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We give by simple arguments sufficient conditions, so called Lyapunov conditions, for Talagrand's transportation information inequality and for the logarithmic Sobolev inequality. Those sufficient conditions work even in the case where the Bakry-Emery curvature is not lower bounded. Several new examples are provided.

Introduction and main results.

Transportation cost information inequalities have been recently deeply studied, especially for their connection with the concentration of measure phenomenon, or for deviation inequalities for Markov processes (see [START_REF] Ledoux | The Concentration of Measure Phenomenon[END_REF][START_REF] Guillin | Transportation information inequalities for Markov processes[END_REF]). In particular, Talagrand [START_REF] Talagrand | Transportation cost for gaussian and other product measures[END_REF] establishes the so-called T 2 inequality (or Talagrand's transportation inequality, or W 2 H inequality) for the Gaussian measure, establishing thus Gaussian dimension free concentration of measure. But before going further in the numerous results around these inequalities, let us present the object under study. Given a metric space (E, d) equipped with its Borel σ field, and 1 ≤ p < +∞, the L p Wasserstein distance between two probability measures µ and ν on E is defined as (1.1) W p (µ, ν) := inf π E×E d p (x, y) π(dx, dy)

1/p
where the infimum runs over all coupling π of (µ, ν), see Villani [START_REF] Villani | Topics in Optimal Transportation[END_REF] for an extensive study of such quantities.

A probability measure µ is then said to satisfy the transportation-entropy inequality W p H(C), where C > 0 is some constant, if for all probability measure ν where H(ν|µ) is the Kullback-Leibler information, or relative entropy, of ν with respect to µ:

(1.3) H(ν|µ) := log dν dµ dν if ν ≪ µ +∞ otherwise.

Marton [START_REF] Marton | Bounding d-distance by informational divergence: a way to prove measure concentration[END_REF] has first shown how W 1 H inequality implies Gaussian concentration of measure and Talagrand, via a tensorization argument, established that the standard Gaussian measure, in any dimension, satisfies W 2 H(C) with the sharp constant C = 1. However, if W 1 H is completely characterized via a practical Gaussian integrability criterion (see [START_REF] Djellout | Transportation cost-information inequalities for random dynamical systems and diffusions[END_REF][START_REF] Bolley | Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities[END_REF]), W 2 H is much more difficult to describe. Nevertheless several equivalent beautiful conditions are known.

Theorem 1.4. The following conditions are equivalent

(1) µ satisfies W 2 H(C) for some constant C > 0.

(2) For any bounded and measurable function f with µ(f ) = 0, defining the inf-convolution (3) There exist a, r 0 , b such that for all n all measurable A ⊂ E n , with µ ⊗n (A) ≥ 1/2, the probability measure µ ⊗n satisfies (1.6) µ ⊗n (A r ) ≥ 1 -b e -a(r-r 0 ) 2 where A r = {x ∈ E n ; ∃y ∈ A, n 1 d 2 (x i , y i ) ≤ r 2 }. (1) ⇔ (2) was proved in the seminal paper by Bobkov-Götze [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF], and (1) ⇔ (3) very recently by Gozlan [START_REF] Gozlan | A characterization of dimension free concentration and transportation inequalities[END_REF]. Hence we have the beautiful characterization, W 2 H is nothing else than a dimension free Gaussian concentration for the product measure. Note also that Gozlan-Léonard [START_REF] Gozlan | A large deviation approach to some transportation cost inequalities[END_REF] established another criterion as a large deviation upper bound. One point is however important to remark: if these various characterizations have nice implications (concentration, deviation,...), it is rather difficult to directly use them to prove a W 2 H inequality. The first step towards practical criterion was done by Otto-Villani [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF], soon followed by Bobkov-Gentil-Ledoux [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF], who established that if µ satisfies a logarithmic Sobolev inequality, then µ satisfies W 2 H (note that many explicit sufficient conditions for log-Sobolev inequalities are now known). To be more precise, let us present our framework. Throughout this paper E is a complete and connected Riemannian manifold of finite dimension, d the geodesic distance, and dx the volume measure. µ(dx) = e -V (x) dx/Z is the Boltzmann measure with V ∈ C 2 and Z = e -V dx < +∞. If the logarithmic Sobolev inequality LSI(C) is verified, i.e. for all locally lispchitz g

Qf (x) = inf
(1.7) Ent µ (g 2 ) := g 2 log g 2 g 2 dµ dµ ≤ 2C |∇g| 2 dµ
then µ satisfies also W 2 H(C). The proof of Otto-Villani [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] relies on a dynamical approach, namely to derive the Wasserstein distance between ν t and ν t+s when ν t is the dynamical transport leading from ν to µ, whereas Bobkov-Gentil-Ledoux [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF] apply the hypercontractivity of the Hamilton semigroup, leading to an Herbst's like argument to derive W 2 H. It is only a few years ago that the two first authors [START_REF] Cattiaux | On quadratic transportation cost inequalities[END_REF] succeeded in proving that W 2 H is strictly weaker than LSI, providing an example in one dimension of a measure (with unbounded curvature) satisfying W 2 H but not LSI. Their method is a refinement of the argument of Bobkov-Gentil-Ledoux [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF]: indeed, a full LSI is too strong to give W 2 H, a LSI for a restricted class of functions is sufficient. They were however only able to give an explicit sufficient condition in dimension one for this restricted inequality. We will give here a Lyapunov condition ensuring that this restricted logarithmic Sobolev inequality holds, and thus W 2 H too. We will also show that if the Bakry-Emery curvature Ric + Hess V is lower bounded then the same condition implies LSI.

