
HAL Id: hal-00335321
https://hal.science/hal-00335321v1

Submitted on 29 Oct 2008 (v1), last revised 29 Oct 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Precession of a planet with a satellite
G. Boué, J. Laskar

To cite this version:
G. Boué, J. Laskar. Precession of a planet with a satellite. Icarus, 2006, 185, pp.312-330.
�10.1016/J.ICARUS.2006.07.019�. �hal-00335321v1�

https://hal.science/hal-00335321v1
https://hal.archives-ouvertes.fr


Precession of a planet with a satellite.
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Abstract

The contribution of a satellite in the precession motion of
the axis of an oblate planet has been previously studied in
the approximation of a distant satellite, or in the approxi-
mation of a very close satellite. Here we study the general
problem for an arbitrary semimajor axis for the satellite,
without performing the usual gyroscopic approximation.
We present precessional equations valid in a very general
setting, and we demonstrate that this problem, after the
classical expansion of the satellite potential, and averag-
ing over the fast angles, is indeed integrable. We provide
here the complete solution of this problem by quadrature,
as well as some explicit approximate solutions. We also
demonstrate that after averaging over the nutation mo-
tion, the pole of the spin axis, the pole of the satellite
orbit, and the pole of the planet orbit remain coplanar
with the total angular momentum and precess uniformly
around the total angular momentum.

Keywords : CELESTIAL MECHANICS, PLANETARY
DYNAMICS, ROTATIONAL DYNAMICS, SATEL-
LITES DYNAMICS, MOON

1 Introduction

We are considering here a relatively simple system com-
posed of a central star, a planet orbiting the star, and a
satellite orbiting the planet. We increase the complexity
of the problem by considering that our planet is a solid
non-spherical body. The most obvious system of this kind
is the Sun-Earth-Moon system, but some triple star sys-
tems will fit in our study as well. We focus here on the
precessional motion of the spin axis of the planet, and in
a lesser degree on the precessional motion of the orbital
plane of the satellite and of the planet.

The computation of the precession of the spin axis of

1E-mail address: laskar@imcce.fr

a planet in presence of a distant satellite is well known
(see Murray, 1983). In this approximation, the precession
torque, and thus the precession frequency, increases as
1/r3 when the distance r of the satellite to the planet de-
creases. It is thus clear that these formulas are no longer
valid for a close satellite.

The understanding of the contribution of a close satel-
lite was first motivated by the study of the Martian satel-
lites, Phobos and Deimos. Goldreich (1965) investigated
first the interaction of a close satellite with a precessing
planet, and demonstrated that a close satellite will fol-
low the planet with a nearly constant inclination to the
equator. This work was followed by the contributions of
(Kinoshita, 1993) who analyzed the motion of the Ura-
nian satellites under the secular change of the obliquity
of the planet, and (Efroimsky, 2004) who consider non
uniform precessions.

In his beautiful study of the Lunar orbit, (Goldreich,
1966) extended his work to the Sun-Earth-Moon system,
but assumed that the planet orbit is fixed and circular
orbits for both satellite and planet. This work was ex-
tended by (Touma and Wisdom, 1994a) using a non aver-
aged Hamiltonian, and equations of motion expressed in
the mobile frame linked to the planet.

Explicit analytical expressions for the contribution of
a close satellite to the precessional motion of a planet
were derived by Ward (1975), using the equations of Gol-
dreich (1966), with zero eccentricities, zero inclinations,
and the gyroscopic approximation (i.e. one assumes that
the axis of rotation is the axis of figure of the planet).
These computations were improved by Tremaine (1991)
who considered the inclinations, and corrected the mass
factors of Goldreich (1966).

In section 2, we consider the general problem with an
oblate planet and a satellite. Contrarily to many of the
previous study, we do not make the gyroscopic approxi-
mation, thus allowing for an axis of figure different from
the axis of rotation. Nevertheless, in the present work,
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we simplify the equations of motion by averaging over the
rotational motion of the planet, providing some preces-
sion (and nutation) equations that can be used in a very
general setting.

In a second stage (section 3), we derive the secular equa-
tions that are obtained by averaging over the orbital mo-
tion of the satellite and the planet, and over the argument
of perihelion of the satellite. We obtain a set of secular
equations that describe in a closed way, the evolution of
the spin of the planet, the orbital plane of the planet, and
the orbital plane of the satellite in a very general setting.

We then demonstrate that, quite surprisingly, this dif-
ferential system of order 9 with 7 integrals is integrable,
and can be decomposed as a relative periodic motion (the
nutation) and a general precessional motion. The two pe-
riods can be derived by quadratures. We obtain thus some
general formulas (although not explicit) that provide the
precession formulas for the axis of the planet, in all cases,
for a distant or a close satellite, but also in the interme-
diate regime where none of the previous approximations
is valid (section 4). In this section, we also demonstrate
that after averaging over the nutation motion, the pole
of the spin axis, the pole of the satellite orbit, and the
pole of the planet orbit remain coplanar with the total
angular momentum (section 4.3). This is in some sense a
generalization of the Cassini Laws.

After some discussion of numerical examples (section
5), in section 6, we proceed to an additional approxima-
tion that allows to obtain a completely explicit solution of
this problem, for arbitrary values of the eccentricities, in-
clination, and semi major axis of the planet and satellite,
whenever the averaging is possible. We can then compare
this approximation with our rigorous expression, and with
the results of non averaged numerical integrations in dif-
ferent settings. In particular, we use as a test model a
Lunar motion where the Moon distance to the Earth is
varied from the surface of the Earth to some limit distance
where, due to the solar perturbation, the Moon escapes,
and no longer remains a satellite of the Earth. We make
also comparison of our results with the classical compu-
tation in the case of a distant satellite, and the previous
expressions of Ward (1975) and Tremaine (1991), for close
satellites (section 7).

2 Fundamental equations

We are considering here a three body problem with a cen-
tral star, an oblate planet, and a satellite orbiting the
planet, with respective barycentric coordinates u0,u1,u2

and masses m0,m1,m2. The full Hamiltonian of this

m1 

m0 

m2 

r2 
r1 

r02 

r01 
O 

Figure 1: Jacobi coordinates.

problem can be expressed as

H = HN +HE +HI (1)

where HN is the Hamiltonian of three mass points, HE

describes the free rigid body motion and HI contains the
gravitational interaction between the bulge and the other
two mass points. In such a satellite problem, the orbital
Hamiltonian is naturally expressed in Jacobi coordinates,





r0

r1

r2



 =





1 0 0
−1 1 − δ δ
0 −1 1









u0

u1

u2



 (2)

where δ = m2/(m1 +m2). With this choice, r0 = u0 is
the barycentric position vector of the Sun, r1 the position
vector of the planet-satellite barycenter relative to the
Sun, and r2 the position vector of the satellite relative to
the planet. The symplectic structure is preserved using
the conjugate momentum





r̃0

r̃1

r̃2



 =





1 1 1
0 1 1
0 δ 1 − δ









ũ0

ũ1

ũ2



 (3)

where ũi = miu̇i (i = 0, 2) are the barycentric momen-
tum. In these coordinates, the Newtonian interaction is

HN (r, r̃) =
r̃2
1

2β1
+

r̃2
2

2β2
− µ2β2

r2
− Gm0m1

r01
− Gm0m2

r02
(4)

where µ2 = G(m1+m2), β1 = M12m0/(M12+m0), β2 =
m1m2/(m1 + m2) are the reduced masses with M12 =
m1 + m2, and r01, r02 are the modulus of the position
vectors r01, r02 from the Sun to the planet and satellite,
expressed as

r01 = r1 − δ r2; r02 = r1 + (1 − δ)r2. (5)

The Hamiltonian of the free motion of a rigid body is

HE =
1

2
tGI−1G (6)
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where G is the angular momentum of the rigid body and
I its inertia tensor. Let (I,J ,K) be the principal frame
where I is diagonal (I = diag(A,B,C)). For sake of
clarity, we present here the case of an axisymmetric planet
(A = B). The general case can be treated in the same way
providing some additional averaging, and will be outlined
in section 2.6. In the present case, we have then,

I−1 =





1/A 0 0
0 1/A 0
0 0 1/C





( , ,K)

=
1

A
Id+

(

1

C
− 1

A

)

KtK

(7)
which gives

HE =
G2

2A
+

(

1

C
− 1

A

)

(K · G)2

2
(8)

where A and C are the moments of inertia of the planet.

The interaction between the bulge and the other two
mass points is expanded in terms of Legendre polynomials
as

HI = −G(C −A)m0

2r301

[

1 − 3

(

r01 · K
r01

)2
]

−

G(C −A)m2

2r32

[

1 − 3

(

r2 · K
r2

)2
]

(9)

2.1 Equations of motion

The Hamiltonian is written in terms of non canonical co-
ordinates (r, r̃,K,G). The equations of motion are

ẏ = {H, y}
= −B(y)∇yH

where y is any kind of coordinate and B(y) the ma-
trix of Poisson brackets {yi, yj}1. For the components
of rk and r̃k, the standard symplectic structure holds,
{rki, r̃kj} = −δij . For (K,G), the Euler-Poisson struc-
ture holds, {Ki,Kj} = 0, {Ki,Gj} = −εijkKk and
{Gi,Gj} = −εijkGk (Borisov and Mamaev, 2005, see
also Dullin, 2004)2. All other fundamental Poisson brack-

1With position (qi) and associated momentum (pi), we define

the Poisson bracket as {f, g} =
P

i
∂f
∂pi

∂g
∂qi

− ∂f
∂qi

∂g
∂pi

.
2The Levi-Civita symbol εijk is zero if two indices i, j, k are

equal, and is the signature of the permutation (i, j, k) otherwise.

ets are identically equal to zero. B(r, r̃,K,G) is then

B(y) =
























0 −I 0 0
I 0 0 0

0 −K3 K2

0 0 0 K3 0 −K1

−K2 K1 0
0 −K3 K2 0 −G3 G2

0 0 K3 0 −K1 G3 0 −G1

−K2 K1 0 −G2 G1 0

























(10)
And the equations of motion are

ṙ = ∇̃rH K̇ = ∇GH ∧ K
˙̃r = −∇rH Ġ = ∇KH ∧ K + ∇GH ∧ G (11)

Now, the advantage of taking K and G as coordinates
to define the orientation of the rigid body is obvious : the
study can be done in an heliocentric frame and equations
in K and G look like equations of precession.

