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We consider a 3D elastic body with a rigid inclusion and a crack located at the boundary of the inclusion. It is assumed that non-penetration conditions are imposed at the crack faces which do not allow the opposite crack faces to penetrate each other. We analyze the variational formulation of the problem and provide shape and topology sensitivity analysis of the solution.

Introduction

The inclusions in elastic bodies are also important for applications, both in design procedures and in numerical solution of some inverse problems. We restrict ourselves to the limit case of a rigid inclusion, with a crack at the interface. This seems to be a new class of problems, both for the analysis and for the shape optimization. One can also attempt to find the shape derivative of the elastic energy with respect to the perturbations of the crack tip, some results in this direction are given with all details in section 5.

Problem formulation

Let Ω ⊂ R 3 be a bounded domain with smooth boundary Γ, and ω ⊂ Ω be a subdomain with smooth boundary Ξ such that ω ∩ Γ = ∅. We assume that Ξ consists of two parts γ and Ξ \ γ, meas(Ξ \ γ) > 0, where γ is a smooth 2D surface described as x i = x i (y 1 , y 2 ), (y 1 , y 2 ) ∈ D, i = 1, 2, 3, with bounded domain D ⊂ R 2 having a smooth boundary ∂D, and a rank of the matrix ∂x ∂y is equal to 2.

Denote by ν = (ν 1 , ν 2 , ν 3 ) a unit outward normal vector to Ξ, see Fig. 1. The subdomain ω is assumed to correspond to a rigid inclusion, and the surface γ describes a crack located on Ξ. Domain Ω \ ω corresponds to the elastic part of the body. For the further use we introduce the space of infinitesimal rigid displacements , C = (c 1 , c 2 , c 3 ); b ij , c i = const, i, j = 1, 2, 3.

R(ω) = {ρ = (ρ 1 , ρ 2 , ρ 3 ) | ρ(x) = Bx + C, x ∈ ω},
Denote Ω γ = Ω \ γ. Problem formulation describing an equilibrium of the elastic body with the rigid inclusion ω and the crack γ is as follows. In the domain Ω γ , we have to find functions u = (u 1 , u 2 , u 3 ), u = ρ 0 on ω; ρ 0 ∈ R(ω); and in the domain Ω \ ω we have to find functions σ = {σ ij }, i, j = 1, 2, 3, such that

-divσ = F in Ω \ ω, (1) 
σ -Aε(u) = 0 in Ω \ ω, (2) 
u = 0 on Γ, ( 3 
) (u -ρ 0 ) • ν ≥ 0 on γ + , (4) 
σ τ = 0, σ ν ≤ 0 on γ + , (5) 
σ ν (u -ρ 0 ) • ν = 0 on γ + , (6) 
-

Ξ σν • ρ = ω F • ρ ∀ρ ∈ R(ω). (7) 
Here F = (F 1 , F 2 , F 3 ) ∈ L 2 (Ω) is a given function,

σ ν = σ ij ν j ν i , σ τ = σν -σ ν ν, σ τ = (σ 1 τ , σ 2 τ , σ 3 τ ), σν = {σ ij ν j } i=3 i=1 , ε ij (u) = 1 2
(u i,j + u j,i ), i, j = 1, 2, 3.

All functions with two below indices are assumed to be symmetric in those indices. Summation convention over repeated indices is accepted throughout the paper. Elasticity tensor A = {a ijkl }, i, j, k, l = 1, 2, 3, is given, and it satisfies a symmetry and positive definiteness properties, a ijkl = a klij = a jikl , a ijkl ∈ L ∞ (Ω), i, j, k, l = 1, 2, 3,

a ijkl ξ kl ξ ij ≥ c 0 |ξ| 2 , ∀ ξ ij = ξ ji , c 0 = const.
In addition, we consider the isotropic case, namely

A = 2mI + l (I ⊗ I) , (8) 
where I and I respectively are the second and fourth order identity tensors and, m and l are the Lamé coefficients, which can be defined in terms of the Young modulus E and the Poisson ratio υ as

m = E 2(1 + υ) and l = υE (1 + υ)(1 -2υ) . (9) 
Relations (1) are equilibrium equations, and (2) corresponds to the Hooke's law. Inequality (4) describes a mutual nonpenetration between crack faces γ ± . The first relation in [START_REF] Eshelby | The Elastic Energy-Momentum Tensor[END_REF] means a zero friction between the crack faces. For simplicity we assume a clamping condition (3) on Γ.

Note that external forces F are applied to Ω \ ω as well as to ω, but there are no equilibrium equations in ω. Influence of these forces is taken into account through [START_REF] Frémiot | On the analysis of boundary value problems in nonsmooth domains[END_REF]. If we have no crack γ on Ξ, relations ( 4)-( 6) should be omitted. This particular problem formulation for the particular case F = 0 in ω can be found in [START_REF] Morassi | Detecting rigid inclusions, or cavaties, in an elastic body[END_REF].

First of all we provide a variational formulation of the problem ( 1)- [START_REF] Frémiot | On the analysis of boundary value problems in nonsmooth domains[END_REF]. To this end, introduce the Sobolev space

H 1,ω Γ (Ω γ ) = {v ∈ H 1 (Ω γ ) 3 | ε(v) = 0 on ω; v = 0 on Γ} (10)
and define the set of admissible displacements

K ω = {v ∈ H 1,ω Γ (Ω γ ) | ε(v) = 0 on ω; (v + -v -) • ν ≥ 0 on γ}. (11) 
Let (•, •) Ω\ω be the inner product in L 2 (Ω \ ω). Consider the energy functional

Π(v) = 1 2 (σ(v), ε(v)) Ω\ω -(F, v) Ωγ , (12) 
where σ(v) = σ are defined from (2) for u = v, and a minimization problem

inf v∈Kω Π(v). ( 13 
)
The set K ω is weakly closed in the space H 1,ω Γ (Ω γ ), and the functional Π is coercive and weakly lower semicontinuous on this space. Hence the problem (13) has a solution satisfying the variational inequality

u ∈ K ω , ( 14 
) (σ(u), ε(u -u)) Ω\ω ≥ (F, u -u) Ωγ ∀ u ∈ K ω . ( 15 
)
Solution u of the problem ( 14)-( 15) is unique.

