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This paper makes an account of the design and investigations done for the still image watermarking technique used in the 2nd
edition of the BOWS challenge. This technique is named “broken arrows” for some reasons given later on, and abbreviated “BA.”
This zero-bit algorithm is an implementation of a recent theoretical result by Merhav and Sabbag (2008) with precautions taken
with respect to robustness, security, and imperceptibility. A new robustness criterion, based on the nearest border point of a cone, is
proposed. The security constraint is taken into account by increasing the diversity of the watermark, sculpturing and randomizing
the shape of the detection regions. The imperceptibility and robustness are also provided by adopting proportional embedding in
the wavelet domain. The algorithm has been benchmarked using a database of 2000 images. For a probability of false alarm below
3-107% and a PSNR of 43 dB, the overall robustness regarding various classical image processing seems a promising and strong
basis for the challenge.

Copyright © 2008 T. Furon and P. Bas. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

the same secret key are released. The contenders are expected
to deduce some knowledge about the secret key in order to

The watermarking technique “broken arrows” has been
designed especially for the break our watermarking scheme
2nd edition (BOWS-2) contest. From the lessons learnt
during BOWS-1, we had in mind to design a pure zero-bit
watermarking scheme (no message decoding), which spreads
the presence of the mark all over the host image. The BOWS-
2 challenge is divided into three episodes with different
contexts. The first episode aims at benchmarking the robust-
ness of the technique against common image processing
tools (compression, denoising, filtering, etc.). Thus, “BA”
must be efficient so that it strongly multiplexes the original
content and the watermarking signal in a nonreversible way
when the secret key is not known. Moreover, no robustness
against geometrical attacks is needed because they yield
low PSNR values unacceptable in the contest. The second
episode is dedicated to oracle attacks. The technique must
be sufficiently simple so that the software implementation of
the detector runs very fast because we expect a huge number
of trials during this second episode. Counterattacks should
be included if possible in the design. The third episode
focuses on threats when many contents watermarked with

better hack the pictures. “BA” must not be trivially hacked.
This is not an easy task especially since zero-bit watermarking
tends to lack diversity.

This technique is inspired from four articles of different
fields: information theory [1], signal processing and game
theory [2], statistics [3], and image processing [4]. During
the design, we relied on the following key ideas.

(1) We do not know how to zero-bit watermark an
image. However, the recent work [1] shows that the
optimum scheme for Gaussian vectors under certain
restrictions among which is the low complexity of the
detector exactly matching our requirement.

(if) Multiplicative embedding (aka proportional embed-
ding) offers many advantages: an embedding that is
easy to implement and compliant with the human
visual system [4], plus a good approximation of game
theoretical optimum solution for spread spectrum
schemes [2].

(iii) One of the most difficult things in zero-bit water-
marking is to assess that the false alarm probability
is lower than a given level. Yet, one exception is
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for detection regions shaped like hypercones where
tractable numerical calculations exist 1, 3].

(iv) The wavelet domain is one of the best embedding
domain even if the watermark signal has been created
in another space, because it is compliant with the
human visual system. There exists a fast wavelet
transform based on the lifting scheme.

In a nutshell, the detection regions are represented
by a set of slightly modified hypercones. The embedding
is classically done by moving a feature vector vy of the
host content deep inside this detection region to obtain
a watermarked vector vy = vyx + vy. The detection is
performed by checking whether a feature vector v extracted
from a submitted image belongs or not to one of these
hypercones (see Section 3).

1.2. Three general constraints

Other subtleties of BA are motivated by the general
constraints in image watermarking, for example, security,
robustness, and distortion.

Distortion

The visual distortion has been taken into account by choos-
ing the medium and high frequencies of the image thanks
to the wavelet transform (see Section 2.2) and applying the
proportional embedding (see Section 4). The PSNR of the
watermarked images is controlled during the embedding,
resorting to norm conservation property of some orthogonal
transforms (see Section 2) and by taking into account the
proportional embedding step (see Section 4.1).

Robustness

BA relies on two techniques in order to have a decent
robustness. The first one is commonly known as informed
embedding. Vector vy is generated in order to be as far
as possible from the border of the detection region (see
Section 3.1.2). Furthermore, proportional embedding in a
transform domain enables to merge two signals sharing the
same statistical structure. The host is almost decorrelated in
this transform domain like the watermark signal, while the
watermark signal amplitude is shaped as the one of the host.
This helps to be robust against denoising attacks like Wiener
filtering.

Security

The original content is projected successively onto lower-
dimensional subspaces in order to ease the creation of the
watermark signal (see Sections 2.2 and 2.3). However, the
first projection is private and depends on the secret key.
This prevents the pirate from tracing the contents in the
successive subspaces, and it restricts his playground to a very
high-dimensional space. The dimension is almost as big as
the number of pixels in the image. The detection region is
composed of several regions introducing some diversity in

the embedding because the host contents are pushed towards
many different regions (see Section 3.2). We hope that this
diversity brings some gain in security level in the sense
that the private projection will remain secret even if many
watermarked contents are observed. Finally, at the detection
side, the security is also strengthened by randomizing the
decision of the detector when the signal is near the frontier
(see Section 5.1) and by introducing notches in the detection
region (see Section 5.2).