2.2 First simplification

We have assumed that the rigid body is axisymmetric.
This is why I and J do not appear in the equations of
motion (11). Because of this symmetry, the rotational
angle of the planet l (see Fig.2) will not appear as well in
the Hamiltonian. It is easy to verify that G·K is constant
and thus any function h(G · K) in the Hamiltonian will
not contribute to the equations of motion (11).

The complete Hamiltonian can then be expressed on
the form

H = Ha(r, r̃) + Hb(r,K,G) (12)

with

Ha(r, r̃) = HN − G(C −A)

2

(

m0

r301
+
m2

r32

)

(13)

and

Hb(r,K,G) =
G2

2A
+ (u1 · K)2 + (u2 · K)2 (14)

where

u1 =

[

3G(C −A)m0

2r501

]
1
2

r01 ;

u2 =

[

3G(C −A)m2

2r52

]
1
2

r2 .

(15)

As a consequence, ∇GH and G are collinear and the
equation of motion for (K,G) in (11) simplifies to

K̇ = G/A ∧ K ,
Ġ = 2(u1 · K)u1 ∧ K + 2(u2 · K)u2 ∧ K .

(16)
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2.3 Averaging
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Figure 2: Definition of Andoyer’s coordinates. (i, j, k) is a fixed
reference frame, and (I, J, K) the reference frame of the principal
axis of inertia of the solid body. The Andoyer action variables are
(G, H = G · k, L = G · K) with the associated angles (g, h, l) (An-
doyer, 1923).

The vector K precesses around the unit vector w =
G/G with nearly the rotation rate of the planet G/A.
The unit vector n = w ∧ K/ ‖w ∧ K‖, is thus rotating
in the orthogonal plane to w (Fig.2). We want now to
average over this fast motion. If we use Andoyer variables
(G,H,L, g, h, l) (Fig.2), in eq. (16), K do not depend on
l and we have

K(G,H,L, g, h) = (cos J)w + (sinJ)n ∧ w (17)

with
cos J = L/G (18)

In the fixed reference frame (i, j,k), the coordinates of w

are

w(i,j,k) =





sin I sinh
− sin I cosh

cos I



 (19)

with cos I = H/G. Moreover, only n depends on the fast

angle g with an averaged value

〈n〉g = 0 . (20)

In order to average Hb over g, we write in matrix form,
for i = 1, 2

(ui · K)2 = tuiK
tKui (21)

All terms of degree 1 in n will average to 0. Using (17),
and after a circular permutation in the triple product, we
have

〈(ui · K)2〉g = (ui · w)2 cos2 J + 〈(n· (w ∧ ui))
2〉g sin2 J

(22)
We thus need to compute the average 〈ntn〉g. In the

intermediary basis (w,w′,w′′), we have

n(w,w′,w′′) =





0
cos g
sin g



 (23)

and thus

〈ntn〉g =
1

2
(Id− wtw) (24)

The wtw part will cancel, and remains only

〈(ui · K)2〉g = (ui · w)2 cos2 J +
1

2
(ui ∧ w)2 sin2 J

=
u2
i

2
sin2 J + (ui · w)2(1 − 3

2
sin2 J) .

(25)

The averaged Hamiltonian 〈Hb〉g is thus

〈Hb〉g =
G2

2A
+
∑

i=1,2

u2
i

2
sin2 J+(ui·w)2(1− 3

2
sin2 J) (26)

As 〈Hb〉g does not depend on g and l, G and L are
constant, and so is J , as cos J = L/G. As in section 2.1,
we have {wi, wj} = −ǫijkwk/G, and the equations in w

become thus

ẇ =
1

G
∇w〈H〉g ∧ w , (27)

that is

ẇ =
2 − 3 sin2 J

G
((u1 ·w)u1 ∧w+(u2 ·w)u2 ∧w) . (28)

Remark. We have not proceeded here to the gyro-
scopic approximation that consists to assume that the axis
of figure (K) is the same as the angular momentum axis
(w), but we have simply averaged the Hamiltonian over
the fast rotation angle g. Although for a fast rotating
(and non rigid) planet, the angle J is small (J = 10−7

radians for the Earth), we prefer the present formulation
that is less confusing. One should nevertheless notice that
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if the terms of order sin2 J are neglected, the rotational
Hamiltonian Hb (26) becomes

H1 =
G2

2A
+ (u1 · w)2 + (u2 · w)2 (29)

which corresponds to the gyroscopic approximation. It
should be noted that usually, in the gyroscopic approxi-
mation, one merely replaces K by w, which corresponds
to neglect terms in O(sinJ). Here, by using the aver-
aged equations, we show that we obtain in fact a better
approximation, as H1 = Hb +O(sin2 J).

2.4 Hamiltonian in (r, r̃,w)

We can now gather the parts of the Hamiltonian that will
drive the evolution of the orbital variables (r, r̃) and spin
axis (w). From now on, we will call spin axis the axis
of the rotational angular momentum of the planet, with
unit vector w. We have

H(r, r̃,w) = H0 + U1 + U2 + U01 (30)

with

H0 =
r̃2
1

2β1
+

r̃2
2

2β2
− µ1β1

r1
− µ2β2

r2
,

U1 =
µ1β1

r1
− Gm0m1

r01
− Gm0m2

r02
,

U2 = −C1m2

(

1

r32
− 3

(r2 · w)2

r52

)

,

U01 = −C1m0

(

1

r301
− 3

(r01 · w)2

r501

)

,

(31)

with

C1 =
G(C −A)

2
(1 − 3

2
sin2 J) . (32)

2.5 Averaging over the orbital motion

The unperturbed part H0 is the Hamiltonian of two dis-
tinct Keplerian problems and

H0 = −µ1β1

2a1
− µ2β2

2a2
, (33)

while U1 + U2 + U01 is a perturbation of this Keplerian
problem. We will now average the Hamiltonian over
the mean anomalies of the orbital motion of the planet
and the satellite, using the relations detailed in annex 1.
We will use also the orthonormal basis (w1,w

′
1,w

′′
1 ) and

(w2,w
′
2,w

′′
2 ) where w′

i is in the direction of the perihelion
of the orbit defined by ri, and wi is the unit vector in the
direction of the orbital angular momentum Gi = βi ri∧ṙi.

By averaging over the mean anomaly M2 of the satellite
motion, we have

〈U2〉M2
=

C1m2

2a3
2(1 − e22)

3/2
(1 − 3(w · w2)

2) . (34)

In the expansion of U01 in terms of ρ = r2/r1 and δ,
we will neglect all terms of order higher than ρ2. We will
thus neglect terms of order δρ2, δ2ρ2, .... We have thus

1

r301
≈ 1

r31

(

1 + 3δ
r1 · r2

r21

)

(35)

and

(r01 · w)2

r501
≈ (r1 · w)2

r51

−2δ
(r1 · w)(r2 · w)

r51
+ 5δ

(r1 · r2)(r1 · w)2

r71

(36)

In the computation of 〈U01〉M1,M2
(see annex 1), all

the terms of order δ are in fact of order at least e1e2δ ρ.
These terms are usually very small, but in order to allow
for large eccentricities, we will average over the argument
of perihelion of the satellite ω2. If we notice that

〈r2〉M2,ω2
= 0 (37)

then we see that all terms in δ disappear from
〈U01〉M1,M2,ω2

and we are then left with

〈U01〉M1,M2,ω2
≈ C1m0

2a3
1(1 − e21)

3/2

(

1 − 3(w · w1)
2
)

. (38)

After expanding up to second order in ρ, we have

U1 ≈ Gm0β2

2

(

r22
r31

− 3
(r1 · r2)

2

r51

)

(39)

Averaging over M2 leads to

〈U1〉M2
= −Gm0β2

4

a2
2

r31
(

1 − 3
(r1 · w2)

2

r21
− 3 e22[1 +

(r1 · w′′
2 )2

r21
− 4

(r1 · w′
2)

2

r21
]

)

(40)
and after averaging over M1

〈U1〉M1,M2
=

Gm0β2

8

a2
2

a3
1(1 − e21)

3/2

(

1 − 3(w1 · w2)
2 − 3e22(1 + (w1 · w′′

2 )2 − 4(w1 · w′
2)

2)
)

(41)
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We will also average over the argument of perihelion ω2

of the satellite. We have

〈(w1 · w′
2)

2〉ω2
= 〈(w1 · w′′

2 )2〉ω2
=

1

2

(

1 − (w1 · w2)
2
)

,

(42)
and thus

〈U1〉M1,M2,ω2
=

Gm0β2a
2
2(1 + 3

2e
2
2)

8a3
1(1 − e21)

3/2

(

1 − 3(w1 · w2)
2
)

(43)
With these approximations, in the averaged Hamilto-

nian, the semimajor axis of the planet and satellite are
constant, as well as their eccentricity, while their orbital
plane will precess and change its inclination. If we do not
consider the constant terms in the averaged Hamiltonian,
we are left with a Hamiltonian Hs that will describe the
evolution of (w,w1,w2)

Hs = −a

2
(w · w1)

2 − b

2
(w · w2)

2 − c

2
(w1 · w2)

2 (44)

with

a =
3C1m0

a3
1(1 − e21)

3/2

b =
3C1m2

a3
2(1 − e22)

3/2

c =
3Gm0β2a

2
2

4a3
1(1 − e21)

3/2
(1 +

3

2
e22)

(45)

2.6 Non axisymmetric case (A 6= B)

For sake of simplicity, we have presented above the case
of an axisymmetric planet (A = B). In fact, the general
case can be treated in the same way if we average also
over the Andoyer rotational angle l. Indeed, for any unit
vector u, the potential generated at r = ru by the solid
body is

V = − G
2r3

[(B + C − 2A)

+3(A−B)(u · J)2 − 3(C −A)(u · K)2]

, (46)

with the average over l, g

〈(u · J)2〉g,l =
u2

2
(1− sin2 J

2
)+

(u · w)2

2

(

3

2
sin2 J − 1

)

.