Assuming that the solution of ( 14)-( 15) is quite smooth we can derive all relations (1)- [START_REF] Frémiot | On the analysis of boundary value problems in nonsmooth domains[END_REF], and conversely, any smooth solution of (1)-( 7) satisfies ( 14)- [START_REF] Khludnev | Analysis of Cracks in Solids[END_REF]. On the other hand, the solution smoothness of ( 14)- [START_REF] Khludnev | Analysis of Cracks in Solids[END_REF] does not provide a fulfillment of ( 5)-( 6) in a point-wise sense, and this point requires some explanations. To this end, introduce the weighted Sobolev space

H 1/2 00 (γ) = {v ∈ H 1/2 (γ) | γ v 2 r < +∞},
where r(x) = dist(x, ∂γ), and denote by H -1/2 00 (γ) a space dual of H 1/2 00 . Since σ, divσ ∈ L 2 (Ω \ ω) we have (see [START_REF] Khludnev | Analysis of Cracks in Solids[END_REF])

σ i τ , σ ν ∈ H 1/2 00 (γ), i = 1, 2, 3.
It can be shown that the first relation of ( 5) holds in the sense

σ i τ , ψ 00 1/2,γ = 0 ∀ ψ ∈ H 1/2 00 (γ), i = 1, 2, 3, (16) 
and the second one holds as

σ ν , ψ 00 1/2,γ ≤ 0 ∀ ψ ∈ H 1/2 00 (γ), ψ ≥ 0, (17) 
where 

σ ν , (u + -ρ 0 ) • ν 00 1/2,γ = 0,
and the relation [START_REF] Frémiot | On the analysis of boundary value problems in nonsmooth domains[END_REF] holds in the sense

σν, ρ 1/2,Ξ = - ω F • ρ ∀ρ ∈ R(ω), (18) 
where •, • 1/2,Ξ stands for a duality pairing between H -1/2 (Ξ) and H 1/2 (Ξ).

Dual problem formulation

We provide here a dual formulation of the problem ( 14)- [START_REF] Khludnev | Analysis of Cracks in Solids[END_REF]. This approach allows us to define σ = {σ ij } in the domain Ω \ ω, and moreover, this solution σ ij coincide with σ ij = σ ij (u) obtained from ( 14)- [START_REF] Khludnev | Analysis of Cracks in Solids[END_REF]. Below we provide suitable explanations. First, we write Hooke's law (2) in the inverted form

A -1 σ = ε(u) in Ω \ ω. (19) 
Note that the tensor A -1 has the properties similar to those of A. Consider the space

H = {σ = {σ ij } | σ ij ∈ L 2 (Ω \ ω), i, j = 1, 2, 3}
and a functional G defined on H,

G(σ) = 1 2 (A -1 σ, σ) Ω\ω .
Introduce next the set of admissible stresses M = {σ ∈ H | equations (1) and conditions ( 5), [START_REF] Frémiot | On the analysis of boundary value problems in nonsmooth domains[END_REF] hold}.

Fulfillment of (1) in the definition of M takes place in the distributional sense, and ( 5), [START_REF] Frémiot | On the analysis of boundary value problems in nonsmooth domains[END_REF] hold in the sense ( 16)- [START_REF] Khludnev | On differentation of energy functionals in the crack theory with possible contact between crack faces[END_REF].

Notice that M is convex and weakly closed in the space H. Indeed, if σ n ∈ M and σ n → σ weakly in H, n → ∞, we have

-divσ n = F in Ω \ ω. Thus -divσ = F in Ω \ ω. ( 20 
) Since σ in τ , σ n ν are bounded in H -1/2 00 (γ), i = 1, 2, 3,
we can assume that as n → ∞

σ in τ , σ n ν → σ i τ , σ ν weakly in H -1/2 00 (γ), i = 1, 2, 3.
Consequently, the limit function σ satisfies ( 16)-( 18) which, by [START_REF] Larrabide | Topological Derivative: A Tool for Image Processing[END_REF], proves that M is weakly closed.

Now consider the minimization problem

inf σ∈M G(σ). (21) 
Solution σ 0 of this problem exists and is unique. It satisfies the variational inequality

σ 0 ∈ M, ( 22 
) (A -1 σ 0 , σ -σ 0 ) Ω\ω ≥ 0 ∀ σ ∈ M. ( 23 
)
Now we denote by σ = σ(u) the function found from (2) for the solution u ∈ K ω of ( 14)- [START_REF] Khludnev | Analysis of Cracks in Solids[END_REF], and prove that σ 0 = σ. The following relation holds

G(σ 0 ) = G(σ 0 -σ) + G(σ) + (A -1 (σ 0 -σ), σ) Ω\ω . (24) 
Introduce the notation p = (A -1 (σ 0σ), σ) Ω\ω and prove that p ≥ 0. Indeed, by the Green formula we derive

p = Ω\ω (σ 0 ij -σ ij )ε ij (u) = - Ω\ω div(σ 0 -σ) • u - Ξ + (σ 0 -σ)ν • u.
Since σ 0 , σ satisfy (1), this relation implies

p = - Ξ + (σ 0 -σ)ν • u. (25) 
In its own turn, (25) can be rewritten as

p = Ξ + (σ 0 -σ)ν • u - γ + (σ 0 -σ)ν • (u -ρ 0 ), ( 26 
)
where ρ 0 is the restriction of u to ω. Functions σ, σ 0 satisfy also [START_REF] Frémiot | On the analysis of boundary value problems in nonsmooth domains[END_REF], thus, by accounting (5), formula [START_REF] Sokolowski | On the Topological Derivative in Shape Optimization[END_REF] takes the form

p = - γ + (σ 0 ν -σ ν )(u -ρ 0 ) • ν.
Moreover, σ, u satisfy (6), hence

p = - γ + σ 0 ν (u -ρ 0 ) • ν. ( 27 
)
Since σ 0 ∈ M , by (4), from [START_REF] Sokolowski | Modelling of topological derivatives for contact problems[END_REF] if follows p ≥ 0. So we have G(σ 0σ) ≥ 0, p ≥ 0, and the relation [START_REF] Novotny | Topological Sensitivity Analysis[END_REF] implies

G(σ 0 ) ≥ G(σ).
By the uniqueness of the solution σ 0 of (21), we obtain σ 0 = σ what is needed.

