follows:

– Q′ = Q× (Σcall ∪ {0,⊥});

13

– Γ ′ = Q′, q′0 = (q0, 0) and Q′
F = {(q, 0)|q ∈ QF };

– where the transitions δ′ are:
• (p, 0) i−→A (q, 0) if p

i−→A q,
• (q, 0) c−→A (q, c), if q ∈ Q and c ∈ Σcall,

• (p, c)
t/(p,c)−→ A (t, 0) if (p, c) ∈ Q′ and t ∈ T ,

• (q, 0)
r/(p,c)−→ A (q′, 0) if q

r/(p,c)−→ A q′ and q
Q↔ Target(c),

• (q, c) a−→A (q,⊥) if q ∈ Q, c ∈ Σcall ∪ {⊥} and a ∈ Λint,

(q, c)
r/(p,c′)−→ A (p,⊥) if (q, c), (p, c′) ∈ Q′ with c 6= 0 or q

Q= Target(c′).

The idea of the translation is that each call transition on letter c is split into
a c transition that is now an internal transition, and a t transition that does
the push. It is straightforward to check that A is an eCDA for TargetA and Q↔A

defined by:

– for every t ∈ T , TargetA(t) = (t, 0);
– for every (p, c), (q, c′) ∈ Q′, (p, c) Q↔A (q, c′) iff p

Q↔A q.

To see that A recognizes Φ(L) we show that for every v ∈WM(Λ̂):

– if v = Φ(u) for some u ∈MR(Σ̂) then δ′(v) = (δ(u), 0),
– if v = Φ(u)c for some u ∈MR(Σ̂) and c ∈ Σcall then δ′(v) = (δ(u), c),
– otherwise δ′(v) is a sink.

Let B be the minimal eCDA recognizing Φ(L) (here we use Theorem 2). We
convert B to a Σ↔-SEVPA B recognizing L. To fix the notation suppose that
B = 〈Qb, Λ̂, qb

0, Γ
b, δb, Qb

F 〉 and that it comes with TargetB and Q↔B. Automaton
B will be obtained by changing just →B to →B as follows:

– q
c/γ−→B q′ if q

c−→B q′
t/γ−→B q′′, where t ∈ T is defined by t = Target(c);

– →B is the same as →B on Σint and Σret.

By definition B is a Σ↔-SEVPA when it comes with TargetB(c) = TargetB(Target(c))
and Q↔B. Here, transitions that had been split during the translation have been
collapsed back. Then the language recognized by B is obviously L. As in the proof
of Theorem 2, both B and B are the same no matter what A we start with, so
the size of B is bounded from above by |Σcall| × n, where n is the minimal size
of a Σ↔-SEVPA recognizing L. We are looking for an exact minimization, so we
suppose every inaccessible states of B have been removed in the end of the back
translation. Now, same considerations as in the proof Theorem 3 apply, and B
is the unique (up to isomorphism) minimal MEVPA recognizing L.

Again, the minimization of A into B and the accessibility test can be done
respectively in O(|A|3) time and O(|B|3). Thus both in O(|A|3). Other steps
of this algorithm can be done in linear time. So it is possible to construct B in
O(|A|3) time, where A is any CDA recognizing L.

14

5 Block Visibly Pushdown Automata

In the previous section we have observed that there is an exponential lower
bound for the translation from VPA to equivalent CDA. This motivates the
quest for a new subclass of VPA which admits good properties with respect to
minimization. Here we introduce the class of block visibly pushdown automata
(BVPA). One important property is that for every VPA there is an equivalent
BVPA of quadratic size. The idea of BVPA is that its states are divided in
equivalence classes of some Q↔ and only call transitions can change the classes.
But this time a call does not determine a class to which the automaton has to
go.

Definition 7 (Block Visibly Pushdown Automaton).
A VPA A = (Q, Σ̂, q0, Γ, δ,QF) is a Block Visibly Pushdown Automaton

(BVPA) if there is a function Target : Σcall × Q 7→ Q and an equivalence
relation Q↔ on Q such that:

– for all (q, c) ∈ Q×Σcall, q0
Q= Target(q, c)

– if q
i−→ q′ then q

Q↔ q′,

– if q
c/(q,c)−→ q′ then q′ = Target(q, c),

– if q
r/(q′,c)−→ q′′ then q′

Q↔ q′′.
– Target(q, c) Q↔ Target(q′, c′) then Target(q, c) = Target(q′, c′)

Theorem 5. Given a VPA of size n, there is an equivalent BVPA of size O(n2),
that can be computed in quadratic time.