Consider the µ-symmetric operator L = ∆ -∇V.∇ on E. A Lyapunov condition is of the form: there exists W ≥ 1 and r, b > 0 such that for some positive function φ

(1.8) LW ≤ -φW + b1I B(x 0 ,r) .
Such Lyapunov conditions have been used a lot both in discrete and continuous time case to study the speed of convergence towards the invariant measure of the associated semigroup under various norms, see [START_REF] Meyn | Markov chains and stochastic stability[END_REF][START_REF] Down | Exponential and uniform ergodicity of Markov processes[END_REF][START_REF] Douc | Subgeometric rates of convergence of f -ergodic strong Markov processes[END_REF]. The deep connection between such conditions and various form of functional inequalities have been recently studied by the authors (and coauthors). For example, if φ is constant, it is shown in [START_REF] Barthe | A simple proof of the Poincaré inequality for a large class of measures including the logconcave case[END_REF] that the Lyapunov condition implies both a Poincaré inequality and a Cheeger inequality (with some slight additional assumptions on W ). If φ := φ(W ) and φ is sub-linear then optimal weak Poincaré or isoperimetric inequalities can be established, see [START_REF] Bakry | Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré[END_REF][START_REF] Cattiaux | Functional inequalities for heavy tails distributions and application to isoperimetry Available on Math[END_REF]. Finally if φ := φ(W ) is super-linear, then it is shown to imply super Poincaré inequalities [START_REF] Cattiaux | Lyapunov conditions for logarithmic Sobolev and super Poincaré inequality[END_REF], and thus various F -Sobolev inequalities including logarithmic Sobolev inequalities. Their implications in transportation cost inequalities were up to now not explored. It is the purpose of this short note.

Here is our main result:

Theorem 1.9. Let µ be a Boltzmann measure. 1) Suppose that there exists a C 2 -function W : E → [1, ∞[, some point x 0 and constants b, c > 0 such that

(1.10) LW ≤ (-cd 2 (x, x 0 ) + b) W, x ∈ E
or more generally there exists some nonnegative locally Lipschitzian function U (= log W ) such that in the distribution sense (see the remark below),

(1.11) LU + |∇U | 2 ≤ -cd 2 (x, x 0 ) + b then W 2 H(C) holds for some constant C > 0.
2) Under the Lyapunov condition (1.10), suppose moreover that Hess(V ) + Ric ≥ KId for some K ≤ 0 (in the sense of matrix). Then the logarithmic Sobolev inequality (1.7) holds.

Remark 1.12.

(1) In both cases, it is of course possible to track all the constants involved to get an upper bound of the constant of W 2 H(C) inequality and of the logarithmic Sobolev inequality, as will be seen from the proof. One will also remark that contrary to [START_REF] Bakry | Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré[END_REF][START_REF] Cattiaux | Functional inequalities for heavy tails distributions and application to isoperimetry Available on Math[END_REF][START_REF] Cattiaux | Lyapunov conditions for logarithmic Sobolev and super Poincaré inequality[END_REF], we will not use localization technique, constants are thus easier to derive.

(2) If U = log W ∈ C 2 , then LU + |∇U | 2 = -LW/W so that (1.10) and (1.11) are equivalent. The condition (1.11) in the distribution sense means that for any h ∈ C ∞ 0 (E) (the space of infinitely differentiable functions with compact support) such that h ≥ 0,

(LU + |∇U | 2 )hdx := U ∆hdx + -∇V • ∇U + |∇U | 2 hdx ≤ (-cd 2 (x, x 0 ) + b)hdµ.
(3) The Lyapunov condition (1.10) implies that there exists r 0 > 0 and b ′ , λ > 0, such that LW ≤ -λW + b ′ 1I B(x 0 ,r 0 ) so that, by [START_REF] Barthe | A simple proof of the Poincaré inequality for a large class of measures including the logconcave case[END_REF], µ satisfies a Poincaré inequality. This paper is organized as follows. In the next section we present several corollaries and examples for showing the usefulness and sharpness of the Lyapunov condition (1.11). The very simple proof of Theorem 1.9 is given in Section 3. And in the last section we combine the above-tangent lemma and the Lyapunov function method to yield the LSI in the unbounded curvature case.

Corollaries and examples

Some practical conditions. From Theorem 1.9, one easily deduces Corollary 2.1. Suppose that µ is a Boltzmann measure on E = R d . Let x•y and |x| = √ x • x be the Euclidean inner product and norm, respectively. 1) If one of the following conditions

(2.2) ∃a < 1, R, c > 0, such that if |x| > R, (1 -a)|∇V | 2 -∆V ≥ c |x| 2 or (2.3) ∃R, c > 0, such that ∀|x| > R, x • ∇V (x) ≥ c |x| 2 is satisfied, then W 2 H holds.
2) Under the same conditions, suppose moreover that Hess(V ) ≥ KId then a logarithmic Sobolev inequality (LSI in short) holds.