Passage from elastic inclusion to the rigid one

In fact, the problem ( 1)-( 7) can be viewed as a limit problem for a family of elastic crack problems formulated in the domain Ω γ . This means that we can construct a family of problems with a positive parameter λ such that for any fixed λ > 0 the problem describes an equilibrium state for elastic body occupying the domain Ω γ with the crack γ. When λ → 0 we expect to obtain a rigid inclusion ω so that any point x ∈ ω has a displacement ρ 0 (x),

ρ 0 ∈ R(ω).
In what follows we prove the above statement. Introduce the tensor

A λ = {a λ ijkl }, i, j, k, l = 1, 2, 3, a λ ijkl =      a ijkl in Ω \ ω λ -1 a ijkl in ω,
and consider the following problem. In the domain Ω γ , we have to find functions

u λ = (u λ 1 , u λ 2 , u λ 3 ), σ λ = {σ λ ij }, i, j = 1, 2, 3, such that -divσ λ = F in Ω γ , (28) 
σ λ -A λ ε(u λ ) = 0 in Ω γ , (29) 
u λ = 0 on Γ, ( 30 
) [u λ ] • ν ≥ 0, [σ λ ν ] = 0, σ λ ν [u] • ν = 0 on γ, (31) 
σ λ ν ≤ 0, σ λ τ = 0 on γ ± . ( 32 
)
Here we use notations of the previous section, and

[v] = v + -v -is a jump of v on γ,
where ± fit positive and negative crack faces γ ± with respect to ν.

For any fixed λ > 0 the problem ( 28)-( 32) is well known (see [START_REF] Khludnev | Analysis of Cracks in Solids[END_REF], [START_REF] Khludnev | Crack theory with possible contact between the crack faces[END_REF]). It admits a variational formulation. Indeed, introduce the set of admissible displacements

K = {v ∈ H 1 Γ (Ω γ ) 3 | [v] • ν ≥ 0 on γ}, where H 1 Γ (Ω γ ) = {v ∈ H 1 (Ω γ ) | v = 0 on Γ}. There exists a unique solution u λ of the problem inf v∈K { 1 2 (σ λ (v), ε(v)) Ωγ -(F, v) Ωγ } (33) 
with σ λ (v) found via [START_REF] Sokolowski | Introduction to Shape Optimization -Shape Sensitivity Analysis[END_REF] for u λ = v. Solution u λ satisfies the variational inequality

u λ ∈ K, (34) 
(σ λ (u λ ), ε(u -u λ )) Ωγ ≥ (F, u -u λ ) Ωγ ∀ u ∈ K. ( 35 
)
By the convexity of the functional in (33) with respect to u, the problems (33) and ( 34)-( 35) are equivalent. Moreover, all relations ( 28)-(32) follow from (34)-( 35), and conversely, from ( 28)-(32) it follows (34)-( 35).

Below we justify a passage to the limit as λ → 0 in (34)-(35). Substitute u = 0, u = 2u λ as test functions in (35), and sum up the relations obtained. It provides the equality

(σ λ (u λ ), ε(u λ )) Ωγ = (F, u λ ) Ωγ . (36) 
Assuming that λ ∈ (0, λ 0 ), from (36) we obtain

u λ H 1 Γ (Ωγ ) 3 ≤ c 1 , (37) 1 λ ω a ijkl ε kl (u λ )ε ij (u λ ) ≤ c 2 (38) 
with constants c 1 , c 2 being uniform with respect to λ ∈ (0, λ 0 ). Choosing a subsequence, if necessary, it can be assumed as λ → 0

u λ → u weakly in H 1 Γ (Ω γ ) 3 .
Then by (38)

ε ij (u) = 0 in ω, i, j = 1, 2, 3.
This means that a function ρ 0 exists such that

u = ρ 0 in ω; ρ 0 ∈ R(ω).
Since u λ converge weakly in H 1 Γ (Ω γ ) 3 , the limit function u satisfies the inequality (u

+ -ρ 0 ) • ν ≥ 0 on γ.
In particular, u ∈ K ω .

Let us take any fixed element u ∈ K ω . Then, there exists ρ ∈ R(ω) such that u = ρ in ω, and u can be taken as a test function in (35). In such a case, inequality (35) implies

(σ λ (u λ ), ε(u -u λ )) Ωγ ≥ (F, u -u λ ) Ωγ . (39) 
By accounting A λ = A in Ω \ ω, we can pass to the limit in (39) as λ → 0 which implies

u ∈ K ω , (σ(u), ε(u -u)) Ωγ \ω ≥ (F, u -u) Ωγ ∀ u ∈ K ω ,
what is precisely ( 14)- [START_REF] Khludnev | Analysis of Cracks in Solids[END_REF]. Hence a passage from the elastic inclusion to the rigid one is justified. We formulate the proved result as follows Theorem 2.1 The solution u λ of the problem (34)-(35) weakly converge in H 1 Γ (Ω γ ) 3 to the solution u of the problem ( 14)- [START_REF] Khludnev | Analysis of Cracks in Solids[END_REF].

Observe that there is no limit for the stress tensor σ λ as λ → 0 in ω. It is interesting to compare the above passage to the limit with the fictitious domain approach in contact problems, see [START_REF] Hoffmann | Fictitious domain method for the Signorini problem in linear elasticity[END_REF].