2. FOUR NESTED SPACES

The embedding and the detection involve four nested spaces:
the “pixel” space, the “wavelet” subspace, the “correlation”
subspace, and (what we call) the “Miller, Cox & Bloom”
plane (abbr. MCB plane). Index letters “X, Y, W” denote,
respectively, the representatives of the original content,
the watermarked content, and the watermark signal to be
embedded. We use the following terminology and notations
to denote the representatives in the different domains:

(i) “image” in the pixel space of width W; and height H;:
iy, ix, iw,

(ii) “signal” in the wavelet subspace, which is a subset of
R™M:: sy, sy, sy (due to the discrete nature of pixels
values, this subspace and the following ones are not
stricto sensu homomorphic toRN:, RN, orR?),

(iii) “vector” in the correlation space, which is a subset
IRNV: Vy, VX, Vw,

(iv) “coordinates” in the MCB plane, which is a subset R?:
Cy, €x, Cw.

The diagram of the different processes necessary to
obtain the different subspaces is depicted on Figure 1. The
following subsections describe these subspaces and their
specificities.

2.1. The pixel space

Images in this article are H; X W; matrices of 8-bit luminance
values. We can always consider that the watermark in the
pixel space is the difference between the watermarked image
and the original image: iy = iy — ix. This is not very useful,
except that we impose a distortion constraint based on the
PSNR, that is, a logarithmic scale of the mean square error
between pixel values of images ix and iy:

2
PSNR = 10log,, % (1)

where MSE is the mean square error: MSE =
(WiHy) 'S5, 3% iw (i, j)°, with (Wi, H;) being the
width and height of the image in pixels.

2.2. Thewavelet subspace

As stated in the introduction, the wavelet transform is an
excellent embedding domain because of its compliance to the
human visual system.
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Ficure 1: The different processes and entities involved in the BA embedding scheme. Each couple (a, N,) represents the name and size of the

vector a.

We perform the 2D wavelet transform (Daubechies 9/7)
on three levels of decomposition of the original image ix.
This transform is very fast thanks to a very efficient lifted
scheme implementation. We select the coefficients from all
the bands except the low-frequency LL band. These N; =
W;iH;(1 — 1/64) wavelet coefficients are then stored into a
signal sy (a column vector) . In our implementation, the
image dimensions must be multiple of 8. This signal lies
in R, a space we call the wavelet subspace. The low-low
frequency band coefficients are kept in memory, and they will
be used in the inverse extraction process.

The embedding process in this domain is in charge
of mixing the host sy and watermark sy signals in a
nonreversible way. The result is the watermarked signal sy =
f(sx,sw). We mean by nonreversible the fact that an attacker
observing sy should not be able to split it back to the two
private signals.

The MSE in the wavelet subspace is equal to the MSE in
the spatial domain because this wavelet transform conserves
the Fuclidean norm. Hence, to enforce the distortion con-
straint, we must have

[|sy — sx|| = 255V W;iH; - 107 PSNR/20, (2)

2.3. Thesecret subspace

We use N, secret binary antipodal carrier signals of size
Ni: scj € {-1/JN, I/W}NS. They are produced by a
pseudorandom generator seeded by the secret key K. Their
norm equals one, they are independent and we assume
that they are orthogonal since their cross correlations are
negligible (their expectations are zero, and their standard
deviations equal 1/4/N;) compared to their unitary norms
when N is big. The host signal is projected onto these carrier
signals: vx(j) = sg,jsx. These N, correlations are stored

into a vector vy = (vx(1),...,vx(N,))T. It means that vy
represents the host signal in the secret subspace. We can write
this projection with the N; X N, matrix S¢ whose columns
are the carrier signals: vy = sng. The norm is conserved
because the secret carriers are assumed to constitute a basis
of the secret subspace: [|vx||> = s¥ScS&sx ~ [Isx |2

The secret subspace has several advantages. Its dimension
is much lower than the wavelet subspace; the vectors in this
space are easier to manipulate. It brings robustness against
noise or, in other words, it increases the signal to noise

power ratio at the detection side, because the noise is not
coherently projected onto the secret subspace. Moreover,
it boils down the strong nonstationarity of the wavelet
coefficients: components of vy are almost independent and
identically distributed as Gaussian random variables.

2.4. The Miller, Cox & Bloom plane

The MCB plane is the most convenient space because it
enables a clear representation of the location of the hosts,
the watermarked contents, and the detection boundary. This
eases the explanation of the embedding and the detection
processes. It is an adaptive subspace of the secret subspace
whose dimension is two. We mean by adaptive the fact that
this subspace strongly depends on the host vector vx. Denote
v} € RM as a secret vector in the secret subspace, with
unitary norm. A basis of the MCB plane is given by (v;,v2)
such that

T
vx — (vxvi)vi
vy =v/), vy = S
[lvx — (vxvi)vill

3)

Hence, the MCB plane is the plane containing v and vx. As
far as we know, [5] is the first paper proposing the idea that
the watermark vector should belong to the plane containing
the secret and the host, hence the name MCB plane.

The coordinates representing the host are cx
(ex (1), ex ()T with cx(1) = vivy, and cx(2) = viv,. Note
that whereas cx(2) is always positive, the sign of cx(1) is not
a priori fixed. However, we will define v so that cx(1) is
indeed always positive (see (14)).