(47)
It is then easy to show that the only change induced

in the averaged equations (28) is to replace (C − A) by
(C−A/2−B/2) in the expression of u1 and u2 (Eq.15). In
the same way, the only change in the secular Hamiltonian
Hs (44) will be to replace C1 (32) by

C′
1 =

G(2C −A−B)

4
(1 − 3

2
sin2 J) , (48)

and as well in the expressions of a, b, c (45).

3 Secular equations

The Hamiltonian (44) depends only on the unit vectors
(w,w1,w2) of the rotational angular momentum of the
planet G, and of the orbital angular momentum G1,G2

of the planet and of the satellite. The equations of motion
can be derived easily as in section 2.1, and we have

Ġ = ∇GHs ∧ G ,

Ġ1 = ∇G1
Hs ∧ G1 ,

Ġ2 = ∇G2
Hs ∧ G2 .

(49)

As G · Ġ = G1 · Ġ1 = G2 · Ġ2 = 0, the norms γ, β, α
of G,G1,G2 are constant (γ = G), and we obtain the
equations in w,w1,w2

ẇ =
1

γ
∇wHs ∧ w ,

ẇ1 =
1

β
∇w1

Hs ∧ w1 ,

ẇ2 =
1

α
∇w2

Hs ∧ w2 .

(50)

That is

ẇ = − a

γ
(w1 · w)w1 ∧ w −b

γ
(w2 · w)w2 ∧ w ,

ẇ1 = − c

β
(w2 · w1)w2 ∧ w1 − a

β
(w · w1)w ∧ w1 ,

ẇ2 = − b

α
(w · w2)w ∧ w2 − c

α
(w1 · w2)w1 ∧ w2 .

(51)
These equations express the fact that each angular mo-

mentum is precessing in space around the other two. This
system of equations is a priori of order 9 but we will show
that it is in fact integrable.

3.1 Integrals

We have the integrals

‖w‖ = 1

‖w1‖ = 1

‖w2‖ = 1

−a(w · w1)
2 − b(w · w2)

2 − c(w1 · w2)
2 = 2Hs

γw + βw1 + αw2 = W 0 = Cte

(52)
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where W 0 is the total angular momentum of the system.
We have 7 independent integrals in our system of order 9.
We are thus missing one integral for a complete integra-
tion of the system.

3.2 Single planet case

When there is no satellite, the equations (51) simplifies
to the system of order 6

ẇ = − a

γ
(w1 · w)w1 ∧ w ,

ẇ1 = − a

β
(w1 · w)w ∧ w1 ,

(53)

With the 5 independent integrals given by

‖w‖ = 1

‖w1‖ = 1

γw + βw1 = W 0 = Cte .

(54)

As x = w · w1 is constant, the system is trivially inte-
grable. We have indeed

ẇ = Ω0w0 ∧ w , ẇ1 = Ω0w0 ∧ w1 ; (55)

where w0 = W 0/ ‖W 0‖ is the unit vector in the direction
of the total angular momentum W 0, and

Ω0 = −ax

γ

√

1 +
γ2

β2 + 2
γ

β
x . (56)

Both vectors w,w1 thus precess uniformly around the
total angular momentum direction w0 with constant pre-
cession rate Ω0.

Remark. In the same way, the system (51) is also
trivially integrable when the planet is reduced to a point
mass.

3.3 Reduction

The general case (51) is more difficult, and in order to re-
duce the order of the differential system, we will consider
the relative position of the vectors w,w1,w2, and forget
about their absolute position in space. More precisely, let

x = w · w1 ; y = w · w2 ; z = w1 · w2 . (57)

and

v = (w,w1,w2) = w · (w1 ∧ w2) . (58)

The evolution of x, y, z, v is then given by the differen-
tial equations

ẋ =

(

c

β
z − b

γ
y

)

v

ẏ =

(

a

γ
x− c

α
z

)

v

ż =

(

b

α
y − a

β
x

)

v

(59)

where the expression of v is given by the Gram determi-
nant

v2 =

∣

∣

∣

∣

∣

∣

1 x y
x 1 z
y z 1

∣

∣

∣

∣

∣

∣

= 1 − x2 − y2 − z2 + 2xyz . (60)

We still have the two integrals

ax2 + by2 + cz2 = −2Hs

γβx+ γαy + βαz = K ,
(61)

the second being easily obtained as 2K = W 2
0 − (γ2 +

β2 + α2). The motion in (x, y, z) is thus integrable, and
limited to the interior of the berlingot3 shaped surface B
determined by v2(x, y, z) = 0. We can also notice that

v̇ = −
(

c

β
z − b

γ
y

)

(x− yz)

−
(

a

γ
x− c

α
z

)

(y − xz)

−
(

b

α
y − a

β
x

)

(z − xy) ,

(62)

so v̇ is a function of only (x, y, z).

3.3.1 Remark

It can be noticed that the line of initial condition with
direction vector (1/αa, 1/βb, 1/γc) is a line of fixed points
for the differential system (59).

3.4 Integration

The motion in the (x, y, z) space evolves on elliptic curves,
intersections of the ellipsoid of energy with the plane of
angular momentum (61). Indeed, with a change of scale
and a change of time, we can actually integrate this sys-
tem. Indeed, let

X =
√

ax ; Y =
√

by ; Z =
√

cz ; (63)

3A berlingot is a famous tetrahedron hard candy with rounded
edges.
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Figure 3: The surface v2(x, y, z) = 0 . As v2 ≥ 0, the allowed space
is the interior of this berlingot shaped volume.

and
dτ = vdt (64)

The system (59) can then be written as

d

dτ





X
Y
Z



 = Ω ∧





X
Y
Z



 (65)

with

Ω =

(√
bc

α
,

√
ca

β
,

√
ab

γ

)

. (66)

We have thus reduced the problem to a simple rotation
around the fixed vector Ω, with angular velocity ω = ‖Ω‖.

Remark. In the new variables, with V = (X,Y, Z),
the integrals (61) are expressed as

V 2 = −2Hs ; V · Ω =

√
abc

γβα
K . (67)

The solution is expressed in terms of τ . If the volume
v = (w,w1,w2) does not vanish, the relation with the
usual time t is obtained through

t =

∫ τ

0

dτ

v(τ)
. (68)

3.4.1 Remark

With M = (x, y, z), we have

v̇ =
1

2

dM

dτ
· ∇M v2 . (69)

As dM/dτ is a tangent vector to the trajectory, one
can see that, for a point on the berlingot B (i.e. v = 0),
v̇ = 0 is equivalent to the tangency of the trajectory with
the berlingot B.

3.4.2 Special solutions

It is easy to see that the sphere B(0,
√

3/2) centered on

the origin, with radius
√

3/2, is included in the interior
of the berlingot B. From the expression of the integral of
energy (61), one can deduces that for any initial condition
(x, y, z) inside a sphere B(0,ρ0), with

ρ0 <

√
3

2

√

min(a, b, c)

a + b + c
, (70)

the motion will evolve on an ellipse in the (x, y, z) space,
that remains included in B(0,

√
3/2). We have thus a lower

bound for v2 (v2 > v2
0 > 0, with v0 > 0), and, with a

positive orientation for our initial conditions (w,w1,w2),
the volume v is bounded from below (v > v0 > 0). The
time t is a monotonic function of τ and τ goes to infinity
as t goes to infinity. The motion in the (X,Y, Z) space is
a circle described uniformly with τ with period Tτ . In the
(x, y, z) space, the motion will thus be on an ellipse with
the same period Tτ . The motion with respect to time will
still be periodic, but with a period T given by

T =

∫ Tτ

0

dτ

v(τ)
. (71)

Indeed,

t+ T =

∫ τ

0

dτ

v(τ)
+

∫ Tτ

0

dτ

v(τ)

=

∫ τ

0

dτ

v(τ)
+

∫ τ+Tτ

τ

dτ

v(τ)

=

∫ τ+Tτ

0

dτ

v(τ)

(72)

and, as for y, z, we have x(t + T ) = x(τ + Tτ ) = x(τ) =
x(t). These solutions, with non vanishing volume will
be called special solutions. Among them, we have the
singular solution for which x = y = z = 0 at the origin.
This solution is a fixed point in the (x, y, z) space, and
we have for all time v = 1. In this solution, the three
angular momentum vectors w,w1,w2 remain orthogonal
for all time, and all torques vanish.

One can also notice that for these special solutions, the
average volume v = (w,w1,w2) is not zero. Indeed for
the present choice of orientation,

< v >=
1

T

∫ T

0

v(t)dt =
1

T

∫ Tτ

0

dτ =
Tτ

T
> 0 (73)
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τ+ τ฀

v2 > 0

Figure 4: The shaded area correspond to the region where v2 > 0,
inside the berlingot B. The orbit in τ intersects the berlingot B in
τ+ and τ−.

3.4.3 General solutions

In fact, in most cases of astronomical importance, the
angular momentum vectors are far from orthogonal, and
planar configuration will occur, with a cancellation of the
volume v. We will call these solutions the general solu-
tions. In such a solution, an orbit of the equations in τ ,
starting from inside B, will intersect B in positive time at
τ+, and in negative time at τ− (Fig.4). Starting at τ = 0
(and t = 0) and with a positive volume v (by convention),
the orbit in τ is a uniform rotation in (X,Y, Z), until the
orbit reaches B at time t+

t+ =

∫ τ+

0

dτ

|v(τ)| . (74)

As the volume v = (w,w1,w2) is a smooth function of t,
if v̇ 6= 0, the volume becomes then negative, and

t = t+ −
∫ τ

τ+

dτ

|v(τ)| . (75)

until the orbit bounces again on B at τ− at time

t− = t+ −
∫ τ−

τ+

dτ

|v(τ)| . (76)

We will reach again the initial point at t = T for τ = 0
such that

T = t− +

∫ 0

τ−

dτ

|v(τ)| ; (77)

The motion of (x, y, z) is periodic in t, with period T

T = 2

∫ τ+

τ−

dτ

|v(τ)| . (78)

An important question that arise is the convergence of the
integral

t+ =

∫ τ+

0

dτ

|v(τ)| . (79)

In the vicinity of τ+, as v(τ+) = 0, we have

v2(τ) = 2v
dv

dτ
(ξ)(τ − τ+) , (80)

with ξ ∈]τ, τ+[, that is, as dτ = vdt,

v2(τ) = 2
dv

dt
(A)(τ − τ+) (81)

where A(x, y, z) is a point in the vicinity of A+, different
from A+ (the intersection point of the orbit with B). We
have thus, in the vicinity of τ+,

v2(τ) ≈ 2v̇(A+)(τ − τ+) (82)

where v̇(A+) 6= 0. Thus v(τ) ≈
√

2v̇(A+)(τ − τ+), and
thus the above integral converges. The point A+ is thus
reached in finite time.