Shape differentiability of the energy functional

First of all, we recall the result on the Hadamard differentiability of the metric projection on polyhedric convex sets in Hilbert spaces due to F. Mignot and A. Haraux , adapted to the weak formulation of our problem [START_REF] Sokolowski | Introduction to Shape Optimization -Shape Sensitivity Analysis[END_REF], [START_REF] Frémiot | On the analysis of boundary value problems in nonsmooth domains[END_REF], given by variational inequality ( 14)- [START_REF] Khludnev | Analysis of Cracks in Solids[END_REF].

Theorem 3.1 Let there be given the right-hand side F t = F +th of variational inequality ( 14)-( 15), then the unique solution u t ∈ K ω is Lipschitz continuous

u t -u H 1 (Ωγ ) ≤ Ct
and conically differentiable in H 1 (Ω γ ), that is, for t > 0, t small enough,

u t = u + tQ + o(t)
where the conical differential solves the variational inequality

Q ∈ S K (u), ( 40 
) (σ(O), ε(u -Q)) Ωγ \ω ≥ (h, u -Q) Ωγ ∀ u ∈ S K (u). ( 41 
)
The remainder converges to zero

1 t o(t) H 1 (Ωγ ) → 0
uniformly with respect to the direction h on the compact sets of the dual space (H 1,ω Γ (Ω γ )) * , i.e., Q is the Hadamard directional derivative of the solution to the variational inequality with respect to the right-hand side.

To complete the above statement, we need the description of the convex cone S K (u),

S K (u) = {v ∈ H 1,ω Γ (Ω γ )|(v + -v -) • ν ≥ 0 on γ 0 ; (σ(u), ε(v)) Ωγ \ω = (F, v) Ωγ } where γ 0 = {x ∈ γ|(u + -ρ 0 ) • ν = 0}.
We show that the energy functional is shape differentiable with respect to the crack length, which seems to be a new result in the fracture mechanics for the specific problem. To this end we need the notation.

Shape sensitivity analysis in the hold-all-domain. We denote Ω 0 := Ω γ , and D = D ∪ ω, so D is our hold-all-domain for velocity vector fields, in addition we have the inclusion Ω ⊂ D. We assume that the boundary ∂D = ∂D ∪ ∂ω is smooth, and that admissible vector fields for the velocity method of shape optimization satisfies the Nagumo condition

V • n = 0 on ∂D . ( 42 
)
The above condition guarantee the following properties of the mapping T t (V ), the support of any admissible vector field V is disjoint with ω, V is tangent on the boundary ∂ω, we can also deform γ ⊂ ∂Ω in the tangential direction, therefore, to move the crack boundary on the surface ∂ω. Hence, we denote γ t = T t (V )(γ) and Γ t = T t (V )(Γ) and we observe that the boundary of rigid inclusion is invariant for admissible transformations T t (V ), it means that ω = T t (ω).

Variable domain setting. In order to perform the shape sensitivity analysis of the energy functional J(Ω γ ) we transport the problem defined in the variable domain Ω t = T t (Ω γ ) to the fixed domain Ω γ = Ω γ . To this end we need also a change of the unknown solution to the variational inequality, in order to make the convex cone independent of the parameter t. First, we define the problem in variable domain Ω t = T t (V )(Ω γ ), so we look for the minimizer u t ∈ K t defined by the variational inequality

(σ(u t ), ε(v -u t )) Ωt\ω -(F, v -u t ) Ωt + ≥ 0 ∀v ∈ K t , (43) 
where

K t = {v ∈ H 1,ω Γt (Ω t ) | (v + -v -) • ν t ≥ 0 on γ t } . (44) 
Now, we perform the shape sensitivity analysis in exactly the same way as it is described in [START_REF] Sokolowski | Introduction to Shape Optimization -Shape Sensitivity Analysis[END_REF] for the Signorini problems. We use also the same notation which is introduced in [START_REF] Sokolowski | Introduction to Shape Optimization -Shape Sensitivity Analysis[END_REF] for the sensitivity analysis of variational inequalities with the polyhedric convex cones, this is the case of the convex set (44). However, the results presented here seem to be new, since the model of the crack with nonpenetration condition is new in this setting. We derive the form of the directional derivative of the energy functional with respect to the crack length, which a generalization of the results given in [START_REF] Khludnev | Griffith formulae for elasticity systems with unilateral conditions in domains with cracks[END_REF] for the crack located inside of an elastic body.

In order to assure the fixed domain setting for the transported problem we introduce the new unknown solution to the modified variational inequality

z t = DT -1 t • u t • T t ,
and we obtain that z t ∈ K solves the variational inequality

(σ t (z t ), ε t (v -z t )) Ωγ \ω -(F t , v -z t ) Ωγ ≥ 0 ∀v ∈ K , (45) 
with the shape functional of the form

J(Ω t ) = 1 2 (σ t (z t ), ε t (z t )) Ωγ \ω -(F t , z t ) Ωγ . (46) 
The expressions for F t , σ t (v) and ε t (v) are given by

F t = det (DT t ) * DT t • (F • T t ) , (47) σ t (v) = det (DT t ) Aε t (v) (48) ε t (v) = 1 2 {D (DT t • v) • DT -1 t + * DT -1 t • * (D (DT t • v))} , (49) 
where DT t is the Jacobian matrix of the transformation T t , * DT t denotes the transposed matrix, DT -1 t its inverse, and det (DT t ) its determinant.

Since the convex set K t is a cone, it follows from the variational inequality that we have the following equality

(σ t (z t ), ε t (z t )) Ωγ \ω = (F t , z t ) Ωγ (50) 
therefore, the equivalent form for the energy shape functional looks like that

J(Ω t ) = - 1 2 (σ t (z t ), ε t (z t )) Ωγ \ω = - 1 2 (F t , z t ) Ωγ . ( 51 
)
The structure of formulae in (51) is useful for the derivation with respect to the shape parameter t at t = 0.