A useful property of the MCB plane is that the norm of
the host vector is conserved. The denominator of v, can be
written as

[[vx — (V)T(VI)V1||2 = ||VX||2 +ex(1)? = 2vE (vEivi)v

= [Ivx][* = ex(1)*

(4)

Hence,

_ Uikl = e (@Y

2
ol ey~ Il e’

x(2)? (5)

so that |lex |12 = cx(1)*+¢x(2)* = ||vx 2. Now, the vector vy
to be added in the secret subspace is indeed first generated in
the MCB plane, such that viy = cw(1)vi + cw(2)v,. Then,
IvwlI* = llew |12
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3. EMBEDDING AND DETECTION

As mentioned in the previous section, the embedding first
needs to go from the spatial domain to the MCB plane. Then,
it creates the watermark signal and finally maps it back to the
spatial domain. We have seen how to go from one subspace
to another. We now explain the definition of the watermark
representatives for the three domains.

We do not know what is the optimal way to watermark
an image. This is mainly due to the nonstationarity of this
kind of host. However, as mentioned earlier, host vectors
in the secret subspace can be modeled as random white
Gaussian vectors. We know what is the optimal way (in some
sense) to watermark a Gaussian white vector according to
[1]. The embedder has to create a watermarked vector as
vy = avx + bv, where v is a secret vector and a and b are
scalars to be determined. This shows that the watermarked
vector belongs to the plane (vy, v/ ), that is, the MCB plane.
However, contrary to [1], we prefer to look for the optimum
watermarked coordinate in the basis (vi,v,) of the MCB
plane.

3.1. The MCB plane

Knowing vector v, we perform the projection from the
secret subspace to MCB plane as defined in (3). The detection
region is defined by a cone of angle 0 and abscissa direction
[0x) in the MCB plane such that c is considered watermarked
if

1(1,0) -cl _ [e(1)]

el e o ©)

The absolute value in the detection formula implies that the
detection region is indeed a two-sheet cone as advised by
Merhav and Sabbag [1].

The goal of the embedding process in this domain is to
bring the coordinates of the watermarked vector cy deep
inside the cone. There are actually several methods: maxi-
mizing a robustness criterion [6, Section 5.1.3], maximizing
the detection score [1], or maximizing the error exponent
[7]. These strategies assume different models of attack noise
(resp., the noise vector is orthogonal to the MCB plane,
the noise vector is null, or the noise vector is white and
Gaussian distributed). We propose our own strategy which,
in contrast, does not assume any model of attack as it foresees
the worst possible noise. A geometrical interpretation makes
the link between our strategy and the one from [6, Section
5.1.3].

3.1.1.  Maximum robustness

This strategy is detailed in [6, Section 5.1.3]. Assume that
cx(1) > 0. We look for an angle 7 € [0, —n/2] which pushes
the watermarked coordinates deep inside the detection
region. This operation is defined by

Cy = Cx +Cw = cx +p(cos(r),sin(r))T. (7)

The radius p is related to the embedding distortion con-
straint. We give its formula in Section 4.1.

cx(2) g J

FIGURE 2: The hypercone and the MCB plane in the (v, v,, v3) basis.

Now, what does “deep inside the cone” mean? Cox et al.
propose to maximize a robustness criterion defined by

R(cy) = max (0, cy(1)* tan (8)* — cy(2)%). (8)

Roughly speaking, R represents the amount of noise energy
to go outside the detection region provided that cy is
inside [6, Section 5.1.3]. The maximum robustness strategy
selects the angle 7* maximizing the robustness: 7* =
arg max,e[o,—»2]R(cy), where cy is a function of 7 (7). This
can be done via a dichotomy search or a Newton algorithm.
We would like to give a geometrical interpretation of this
robustness criterion. Assume first that the attack noise is
independent of the secret vector v and of the host vector vy.
Geometrically speaking, it means that this noise vector vy is
orthogonal to the MCB plane, giving birth to an orthogonal
subspace spanned by vs; as depicted in Figure 2. A cut of
the frontier of the detection region by the plane (v,,v3) at
the point vy shows a circle of radius cy (1) tan(6). Figure 3
shows that the square norm of vy needs to be at least equal

to (cy(1) tan())* — cy(2)* which is indeed R(cy).

3.1.2. A new criterion based on the nearest border
point attack

The definition of the robustness explained above makes
sense whenever the noise vector is orthogonal to the MCB
plane. However, many attacks (filtering, compression, etc.)
introduce a distortion which is indeed to be very dependent
on the host vector. Hence, the previous assumption may
not be realistic. We describe here a new embedding strategy
maximizing the distance between the watermarked vector
and the nearest border point on the detection region frontier.
We first introduce it in an intuitive manner with geometrical
arguments, and then we prove it with a Lagrange resolution
which is indeed the best strategy.

Assume that the noise vector belongs to the MCB
plane, then the shortest path to move outside the detection
region is to push the watermarked vector orthogonal to the
edge of the cone as shown in Figure 4. Hence, |leyl? =
(cy (1) tan(0) — cy(2))*cos(0)*. It is very easy to show that
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F1GUrEe 3: The minimal norm attack vector cy, when it is orthogonal
to vy and v,.

F1GURE 4: The border point attack in the MCB plane.

this norm is lower than R(cy). The embedding strategy
should look for the coordinates cy maximizing the score
R'(cy) = (cy(1)tan(f) — cy(2))* under the constraint that
llcy — cxll = p. In other words, we select the coordinates
whose nearest border point attack needs the maximum
noise energy. Intuitively, the embedder should push the host
coordinates orthogonally to the edge of the cone so that
cy = ¢cx +p(siné, —cosG)T. However, this intuition is wrong
when the embedding circle [lcy — cx|| = p intersects the axis
of the cone because there is no point in having a negative
¢y (2) which would decrease R'(cy). This detalil is illustrated
in Figure 5.