Proof. Under (2.2), one takes W = e aV ; and under (2.3) one choose W = e a|x| 2 with 0 < a < c/2. One sees that condition (1.10) is satisfied in both case. 

∂V ∂x i 2 - ∂ 2 V ∂x 2 i 1 1 + x 2 i ≥ c
for some positive c, using weighted Poincaré inequality. Note that this condition is in general not comparable to ours, for the terms in the sum can be negative, and also for we have more freedom with the choice of a (limited to 3/4 in Gozlan's method). Whether this condition can be retrieved from a right choice of W in (1.10) seems unlikely. We will however simply show how to retrieve (and generalize) Gozlan's like conditions in the last section.

(3) Condition (2.3) may also be compared with condition (1.7) in [START_REF] Barthe | A simple proof of the Poincaré inequality for a large class of measures including the logconcave case[END_REF]:

x • ∇V (x) ≥ c d(x, x 0 ) which implies Poincaré inequality.
Comparison with Wang's criterion. Wang's criterion for LSI says the following: if

Hess V + Ric ≥ KId with K ≤ 0 and e (|K|/2+ε)d 2 (x,x 0 ) dµ(x) < +∞,
then µ = e -V dx/C satisfies the LSI. We give now an example for which the previous criterion does not apply, but ours does.

Example 2.5.

Let E = R 2 and V (x, y) = r 2 g(θ) for all r := x 2 + y 2 ≥ 1 (and V ∈ C ∞ (R 2 ))
, where (r, θ) is the polar coordinates system and g(θ

) = 2 + sin(kθ) (k ∈ N * ) for all θ ∈ S 1 ≡ [0, 2π]. We have for r > 1, (x, y) • ∇V (x, y) = r∂ r V = 2r 2 g(θ) ≥ 2r 2
i.e., the condition (2.3) is satisfied. Moreover Hess V is bounded. Thus by Corollary 2.1, µ = e -V dxdy/C satisfies the LSI. However Wang's integrability condition is not satisfied for large k. Indeed ∆V = 4g(θ) + g ′′ (θ) = 8 + (4 -k 2 ) sin θ, then the smallest eigenvalue λ min of Hess V satisfies

λ min ≤ 1 2 tr(Hess V ) = 1 2 ∆V = 4 + (2 -k 2 /2) sin(kθ).
Then the largest constant K so that Hess V ≥ KId in the case k ≥ 2 satisfies

K ≤ 6 -k 2 /2.
When k ≥ 4, K/2 ≤ 3 -k 2 /4 ≤ -1 and Wang's integrability condition is not satisfied for e r 2 dµ = +∞. In other words Wang's criteria does not apply for this example once k ≥ 4.

Riemannian manifold with unbounded curvature. Let E be a d-dimensional (d ≥ 2) connected complete Riemannian manifold with

(2.6) Ric x ≥ -(c + σ 2 d 2 (x, x 0 )), x ∈ E
for some constants c, σ > 0, where x 0 is some fixed point

x 0 . Let V ∈ C 2 (E) such that (2.7) ∇d(x, x 0 ), ∇V ≥ δd(x, x 0 ) -k outside of cut(x 0 ) for some constants δ, k > 0.
Here cut(x 0 ) denotes the the cut-locus of x 0 .

Corollary 2.8. Assume (2.6) and (2.7

). If δ > σ √ d -1, then µ = e -V dx/C satisfies W 2 H(C).
Remark 2.9. Assume that Hess V ≥ δ. Pick some x / ∈ cut(x 0 ), and denote by U the unit tangent vector along the minimal geodesic (x s ) 0≤s≤d(x,x 0 ) from x 0 to x, we have

∇d(x, x 0 ), ∇V = ∇V, U (x 0 ) + d(x,x 0 ) 0 Hess V (U, U )(x s )ds ≥ δd(x, x 0 ) -c 1 . So condition (2.7) holds. Furthermore if Hess V ≥ δ > (1 + √ 2)σ √ d -1, Wang [33] proves the LSI for µ. When σ √ d -1 < δ ≤ (1 + √ 2)σ √ d -1
, the LSI is actually unknown. Also see [START_REF] Arnaudon | Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below[END_REF] for the Harnack type inequality on this type of manifold. One main feature of our condition (2.7) is: it demands only on the radial derivative of V , NOT on Hess V .

Proof. At first we borrow the proof of [START_REF] Wang | Logarithmic Sobolev inequalities: different roles of Ric and Hess[END_REF]Lemma 2.1] for controlling ∆ρ where ρ(x) = d(x, x 0 ). By (2.6) and the Laplacian comparison theorem, we have for

x / ∈ cut(x 0 ) different from x 0 ∆ρ ≤ (c + σ 2 ρ 2 )(d -1) coth ρ (c + σ 2 ρ 2 )/(d -1) .
Then outside of cut(x 0 ) we get

∆ρ 2 = 2ρ∆ρ + 2 ≤ 2ρ (c + σ 2 ρ 2 )(d -1) coth ρ (c + σ 2 ρ 2 )/(d -1) + 2 ≤ 2d + 2ρ (c + σ 2 ρ 2 )(d -1)
where the last inequality follows by r cosh r ≤ (1 + r) sinh r (r ≥ 0). It is well known that ∆ρ in the distribution sense gives a non-positive measure on cut(x 0 ), the above inequality holds in the distribution sense over E. Hence under the condition that δ > σ

√ d -1, for U = λρ 2 where 0 < λ < 1 2 (δ -σ √ d -1), we have in the sense of distribution LU + |∇U | 2 ≤ 2λ[2d + 2ρ (c + σ 2 ρ 2 )(d -1)] -2λρ ∇ρ, ∇V + 4λ 2 ρ 2 ≤ -cρ 2 + b
for some positive constants b, c, i.e. condition (1.11) is satisfied. So the W 2 H inequality follows by Theorem 1.9(1).