Theorem 3.2 The solutions to variational inequality (45) are shape differentiable in the sense of Hadamard, and the mateial derivatives ż ∈ S K (u) are given by the following variational inequality

(σ( ż), ε(v -ż)) Ωγ \ω + ( σ(u), ε(v -ż)) Ωγ \ω + ( ε(u), σ(v -ż)) Ωγ \ω ≥ ( Ḟ , v -ż) Ωγ ( 52 
)
for all test functions in the convex cone v ∈ S K (u).

Corollary 3.3 The shape derivative of the energy functional is given by the expression,

dJ(Ω γ ; V ) = - 1 2 ( σ(u), ε(u)) Ωγ \ω + (σ(u), ε(u)) Ωγ \ω + 2(σ( ż), ε(u)) Ωγ \ω , (53) 
where u ∈ K solves variational inequality (45) , and ż ∈ S K (u) solves the variational inequality for material derivatives (52).

The expressions for σ(v) and ε(v) are given by

σ(v) = divV Aε(v) + A ε(v) , (54) ε 
(v) = 1 2 {D (DV • v) + * (D (DV • v)) -Dv • DV - * DV • * Dv} . (55) 
Therefore, we have the shape derivative of the energy functional with respect to the crack length, this formula is new and could be used in crack propagation analysis.

Topological asymptotic analysis

The topological derivative introduced in [START_REF] Sokolowski | On the Topological Derivative in Shape Optimization[END_REF] quantifies the sensitivity of a given shape functional with respect to the introduction of a non-smooth perturbation (hole, inclusion, source term, for instance) in a ball B δ (x 0 ) ⊂ Ω of radius δ > 0 and center at

x 0 ∈ Ω, that is B δ (x 0 ) = {x ∈ R 3 : x -x 0 < δ}, B δ (x 0 ) is the closure of B δ (x 0 )
. Therefore, this derivative can be seen as a first order correction on the shape functional J (Ω) to estimate J (Ω δ ), where Ω δ is the perturbed domain. Thus, we have the following topological asymptotic expansion for functional J [?],

J (Ω δ ) = J (Ω) + f (δ)D T (x 0 ) + o(f (δ)) , (56) 
where f (δ) is a positive function that decreases monotonically such that f (δ) → 0 when δ → 0 + and the term D T (x 0 ) is defined as the topological derivative of J . Then, from (56) we have that the classical definition of the topological derivative is given by [24,26]

D T (x 0 ) = lim δ→0 J (Ω δ ) -J (Ω) f (δ) = lim δ→0 1 f ′ (δ) d dδ J (Ω δ ) . (57) 
Therefore, the topological derivative has been successfully applied in the context of topology optimization [START_REF] Amstutz | A new algorithm for topology optimization using a level-set method[END_REF][START_REF] Burger | Incorporating topological derivatives into level set methods[END_REF], inverse problems [START_REF] Amstutz | Crack detection by the topological gradient method[END_REF][START_REF] Feijóo | A new method in inverse scattering based on the topological derivative[END_REF] and image processing [START_REF] Auroux | Image restoration and classification by topological asymptotic expansion[END_REF][START_REF] Hintermüller | Fast level set based algorithms usind shape and topological sensitivity[END_REF][START_REF] Larrabide | Topological Derivative: A Tool for Image Processing[END_REF]. Concerning the theoretical development of the topological asymptotic analysis, the reader may refer to [START_REF] Nazarov | Asymptotic analysis of shape functionals[END_REF], for instance.

In our particular case, we consider a perturbation on the domain given by the nucleation of a small elastic inclusion with Young modulus E η = ηE, where E is the Young modulus of the bulk material and η ∈ [0, ∞) represents the contrast. We assume that there is a small elastic inclusion B δ (x 0 ) in the elastic region Ω ω = Ω \ ω. If the elastic inclusion becomes a cavity, it is denoted by ω δ = B δ (x 0 ). The cavity can be obtained from the elastic inclusion by the limit passage η → 0. In the case of elastic inclusion the elastic region Ω ω is decomposed into two disjoint parts Ω ω \ B δ (x 0 ) and B δ (x 0 ) with different material properties, namely E and ηE, respectively. The other limit passage with the contrast η → ∞ results in the small rigid inclusion ω δ = B δ (x 0 ). See Fig. [START_REF] Amstutz | Crack detection by the topological gradient method[END_REF]. We are also interested in the topological asymptotic expansion of the energy shape functional of the form

Π δ (v) = 1 2 (σ(v), ε(v)) Ωω\B δ (x 0 ) + 1 2 (σ(v), ε(v)) B δ (x 0 ) -(F, v) Ωγ , (58) 
where we have to find function v = u δ such that

-divσ = F in Ω \ ω, (59) 
σ -Aε(u δ ) = 0 in Ω ω \ B δ (x 0 ), (60) σ -A η ε(u δ ) = 0 in B δ (x 0 ), ( 61 
) [u δ ] = 0 on ∂B δ (x 0 ) (62) [σ]ν = 0 on ∂B δ (x 0 ) (63) u δ = 0 on Γ, ( 64 
) (u δ -ρ 0 ) • ν ≥ 0 on γ + , ( 65 
) σ τ = 0, σ ν ≤ 0 on γ + , (66) σ ν (u δ -ρ 0 ) • ν = 0 on γ + , ( 67 
) - Ξ σν • ρ = ω F • ρ ∀ρ ∈ R(ω). ( 68 
)
with A such as before and A η = ηA (since E η is the Young modulus of the inclusion).