Proof. Let A = 〈Q, Σ̂, q0, Γ, δ,QF 〉 be a VPA. The idea of the construction is
to make, for each q ∈ Q, a copy of A simulating the action of A after a call
transition pointing at q. In fact we only need to make a copy of A for each q ∈ Q
pointed at by a call transition. Let T denote the set of states of A pointed at by a
call transition, and T0 = T ∪{0}. We define the BVPA B = 〈Q′, Σ̂, q′0, Γ

′, δ′, Q′
F 〉

by:

– Q′ = {(q, t)|q ∈ Q, t ∈ T0},
– Γ ′ = Γ × T0, q′0 = (q0, 0), QF = {(q0, 0) : q ∈ QF },
– the transitions δ′ are defined as follows (here j ∈ T0)

• (p, t) i−→B (q, t) (where p
i−→A q);

• (p, t)
c/(γ,t)−→ B (q, q) (where p

c/γ−→A q);

• (p, t)
r/(γ,t′)−→ B (q, t′) (where t′ ∈ T0 and p

r/γ−→A q).

We define TargetB((q, t), c) = (t′, t′) where δ(q, c) = t′ and Q↔B by: (p, t) Q↔B

(q, t′) iff t = t′. Obviously, B is a BVPA. It is equivalent to A and is of size in
O(|A|2).

15

Due to Theorem 5, every VPA can be approached by a BVPA of quadratic
size. So approximative minimization of BVPA is as difficult as approximative
minimization of VPA. We propose here a weaker minimization in the same sense
as SEVPA minimization preserving Σ↔ relation (cf. Section 4.2). Here again,
our minimization will keep the structure of call transitions fixed. The automata
studied in this section are not call driven any more. So we need a new way
to characterize the structure of call transitions. Let A and B be two BVPA
recognizing the same language L. A and B will have the same structure if when
reading u ∈ L, the two automata pass through the “same” blocks simultaneously.

We use Pref (L) for the set of prefixes of a language L. Take a BVPA recogniz-
ing L: A = 〈Q, Σ̂, q0, Γ, δ,QF 〉 together with Target and Q↔. Let T be the range
of Target . The associated partition is the partition of KL = {uc|u ∈MR(Σ̂), c ∈
Σcall, uc ∈ Pref (L)} defined by:

for every t ∈ T , Kt = {uc|u ∈MR(Σ̂), c ∈ Σcall, δ0(uc) = t, uc ∈ Pref (L)}

Theorem 6. Given a consistent BVPA, in a cubic time it is possible to find
the unique (up to isomorphism) minimal equivalent BVPA of same associated
partition.

Remark 7. A Σ↔-SEVPA is a BVPA whose associated partition (Kt)t∈T verifies:
uc and u′c′ are in the same Kt iff c

Σ↔ c′. So the previous theorem gives a
minimization of Σ↔-SEVPA as a special case.

Proof. The proof generalizes that for SEVPA (cf. ??), but this time the function
Φ will not be a homomorphism. We fix a BVPA A = 〈Q, Σ̂, q0, Γ, δ,QF 〉 together
with Target and Q↔ recognizing L ⊆WM(Σ̂). Let T ⊆ Q be the range of Target .
We define the visibly pushdown alphabet Λ̂ by:

Λint = Σint ∪Σcall, Λcall = T, Λret = Σret

(where T is supposed to be disjoint from Σ). We take an application Φ that adds
to a word m, after each occurence of a call symbol c ∈ Σcall, the state reached
by A during the execution of m when reading this c. Formally:

Φ :

ε 7→ ε

ua 7→ Φ(u)a if a ∈ Σret ∪Σint

ua 7→ Φ(u)aδ(ua) if a ∈ Σcall

It is easy to verify that Φ(L) is a WM(Λ̂) language.
We now construct an eCDA A over Λ̂ recognizing Φ(L). When reading c we

need to remember this letter in the state, so for every q ∈ Q we will encode
each call c ∈ Σcall in a new state (q, c) and also add an associated sink (q,⊥).
For notational reasons, a state q ∈ Q will be renamed into (q, 0). The formal
construction of A = 〈Q′, Λ̂, q′0, Γ

′, δ′, Q′
F 〉 is as follows:

– Q′ = Q× (Σcall ∪ {0,⊥});

16

– Γ ′ = Q′, q′0 = (q0, 0) and Q′
F = {(q, 0)|q ∈ QF };

– the transitions δ′ are defined as follows:
• (p, 0) i−→A (q, 0) if p

i−→A q,
• (q, 0) c−→A (q, c), if q ∈ Q and c ∈ Σcall,

• s
t/s−→A (t, 0) if s ∈ Q′ and t ∈ T ,

• (q, 0)
r/(p,c)−→ A (q′, 0) if q

r/(p,c)−→ A q′ and q
Q↔ Target(p, c),

• (q, c) a−→A (q,⊥) if q ∈ Q, c ∈ Σcall ∪ {⊥} and a ∈ Λint,

(q, c)
r/(q′,c′)−→ A (q′,⊥) if (q, c), (q′, c′) ∈ Q′ with c 6= 0 or q

Q= Target(q′, c′).