Our condition "δ > σ √ d -1" for W 2 H is sharp as shown by the following example taken from [START_REF] Wang | Logarithmic Sobolev inequalities: different roles of Ric and Hess[END_REF].

Example 2.10. Let E = R 2 be equipped with the following Riemannian metric

ds 2 = dr 2 + (re kr 2 )dθ 2 under the polar coordinates (r, θ), where k > 0 is constant. Then Ric (r,θ) = -4k -4k 2 r 2 . Then (2.6) holds with σ = 2k. Let V := δ 2 r 2 , which satisfies (2.7). If δ > σ √ d -1 = 2k, we have W 2 H. But if δ ≤ σ √ d -1 = 2k, e -V dx = re kr 2 -δr 2 /2 drdθ is infinite measure, so that W 2 H does not hold.
3. Proof of Theorem 1.9 3.1. Several lemmas. As was recalled in a previous remark, we may assume without loss of generality that µ verifies a Poincaré inequality with constant C P , i.e. g 2 dµ ≤ C P |∇g| 2 dµ for all smooth g with µ(g) = 0. We begin with the following Lemma 3.1. ([13, Theorem 1.13]) If µ satisfies the Poincaré inequality with constant C P , then for all smooth and bounded g,

(3.2) Ent µ (g 2 ) ≤ 2C P 2 log 2 + 1 2 log g 2 ∞ µ(g 2 ) |∇g| 2 dµ.
Conversely, if the preceding restricted logarithmic Sobolev is true then µ satisfies a Poincaré inequality with constant 4C P log 2.

Lemma 3.3. Assume that the following restricted logarithmic Sobolev inequality holds: there exist constants η, C η > 0 such that

Ent µ (g 2 ) ≤ 2C η |∇g| 2 dµ
for all smooth and bounded functions g satisfying

(3.4) g 2 ≤ g 2 dµ e 2η(d 2 (x,x 0 )+ d 2 (y,x 0 )dµ(y)) .
Then

µ satisfies W 2 H(C) with C = max{C η ; (2η) -1 }.
Proof. We recall the (short and simple) proof from [13, Theorem 1.17].

Given a fixed bounded f with µ(f ) = 0 consider for any λ ∈ R, g 2 λ := e ηQ(λf ) where η := min{1/(2C η ); η} ∈ (0, η]. By the definition of Q we easily get

Q(λf )(x) ≤ (λf (y) + d 2 (x, y))dµ(y) ≤ 2d 2 (x, x 0 ) + 2 d 2 (y, x 0 )µ(dy). Let G(λ) = µ(g 2 λ )
. By Bobkov-Goetze's criterion (Theorem 1.4(2)), if G(1) ≤ 1 (for all such f ), then W 2 H(C) holds with C = 1/(2η) = max{C η ; (2η) -1 }. Assume by absurd that G(1) > 1. Introduce λ 0 = inf{λ ∈ [0, 1]; G(u) > 1, ∀u ≥ λ}, and remark that λ 0 < 1, G(λ 0 ) = 1 as well as G(0) = 1 and that G(λ) > 1 as soon as λ ∈]λ 0 , 1]. Note at first that if G(λ) ≥ 1 then

g 2
λ ≤ e 2η(d 2 (x,x 0 )+ d 2 (x,x 0 )dµ(x)) ≤ G(λ)e 2η(d 2 (x,x 0 )+ d 2 (x,x 0 )dµ(x)) i.e., g λ satisfies condition (3.4). Since Q t f (x) := inf y∈E (f (y) + 1 2t d 2 (x, y)) is the Hopf-Lax solution of the Hamilton-Jacobi equation:

∂ t Q t f + 1 2 |∇Q t f | 2 = 0 ([7]) and Q(λf ) = λQ λ/2 f , we have λG ′ (λ) = g 2 λ log g 2 λ dµ - 1 η |∇g λ | 2 dµ.
Since η = min{1/(2C η ); η}, the restricted logarithmic Sobolev inequality in Lemma 3.3 yields

for λ ∈]λ 0 , 1] λG ′ (λ) ≤ G(λ) log G(λ) which is nothing else than the differential inequality (λ -1 log G(λ)) ′ ≤ 0. That implies that λ -1 log G(λ) is nonincreasing so that log G(1) ≤ log(G(λ 0 )) λ 0
(taken as limit lim λ→0 log(G(λ)) λ = 0 if λ 0 = 0). It readily implies that G(1) ≤ 1 which is the Bobkov-Goetze's condition.

Remark 3.5. The fact that the restricted logarithmic Sobolev inequality implies W 2 H inequality was proven in [13, Th. 1.17]. In addition a Hardy criterion for this inequality on the real line is given in [START_REF] Cattiaux | On quadratic transportation cost inequalities[END_REF]Prop. 5.5].