Domain decomposition

Since the problem is non-linear, let us introduce a domain decomposition given by Ω R = Ω ω \ B R (x 0 ), where B R (x 0 ) is a ball of radius R > δ and center at

x 0 ∈ Ω, that is B R (x 0 ) = {x ∈ R 3 : x -x 0 < R}, B R (x 0 ) is the closure of B R (x 0
), as shown in Fig. [START_REF] Amstutz | Crack detection by the topological gradient method[END_REF]. For the sake of simplicity, we assume that F = 0 in B R (x 0 ). Thus, we have the following linear elasticity system defined in B R (x 0 ) with an inclusion B δ (x 0 ) inside

-divσ = 0 in B R (x 0 ), (69) σ -Aε(w δ ) = 0 in B R (x 0 ) \ B δ (x 0 ), (70) σ -A η ε(w δ ) = 0 in B δ (x 0 ), (71) w δ = v on ∂B R (x 0 ), ( 72 
) [w δ ] = 0 on ∂B δ (x 0 ), ( 73 
) [σ]ν = 0 on ∂B δ (x 0 ). ( 74 
)
We are interested in the Steklov-Poincaré operator on ∂B R , that is

A δ : v ∈ H 1/2 (∂B R ) → σ(w δ )ν ∈ H -1/2 (∂B R ) . ( 75 
)
Then we have

σ(u R )ν = A δ (u R ) on ∂B R , where u R is solution of the variational inequality in Ω R , that is u R ∈ K ω : a Ω R (u R , ϕ -u R ) ≥ (F, ϕ -u R ) Ωγ \B R (x 0 ) ∀ϕ ∈ K ω (76) 
and the bilinear form a Ω R is such that

a Ω R (u, ϕ) = Ω R σ(u) • ε(ϕ) + ∂B R A δ (u) • ϕ . (77) 
Finally, in the disk B R (x 0 ) we have

B R \B δ σ(w) • ε(w) + B δ σ(w) • ε(w) = ∂B R A δ (w) • w , (78) 
where w = w δ is the solution of the elasticity system in the disk (69)-(74) or equivalently solution of the following variational problem

w δ ∈ W : B R \B δ σ(w δ ) • ε(ϕ) + B δ σ(w δ ) • ε(ϕ) = 0 ∀ϕ ∈ W 0 , (79) 
with W and W 0 such that

W = {w ∈ H 1 (B R ) 3 | [w] = 0 on ∂B δ , w = v on ∂B R } , (80) 
W 0 = {ϕ ∈ H 1 (B R ) 3 | [ϕ] = 0 on ∂B δ , ϕ = 0 on ∂B R } . (81) 

Shape sensitivity analysis of the energy functional

Let us introduced the energy-based shape functional defined in the disk B R (x 0 ), that is

E δ (w δ ) := 1 2 B R \B δ σ(w δ ) • ε(w δ ) + 1 2 B δ σ(w δ ) • ε(w δ ) . ( 82 
)
with the topological derivative D T (x 0 ) given by

D T (x 0 ) = Hσ(u(x 0 )) • ε(u(x 0 )) ∀x 0 ∈ Ω \ ω , (88) 
where u is solution of the variational inequality ( 14)-( 15) and H is a forthorder tensor defined as

H = 1 -υ 7 -5υ 10I - 1 -5υ 1 -2υ I ⊗ I . (89) 

Topological derivative of the energy functional in two spatial dimensions for a small inclusion

In two spatial directions we derive also an exterior expansion for the solutions of the variational inequality. Therefore, the result obtained is more precise compared to the general case of the cavity in three spatial dimensions. First, we repeat the model description, and then we develop the asymptotic analysis in linear elasticity to derive the equivalent form of perturbation of the bilinear form.

Since in this Section we are dealing with a two dimensional elasticity problem, then the domain Ω ⊂ R 2 . Thus, all indices introduced in the Section 2 take values from 1 to 2, instead of 1 to 3. In the particular case of plane stress, the Lamé coefficient l = l * , where

l * = υE 1 -υ 2 .
In addition, the crack γ is represented now by a smooth 1D curve described as

x i = x i (y), y ∈ D, i = 1, 2,
with bounded domain D ⊂ R. The space R(ω) of infinitesimal rigid displacements is redefined simply by setting

B =    0 b -b 0    and C = (c 1 , c 2 ); b, c i = const, i = 1, 2.
The displacement field u = (u 1 , u 2 ); u = ρ 0 in ω; ρ 0 ∈ R(ω); and in the domain Ω \ ω we have to find the stress tensor components σ = {σ ij }, solution of ( 1)- [START_REF] Frémiot | On the analysis of boundary value problems in nonsmooth domains[END_REF] in Ω ⊂ R 2 for i, j = 1, 2. Hence, all definitions and results presented in the previous Sections hold.

We use the existence of the asymptotic expansions for w δ , solution of the elasticity system (69)-(74) now defined in the disk B R (x 0 ) ⊂ R 2 , in the neigh- borhood of B δ (x 0 ), namely

w δ (x) = w 0 (x) + w ∞ (x) + o(δ) . (90) 
In addition, w ∞ is proportional to δ, w ∞ R 2 = O(δ), on the surface ∂B ρ of the ball. The expansion of σ(w δ ) corresponding to (69)-(74) has the form

σ(w δ (x)) = σ ∞ (w 0 (x 0 ), x) + O(δ) . (91) 
where σ ∞ is the stress distribution around a circular inclusion in an infinity medium and w 0 is solution of the elasticity system (69)-( 74) defined in the disk B R (x 0 ) ⊂ R 2 for δ = 0. Thus, σ ∞ can be calculated explicitly, which is given in a polar coordinate system (r, θ) by:

• for r ≥ δ σ ∞ rr (r, θ) = a 1 -1-η 1+ηα δ 2 r 2 + b 1 -4 1-η 1+ηβ δ 2 r 2 + 3 1-η 1+ηβ δ 4 r 4 cos 2θ (92) σ ∞ θθ (r, θ) = a 1 + 1-η 1+ηα δ 2 r 2 -b 1 + 3 1-η 1+ηβ δ 4 r 4 cos 2θ (93) σ ∞ rθ (r, θ) = -b 1 + 2 1-η 1+ηβ δ 2 r 2 -3 1-η 1+ηβ δ 4
r 4 sin 2θ (94)