We now strengthen our rationale with a more rigorous
approach. The noise vector can always be written as vy =
nivi + navy + nsvs, where (n1,n,) are its coordinates in
the MCB plane (the one defined by the original vector vy),
and n3 is the remaining component orthogonal to the MCB
plane. Let us look for the nearest border point attack noise
that is finding which point v}j located on the cone minimizes
the Euclidean distance [|[vy — vy || to a point vy = (y1, ¥2,0)
in the MCB plane and inside the cone. This question can be
mathematically formulated by

(n1,ny,m3)" =arg  min _ |lvy —vyl|. 9)

2 tan (0)* =ni+n3

F1GURE 5: The two different embedding cases in the MCB plane.

A Lagrange resolution gives a point vy function of the
coordinates of vy, and the minimum distance dmin(vy) =
min(||vy — vy ||). Keep in mind that our real job is to place in
the MCB plane coordinate cy at a distance p from cx, while
maximizing this minimal distance:
cy = arg max Amin(Vy). (10)
y2):(n—ex (1)) +(y2—cx (2))*=p?

This second constrained optimization is also easily solved by
a Lagrange resolution. The study is divided into two parts
depending on the first Lagrange resolution:

Case 1. If y, > 0, the minimal distance equals dmin(Vy) =
y18in(0) — y,cos(8) which is positive since vy is inside the
cone. The nearest border point belongs to the MCB plane
(i.e, ny = 0) with coordinates (n],n)) = (y,y) +
(—tan(0),1)(y; tan(0) — yg)cos(e)z.

The second Lagrange resolution gives the watermarked
coordinates: cy = cx + p(sin(0), —cos(0)). Yet, this solution
is acceptable only if cy(2) > 0, that is, cx(2) > pcos(8).
The maximum of the minimum square distance is then
max(d2; ) = (cx(2)cosf — cx(1) sin 6 — p)*. Vector instances

are shown in Figure 5 with superscript (1).

Case 2. If y, = 0 (ie, vy is on the axis of the cone),
then dmin(vy) = yi1sin(0), and the nearest border points
are located on a circle: n} = ycos(6)’, and n32 + ni? =
ni2tan (0)°.

The distortion constraint allows to place the water-
marked coordinates on the axis of the cone only if cx(2) < p,

and then max(d2;,) = (y/p* — cx(2)* + cx(1))*sin (6)%. We
rediscover here the embedding proposed in [1, Theorem
2], where optimal parameters are given by [1, (33)]. This
is the “erase” strategy where the embedder first erases the
noncoherent projection of the host and then spends the
remaining distortion budget to emits a signal in the direction
of the secret vector v. Vector instances are shown in Figure 5
with superscript (2).
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The two cases are possible and compete if pcosf <
cx(2) = p. A development of the two expressions of
max(d2,;,) shows that, in this case, the first case gives the real
maximum minimum distance. Denote R" = maxd2,. Our
embedder amounts to place cy to maximize this criterion.

If cx(2) < pcosd, then

oy = (ex(1) +p? - 6x(2)2,0)T,
R = (Yo~ ex@P +ex() sin@), (D)

cy (1) sin(0)( — sin(0), cos(G))T.

CN

If cx(2) > pcos(8), then

cy = cx + p(sin(6), —cos(@))T,
R’ = (cx(1)sin(6) — cx(2)cos() + p)°, (12)

ev = (cy(1)tan(8) — cy(2))cos(8)*(— tan(0),1)",

where cy is the the nearest border point attacked coordinate.

In conclusion, a geometrical interpretation of the robust-
ness criterion R given in [6, Section 5.1.3] gives us an idea of
changing it for R’. This idea has been checked via a double
Lagrange optimization. This new formula has links with the
embedding strategy of [1] and also avoids the iterative search,
as the optimal watermarked coordinates have now closed-
form equation. The locus for the watermarked coordinates
having the same robustness R’ (aka contour of constant
robustness) is the cone translated by the vector +/R'/ sin 6v;.
This is quite a different constant robustness surface as the
hyperbola (defined through (8)) gets very close to the border
as the norm of the vector increases [5].

To go back to the wavelet subspace, we perform a double
projection: firstly, we project cy in the secret subspace and
secondly, we project this result in the wavelet subspace to
produce the watermark signal in the wavelet domain sy,. Due
to the use of orthonormal column vectors in both S¢ (see
Section 2.3) and (v;,v,) matrices, this operation is defined
by

sw = Sc(ew(1)vi + cw(2)v2) = Sc(vi, v2)ew. (13)

3.2. Increasing the diversity of the watermark signal

Zero-bit watermarking is known to provide weak security
levels due to its lack of diversity. The detection region,
for the moment, is only composed of one two-nappe
hypercone around the axis supported by v/. Analyzing
several watermarked signals, an attacker might disclose the
secret signal Scv} that parameterized the detection region,
using clustering or principal component analysis tools [8—
10].

For this security reason, we render the detection region
more complex, defining it as the union of several two-nappe
hypercones. In the secret subspace, we define a set C of secret

directions with N, secret unitary vectors: C = {vc,k}kNgl.