Let (E, D(E)) be the Dirichlet form associated with

L in L 2 (µ). It is the closure of E(f, g) = -Lf, g L 2 (µ) = ∇f • ∇gdµ, f, g ∈ C ∞
0 (E) by the essential self-adjointness of (L, C ∞ 0 (E)). Lemma 3.6. Let U be a nonnegative locally Lipschitzian function such that LU +|∇U | 2 ≤ -φ in the distribution sense, where φ is lower bounded, then for any g ∈ D(E),

(3.7) φg 2 dµ ≤ E(g, g).
Proof. As φ ∧ N satisfies also the condition, if (3.7) is true with φ ∧ N , then it is true with φ by letting N → +∞. In other words we can and will assume that φ is bounded. One can approach any g ∈ D(E) by (

g n ) ⊂ C ∞ 0 (E) : (g n -g) 2 dµ + E(g n -g, g n -g) → 0. Thus is enough to prove (3.7) for g ∈ C ∞ 0 (E). For g ∈ C ∞ 0 (E), we have (-LU )g 2 dµ = U (-Lg 2 )dµ = ∇U • ∇(g 2 )dµ
where the first equality comes from the definition of the distribution -LU and a direct calculus, the second one is true at first for U ∈ C ∞ 0 (E) and is extended at first to any Lipschitzian U with compact support, then to any locally Lipschitzian U . Thus using 2g∇U • ∇g ≤ |∇U | 2 g 2 + |∇g| 2 , we get

φg 2 dµ ≤ (-LU -|∇U | 2 )g 2 dµ = 2g∇U • ∇g -|∇U | 2 g 2 dµ ≤ |∇g| 2 dµ
which is the desired result.

We also require the consequence below of the Lyapunov condition (1.11).

Lemma 3.8. If the Lyapunov condition (1.11) holds, then there exist δ > 0, x 0 ∈ E such that (3.9) e δd 2 (x,x 0 ) dµ < ∞.

Proof. Under the condition (1.11), L satisfies a spectral gap property in L 2 (µ) and then by [START_REF] Guillin | Transportation information inequalities for Markov processes[END_REF], the following W 1 I-inequality holds:

W 2 1 (ν, µ) ≤ 4C 2 I(ν|µ), ∀ν ∈ M 1 (E) where (3.10) I(ν|µ) := E( √ h, √ h), if ν = hµ, √ h ∈ D(E) +∞, otherwise
is the so called Fisher information. By [START_REF] Guillin | Transportation information inequalities for Markov processes (II)[END_REF], the above W 1 I-inequality is stronger than W 1 H(C), which is equivalent to the gaussian integrability (3.9).

It would be interesting to find a simple or direct argument leading to (3.9).

3.2.

Proof of Theorem 1.9(1). Choose η > 0 such that η < min(1, δ/2) where δ comes from the gaussian integrability condition (3.9) which holds by Lemma 3.8. We have only to prove the restricted LSI in Lemma 3.3 under the Lyapunov condition (1.10).

To simplify the notation, define M = e 2η d 2 (x,x 0 )dµ(x) . Let h = g 2 be positive and smooth with µ(h) = 1 and h ≤ M e 2ηd 2 (x,x 0 ) . By Lemma 3.8 and our choice of η, h log hdµ is bounded by some constant, say c(η, µ). Take K > e, to be chosen later. We have (3.11)

h log hdµ = h≤K h log hdµ + h>K h log hdµ ≤ (h ∧ K) log(h ∧ K)dµ + (log M ) h>K hdµ + 2η h>K hd 2 (x, x 0 )dµ.
As h≤K h log hdµ ≥ h≤K (h -1)dµ ≥ -h>K hdµ, we have

h log hdµ ≥ h>K h log hdµ - h>K hdµ.
It yields

h>K hdµ ≤ 1 log K h>K h log hdµ ≤ 1 log K h log hdµ + h>K hdµ so that (3.12) h>K hdµ ≤ 1 log K -1 h log hdµ ≤ c(η, µ) log K -1 .
(3.12) furnishes an immediate useful bound for the second term in the right hand side of (3.11). Indeed, if 3 log

M ≤ log K -1 then log M h>K hdµ ≤ 1 3 h log hdµ.
Remark also that for K > e

1 ≥ h ∧ Kdµ ≥ 1 - c(η, µ) log K -1
so that for K large enough (independent of h), h ∧ Kdµ ≥ 1/2 and thus by Lemma 3.1

(h ∧ K) log(h ∧ K)dµ ≤ (h ∧ K) log h ∧ K h ∧ Kdµ dµ ≤ C P (2 log 2 + 1 2 log(2K)) |∇ √ h| 2 dµ.
We then only have to bound the last term in (3.11). Unfortunately, we cannot directly apply the Lyapunov condition due to a lack of regularity of h1I h>K . So we first regularize this function. To this end, introduce the map ψ with

ψ(u) =      0 if 0 ≤ u ≤ K/2 √ 2 √ 2-1 (u -K/2) if K/2 ≤ u ≤ √ K u if √ K ≤ u.