It is straightforward to check that A is an eCDA when it comes with TargetA
and Q↔A defined by:

– for every t ∈ T , TargetA(t) = (t, 0);
– for every (p, c), (q, c′) ∈ Q′, (p, c) Q↔A (q, c′) iff p

Q↔A q.

It is also easy to prove by induction that for every v ∈WM(Λ̂):

– if there is u ∈MR(Σ̂) such that v = Φ(u) then δ′(v) = (δ(u), 0),
– if there is u ∈ MR(Σ̂) and c ∈ Σcall such that v = Φ(u)c then δ′(v) =

(δ(u), c),
– otherwise δ′(v) is a sink.

Hence, due to the definition of Q′
F the language recognized by the eCDA A

is Φ(L). Let B be the minimal eCDA recognizing Φ(L) (here we use Theorem 2).
During this minimization, states of A are merged into states of B. We remember
the function f that maps a state of A to the state of B into which it is merged.
Note that this is exactly the function f defined in the proof of Theorem 2 when
discussing unicity, and that f can effectively be computed (cf minimization algo-
rithm in [4]). We convert B to a BVPA B recognizing L and of same associated
partition as A. To fix the notation suppose that B = 〈Qb, Λ̂, qb

0, Γ
b, δb, Qb

F 〉 and
that it comes with TargetB and Q↔B. Automaton B will be obtained by changing
just →B to →B as follows:

– →B is the same as →B on Σint and Σret;
– Let s be in Qb, c be in Σcall. If there is some state q in A such that f((q, 0)) =

s, then choose such a q. Otherwise, as f is surjective there is some state (q, c′)
(c′ ∈ Σcall ∪ {0,⊥}) of A such that f((q, c′)) = s. Then choose such a q.
Define t = Target(q, c). Let then s′ and s′′ be the states of QB such that

s
c−→B s′

t/γ−→B s′′. Then:

s
c/γ−→B s′′.

Let TargetB(s, c) be the sate s′′ defined just above and Q↔B be identical to
Q↔B. Then B is obviously a BVPA. This time, the back translation is more com-
plicated. In order to collapse transitions that had been split during translation,
we have to choose a correct call transition in B. As A is not call driven, the call

17

read does not characterize the target state of a call transition. f allow us to find
a state q of A from which some state s of B comes from, and then deduce a
target for s such that B will have the same associated partition as A. Note that
the states q in the definition of →B are not uniquely determined, but this will
not matter anyway.

In the lemma 2 we will prove by induction that:{
∀u ∈ Pref (L), δB(u) = δB(Φ(u))
∀u /∈ Pref (L), u /∈ L(B)

Now it becomes obvious that the language recognized by B is L and that A
and B have the same associated partition. Eventually, the same considerations
about f as in the proof of Theorem 2 allow us to prove that B is the unique
minimal consistent BVPA of same partition as A and recognizing L. As usual,
it is possible to construct it in a cubic time.

Lemma 2. {
∀u ∈ Pref (L), δB(u) = δB(Φ(u))
∀u /∈ Pref (L), u /∈ L(B)

Proof. We proceed by induction on u. Let u be a word in Pref (L) such that
δB(u) = δB(Φ(u)), and c be in Σcall.

First, suppose uc is in Pref (L). There is a unique t ∈ T such that Φ(uc) =
Φ(u)ct ∈ Pref (L). Let q be the state of A such that δA(u) = q. Then δA(Φ(u)) =
(q, 0) and δB(Φ(u)) = f((q, 0)). Let s = f((q, 0)). If this q has been choosen to
define the c transition from s in B, then δB(uc) = δB(Φ(u)ct) = δB(Φ(uc)). But
if the state choosen was q′ such that, f((q′, 0)) = s = f((q, 0)). Then (q′, 0) and
(q, 0) have been collapsed during minimization, so for m ∈ Λ∗, w,w′ ∈WM(Λ̂)
such that δA(mw) = (q, 0) and δA = (q′, 0): for every v ∈ Λ∗, mwv ∈ Φ(L) iff
mw′v ∈ Φ(L). Hence Target(q′, c) has to be the sames as Target(q, c) and we
still have: δB(uc) = δB(Φ(u)ct) = δB(Φ(uc)).

Now, suppose uc is not in Pref (L). For every t ∈ T , Φ(u)ct /∈ Pref (Φ(L)). So
there is no v ∈ Λ∗ such that δB(Φ(uc)v) ∈ Qb

F . Hence, whatever the t choosen
in the definition of →B there is no v ∈ Σ∗ such that δB(ucv) ∈ L.