Remark. For a general solution, as after one period
T , τ(t+ T ) = τ(t), we have then

< v >=
1

T

∫ T

0

v(t)dt =
τ(T ) − τ(0)

T
= 0 (83)

and thus, the average volume v = (w,w1,w2) over one
period T is zero.

3.4.4 Tangency case and Cassini states

We have not yet consider the tangency case, when the
orbit in (x, y, z) becomes tangent to the berlingot B. At
the tangency point P0, we have

v = 0 ; v̇ = 0 . (84)

P0 is thus a fixed point. We will call these critical orbits
’Cassini states’, (Colombo 1966, Peale, 1969, Ward, 1975)
where the three vectors w,w1,w2 remain in a plane that
precess in time. On the other hand, an orbit starting with
initial condition inside (strictly) B will thus never reach
the surface B with v̇ = 0. Indeed, in the tangency case,
we have v̇(A+) = 0, and thus

v2(τ) = O((τ − τ+)2) (85)

and the integral is divergent. This is expected, as the
tangency point is an equilibrium. It cannot be reached in
finite time.
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3.5 Relative solution

In the variables V = (X,Y, Z), τ , the motion is a simple
rotation around Ω (66) with angular velocity ω = ‖Ω‖.
We have thus

V (τ) =
V 0 · Ω
ω2

Ω+

+

(

V 0 −
V 0 · Ω
ω2

Ω

)

cosωτ +
Ω ∧ V 0

ω
sinωτ

(86)

from which we obtain easily (x, y, z) and v2.
x(τ), y(τ), z(τ) are of degree 1 in cos(ωτ) and sin(ωτ).
Thus v2(τ) is a polynomial expression of total degree 3
in cos(ωτ), sin(ωτ).

v2(τ) = a0 + a1 sin(ωτ) + a2 sin2(ωτ) + a3 sin3(ωτ)
− cos(ωτ)[b0 + b1 sin(ωτ) + b2 sin2(ωτ)]

(87)
The solutions of v2(τ) = 0 are obtained by the resolution
of the polynomial equation of degree 6 in φ = sin(ωτ)

(a0+a1φ+a2φ
2+a3φ

3)2 = (1−φ2)[b0+b1φ+b2φ
2]2 . (88)

For each real solution φ0 of (88) in the interval [−1,+1],
τ+
0 = arcsin(φ0)/ω or τ−0 = (π − arcsin(φ0))/ω will be a

solution of v2(τ) = 0. In the non tangency case, τ− will
be the largest negative solution, while τ+ is the smallest
positive solution. The period T (and ω = 2π/T ) can then
be computed through (78).

4 Global solution

We assume here that the vectors (w,w1,w2) are non pla-
nar (v 6= 0). Let W be the matrix (w,w1,w2) and V the
Gram matrix of the basis (w,w1,w2)

V =





1 x y
x 1 z
y z 1



 , (89)

Using the expression of the vector product in the basis
(w,w1,w2) (see Annex 2), one can transform the system
(51) as

Ẇ = WB (90)

where
B = vV −1A (91)

is a matrix depending only on (x, y, z). Indeed

A =







0 cz
β − cz

α

−by
γ 0 by

α
ax
γ −ax

β 0






(92)

and

V −1 =
1

v2





1 − z2 yz − x xz − y
yz − x 1 − y2 xy − z
xz − y xy − z 1 − x2



 . (93)

As (x, y, z) are periodic functions of period T , the sys-
tem (90) is a linear differential system with periodic co-
efficients of period T . If W(t) is a solution of (90), then
W(t+T ) is also a solution. Following Floquet theory, one
can deduce that

RT (t) = W(t+ T )W(t)−1 (94)

is constant with t. Indeed we have then

W(t+ T ) = RT (t)W(t) (95)

and

Ẇ(t+ T ) = W(t+ T )B(t)
= RT (t)W(t)B(t)
= ṘT (t)W(t) + RT (t)Ẇ(t)
= ṘT (t)W(t) + RT (t)W(t)B(t) .

(96)

Thus ṘT (t) = 0. RT is thus a constant matrix. As
the Gram matrix V of the vectors (w(t),w1(t),w2(t)) is
conserved over one period T , the norm is conserved by RT
(see Annex 2), and R is an isometry of R

3. Moreover, this
isometry is positive, as the volume v is conserved over a
full period T (see section 3.4). The invariance of the total
angular momentum W 0 (52) also implies that the vector
(γ, β, α) is invariant by RT . RT is thus a rotation matrix
of axis W 0 and angle θT . Let us denote R(t) the rotation
of axis W 0 and angle tθT /T (i.e. R(T ) = RT ). Let

W̃(t) = R−1(t)W(t) . (97)

Proposition 1. W̃(t) is periodic with period T .
Indeed, as for all t, t′, R(t+ t′) = R(t)R(t′),

W̃(t+ T ) = R−1(t+ T )W(t+ T )
= R−1(t)R−1(T )W(t+ T )
= R−1(t)W(t)
= W̃(t) .

(98)

The complete solution W(t) can thus be expressed on
the form

W(t) = R(t)W̃(t) , (99)

where W̃(t) is periodic with period T , and R(t) a rotation
of axis W 0 and angle tθT /T . The motion has thus two
periods : the (usually) short period T and the precession
period

T ′ =
2π

θT
T . (100)
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Remark. As R(t) is a rotation, we have det(W̃(t)) =
det(W(t)), and thus, from (83), for a general solution,

∫ T

0

det(W̃(t))dt = 0 . (101)

The three unit vectors w̃, w̃1, w̃2, defined as the col-
umn vectors of W̃(t) have thus an averaged volume equal
to zero over one period T . As these vectors describe loops
of period T , this result can be interpreted by stating that
the origin and center of the three loops generated by w̃,
w̃1, and w̃2 are nearly coplanar. We have indeed demon-
strated that the averaged value < (w̃, w̃1, w̃2) > is null,
and not that the determinant of the averaged vectors
(< w̃ >,< w̃1 >,< w̃2 >) is null, which is the condi-
tion stating that the centers of the loops generated by
w̃, w̃1, w̃2 are coplanar with the origin. We will see in
section 4.3 that this is indeed the case.

4.1 Complete solution

Once the form of the general solution (99) is obtained, we
have an elementary way to compute the precession pe-
riod T ′. Indeed, one can first compute the short period T
through the quadratures of section 3.4, and then numeri-
cally integrate the full system of equation (51) over a full
period T . The angle θT is then the angle of the rotation

R(T ) = W(t+ T )W(t)−1 (102)

and the precession period is obtained through (100). As
the solution W(t) is known over the interval of length T ,
[t0, t0 + T ], the T-periodic function W̃(t) is also known
over the full period [t0, t0 + T ], and the solution for all
time is obtained through (99), as for all integer n,

W(t+ nT ) = R(t+ nT )W̃(t) . (103)

4.2 Computation of the precession period
by quadratures

In the previous section, we have seen that the precession
period can be obtained by numerical integration of the full
equations (51), but we will derive also here some formulas
for the direct computation of the precession period. Let
W0 = ‖W 0‖ and w0 = W 0/W0 be a unit vector along
the total angular momentum W 0. With

p = w · w0 , (104)

the projection S of w on the plane orthogonal to w0 will
be

S = w − pw0 . (105)

Assuming w 6= w0, we will have p < 1. With S = ‖S‖,
and s = S/S, we have

S = Ss ; Ṡ = Ṡs + θ̇(w0 ∧ S) (106)

and
Ṡ = ẇ − ṗw0 ,

Ṡ
2

= ẇ2 − ṗ2 ;
(107)

we have
S · Ṡ = SṠ = −pṗ (108)

and

S =
√

1 − p2 ; Ṡ = − pṗ
√

1 − p2
. (109)

As

Ṡ
2

= Ṡ2 + θ̇2(w0 ∧ S)2

= Ṡ2 + θ̇2(1 − p2)
(110)

we have

θ̇2 =
ẇ2 − ṗ2/(1 − p2)

1 − p2
. (111)

With (52), one has

p =
1

W0
(γ + βx+ αy) . (112)

and thus

ṗ =
v

W0

(

aα

γ
x− βb

γ
y

)

(113)

We have also from (51)

ẇ2 =
1

γ2

(

a2x2 + b2y2 + 2abxyz − (ax2 + by2)2
)

(114)

With these expressions, equation (111) can be written on
the form

θ̇2 = Θ(x, y, z) . (115)

The sign of θ̇ (εθ̇) can be determined through (106). In-

deed θ̇ is a function of (w,w1,w2), but its sign can only
change when θ̇ = 0, that is from (111), when

ẇ2(1 − p2) = ṗ2 . (116)

This equation is a polynomial equation in (x, y, z), of val-
uation 2 and total degree 6 in (x, y, z), and total degree 2
in z. It determines an algebraic surface S of the (x, y, z)
space and thus θ is obtained by quadrature

θ(t) − θ(0) =

∫ t

0

εθ̇
√

Θ(x, y, z)dt . (117)

The computation of θT is obtained by the integration
of the above expression over a full period T . As in the
discussion of section 3.4, one has to be careful for the
change of signs of θ̇.
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4.3 Symmetry in the loop

It is now possible to prove a more precise result on the
periodic loops generated by w,w1,w2 in the precessing
frame.

Proposition 2. In the frame rotating uniformly with
the precession period, the three vectors w,w1,w2 de-
scribe periodic loops L,L1,L2 that are all symmetric with
respect to the same plane S containing w0.