Now using Lyapunov condition (1.11) and Lemma 3.6 (applicable for ψ(

√ h) = ψ(g) is locally Lipschitzian), we have 2η h>K hd 2 (x, x 0 )dµ ≤ 2η ψ 2 ( √ h)d 2 (x, x 0 )dµ ≤ 2η c ψ 2 ( √ h)[cd 2 (x, x 0 ) -b]dµ + 2ηb c ψ 2 ( √ h)dµ ≤ 2η c |∇ψ( √ h)| 2 dµ + 2ηb c ψ 2 ( √ h)dµ ≤ 4η c( √ 2 -1) 2 |∇ √ h| 2 dµ + 2ηb c ψ 2 ( √ h)dµ.
As ψ 2 ( √ h) ≤ h1 h>K/2 , the lat term above can be bounded by (1/3) h log hdµ if K is large enough so that 2ηbc -1 ≤ (log(K/2) -1)/3, by (3.12). Plugging all those estimates into (3.11), we obtain the desired restricted LSI.

3.3.

Proof of Theorem 1.9(2). Our argument will be a combination of the Lyapunov condition, leading to defective W 2 I inequality and the HWI inequality of Otto-Villani. We begin with the following fact ([31, Proposition 7.10]):

(3.13) W 2 2 (ν, µ) ≤ 2 d(•, x 0 ) 2 (ν -µ) T V
. Now for every function g with |g| ≤ φ(x) := cd(x, x 0 ) 2 , we have by (1.11) and Lemma 3.6,

gd(ν -µ) ≤ ν(φ) + µ(φ) ≤ -cd 2 (x, x 0 ) + b dν(x) + µ(φ) ≤ I(ν|µ) + b + µ(φ)
Taking the supremum over all such g, we get

c 2 W 2 2 (ν, µ) ≤ c d(•, x 0 ) 2 (ν -µ) T V ≤ I(ν|µ) + b + µ(φ), which yields thanks to (3.13) W 2 2 (ν, µ) ≤ 2 c I(ν|µ) + 2 c [b + µ(φ)].
Substituting it into the HWI inequality of Otto-Villani [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] (or for its Riemannian version by Bobkov-Gentil-Ledoux [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF]):

(3.14) H(ν|µ) ≤ 2 I(ν|µ)W 2 (ν, µ) - K 2 W 2 2 (ν, µ),
and using 2ab ≤ εa 2 + 1 ε b 2 we finally get

(3.15) H(ν|µ) ≤ εI(ν|µ) + 1 - K 2 + 1 ε W 2 (ν, µ) 2 ≤ AI(ν|µ) + B where A = (1 - K 2 ) 2 c + ε, B = 2 c [b + µ(φ)] 1 - K 2 + 1 ε .
This inequality is sometimes called a defective log-Sobolev inequality. But it is well known by Rothaus' lemma, that a defective log-Sobolev inequality together with the spectral gap implies the (tight) log-Sobolev inequality

H(ν|µ) ≤ [A + (B + 2)C P )]I(ν|µ).
The proof is completed.

Remark 3.16. If for any c > 0, there are U, b such that the Lyap condition (1.11) holds, then the defective LSI (3.15) becomes the so called super-LSI, which is equivalent to the supercontractivity of the semigroup (P t ) generated by L, i.e., P t L p →L q < +∞ for any t > 0, q > p > 1.

4. Some further remarks Proof. As in the proof recalled in Corollary 2.8, for ρ = d(x, x 0 ), by the Laplacian comparison theorem, there is some constant c 1 > 0 such that

∆ρ 2 ≤ c 1 (1 + ρ) + 2ρ α(ρ)
at first outside of cut(x 0 ) then in distribution over E. Consequently by condition (4.2) there are positive constants c 2 < 2η, c 3 such that

Lρ 2 = ∆ρ 2 -2ρ ∇ρ, ∇V ≤ c 1 (1 + ρ) + 2ρ( α(ρ) -β(ρ) + b) ≤ -c 2 ρ 2 + c 3 .
Now for U = λρ 2 , it satisfies (1.11) when λ > 0 is small enough. Then the W 2 H follows by Theorem 1.9.

4.2. LSI in the unbounded curvature case. We now generalize the LSI in Theorem 1.9 in the case where Bakry-Emery's curvature is not lower bounded, by means of the above-tangent lemma.

Proposition 4.3. Assume that

(4.4) Ric x + Hess V ≥ -Φ(d(x, x 0 ))
where Φ is some positive non-decreasing continuous function on R + , and there is some nonnegative locally Lipschitzian function U such that for some constants b, c > 0

(4.5) LU + |∇U | 2 ≤ -cd 2 (x, x 0 )Φ(2d(x, x 0 )) + b
in distribution, then µ satisfies the LSI.

Proof. Instead of the HWI in the proof of the LSI in Theorem 1.9, we go back to the abovetangent lemma (see [START_REF] Barthe | Mass transport and variants of the logarithmic Sobolev inequality[END_REF]Theorem 7.1] and references therein) : for two probability measures ν = hµ, ν = hµ with smooth and compactly supported densities h, h, let T (x) := exp x (∇θ) (where θ is some "convex" function) be the optimal transport pushing forward ν to ν and realizing W 2 2 (ν, ν). Then

(4.6) Ent µ (h) ≤ Ent µ ( h) - ∇θ, ∇h dµ + D V (x, T (x))hdµ
where D V (x, T (x)) is the defect of the convexity of V , defined by

D V (x, T (x)) = - 1 0 (1 -t) Ric γ(t) + Hess V,γ(t) ( γ(t), γ(t))dt.
Here γ(t) = exp x (t∇θ) is the geodesic joining x to T (x).