With the host signal being represented by vx in this space, we
look for the “nearest” secret direction from the host vector:

v = sign(vivy)ve, withve = arg _max [viver].
S

{1}
(14)

This secret vector is used for the embedding in the MCB
plane. Chosen as is, projection cx (1) is always positive. At
the detection side, the same vector has a high probability to
be selected since the embedding increases correlation v} vc.

We can predict two consequences. The first one is an
advantage; we increase the probability of correct embedding.
v} is chosen as the closest vector of C from vy, whence, for a
given embedding distortion, it is more likely to push a vector
vy in its hypercone. This acceptance region split into several
areas mimics the informed coding used in positive rate or
zero rate watermarking scheme such as dirty paper trellis or
quantized index modulation. The second one is a drawback;
the angle of the cones decreases with the number of cones in
order to maintain a probability of false alarm below a given
significance level. Consequently, narrower hypercones yield
a lower robustness, as less attack distortion is needed to go
outside.

The following subsections investigate this issue from a
theoretical and an experimental point of view.

3.3. Modeling the host

In the wavelet subspace, one possible statistical model is
to assume a Gaussian mixture. The wavelet coefficient
sx(i) is Gaussian distributed but with its own variance o?:
sx(i)~N (0,07). We will also pretend that they are condi-
tionally independent given their variances, which is of course
not exactly true [11]. In the secret subspace, the components
of the host vector are Gaussian i.i.d. because the carrier
signals are mutually independent, and the correlations are
indeed linear combinations of Gaussian random variables:
vx (j)~N (0,22), with 22 = N 1SN o2,

In the MCB plane, the statistical model is also very
simple. Note first that cx(1) and cx(2) are not independent:

cx(2) = \/cx(l)2 — |lvxl|2. The first coordinate is defined

as the maximum of N, absolute values of correlation with
unitary vectors. Hence, its cdf F(c) is given by

F(c) = Prob(cx(1) < ¢)
= [ [Prob(|vTvx| <c)

vel

o) el
ol 5)-)"

where O is the standard normal cdf. As N, becomes larger,
the Fisher-Tippet theorem shows that F(c) converges to the
Gumbel distribution with a variance decreasing to zero with



T. Furon and P. Bas

a rate 1/log N, [12]. This allows us to roughly approximate
cx (1) by its expectation which converges to the median value:

cx(1) /20 ((I/ZWH)), (16)

where @' is the inverse normal cdf. By approximating
also |lvxll*> by N,22, (5) shows the following ratio is
approximately constant:

x(2)
cx(1)

N, -1 (17)
[o-1((12 + 1))

Hence, the locus of the host coordinates in the MCB plane
focuses more and more with N, around a line passing by the
origin and whose slope equals (17). Moreover, as mentioned
above, the host coordinates get closer to the axis of the
cone because the slope of the line is decreasing with N, (see
Figure 6).

3.4. Probability of false alarm

The hypercone is one of the very few detection regions
where the probability of false alarm can be easily calculated
provided that the host vectors pdf is radially symmetric, that
is, only depending of the norm of the vectors. This is the case
in BA, we can thus use work [3]. The probability that vx falls
inside a cone of angle 0 is given by

In,—2(0)

In,-2(1/2)’ (18)

Prob(vy in a two-nappe cone) =

where Iy_»(0) is the solid angle associated to angle 6 in
dimension N. We just bound Py, with a classical union
bound:

In,—2(0)

Tn2(7/2)" (19)

Psy < N

As shown in Figure 6, the angle of the cone is moderately
decreasing with N..

3.5. Experimental investigations

Figure 6 depicts the distributions of the coordinates of 5500
original images and their watermarked versions (PSNR of
45dB) in their MCB plane for different numbers of cones
while keeping the probability of false alarm below 10~°. The
host model is represented by the green line on the left. The
bigger the number of cones is the better the approximative
model feats the experimental distribution. The effect of
the proposed strategy to maximize the robustness is clearly
visible. The points representing watermarked contents are
either located on the v, axis or nearly distributed along the
blue line on the right parallel to the line modeling the host
coordinates. Host coordinates above the dotted blue line are
just shifted by the vector p(sin 0, —cosh)”.

Figure 7 represents the robustness criterion R calculated
for these 5500 real host coordinates against ||cx | and enables
to draw important remarks for constant embedding.

(i) For images with a low magnitude of [lcxll, the
robustness decreases with the number of cones.

(ii) For images with a high magnitude of [lcxll, the
robustness increases according to the number of
cones.

(iii) For a given number of cones, there is a range of || cx||,
for example, a class of images, where the robustness
is maximal.

(iv) The average robustness is monotonically increasing
with the number of cones. It tends to saturate for
N, > 50. This is an extremely surprising experimental
result because we expected to have an optimal num-
ber of cones like the optimum number of codewords
in Costa’s theory [13].

This subsection has investigated the watermark embed-
ding and detection only in the MCB plane. This exactly
simulates an additive spread spectrum embedding where the
watermark signal defined in (13) is directly added to the
wavelet coefficients: sy = sx + sy . This provides a tractable
model in the MCB plane but it has many drawbacks, as we
will see in the next section.