Consequence. Let us call P,P1,P2 the averages of
w,w1,w2 over the nutation angle. P,P1,P2 are respec-
tively the poles of the spin axis, the pole of the planet
orbit, and the pole of satellite orbit. Due to the sym-
metry of the orbits, the three poles P,P1,P2 remain in
the symmetry plane S containing w0, and precessing uni-
formly around w0. Each vector w,w1,w2 nutates around
its pole, respectively P,P1,P2.

Proof. We will consider uniquely w, the other cases
being similar. We consider here a general solution (sec-
tion 3.4.3). We choose here the origin of time in τ+
which corresponds to a spin vector w+. At t = −T/2,
the orbit in the (x, y, z) space is in τ−, corresponding
to w = w−. In the (x, y, z) space, the orbit describes
an elliptic arc (τ−, τ+) over the time interval [−T/2, 0],
and the same arc in the reverse way (τ+, τ−) over [0, T/2]
(Fig. 4). Moreover, as the motion is a pure rotation in
the scaled (X,Y, Z) coordinates (section 3.4), over the in-
terval [−T/2, T/2], the orbit of M = (x, y, z) is even, that
is M(−t) = M(t).

Next, we can remark that as the differential system
(51) is polynomial, the solutions w,w1,w2 are analytical
in time t, and so will be the coordinate angle θ(t) of w.
On the other hand, we have the following lemma

Lemma. Let f(t) be an analytic function over an in-
terval [−A,A], such that f2 = g, where g(t) is even over
[−A,A] (A > 0). Then f(t) is either odd or even. If
f(0) 6= 0, f(t) is even.

The proof is easily obtained with analytic continuation.
Moreover, we have (115)

θ̇2(t) = Θ(x, y, z) , (118)

thus θ̇(t) is odd or even. If θ̇(t) is even on [−T/2, T/2], for
all h ∈ [0, T/2], we have thus θ(h)− θ(0) = θ(0)− θ(−h).
As the cosine p of the angle from w to w0 (104) de-
pends only on x, y (112), we have p(h) = p(−h), and w(h)
and w(−h) are symmetrical with respect to the (w0,w+)
plane. It will still be the same in the rotating frame with
the precession period. In this rotating frame, the periodic
loop generated by w is thus symmetric with respect to the
plane (w0,w+).

Moreover, at t = 0 (τ+), the volume v is null, and thus
w0,w,w1,w2 are coplanar. In the rotating frame, all
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Figure 5: Different precession frequency computations. (c) is
the classical computation in the approximation of a far satellite,
while (d) correspond to the close satellite approximation (Tremaine,
1991). These formulas are no longer valid for a close (resp. far) satel-
lite, or in the intermediary region (between 10 and 20 RE for the
Earth-Moon System). (a) and (b) are computed with the formula
(129) of the present paper, using either the raw initial conditions
of the integration (a), or the averaging obtained after a first itera-
tion (b) (Eq.135). The crosses correspond to numerical experiments
with the complete Sun-Earth-Moon problem, without averaging.

three orbits generated by w,w1,w2 are thus symmetrical
with respect to the same plane (w0,w+).

The only case when θ̇(t) is odd, occurs when θ̇(0) = 0.
As v(0) = 0, we have ṗ(0) = 0 (113) and ẇ(0) = 0 (111).
In the same way, we will have ẇ1(0) = ẇ2(0) = 0, and
the vector field (51) vanished at t = 0. The three vectors
w,w1,w2 are thus stationary and coplanar.

This is a special Cassini state (section 3.4.4) where the
precession frequency is zero.

5 Description of the solutions

In order to better visualize the solutions, we have plotted
in Figure 6 the projections of the three vector (w,w1,w2)
in the plane (i, j). More precisely, as we know the general
form of the solution (Eq.99), we have plotted this projec-
tion in a framework in rotation with the computed pre-
cession period T ′. According to (Eq.99), we thus obtain
the projection of W̃(t) in the fixed reference plane (i, j).
We thus expect to obtain for each vector (w,w1,w2), a
periodic smooth curve. In all our examples, the curves
described by (w,w1,w2) are in fact very close to circles.
It should be noted that in Figure 6, we have plotted the
output of the non averaged equations (Eq.31). This is
intentional as this allows to check at the same time the
relevance of the averaging made in section 2.5. This ex-
plains why instead of exactly thin loops, we have thick
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Figure 6: Precession for different Earth-Moon distances, starting with 3 RE (a); 7 RE (b); 9 RE (c); 10 RE (d); 14 RE (e); 60.1 RE

(f); The last one corresponding to the actual Earth-Moon distance (expressed in Earth radius). The projection of the poles w (red), w1

(green), w2 (blue) are plotted in the (i, j) plane in a rotating frame with the precession frequency Ω. Scales are in radians. The pole
of the planet orbit (w1, in green) almost coincide with the origin, while the pole of the planet w and the pole of the satellite orbit w1

describe a large variety of configurations, smoothly evolving from a configuration where the axis of the planet and the pole of the satellite
are concentric (a), to the present configuration (f).

lines, which occurs for the contribution of the orbital short
period terms.

In these examples, we have taken a fictitious Moon
around the Earth. The Earth-Moon distance is then var-
ied from a very close position (up to 2 Earth radius ) to
100 Earth radius, close to the distance where the Moon
is no longer a satellite of the Earth.

In all cases, the pole of the orbit of the planet w1 is very
close to the origin, as w1 is very close to the constant
angular momentum vector w0. The vectors w and w2

describe circles with varying center position and radius.

5.1 Far solutions

When the Moon is far from the Earth (as it is at present),
in the precessing rotating frame, w is nearly fixed and w2

is circulating around the pole of the orbit, that is around
the origin (Fig. 6.f). In this case, the obliquity of the
planet and the inclination of the Moon on the ecliptic

are nearly constant. The orbit of the Moon is precessing
uniformly around the pole of the ecliptic with the fast
period T (18.6 years for the present Moon). In fact there
is still a small variation of the obliquity, with the same
period T , but with a very small amplitude (about 9 arcsec
for the present Moon). This motion is the principal term
in the nutation that was discovered observationally by
Bradley in 1748 and computed by d’Alembert in 1749 (see
the introduction of M. Chapront and J Souchay (2006) of
d’Alembert complete work for a detailed account of these
discoveries).

5.2 Intermediate solutions

When the Moon is closer (Fig.6.e), the amplitude of the
nutation of the Earth axis becomes much larger. The
precession of the plane of the orbit of the Moon is no
longer centered around the pole of the ecliptic, and the
inclination of the Moon with respect to the ecliptic is
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not constant. But as the pole of the Moon orbit still
describes a circle, the inclination remains constant with
respect to a plane orthogonal to the center of this circle.
This plane is often called the Laplace plane of the satellite.
It should be noted that the pole of the Laplace plane
with this definition will precess around the total angular
momentum with the slow precession period.

5.3 Close solutions

When the Moon is very close to the planet (6.a,b), The
satellite precession and the planet nutation are both
roughly around the same pole, and the inclination of the
satellite on the planet equator is nearly constant (Fig 7
(c3)).

5.4 General case

In the general case (Fig.6), the planet nutation occurs
around the nutation pole, the satellite orbit precesses
around the Laplacian pole that is different from the nu-
tation pole and from the ecliptic pole, but all three poles
precess slowly with the same frequency around the total
angular momentum.

In the solution of the averaged equations (51), for any
distance of the satellite from the planet, the general mo-
tion of the planet orbit, of the satellite orbit, and of the
planet rotation can be described as follows (with the no-
tations of section 4.3) :

The planet orbit precesses around a planetary pole P1

(usually with very small amplitude). The satellite orbit
precesses around a satellite pole P2 (that can be called the
Laplacian pole (see Burns, 1986)). The axis of rotation of
the planet nutates around the rotational pole P, all with
the same period T , usually called the period of precession
of the satellite, but here we will reserve the name preces-
sion for the long period, and we will call this short period
the nutation period. This motion is periodic (each axis
described a closed loop with period T ). In addition, all
three poles P,P1,P2 precess uniformly with the same pe-
riod (that we will call the precession period) around the
total angular momentum of the system W 0.

6 Analytical approximation

In section 4, we have obtained the complete solution of the
averaged equations (51), but although these solutions can
be computed by quadrature, they are not explicit. Nev-
ertheless, the rigorous expression (99) allows us to give
a general description of the solutions, valid in all cases.
In the present section, we will make some additional ap-
proximations in order to provide an explicit form of the
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Figure 7: Evolution of the obliquity of the Earth (a1, a2, a3), inclina-
tion of the orbit of the Moon with respect to the ecliptic (b1, b2, b3),
and with respect to the equator (c1, c2, c3), for different Earth-Moon
semi-major axis. The solution (1) (a1,b1,c1) correspond to the ac-
tual Earth-Moon system (Fig.6f), while the Earth-Moon distance is
about 10RE (Fig.6d) in (a2,b2,c2), and about 4RE in (a2,b2,c2).
This latter case is similar to (Fig.6a).

solutions. More precisely, as we realize that the periodic
loops generated by W̃(t) in (99) are very close to circular
uniform motion, we will search for approximate solutions
expressed on the form of a composition of periodic terms.
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For simplicity, we will assume here that x, y, z are posi-
tive. Other cases, as for Neptune – Triton (y < 0, z < 0),
can be treated in the same way.

6.1 Equations

As the angular momentum of the system is essentially
contained in the orbital motion of the planet, we will con-
sider that

w1 ≈ w0. (119)

With a fixed reference frame (i, j,k) with k = w0, we
will thus have

w1 ≈





0
0
1



 . (120)

and as x = w · w1, z = w1 · w2, let the coordinates of w

and w2 in this basis be

w =





ξ
η
x



 ; w2 =





ξ2
η2
z



 ; (121)

As we are considering now the projections of w,w2 in
the (i, j) plane, we will use complex coordinates in this
plane. Let

z = ξ + iη ; z2 = ξ2 + iη2 ; (122)

with these notations, the secular equations (51) become

d

dt

(

z

z2

)

= iM

(

z

z2

)

(123)

with

M(x, y, z) =









−ax

γ
− byz

γ

bxy

γ
byz

α
− cz

α
− bxy

α









. (124)

M is thus a real matrix with periodic coefficients of pe-
riod T . As we are not searching for the exact solution of
the problem, we will make here a crude approximation by
averaging this matrix over the fast period T . We will even
replace the three varying quantities x, y, z by some aver-
aged quantities x̃, ỹ, z̃. The matrix M is then transformed
into a real matrix M̃ with constant coefficients

M̃ = M(x̃, ỹ, z̃), (125)

and the solution of (123) becomes straightforward. Let T

and D be the trace and determinant of M̃ . The eigenval-
ues of M̃ are given by the second degree equation

λ2 − λT + D = 0 (126)

with, when x̃, ỹ, z̃ are positive (the other cases can be
treated in the same way),

T = −
(

ax̃

γ
+

bỹz̃

γ
+

cz̃

α
+

bx̃ỹ

α

)

< 0 (127)

and discriminant

∆ = T 2−4D =

(

ax̃

γ
+

bỹz̃

γ
− cz̃

α
− bx̃ỹ

α

)2

+4
b2x̃ỹ2z̃

γα
> 0 .