Choose a sequence of µ-probability measures µ n := h n µ with h n ∈ C ∞ 0 (E), such that W 2 (µ n , µ) → 0 and I(µ n |µ) → 0 (recalling that the condition (4.5), stronger than (1.11), implies the Gaussian integrability of µ by Lemma 3.8). Below we apply the above-tangent lemma to (ν, ν = µ n ) The first term on the right hand of (4.6) is easy to control by Cauchy-Schwarz:

| ∇θ, ∇h dµ| = | 2 √ h ∇θ, ∇ √ h dµ| ≤ 2 |∇θ| 2 hdµ |∇ √ h| 2 dµ = 2W 2 (ν, µ n ) I(ν|µ).
Now we treat the last term in (4.6). By our condition,

D V (x, T (x)) ≤ 1 0
(1 -t)Φ(d(γ(t), x 0 ))|∇θ| 2 dt.

Note that |∇θ| = d(x, T (x)) ≤ 2 max{d(x, x 0 ), d(T (x), x 0 )} and using d(γ(t), x 0 ) ≤ d(x, x 0 )+ td(x, T (x)) for t ∈ [0, 1/2] and d(γ(t), x 0 ) ≤ d(T (x), x 0 ) + (1 -t)d(x, T (x)) for t ∈ [1/2, 1], d(γ(t), x 0 ) ≤ 2 max{d(x, x 0 ), d(T (x), x 0 )}. We thus obtain

D V (x, T (x))hdµ ≤ 2 Φ(2 max{d(x, x 0 ), d(T (x), x 0 )}) max{d(x, x 0 ) 2 , d(T (x), x 0 ) 2 }hdµ ≤ 2 Φ(2d(x, x 0 ))d(x, x 0 ) 2 hdµ + Φ(2d(T (x), x 0 ))d(T (x), x 0 ) 2 hdµ
By Lemma 3.6 and our condition (4.5),

c Φ(2d(x, x 0 ))d(x, x 0 ) 2 hdµ ≤ b + I(ν|µ) c Φ(2d(T (x), x 0 ))d(T (x), x 0 ) 2 hdµ ≤ b + I(µ n |µ)
Plugging those estimates into (4.6) and letting n → ∞, we get finally

H(ν|µ) ≤ 2W 2 (ν, µ) I(ν|µ) + 1 c (I(ν|µ) + 2b)
Again using Lemma 3.6 and our condition (4.5), we have

W 2 2 (ν, µ) ≤ 2 d 2 (x, x 0 )dµ + d 2 (x, x 0 )dµ ≤ 2 cΦ(0) (I(ν|µ) + 2b).
Consequently we obtain the defective LSI: where the LSI follows for the spectral gap exists under (4.5).

Remark 4.8. Under (4.4), if for any c > 0 there are U, b such that the Lyapunov function condition (4.5) holds, the defective LSI (4.7) says that for any ε > 0, there is some constant B(ε) such that H(ν|µ) ≤ εI(ν|µ) + B(ε), ν ∈ M 1 (E) which is well known to be equivalent to the supercontractivity of the semigroup (P t ) generated by L, i.e., P t L p →L q < +∞ for any t > 0, q > p > 1.

Remark 4.9. Barthe and Kolesnikov [START_REF] Barthe | Mass transport and variants of the logarithmic Sobolev inequality[END_REF] used the above-tangent lemma to derive modified LSI and isoperimetric inequalities. One aspect of their method consists in controlling the defective term D V (x, T (x))hdµ by cEnt µ (h) + b for some positive constant c < 1, by using some integrability condition on µ (as in Wang's criterion). Our method is to bound that defective term by cI(ν|µ) + b, by means of the Lyapunov function: the advantage here is that constant c > 0 can be arbitrary. Assume k > √ 3p. Then in the direction θ such that sin(kθ) = 1, Hess V ≤ -1 2 (k 2 -3p 2 )r p-2 , i.e., the Bakry-Emery curvature is very negative and no known result exists in such case. It is easy to see that condition (4.4) is verified with Φ(r) = ar p-2 for some a > 0. Taking U = r 2 , we see that LU + |∇U | 2 = 4 -2pr p (2 + sin(kθ)) + 4r 2 i.e., condition (4.5) is satisfied. We get thus the LSI for µ by Proposition 4.3.

4.3.

A Lyapunov condition for Gozlan's weighted Poincaré inequality. As mentionned before, in a recent work, Gozlan [START_REF] Gozlan | Poincaré inequalities for non euclidean metrics and transportation cost inequalities on R d[END_REF] 

proved that W 2 H inequality on E = R d is implied by a weighted Poincaré inequality Var µ (f ) ≤ c d 1 1 1 + x 2 i ∂f ∂x i 2 dµ.
In dimension one, a Hardy criterion is available for this weighted Poincaré inequality which is not the same as the one from [START_REF] Cattiaux | On quadratic transportation cost inequalities[END_REF]. Note however that this weighted Poincaré inequality, as stronger than Poincaré inequality, can be shown to imply a converse weighted Poincaré inequality (the weight is now in the variance), by a simple change of function argument, and in dimension one a Hardy's criterion is also available for this inequality which is in fact the same as the one for the restricted logarithmic Sobolev inequality.