• for 0 < r < δ σ ∞ rr (r, θ) = 2 ηα 1+ηα a 1-υ + 4 ηβ 1+ηβ b 3-υ cos 2θ (95) σ ∞ θθ (r, θ) = 2 ηα 1+ηα a 1-υ -4 ηβ 1+ηβ b 3-υ cos 2θ (96) σ ∞ rθ (r, θ) = -4 ηβ 1+ηβ b 3-υ sin 2θ (97) 
In the above formulas, coefficients a and b are given respectively by

a = 1 2 (σ 1 + σ 2 ) and b = 1 2 (σ 1 -σ 2 ) , (98) 
where σ 1,2 are the eigenvalues of tensor σ(w 0 (x 0 )). In addition, constants α and β are respectively given by

α = 1 + υ 1 -υ and β = 3 -υ 1 + υ . ( 99 
)
The jump condition of the stress field σ(w δ ) can be written as [σ(w δ )]ν = 0 ⇒ [σ rr (w δ )] = 0 and [σ rθ (w δ )] = 0 on ∂B δ .

In the same way, the continuity condition of the displacement field w δ implies

[w δ ] = 0 ⇒ [ε θθ (w δ )] = 0 on ∂B δ . (101) 
The Eshelby tensor flux through the boundary of the inclusion is given by

Σ(w δ )ν • ν = 1 2 σ(w δ ) • ε(w δ ) -σ(w δ )ν • (∇w δ ) ν (102) = 1 2 (σ θθ (w δ )ε θθ (w δ ) -σ rr (w δ )ε rr (w δ ) + σ rθ (w δ ) ∂ θ w r δ -∂ r w θ δ .
From the jump and continuity conditions on the boundary ∂B δ given by (100, 101) and considering the constitutive relation ( 60)-( 61) for l = l * , the jump of the Eshelby tensor flux in the normal direction results in (see, for instance, [START_REF] Giusti | Topological sensitivity analysis of inclusion in two-dimensional linear elasticity[END_REF])

[Σ(w δ )]ν • ν = 1 2 ([σ θθ (w δ )]ε θθ (w δ ) -σ rr (w δ )[ε rr (w δ )] (103) + 2(1 -δ)σ rθ (w δ )ε rθ (w δ )) .
Finally, considering (104) in (86) and also formulas (92)-(96) we can calculate the integral on ∂B δ explicitly, which allows to identify function f (δ) = πδ 2 . Then, after calculate the limit δ → 0, we obtain the following result:

Theorem 4.2 The energy shape functional admits for δ → 0 the following topological asymptotic expansion

Π δ (u δ ) = Π(u) + πδ 2 D T (x 0 ) + o(δ 2 ) , (104) 
with the topological derivative D T (x 0 ) given by

D T (x 0 ) = H η σ(u(x 0 )) • ε(u(x 0 )) ∀x 0 ∈ Ω \ ω , ( 105 
)
where u is solution of the variational inequality ( 14)- [START_REF] Khludnev | Analysis of Cracks in Solids[END_REF] in Ω ⊂ R 2 and H η is a forth-order tensor defined as

H η = 1 4 (1 -η) 2 1 + βη 2 1 + β 1 -η I + α -β 1 + αη I ⊗ I . (106) 
Corollary 4.3 Let us consider the contrast η → 0. Thus, the elastic inclusion degenerates to a circular cavity with homogeneous Neumann boundary condition and the tensor H 0 becomes

H 0 = 1 4 (2(1 + β)I + (α -β)I ⊗ I) . (107) 
Corollary 4.4 Let us consider the contrast η → ∞. Thus, the elastic inclusion degenerates to rigid one and the tensor H ∞ takes the form

H ∞ = - 1 4 2 1 + β β I - α -β αβ I ⊗ I . ( 108 
)
Remark 4.5 From equality (78) we observe that the result given by theorem 4.2 represents the topological derivative of the Steklov-Poincaré operator (75).

In addition, since solution u ∈ K ω of the variational inequality ( 14)- [START_REF] Khludnev | Analysis of Cracks in Solids[END_REF] in Ω ⊂ R 2 is a H 1 (Ω γ ) 2 function, then it is convenient to compute the topological derivative from quantities evaluated on the boundary ∂B R . In particular, we have the following representation for the strain tensor ε(u(x 0 )) [START_REF] Sokolowski | Topological derivatives for optimization of plane elasticity contact problems Engineering Analysis with Boundary Elements[END_REF] 

ε 11 + ε 22 = 1 πR 3 ∂B R (u 1 x 1 + u 2 x 2 ) , (109) 
ε 11 -ε 22 = 1 πR 3 ∂B R (1 -9k)(u 1 x 1 -u 2 x 2 ) + 12k R 2 (u 1 x 3 1 -u 2 x 3 2 ) , ( 110 
) 2ε 12 = 1 πR 3 ∂B R (1 + 9k)(u 1 x 2 + u 2 x 1 ) - 12k R 2 (u 1 x 3 2 + u 2 x 3 1 ) . ( 111 
)
where

k = l * + m l * + 3m .
Once the above integrals are evaluated e.g. numerically, then we can use the constitutive relation (60) to compute the stress tensor σ(u(x 0 )). Finally, these results can by used to compute the topological derivative through formula (105).

Approximation of solutions for variational inequalities

We define a variational inequality for the crack problem with a perturbed bilinear form. The bilinear form is defined in the whole domain of integration, it is bounded and coercive on the energy space for the crack problem without any inclusion, and provides the first order topological sensitivity for the solutions of nonlinear elasticity boundary value problem with the nonlinear crack.

Approximation of crack problem in Ω δ

We determine the modified bilinear form as a sum of two terms, as it is for the energy functional, the first term defines the elastic energy in the domain Ω, the second term is a correction term, determined in Section 4.3. The correction term is quite complicated to evaluate, and we provide its explicit form, such a form is actually defined by the formulae in Section 4. 