(128)
We have thus always two distinct eigenvalues Ω, and

Ω + ν (we consider here that Ω is the slow precession
frequency and ν, the nutation frequency), with

Ω =
T +

√
∆

2
; ν = −

√
∆ . (129)

After diagonalization, we obtain two eigenmodes

Z = rei(Ωt+Φ) ; Z′ = sei((Ω+ν)t+Φ+φ) ; (130)

where r, s,Φ, φ are real numbers. A basis of eigenvector
is then (e1, e2), with

e1 =

(

1
λ

)

; e2 =

(

1
λ′

)

; (131)

and

λ =
ax̃+ bỹz̃ + γΩ

bx̃ỹ
; λ′ =

ax̃+ bỹz̃ + γ(Ω + ν)

bx̃ỹ
.

(132)
The solution in z, z2 becomes

z = ei(Ωt+Φ)(r +sei(νt+φ))

z2 = ei(Ωt+Φ)(λr +λ′sei(νt+φ))
(133)

where r, s, λ, λ′ are real numbers. Moreover, it is easy to
show that λ > 0, λ′ < 0. This results from the diago-
nalization of a general 2 × 2 matrix (Mij) with real co-
efficients and positive product of the antidiagonal terms
(M12M21 > 0). We should notice here that z and z2 have
the same phase Φ in the precession motion, and opposite
phase φ and φ + π for the nutation motion. We obtain
here thus an additional general result :

Proposition 3. Within the present approximations
(119, 125), the pole of precession of the axis and the pole
of precession of the satellite orbit (the Laplace pole of
the satellite) are always aligned with the total angular
momentum, and on the same side of the total angular
momentum.
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Figure 8: The approximate analytical solutions for the evolution
of the planet axis and satellite orbit are expressed with only two
periodic terms (133). The values of the different involved radius are
given here in term of the Earth-Moon distance (in Earth radius)
with the correspondence : λr (a); −λ′

s (b); r (c); s (d).

6.2 Parameters of the solution

As we know the general form of the solution (133), we
can compute now the averaged quantities x̃, ỹ, z̃. From
the definition of z, z2, we have

x =

√

1 − |z|2

z =

√

1 − |z2|2

y =
1

2
(zz̄2 + z̄z2) + xz

. (134)

As it would be unnecessary complicated to obtain explicit
averaged values over the fast period ν in the complete
expression of the frequencies (129), and in the sake of
simplicity, here we will average under the radical (that is
average x2, z2 instead of x, z) over the fast frequency ν.
One thus obtain

x̃ =
√

1 − r2 − s2

z̃ =
√

1 − λ2r2 − λ′2s2

ỹ = λr2 + λ′s2 + x̃z̃

(135)

6.3 Initial conditions

With equations (129, 132, 135), the solutions (133) de-
pend only on the four real numbers r, s,Φ, φ. At the origin
of time (t = 0), we have

z0 = eiΦ(r +seiφ)

z20 = eiΦ(λr +λ′seiφ)
(136)

planet Ω0 (”/yr)
Earth −15.948799
Mars −7.581155
Jupiter −0.908216
Saturn −0.189667
Uranus 0.001102
Neptune −0.001652

Table 1: Precession rate for a single planet with no satellite given
by equation (56).

This system is solved easily as

reiΦ =
λ′z0 − z20

λ′ − λ

sei(Φ+φ) =
λz0 − z20

λ− λ′

(137)

The computation of λ, λ′ requires to know the averaged
values x̃, ỹ, z̃, but can easily be done by iteration, starting
with the initial values, that is, for the first iteration

x̃ = x(t = 0) ; ỹ = y(t = 0) ; z̃ = z(t = 0) . (138)

In all our computations, a single iteration after this first
try with the initial conditions was sufficient.

6.4 Numerical applications

The computation of the precession frequency in the Earth-
Moon system was provided in figure 5. With the analyti-
cal approximation (128), we have also computed the evo-
lution of the radius and location of the precession circles
of Fig.6 with respect to the Earth-Moon distance (Fig.8).
It should be stressed that this computation is made with a
fictitious Moon with initial obliquity and precession equal
to the present one. In particular, we have not attempted
here to follow a realistic evolution of the Earth-Moon sys-
tem under tidal evolution as in (Goldreich, 1966, Touma
and Wisdom, 1994b).

We have applied the computation of the precession mo-
tion for a variety of examples in the Solar System (Table
4, 2). In each case, only the system Sun-Planet-Satellite
is taken into account, without trying to take into account
mutual perturbations, or accumulated effects of multiple
satellites. These examples are used to compare the re-
sults of the numerical integration of the averaged equa-
tions (51) (Table 2) to the results obtained using either
the exact solution of section 4, the quadrature formulas of
section 4.2, or the approximate solutions computed with
the explicit formulas of section 6.
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satellite (Ωc − Ω0)/Ω0 νc (Ω − Ω0)/Ω0 ν A(r) A(s) A(λr) A(λ′s)
(deg/yr) (deg/yr) (deg) (”) (deg) (deg)

Moon 2.18 −20.128 2.18 −20.128 23.438 7.447 2.25 × 10−3 5.158
Phobos 3.17 × 10−05 −158.851 3.16 × 10−05 −158.851 25.191 3.24 × 10−03 25.179 0.798
Deimos 1.98 × 10−04 −6.599 1.98 × 10−04 −6.599 25.191 1.02 × 10−02 24.290 1.645

Io 5.43 × 10−02 −47.372 5.42 × 10−02 −47.373 3.128 0.198 3.127 0.036
Europa 7.45 × 10−02 −9.301 7.45 × 10−02 −9.301 3.127 1.697 3.121 0.462

Ganymede 5.77 × 10−01 −1.854 5.77 × 10−01 −1.854 3.127 2.653 3.064 0.188
Callisto 9.87 × 10−01 −0.338 9.87 × 10−01 −0.338 3.129 6.312 2.320 0.615
Mimas 1.78 × 10−05 −360.483 1.78 × 10−05 −360.483 26.728 7.76 × 10−03 26.717 1.539

Enceladus 5.83 × 10−05 −150.642 5.82 × 10−05 −150.642 26.728 1.64 × 10−04 26.728 0.015
Tethys 7.71 × 10−04 −71.349 7.71 × 10−04 −71.349 26.728 1.09 × 10−01 26.723 1.035
Dione 2.17 × 10−03 −30.014 2.17 × 10−03 −30.013 26.728 3.34 × 10−03 26.727 0.017
Rhea 9.36 × 10−03 −9.328 9.36 × 10−03 −9.328 26.728 0.164 26.719 0.315
Titan 2.88 −0.508 2.88 −0.508 26.732 12.512 26.113 0.276

Iapetus 4.31 × 10−02 −0.075 4.31 × 10−02 −0.075 26.729 1.286 3.481 12.051
Miranda 2.72 × 10−03 18.967 2.72 × 10−03 18.967 82.147 0.365 81.082 2.408

Ariel 1.23 × 10−01 4.908 1.23 × 10−01 4.908 82.147 0.162 82.146 0.043
Umbriel 2.07 × 10−01 1.545 2.07 × 10−01 1.545 82.147 0.345 82.143 0.089
Titania 1.67 0.275 1.67 0.275 82.147 1.269 82.120 0.085
Oberon 2.59 0.099 2.59 0.099 82.147 0.992 82.035 0.067
Triton 3.60 0.487 3.60 0.487 28.912 2016.063 24.273 29.561

Table 2: Numerical solution for various satellites. In each case, the system Sun-Planet-Satellite is considered. Ω0 is the planet precession
rate in absence of satellite. Ωc and νc are the precession and nutation frequencies computed by quadrature, while Ω and ν are the same
quantities obtained numerically using frequency analysis (Laskar, 1990, 2005). A(r) and A(s) are the precession and nutation amplitude for
the axis of the planet, A(λr) and A(λ′

s) are the same quantities for the satellite orbit. These quantities are obtained numerically through
frequency analysis. A(λr) is thus the inclination of the Laplace pole of the satellite with respect to the pole of the orbit of the planet.

The numerical integrations are performed only over
a few (about 20) nutation periods. The precession fre-
quency is then determined by iteration with great accu-
racy, searching for a uniform rotating frame where the
motion is periodic (see section 4). The nutation frequency
and amplitudes A(r),A(s),A(λr),A(λ′s) are then deter-
mined using frequency analysis (Laskar, 1990, 2005). The
results are displayed in Table 2 together with the fre-
quencies obtained by quadrature. We can verify that the
quadrature formulas (section 4.2) give virtually identical
results as the numerical integration.

In table 4 are displayed the results obtained with our
analytical approximate formulas (129). It can be seen
that these explicit formulas provide in a simple way both
the frequencies and amplitude of the terms in most sit-
uations. We have not attempted (although it should be
possible to do it following the lines of section 6) to de-
rive approximate formulas for Uranus satellites, when the
obliquity of the planet is very large, and thus the projec-
tion on the plane of the orbit questionable.