4. PROPORTIONAL EMBEDDING

The additive embedding has two major drawbacks. First, it
does not comply with some psychovisual basics. The power
of the watermark signal is constant all over the image,
whereas the human eye is more sensitive on homogeneous
regions than on textured regions and edges. Experimentally,
the watermark appears as noise over uniform areas. The only
way to avoid this artefact is to increase the PSNR, but then the
robustness becomes weak. A second drawback is that additive
embedding does not respect the power-spectrum condition
[14] which states that the spectrum of the watermark has
to be locally proportional to the spectrum of the host in
order to be robust against denoising attacks. The intuition
is that it is extremely hard or almost impossible to filter out
the watermark signal if it shares the same statistical property
than the host. A proportional embedding in the wavelet
domain solves this two issues. The proportional embedding
consists in locally adapting a gain prior the mixing: sy =
sx +sw,. The local gain is indeed proportional to the absolute
value of the host wavelet coefficient:

sw, (1) = [sx (i) [sw(d). (20)

In other words, the signal sy is hidden in the content
via a proportional embedding. Such an embedding in the
wavelet domain provides a simple human visual system in
the sense that it yields perceptually acceptable watermarked
pictures for PSNR above 40 dB [4]. Moreover, this scheme
has shown to be close to the optimal embedding strategy
given by a game theory approach, but less computationally
expensive [2]. However, some corrections are needed in the
BA algorithm.
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FI1GURE 6: Distribution of the hosts (blue dots) and their watermarked coordinates (red dots) in their respective MCB plane. Py,= 10°¢,

equivalent PSNR = 45 dB.

4.1. Corrections

4.1.1.  Impact on embedding distortion

The following equation links the norms of ||SWP|| and

Iswll, assuming that sx (i) is independent from sy (i), Vi €
{1,...,Ny}:

N
||SW,;||2 => |5X(i)|25W(i)2
izl

L e (21)
~ N7 D sx (i) D swii)
i=1 i1
- 2
= Slswlls
with 82 = Ns’lzf\flsx(i)z. Hence, with (2), we must set the
norm of sy to

255y WiH; 10-PSNR/20
2

lswll = —=—
Sw \/§

(22)

4.1.2. Equivalent projection

A difficulty stems from the fact that the proportional
embedding is not a linear process. Assume that the embedder
calculates watermarked coordinates cy in the MCB plane,
and it mixes the corresponding watermark signal in the
wavelet subspace with the proportional embedding. When
the detector projects the watermarked signal back to the
MCB plane, it does not find the same watermarked repre-
sentative cy. The watermarked signal is projected back onto
the secret subspace in vy such that

N; N,
vy (k) = vx(k) + > > |sx(i) [vw(j)sc,j(Dsce(i).  (23)

i=1 j=1

We assume that the host wavelet coefficient Sy (i) is statisti-
cally independent of the ith secret carriers samples in order to
simplify this last expression in provided that s{. isck =0k

vy (k) = vx (k) + vw (k) [Sx|, (24)

with [Sx| = N7 1SN [sx (i)
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Ficure 7: Computation of the robustness R’ in function of ||cx || for
different images and different number of cones. Average robustness
is represented by horizontal lines.

At the embedding side, we take into account this phe-
nomenon right in the MCB plane. We model it by searching
the best watermark coordinates with a vector cw, which
reflects the coordinates of the vector cy after proportional
embedding in the MCB plane. But, the coordinates to be
projected back to the secret subspace is indeed cy =
CWP/ | SX |

These two corrections imply that even with a constant
PSNR, the norm of cy, is different from a host image to
another:

—
llew, || = |—};|255\/WiHi10’PSNR/2°. (25)

V%

In the MCB plane, the ratio 1Sx1/ Sg( is the only difference
between the additive and the proportional embedding
methods.

4.2. Experimental investigations

We need to check that our model of proportional embedding
in the MCB plane is actually working. Figure 8 shows ten
couples of watermarked vectors in their own MCB plane.
Each couple is composed of coordinate cy, used at the
embedding and coordinate cy retrieved at the detection side
when no attack occurred. There is a small difference, and the
reason stems from all the approximations previously made:
carriers are not orthogonal (Section 2.3), the embedding
distortion is not exact (21), and projections in the secret
subspace are modeled (24). The quantization in the spatial
domain, after the inverse wavelet transform, is less disturb-
ing. An iterative algorithm has already been proposed to

Ficure 8: Deviations between the desired coordinates cw, at the
embedding and the real coordinate cy retrieved at the detection.
The coordinates are represented by circles as they appear in their
own MCB plane, for 10 watermarked images.

better control the location of the watermarked coordinates
[15, Section 3], but we believe that this difference is a second-
order effect, and we prefer to keep the embedding process as
simple as possible.

Other experimental works not described in this article

showed us that bigger values of |Sx| and \/S§( are expected
when |[lvx| is important, but there is almost no obvious

statistical inference between @/@ and the norm of the
host vector. The expectation of this ratio is around 0.3 and
0.4, weakly increasing with ||vx|l. It has a strong variance
around this expectation. The most important is that the ratio
is always lower than 1. It means that embedding circle in the
MCB plane is smaller with a proportional embedding than
an additive embedding.

The final experimental work is a benchmark of four
watermarking techniques. We used 2000 luminance images
of size 512 X 512. These pictures represent natural and urban
landscapes, people, or objects, taken with many different
cameras from 2 to 5 millions of pixels.