The derivative b(v, v) of the bilinear form a(δ; v, v) with respect to δ 2 at δ = 0+ is given by the expression

b(v, v) = -2πe v (0) - 2πm l * + 3m σ II δ 1 -σ 12 δ 2 , (113) 
where all the quantities are evaluated for the displacement field v according to formulae in Section 4.3 where we provide the line integrals which defines all terms in (109), ( 110) and ( 111). Hence, we can determine the bilinear form a(δ; v, w) for all v, w, from the equality 2a(δ; v, w) = a(δ; v + w, v + w)a(δ; w, w)a(δ; v, v) .

In the same way the bilinear form b(v, w) is determined from the formula for b(v, v).

The convex set is defined in this case by

K δ = {v ∈ H 1 Γ (Ω δ ) 2 | [v]ν ≥ 0 on γ} . (114) 
Let us consider the following variational inequality which provides a sufficiently precise for our purposes approximation u δ of the solution u(Ω δ ) to crack problem defined in singularly perturbed domain Ω δ ,

u δ ∈ K δ : a(δ; u, v -u) ≥ (F, v -u) Ω δ ∀v ∈ K δ . ( 115 
)
The result obtained is the following, for simplicity we assume that the linear form L(δ; •) is independent of δ.

Theorem 4.6 For δ sufficiently small we have the following expansion of the solution u δ with respect to the parameter δ at 0+,

u δ = u(Ω) + δ 2 q + o(δ 2 ) in H 1 (Ω) 2 , ( 116 
)
where the topological derivative q of the solution u(Ω) to the crack problem is given by the unique solution of the following variational inequality

q ∈ S K (u) = {v ∈ (H 1 Γ (Ω γ )) 2 | [v]
• ν ≥ 0 on Ξ(u) , a(0; u, v) = 0} a(q, vq) + b(u, vq) ≥ 0 ∀v ∈ S K (u) .

(117)

The coincidence set Ξ(u) = {x ∈ γ | [u(x)] • ν(x) = 0} is well defined [?] for any function u ∈ H 1 (Ω) 2 , and u ∈ K is the solution of variational inequality (114) for δ = 0.

For the proof of theorem we refer the reader to [START_REF] Sokolowski | Modelling of topological derivatives for contact problems[END_REF].

For the convenience of the reader we provide the explicite formulae for the terms in b(v, v) defined by (113), we refer to section 4.3 and to [START_REF] Sokolowski | Modelling of topological derivatives for contact problems[END_REF][START_REF] Sokolowski | Topological derivatives for optimization of plane elasticity contact problems Engineering Analysis with Boundary Elements[END_REF] for details. We have

2πe v (0) = π(l * + m) π 2 R 6 Γ R (v 1 x 1 + v 2 x 2 ) ds 2 (118) + m π 2 R 6 Γ R (1 -9k)(v 1 x 1 -v 2 x 2 ) + 12k R 2 (v 1 x 3 1 -v 2 x 3 2 ) ds 2 + m π 2 R 6 Γ R (1 + 9k)(v 1 x 2 + v 2 x 1 ) - 12k R 2 (v 1 x 3 2 + v 2 x 3 1 ) ds 2 , with σ II = m πR 3 Γ R (1 -9k)(v 1 x 1 -v 2 x 2 ) + 12k R 2 (v 1 x 3 1 -v 2 x 3 2 ) ds, σ 12 = m πR 3 Γ R (1 + 9k)(v 1 x 2 + v 2 x 1 ) - 12k R 2 (v 1 x 3 2 + v 2 x 3 1 ) ds,
and

δ 1 = 9k πR 3 Γ R (v 1 x 1 -v 2 x 2 ) - 4 3R 2 (v 1 x 3 1 -v 2 x 3 2 ) ds, δ 2 = 9k πR 3 Γ R (v 1 x 2 + v 2 x 1 ) - 4 3R 2 (v 1 x 3 2 + v 2 x 3 1 ) ds.
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 1 Fig. 1. Domain Ω with rigid inclusion ω
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 2 Fig. 2. Domain Ω with rigid inclusion ω and an elastic inclusion B δ (x 0 ).

Fig. 3 .

 3 Fig. 3. Domain Ω with rigid inclusion ω and an elastic inclusion B δ (x 0 ).

3 .

 3 The values of the symmetric bilinear form a(δ; •, •) are given by the expressiona(δ; v, v) = a(u, u) + δ 2 b(v, v) .
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We need to calculate

which was obtained using the Reynold's transport theorem and the concept of material derivatives of spacial fields [START_REF] Gurtin | An Introduction to Continuum Mechanics[END_REF][START_REF] Sokolowski | Introduction to Shape Optimization -Shape Sensitivity Analysis[END_REF]. Some of the terms in (84) require explanation. Vector V represents the shape change velocity field defined on the disk B R (x 0 ) and such that V = 0 on ∂B R and V = ν on ∂B δ . Thus, ẇδ ∈ W 0 is the material (total) derivative with respect to δ. Finally, the Eshelby energy-momentum tensor Σ takes the form [START_REF] Eshelby | The Elastic Energy-Momentum Tensor[END_REF][START_REF] Gurtin | Configurational Forces as Basic Concept of Continuum Physics[END_REF] Σ(w

Since ẇδ ∈ W 0 and considering that Σ(w δ ) is a free-divergence tensor field (divΣ(w δ ) = 0), the shape derivative of the energy functional becomes

Topological derivatives calculation

By introducing (85) in (57), we have

4.3.1 Topological derivative of the energy functional in three spatial dimensions for a small cavity

In the three spatial dimensions we consider the particular case associated to the energy change due to the nucleation of a spherical cavity. Thus, for the convenience of the reader we recall here the results derived in [START_REF] Garreau | The Topological Asymptotic for PDE Systems: The Elasticity Case[END_REF][START_REF] Hlaváček | On topological derivatives for elastic solids with uncertain input data[END_REF][START_REF] Novotny | Topological Sensitivity Analysis for Three-dimensional Linear Elasticity Problem[END_REF] for the three dimensional elasticity case.