Remark. It should be noted that although in our ap-
proximate formulas (129) the solutions are given with a
single periodic term, the nutation motion in the rotating
frame with precession frequency is not exactly a pure ro-

νi ai
0.00000 0 0.397753940

−20.12804 ν 0.000036105
20.12804 −ν 0.000003746

−40.25608 −2ν 0.000000390

Table 3: Quasiperiodic decomposition of the motion of the projec-
tion of the Earth spin axis (z) in the orthogonal plane to the total
angular momentum W0 (z =

P

ai exp i(νit+φi). All frequencies νi

given by frequency analysis are easily recognized as integer multiples
of the main nutation frequency ν (column 2).

tation but a more general periodic motion. It can thus be
decomposed into several periodic terms with frequencies
that are harmonics of the nutation frequency. The ampli-
tude of these harmonics are usually small compared with
the main periodic term. As an example, the quasiperiodic
decomposition of the motion of the Earth spin axis in the
Sun-Earth-Moon system is given in Table 3.
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satellite (Ωa − Ω0)/Ω0 νa A(r) A(s) A(λr) A(λ′s)
(deg/yr) (deg) (”) (deg) (deg)

Moon 2.19 −20.128 23.438 8.220 2.25 × 10−3 5.158
Phobos 3.16 × 10−05 −143.761 25.191 3.22 × 10−03 25.179 0.794
Deimos 1.98 × 10−04 −6.036 25.191 9.68 × 10−03 24.292 1.570

Io 5.42 × 10−02 −47.302 3.128 0.196 3.127 0.036
Europa 7.44 × 10−02 −9.288 3.127 1.697 3.121 0.462

Ganymede 5.77 × 10−01 −1.851 3.127 2.655 3.064 0.189
Callisto 9.87 × 10−01 −0.338 3.129 6.307 2.320 0.615
Mimas 1.17 × 10−05 −321.974 26.728 7.88 × 10−03 26.718 1.563

Enceladus 5.22 × 10−05 −134.546 26.728 1.73 × 10−04 26.728 0.016
Tethys 7.65 × 10−04 −63.727 26.728 1.07 × 10−01 26.723 1.019
Dione 2.16 × 10−03 −26.807 26.728 3.19 × 10−03 26.727 0.016
Rhea 9.36 × 10−03 −8.333 26.728 0.169 26.719 0.323
Titan 2.88 −0.457 26.732 11.970 26.113 0.266

Iapetus 4.41 × 10−02 −0.076 26.729 1.383 3.481 12.067
Triton 4.70 0.439 28.927 1932.238 24.990 28.221

Table 4: Approximate solution for various satellites using the analytical formulas of section 6.1. In each case, the system Sun-Planet-
Satellite is considered. Ω0 is the planet precession rate in absence of satellite. Ωa and νa are the precession and nutation frequencies
computed with the approximate formulas (129). A(r) and A(s) are the precession and nutation amplitude for the axis of the planet, A(λr)
and A(λ′

s) are the same quantities for the satellite orbit. A(λr) is thus the inclination of the Laplace pole of the satellite with respect to
the pole of the orbit of the planet.

7 Comparison with previous work

The complete solutions we have derived here in sec-
tion 4 and 6 are different from the previous approxima-
tions of (Goldreich, 1966, Ward, 1975) or more recently
(Tremaine, 1991). Nevertheless, starting from equations
(51), we can recover the already known approximations
in a more general setting, as we consider non zero incli-
nations, and the constants a, b, c are computed with non
zero eccentricity (45), without the gyroscopic approxima-
tion (32), and in the non axisymmetric case (section 2.6).
In all the following approximations, w1 is still considered
as constant as it is very close to the unit vector of the
total angular momentum, w0.

7.1 Far satellite

For a far satellite, we have c >> b. We have then

ẇ2 ≈ − c

α
(w1 · w2)w1 ∧ w2 . (139)

Then z = w1 ·w2 is constant and w2 precesses uniformly
around w1 (Fig.6.f) with angle ψ and frequency ν + Ω =
−cz/α. We have thus in a base with third vector w1

w2 =





√
1 − z2 cosψ√
1 − z2 sinψ

z





(−,−,w1)

. (140)

For the axis of the planet, we have

ẇ = − a

γ
(w1 · w)w1 ∧ w +

b

γ
w ∧ tw2w2w . (141)

Averaging over ψ give then

< tw2w2 >ψ=
1 − z2

2
Id+

(

−1

2
+

3

2
z2

)

tw1w1 . (142)

The spin vector of the planet w thus precesses around
w1 with constant obliquity (x = w · w1), and constant
precession rate

Ω = −ax

γ

[

1 +
b

a

(

−1

2
+

3

2
z2

)]

. (143)

We recover here the classical formula, the only novelty
here being the treatment of the gyroscopic approximation
(32).

7.2 Close satellite

The most advanced previous computation of the preces-
sion rate for a close satellite was obtained by Tremaine
(1991), based on the equations of Goldreich (1966). In
this case, b >> a and b >> c. Following Tremaine, one
can see easily from equations (51) that the total angular
momentum of the planet-satellite system G̃ = G + G2 is
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nearly constant with norm G̃ =
√

γ2 + α2 + 2γαy. We
have then with this approximation, from (51)

ẇ ≈ − b

γα
(w2 · w)G̃ ∧ w , (144)

and

ẇ2 ≈ − b

γα
(w2 · w)G̃ ∧ w2 , (145)

w · w2 is thus nearly constant, and the two vectors w

and w2 thus precess around G̃ with the same nutation
frequency

ν = − by

γα
G̃ = − by

γα

√

γ2 + α2 + 2γαy . (146)

This corresponds to figures 6.a,b, where w and w2 pre-
cess on concentric circles with opposite nutation phases.
The computation of the precession frequency can then be
treated as previously in section (7.1). Indeed, from (51),
we have

dG̃

dt
= −aw1 ∧ twww1 − cw1 ∧ tw2w2w1 . (147)

If w̃ is the unit vector of G̃ and using the notations of
(Tremaine, 1991)

cos θ = w · w̃ = (γ + αy)/G̃ ;
cos θ1 = w1 · w̃ = (γx+ αz)/G̃ ;
cos θ2 = w2 · w̃ = (γy + α)/G̃ .

(148)

We have G̃ = γ cos θ+ α cos θ2, and we obtain after aver-
aging over the nutation angle

dw̃

dt
= −A

G̃
(w1 · w̃)w1 ∧ w̃ (149)

with

A = a

(

−1

2
+

3

2
cos2 θ

)

+ c

(

−1

2
+

3

2
cos2 θ2

)

. (150)

The angular momentum unit vector w̃ thus precesses
around w1 with precession frequency

Ω = −A cos θ1

G̃
. (151)

7.3 Comparison with our analytical ex-
pressions

With the expression of T (127) and ∆ (128), we have
obtained in section (6.1) the approximate expressions for

the precession (Ω) and nutation (ν) frequencies (Eq.129).
These formulas are valid for any value of the planet–
satellite distance. In the above above approximations of
close or far satellite, these expressions will simplify as fol-
low :

7.3.1 Close satellite

In the case of a close satellite, we have b ≫ a and b ≫ c.
Neglecting terms in a, c in front of b in (129), we obtain

Ω ≈ −ax2 + cz2

αz + γx
; ν ≈ − by

γα
(αz + γx) . (152)

That is, with αz + γx = G̃ cos θ1,

ν ≈ − by

γα
G̃ cos θ1 . (153)

This formula thus differs from (146) by the factor cos θ1.
In the same way, if as stated in section (6.1), one replace
the variables x and z by their averaged value over the
nutation angle in the expression of Ω, that is

x̃ = cos θ1 cos θ ; z̃ = cos θ1 cos θ2 ; (154)

we obtain

Ω = −A′ cos θ1

G̃
. (155)

with

A′ = a cos2 θ + c cos2 θ2 . (156)

Here again, we have a slight difference from formula (151)
that remains very small for small values of the angles θ
and θ2. This is due to the approximations that were per-
formed in section 6.1, where we have averaged the matrix
M . Doing this, we have exchanged the order of opera-
tion and averaging. This was necessary in order to ob-
tain some simple expressions, valid for all values of the
satellite-planet distance. As an example, if one average
x2 over the nutation angle, one obtains

< x2 >=
1

2
sin2 θ + (−1

2
+

3

2
cos2 θ) cos2 θ1 (157)

while

< x >2= cos2 θ cos2 θ1 . (158)

It should be noted that these two quantities become very
close when either θ or θ1 is small. Indeed

< x2 > − < x >2=
1

2
sin2 θ sin2 θ1 . (159)
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7.3.2 Far satellite

In the case of a far satellite, we have c ≫ a and c ≫ b.
We then obtain from (129),

Ω ≈ −ax

γ

(

1 +
b

a

yz

x

)

(160)

and from section 7.1

ν = − cz

α
− Ω . (161)

In the case of a far satellite, x, z will be nearly constant,
and the average value of y over the nutation angle will be

< y >= xz . (162)

The precession frequency then becomes

Ω ≈ −ax

γ

(

1 +
b

a
z2

)

, (163)

that is here again, very close, but different from the clas-
sical formula (143).

8 Conclusions

In this work, we have obtained a very general framework
for the evolution of the spin axis of a planet with a satel-
lite. The equations have been derived with minimal ap-
proximations. In particular, we do not require the planet
to be axisymmetric (section 2.6). We do not perform nei-
ther the usual gyroscopic approximation, but we average
over the rotational period of the planet (section 2). The
precession equations (28) that we obtain are rigorously
derived, and can be used for precise solutions of the evo-
lution of the axis of the planets (Laskar et al., 2004a,b).
In this case, the equations (28) can be immediately gen-
eralized to the perturbation of multiple bodies.

For fast satellites, or for the analysis of the system evo-
lution over very long time, averaging over the orbital mo-
tion is required (section 2.5). As we also average the equa-
tions over the argument of perihelion of the satellite, the
averaging is performed without expansion in term of the
elliptical elements, and can thus be used for large values
of the eccentricity of the planet or satellite (45). Although
these secular equations (51) can be developed for a large
number of interacting bodies, we have concentrated in the
present work on the case of a single planet orbiting the
Sun with a single satellite (it can be noted that although
here we choose a non spherical planet, the same study
applies to a non spherical satellite). It is then remarkable
that the system of equations (51) representing the evolu-
tion of the spin axis of the planet, the orbital plane of the

planet and the satellite plane is integrable, although the
explicit integration is not trivial (section 3).