The PSNR of the watermarked pictures is in average
42.7dB. The visual distortion is invisible for almost all
images. Figure 9 illustrates this with the reference image
“Lena.” A careful inspection shows some light ringing effects
around the left part of the hat. However, there exist pictures
where the embedding produces unacceptable distortion as
shown in Figure 10. We explain this as follows. The common
factor of these images is that they are composed of uniform
areas (e.g., the sky) or textures with very low dynamic (e.g.,
the trees), and they have very few strong contours (the
street lamp and the statue of Figure 10). Then, for a given
distortion budget, the proportional embedding does not
spread the watermark energy all over the image because most
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FIGURE 9: The reference image “Lena” watermarked at PSNR =
42.6 dB.

FIGURE 10: One of the few images where the embedding provides
a poor quality despite a PSNR of 42.7 dB. Ringing effect is visible
around the statue and the street lamp.

wavelet coefficients are small, but it focuses the watermark
energy on the very few strong wavelet coefficients. For
the purpose of the challenge, we did not care of it but
this drawback has to be improved for a real watermarking
technique.

Four watermarking techniques with different embedding
strategies have been benchmarked:

(i) maximization of the robustness criterion R defined
by (8) with a proportional embedding,

(ii) maximization of the error exponent as detailed in [7]
with a proportional embedding,

(iii) maximization of the new robustness criterion R with
a proportional embedding,

(iv) maximization of the new robustness criterion R with
an additive embedding.

We apply a set of 40 attacks mainly composed of combi-
nations of JPEG and JPEG 2000 compressions at different
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FIGURE 11: Probability of good detection versus average PSNR of
attacked images for the four watermarking techniques: proportional
embedding and new robustness criterion “,” additive embedding
and new robustness criterion “+,” proportional embedding and
Miller, Cox & Bloom robustness criterion “o” [6, Section 5.1.3],
proportion embedding with Comesana’s strategy “A” [7]. Selection
of attacks: (1) denoise threshold 20, (2) denoise threshold 30, (3)
JPEG Q = 20, (4) JPEG2000 r = 0.001, (5) JPEG2000 r = 0.003,
(6) JPEG2000 r = 0.005, (7) scale 1/2, (8) scale 1/3 + JPEG Q = 50,
(9) scale 1/3 + JPEGQ = 50, (10) scale 1/3 + JPEGQ = 60, (11)
scale 1/3 + JPEG Q = 70, (12) scale 1/3 + JPEGQ = 90, (13) scale
1/4 +JPEG Q = 70, (14) scale 1/4 + JPEG Q = 80, (15) no attack.

quality factors, low-pass filtering, wavelet subband erasure,
and a simple denoising algorithm. This latter consists in
thresholding wavelet coefficients of 16 shifted versions of the
image, afterward the inverse wavelet transforms are shifted
back and averaged.

Figure 11 reports the impact of the 15 most significant
attacks on the four techniques (the discarded attacks yield
either lower PSNR or higher probabilities of detection). The
probability of detecting the watermark (i.e., number of good
detection divided by 2000) is plotted with respect to the
average PSNR of the attacked images. Because these classical
attacks produce almost the same average PSNR, the four
points for a given attack are almost vertically aligned. Yet, the
impact on the probability of detection is interesting; despite
that the additive embedding allows bigger radius embedding
circle in the MCB plane, this technique is the weakest.
This stresses the fact that mixing signals with different
statistical structures as for constant additive embedding is
partly reversible. This is an Achilles’” heel that even classical
attacks take benefit of. Our embedding strategy gives average
better results than the ones of Cox et al. (8) and of Comesafia
etal. [7]. Yet, the improvement is really weak.

5. COUNTERATTACKS

In the BOWS-2 contest, the broken arrows algorithm has
to face attacks linked to security. The first one is the oracle



T. Furon and P. Bas

11

attack whose goal is to disclose the shape of the detection
region and/or to find nearest border point. The second one
is based on information leakage, and the goal here is to try
to estimate the secret subspace. We consequently decided to
implement a counterattack in order to make these attacks
(a bit) more complicated. The only solution we found to
cope with information leakage attacks is to increase the
diversity of the key by using several cones as explained
previously in the paper (see Section 3.2). Initially, we also
tried to increase the diversity of the key by using technique
relying on perceptual hashing, but this technique was not
mature enough to be implemented in the last final version
of the algorithm. Regarding oracle attacks, we adopted three
counterattacks presented below.

5.1. Randomized boundary

An attacker having unlimited access to the detector as a
black sealed box can lead oracle attacks. Many of them are
based on the concept of sensitivity, where the attacker tries
to disclose the tangent hyperplane locally around a point
(called sensitive vector) on the border of the detection region.
A counterattack formalized by [16] is to slightly randomize
the detection region for each call. This counterattack is
very similar to the one that consists in having a chaotic
boundary as proposed in [17, 18], both want to prevent
an easy gradient ascent algorithm by making the detection
border more difficult to analyse.

We process very simply by picking up a random threshold
T uniformly distributed in the range (cos(Omax), cOS((Omax +
Omin)/2)]. Omin (resp., Omayx) has a corresponding probability
of false alarm of 3-10~7 (resp., 3-107°).

5.2. Snake traps

The “snake” is a new kind of oracle attack invented by Craver
and Yu [19]. It consists in a random walk or a diffusion
process in a constrained area of the space, which is indeed
the detection region. This approach is a very efficient way to
explore the detection region and to estimate parameters of
the watermark detector. An important fact is that the snake
tends to grow along the detection region border.