We are now able, given a BVPA, to find the minimal equivalent BVPA of same
associated partition. The question is how small this minimal BVPA can be. This
is a first step in minimization out of the class of CDA. But this is not sufficient,
as the example 3 shows that the blow-up between the minimal equivalent BVPA
and the minimal equivalent BVPA with respect to a given associated partition
can be exponential; which, again, is also an upper bound. Indeed, recall Lk is
the VPL Lk = a1cLa1 + · · · + akcLak

r over Σ̂ = ({c}, {r}, {a1, . . . , ak}), where
Lai
⊆ {a1, . . . , an}∗ is the set of words where the number of ai is even. Here

KLk
is {a1c, . . . , akc}. The minimal BVPA of associated partition the trivial one

(KLk
) is again of size bigger than 2k, and the example of figure 3 gives a BVPA

of associated partition ({a1c}, . . . , {akc}) recognizing Lk and of size in O(k2).

18

So the choice of the associated partition can induce an exponential blow-
up. Nevertheless, in the case of SEVPA, even with an optimal choice of the
equivalence relation Σ↔ over Σcall the minimal automata Σ↔-SEVPA constructed
can be exponentially bigger than an equivalent VPA, although the choice of an
optimal associated partition gives a BVPA in quadratic size of a minimal VPA.

6 Conclusions

Our results indicate that the class eCDA is the best if the call alphabet is small.
The class CDA is more interesting than SEVPA because it includes SEVPA and
moreover it permits a general minimization result without requiring to preserve
additional structure. Class MEVPA is still interesting, but: for getting canonical
machines eCDA is simpler, and for getting the smallest machines possible CDA
is better because it is strictly larger. The problem with all these classes is that
VPA are exponentially more succinct than CDA.

The above results can be compared with the situation for regular languages.
Deterministic automata are not the most succinct way of representing regular
languages. Nondeterministic automata or even two-pass deterministic automata
(which reads the input first from left to right and then from right to left) are
exponentially more succinct. Still, as no minimization, even approximative, is
known for other classes, deterministic automata are widely used.

The class of BVPA seems quite promising. Our results show that minimiza-
tion of VPA can be understood as fixing a partition of calls. At present we do
not know how to calculate a good partition. Still in some contexts it may be easy
to guess a partition that gives good results. Example 3 shows such a partition
that is simple but takes us outside CDA.

19

References

[1] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested
calls and returns. In “TACAS’04”, volume 2988, pages 467–481 (2004).

[2] R. Alur and P. Madhusudan. Visibly pushdown languages (2004).
[3] Rajeev Alur, Viraj Kumar, P. Madhusudan, and Mahesh

Viswanathan. Congruences for visibly pushdown languages. In “ICALP”,
pages 1102–1114 (2005).

[4] Rajeev Alur, Viraj Kumar, P. Madhusudan, and Mahesh
Viswanathan. Congruences for visibly pushdown languages. (UIUCDCS-
R-2005-2565) (2005).

[5] J. Berstel and L. Boasson. Balanced grammars and their languages.
In “Formal and Natural Computing: Essays Dedicated to Grzegorz Rozen-
berg”, volume 2300 of “LNCS”, pages 3–25 (2004).

[6] David Dill. Timing assumptions and verification of finite-state concurrent
systems. In “Wokshop on Automatic VerificationMethods for Finite State
Systems”, volume 407 of “LNCS”, pages 197–212 (1989).

[7] Viraj Kumar, P. Madhusdan, and Mahesh Viswanathan. Visibly
pushdown automata for streaming xml. In “Intl World Wide Web Confer-
ence (WWW)” (2007).

[8] Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Mini-
mization, learning, and conformance testing of boolean programs. In “CON-
CUR”, pages 203–217 (2006).

[9] C. Loding, P. Madhusudan, and O. Serre. Visibly pushdown games.
In “FSTTCS 04”, LNCS (2004).

[10] R. McNaughton. Parenthesis grammars. Journal of the ACM 14(3),
490–6500 (1967).

[11] Kurt Mehlhorn. Pebbling mountain ranges and its application of dcfl-
recognition. In Jacobus W. Bakker de and Jan van Leeuwen, editors,
“Automata, languages and programming (ICALP-80) : 7th annual interna-
tional colloquium”, volume 85 of “Lecture Notes in Computer Science”,
pages 422–435, Noordwijkerhout, The Netherlands (1980). Springer.

[12] Jean-Francis Michon and Jean-Marc Champarnaud. Automata and
binary decision diagrams. In “WIA ’98: Revised Papers from the Third In-
ternational Workshop on Automata Implementation”, pages 178–182, Lon-
don, UK (1999). Springer-Verlag.

[13] Andrzej Murawski and Igor Walukiewicz. Third-order idealized al-
gol with iteration is decidable. In “FOSSACS’05”, volume 3441 of “LNCS”,
pages 202–218 (2005).

[14] C. Pitcher. Visibly pushdown expression effects for xml streem processing.
In “Programming Language Techonologies for XML”, pages 1–14 (2005).