We believe that this integrable system should be used to
clarify the terminology for satellite motions. In particular,
we have demonstrated that there are only two frequencies
in this system : a slow frequency Ω that we called the
precession frequency and a fast frequency ν that we called
the nutation frequency. In the frame precessing uniformly
with the precession frequency Ω, the nutation motion is
periodic. Moreover, if we denote P,P1,P2 the averages of
w,w1,w2 over the nutation angle, then, for a general so-
lution (section 3.4.3), the planet orbit nutates around P1,
the satellite orbit nutates around P2 and the axis of rota-
tion of the planet (or more precisely its angular momen-
tum), nutates around the rotational pole P, all with the
same nutation frequency ν. Additionally, all three poles
P,P1,P2 are coplanar with the total angular momentum
W 0 and precess uniformly around W 0 with the preces-
sion frequency Ω (section 4.3, proposition 2). Finally, in
the rotating frame with Ω, the plane W 0,P,P1,P2 is a
symmetry plane for the periodic orbits of w,w1,w2.

We have provided here a quadrature procedure that al-
lows to compute exactly (up to numerical accuracy) the
precession and nutation frequency of the secular system
(51) for all values of the planet satellite distance. Alterna-
tively, the rigorous treatment of section 4 shows that these
frequencies can also be obtained numerically by the nu-
merical integration of the system (51) over a single cycle of
the nutation period, the nutation period being computed
through the quadrature procedure of section 3.4.

We have unified the computation of the precession fre-
quency of a planet, with some approximate formulas (sec-
tion 6) that can be used in a large variety of cases, and
for all values of the planet satellite distance. In par-
ticular, these formulas are valid in the intermediate re-
gion, when none of the previously known formulas for far
or close satellites (Goldreich, 1966, Tremaine, 1991) are
valid. Our formulas provide also the amplitude of the nu-
tation and precession terms with good accuracy (Table
4). Nevertheless, in the asymptotic case of a very far or
vary close satellite, our formulas differs slightly from the
known formulas, as we had to average over the nutation
frequency in the computation process. We thus expect
that the formula of Tremaine (1991) remains more pre-
cise in this asymptotic case. One should note that the
theoretical results of section 4 probably allow a more ex-
plicit derivation of this formula than in the original paper
of Tremaine (1991). Using our formalism, it was also sim-
ple to improve the formula of Goldreich and Tremaine as
our derivation does not assume the gyroscopic approxi-
mation, is valid for non axisymmetric planet, and takes
into account the contribution of the satellite eccentricity.
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More important than the precise computation of the
contribution of the precession frequency due to a satellite,
we think that the full description of all cases of interac-
tions provided by section 4 and Figure 6 will be of special
interest for the understanding of the satellites orbits and
planet spin evolution over long time intervals.
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Annex 1. Averaged quantities

For completeness, we gather here the formulae that are
useful for the averaging over the orbital mean motions.
Depending on the case, one will use either the eccentric
anomaly (E) or true anomaly (ν) as an intermediate vari-
ables. We recall first the basic formulae

dM =
r

a
dE =

r2

a2
√

1 − e2
dν

X = a(cosE − e) = r cos ν

Y = a
√

1 − e2 sinE = r sin ν

r = a(1 − e cosE) =
a(1 − e2)

1 + e cos ν

where X and Y are the coordinates of a point on a Ke-
plerian orbit in the reference frame (i, j,k) with i in the
direction of periapse, and (i, j) the orbital plane. We have
then

〈X 2〉 = a2

(

1

2
+ 2e2

)

〈Y2〉 = a2

(

1

2
− e2

2

)

〈XY〉 = 0

〈rrt〉 =
1

2
a2(Id− kkt) + e2a2

(

2iit − 1

2
jjt
)

〈r2〉 = a2

(

1 +
3

2
e2
)

〈r〉 = −3

2
eai

〈 1

r3
〉 =

1

a3(1 − e2)3/2

〈rr
t

r5
〉 =

1

2a3(1 − e2)3/2
(Id− kkt)

〈 r

r5
〉 = − e

a4(1 − e2)5/2
i

〈 (r · u)2 r

r7
〉 = − e

4a4(1 − e2)5/2
×

×
[

(3(u · i)2 + (u · j)2)i + 2(u · i)(u · j)j
]

Annex 2. Linear algebra

Let E be a vector space of dimension 3 over R. Let
B0 = (e1, e2, e3) be an orthonormal basis of E, and
B = (f1,f2,f3) a general basis of E. Let u,v be two
vectors with coordinates

X =





x1

x2

x3



 ; Y =





y1
y2
y3



 ;

in B. Let M be the matrix of the coordinates of
(f1,f2,f3) in the basis B0. Let G = tMM be the Gram
matrix of the scalar products < f i,f j >. Then

< u,v >= tXGY .

and
u ∧ v|B = det(M)G−1X × Y

where

X × Y =





x2y3 − y2x3

y1x3 − x1y3
x1y2 − x2y1



 .

In particular,

f1 ∧ f2 = det(M)G−1f3

f2 ∧ f3 = det(M)G−1f1

f3 ∧ f1 = det(M)G−1f2

.
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Annex 3. Approximations in 3D

We give here a more detailed version of section 6.1. Let us
consider a reference frame with the total angular momen-
tum unit vector w0 as third axis, and with coordinates

w =





ξ
η
ζ



 , w1 =





ξ1
η1
ζ1



 , w2 =





ξ2
η2
ζ2





we have

ζ =
γ + βx+ αy

W0

, ζ1 =
γx+ β + αz

W0

, ζ2 =
γy + βz + α

W0

.

Considering the projections on the plane orthogonal to
w0,

z = ξ + iη, z1 = ξ1 + iη1, z2 = ξ2 + iη2,

we have

d

dt





z

z1
z2



 = iM





z

z1
z2





with

M =







−ax
γ ζ1 −

by
γ ζ2

ax
γ ζ

by
γ ζ

ax
β ζ1 −ax

β ζ − cz
β ζ2

cz
β ζ1

by
α ζ2

cz
α ζ2 −by

α ζ − cz
α ζ1







It is easy to verify that (ζ, ζ1, ζ2) is an eigenvector with
eigenvalue 0. The two other eigenvalues are the roots of
the second degree equation

λ2 − Tλ+ P = 0 ,

where T is the trace of M and

P =

(

ζ

αβ
+
ζ1

αγ
+
ζ2

βγ

)

(abxyζ + acxzζ1 + bcyzζ2) .

The precession and nutation frequencies are then

Ω =
T +

√

T2 − 4P

2
; ν = −

√

T2 − 4P .

and the eigenmodes

ueiψ; rei(Ωt+Φ); sei[(Ω+ν)t+Φ+φ]

with eigenvectors

e0 =





ζ
ζ1
ζ2



 ; e1 =





1
λ
µ



 ; e2 =





1
λ′

µ′





where λ, λ′, µ, µ′ are real numbers. The solutions are then

z = ζueiψ + ei(Ωt+Φ)(r + sei(νt+φ))
z1 = ζ1ue

iψ + ei(Ωt+Φ)(λr + λ′sei(νt+φ))
z2 = ζ2ue

iψ + ei(Ωt+Φ)(µr + µ′sei(νt+φ))

.

Moreover, γz + βz1 + αz2 = 0, as it is the projection of
W 0 on a plane orthogonal to W 0. This implies that its
constant term (γζ + βζ1 + αζ2)ue

iψ is also null, and as
γζ + βζ1 + αζ2 = W0, we have necessarily u = 0. The
solutions are thus

z = ei(Ωt+Φ)(r + sei(νt+φ))
z1 = ei(Ωt+Φ)(λr + λ′sei(νt+φ))
z2 = ei(Ωt+Φ)(µr + µ′sei(νt+φ)) .

In this approximation, the three axis (w,w1,w2) describe
circular motion with nutation frequency ν around the
three poles (P,P1,P2) that precess uniformly with pre-
cession frequency Ω around the total angular momentum
W 0. As in the general proposition 2 (section 4.3), the
three poles (P,P1,P2) remains always coplanar with W 0.

.
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M. Chapront-Touzé, J. Souchay Eds, in press

Dullin, H.R. 2004. Poisson integrator for symmetric
rigid bodies. Regular and Chaotic Dynamics 9, 255–
264.

Efroimsky, M. 2004. Long-term evolution of orbits about
a precessing oblate planet: 1. The case of uniform pre-
cession. Celest. Mech. 91, 75–108.

Goldreich, P. 1965. Inclinaison of Satellite Orbites about
an Oblate Precessing Planet. Aj 70, 5–9.

Goldreich, P. 1966. History of the Lunar Orbit. Reviews
of Geophysics 4, 411–439.

Kinoshita, H. 1993. Motion of the orbital plane of a
satellite due to a secular change of the obliquity of
its mother planet. Celest. Mech. 57, 359–368.

22



Laskar, J. 1990. The chaotic motion of the Solar System:
a numerical estimate of the size of the chaotic zones.
Icarus 88, 266-291.

Laskar, J. et al. 2004a. A long term numerical solution
for the insolation quantities of the Earth. A&A 428,

261–285.

Laskar, J. et al. 2004b. Long term evolution and chaotic
diffusion of the insolation quantities of Mars. Icarus
170, 343–364.

Laskar, J. 2005. Frequency Map analysis and quasi pe-
riodic decompositions, in Hamiltonian systems and
Fourier analysis, Benest et al. , eds, Cambridge Sci-
entific Publishers, Cambridge

Murray, C. A. 1983. Vectorial Astrometry, Adam Hilger
Ltd, Bristol

Peale, S. J. 1969. Generalized Cassini’s Laws. Aj 74,

483–489.

Touma, J. & Wisdom, J. 1994a. Lie-Poisson integrators
for rigid body dynamics in the solar system. Aj 107,

1189–1202.

Touma, J. & Wisdom, J. 1994b. Evolution of the Earth-
Moon system. Aj 108, 1943–1961.

Tremaine, S. 1991. On the Origin of the Obliquities of
the Outer Planets. Icarus 89, 85–92.

Ward, W.R. 1975. Tidal friction and generalized
Cassini’s laws in the solar system. Aj 80, 64–70.

23