From this, we conclude that in fact, in the real line case, the restricted logarithmic Sobolev inequality is in fact implied by Gozlan's weighted Poincaré inequality. Whether it is the case in any dimension would have to be investigated. It is however quite easy, following [START_REF] Barthe | A simple proof of the Poincaré inequality for a large class of measures including the logconcave case[END_REF] to give a Lyapunov condition for Gozlan's weighted Poincaré inequality on R d . Theorem 4.11. Let w i = w i (x 1 , ..., x d ) be positive for all (x 1 , ..., x d ) ∈ R d , and ω i > ǫ r > 0 on B(0, r). Introduce the diffusion generator

L = d i=1 ω i ∂ 2 i + (∂ i ω i -ω i ∂ i V )∂ i ,
where ∂ i = ∂/∂x i . Suppose now that there exists W ≥ 1, λ, b > 0 and R > such that Proof. The proof follows exactly the line of the one of [START_REF] Barthe | A simple proof of the Poincaré inequality for a large class of measures including the logconcave case[END_REF] once it has been remarked that Remark 4.14. Our setting is a little bit more general than Gozlan [START_REF] Gozlan | Poincaré inequalities for non euclidean metrics and transportation cost inequalities on R d[END_REF] concerning the assumption on ω but with the additional term ∂ i ω i ∂ i W in the sum. Note once again that they are a little bit more difficult to handle than the one in Corollary 2.1 and still not comparable.

One of the major points of Gozlan's weighted Poincaré inequality is, in the case where ω i (x 1 , ..., x d ) = ω(x i ), in fact equivalent to some transportation-information inequality (with an unusual distance function) when ω satisfies some conditions (namely, ω = √ ω′ where ω is odd, at least linearly increasing). However, when ω i = 1/(1 + x 2 i ), this transportation inequality is stronger than W 2 H.

We end up this note with some final conditions ensuring W 2 H, similar to Gozlan's one (see Remark 2.4(2)). 

d i=1 (1 -a)ω i (∂ i V ) 2 -∂ i ω i ∂ i V -ω i ∂ 2 i V ≥ c, ∀x : |x| > R
is verified then the weighted Poincaré inequality (4.13) is verified.

2) In particular, consider ω i (x 1 , ..., x d ) = (1 + x 2 i ) -1 , if there are positive constants a < 1, R, c > 0, such that for all x ∈ R d with |x| > R, one of (4.17)

d i=1 (1 -a)(∂ i V ) 2 + 2x i 1 + x 2 i ∂ i V -∂ 2 i V 1 1 + x 2 i ≥ c or (4.18) d i=1 x i ∂ i V 1 + x 2 i - 1 -x 2 i (1 + x 2 i ) 2 ≥ c is verified, then W 2 H holds.
Proof. Part 1) is a particular case of Theorem 4.11 with W = e aV , together with Gozlan's result. Condition (4.17) is just a particular version of part 1). The last case under condition (4.18) comes from Theorem 4.11 with W = e a|x| 2 for sufficiently small a.

(1. 2 )

 2 W p (ν, µ) ≤ 2C H(ν|µ) Date: October 29, 2008.

1 2C

 1 y∈E {f (y) + d 2 (x, y)}, Qf dµ ≤ 1.

Remark 2. 4 . ( 1 )

 41 Condition (2.2) is of course reminiscent to the Kusuoka-Stroock condition for logarithmic Sobolev inequality (replace d 2 by V ). On the real line, it implies the condition of [13, Prop. 5.5]. (2) Gozlan [20, Prop. 3.9 and Theorem 4.8] proves W 2 H on R d under the condition lim inf

4. 1 .

 1 A generalization of Corollary 2.8. Corollary 4.1. Assume that Ric x ≥ -α(d(x, x 0 )) where α(r) is some positive increasing function on R + , and ∇d(x, x 0 ), ∇V ≥ β(d(x, x 0 )) -b for some constant b > 0 and some positive increasing function β on R + . If

( 4 . 2 )

 42 β(r) -α(r) ≥ ηr, r > 0 for some positive constant η, then µ satisfies W 2 H.

Example 4 . 10 .

 410 Let E = R 2 equipped with the Euclidean metric. For any p > 2 fixed, consider V = r p (2 + sin(kθ)), where (r, θ) is the polar coordinates system and k ∈ N * . Since ∆V = r p-2 [p 2 (2 + sin(kθ)) -k 2 sin(kθ)]

(4. 12 )

 12 LW ≤ -λW + b1 I B(0,R)then µ verifies a weighted Poincaré inequality with some constant c > 0 (4.13)Var µ (f ) ≤ c d i=1 ω i (∂ i f ) 2 dµ.

( 1 )

 1 L is associated to the Dirichlet form E(f, g) = -f Lgdµ on L 2 (µ), reversible w.r.t. µ and E(f, f ) = d i=1 ω i (∂ i f ) 2 dµ;(2) a local weighted Poincaré inequality is valid for this Dirichlet form as ω i > ǫ r > 0 on B(0, r) (as a local Poincaré inequality is available on balls).

Corollary 4 . 15 .

 415 In the setting of Corollary 2.1. 1) If there are positive constants a < 1, R, c > 0, such that