Our counterattack is to shape the boundary of the
detection region, trapping the snakes in small regions to stop
their growth. We draw “teeth” in the MCB plane, in the
following way:

(1) if [ey (1) — Al ey(y/All < r, then detection is positive
if cy (1) > [lcy llcos(Omin),

(ii) else the watermark is detected if cy(1) > ||cy|/cos(0),
where 0 is a random variable as explained above.

A and r set the periodicity and the width of the “teeth.” Note
that the teeth are longer as the vector is far away from the
origin. Depending on the step of the random walk, we hope
to increase the probability of trapping a snake as it grows. The
teeth slightly reduce the size of the acceptance region, hence,
the probability of false alarm is even lower.

FIGURE 12: Detection results in the MCB plane. Dark-grey points
represent contents detected as watermarked, light-grey points as not
watermarked. The angle of the cone has been chosen in order to
magnify the shape of the border.

Snakes almost grow infinitely in a cone because this
detection region is not bounded (in practice, the pixel lumi-
nance dynamic bounds it). Hence, the average direction of
several independent snakes can disclose the axis of the cone.
Yet, we deal with several cones, and more importantly, the
cones are indeed not disjoint for the considered probability
of false alarm; the angle 6 is always bigger than 7/4 in
Figure 6 and around 1.2154 rad in the final implementation.
The snakes will then be trapped in a subspace of dimension
N, where no average direction will emerge. This does not
mean that snakes do no longer constitute a threat. A principal
component analysis of several long snakes might disclose
the secret subspace. We expect at least a strong increase of
detection trials.

5.3. Camouflage of the cone

The detection score is virtually independent of a value-
metric scaling. This is a nice robustness feature, but very
few detectors provide this advantage. Hence, this leaves
clues [19]. We consequently decided to conceal the use
of hypercones by truncating it; a content is deemed not
watermarked if ||cy|| < A. Note that the value A has to be
small enough to guaranty that the nearest border point is not
located on the truncated section of the cone.

These three countermeasures result in a detection region
depicted in Figure 12.

5.4. Nasty tricks

Concerning the challenge, we have the choice for the images
proposed for the contest. We benchmark our watermarking
technique over a set of 2000 images and against a bunch of
common image processing attacks, in order to fine tune all
the parameters, but also to investigate which images from this
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database were the most robust. These latter ones are used for
the first episode of the challenge. In the same way, we made
a light JPEG compression to let participants think that the
embedding domain is the DCT domain!

6. SOFTWARE IMPLEMENTATION

The BA software was developed in C using the libit [20]
library in order to get fast embedding and detection schemes.
During the whole contest, the embedding distortion is set
by a targeted PSNR of 43 dB. In practice, due to pseudo-
orthogonal carriers and the different approximations made
in Section 4.1, the real PSNR is in between 42.5 dB and 43 dB.

A four-level wavelet decomposition is performed via
libit with its very efficient implementation of a lifting step
factorization using a Daubechies 9/7 biorthogonal wavelet
[21]. The coefficients in subbands {HL; LH;,HH;};i €
{1,2,3} form the vector sx.

The pseudorandom generator is the Mersenne Twister
pseudorandom number generator [22] whose seed, that is,
the secret key K, is 128 bit long. The dimension of the secret
subspace is N, = 256. It is spanned by pseudo-orthogonal
carriers on size Ny = 258,048. The Gram-Schmidt orthog-
onalization has been skipped because it is too much time-
consuming. Antipodal carriers speed the correlation calculus
because coefficients =Sx (i) are accumulated in a sum which
is in accordance with the sign of the corresponding carrier
sample. We can also trade speed against memory; all the
N;- N, carriers’ samples are not stored in memory but they
are generated as the need arises.

The number of cones N, equals 30. There is no point in
creating yet another set of secret directions for the axis of the
cones. The secret subspace is already private via the secrecy
of the antipodal carriers. Consequently, vector v is just the
kth element of the canonical basis of the secret subspace. The
angles Omax and Onin are chosen to obtain probabilities of
false alarm lower than 3-10° and 3-1077, respectively. These
two probabilities bound the probability of false alarm of the
whole system.

During the detection process, we choose a truncating
parameter A equal to 10, a period A equal to 30, and a
width of the teeth r equal to 4.5. The random parameter
to choose angle 6 is computed using time as a seed of the
pseudorandom generator.

For a 512 x 512 grey-scale image, the computational time
for an embedding is of approximately 1.0 second for the
embedding and 0.8 seconds for the detection on the BOWS-
2 server (a 3-ghz Intel Xeon). Consequently, the BOWS-2
server, with 2 dual-core processors, has the possibility to
detect around 350 000 images per day.

The source code of the BA embedding and detection
schemes and the images used during the contest are available
on http://bows2.gipsa-lab.inpg.fr.

7. CONCLUSION

The name “broken arrows” comes from the fact that the
detection region is a set of cones shaped like heads of

arrows, where the very end has been broken (see Section 5.3).
Moreover, such a name suits perfectly the BOWS contest.

Designing a practical watermarking technique for a
contest is a very challenging task. We would like to point out
that a design is necessary done under constraints of time,
man, and computer powers, with the sword of Damocles
that a contender hacks the technique within the first hours
of the challenge. Especially, the countermeasures presented
in Section 5 have not been thoroughly tested due to lack
of time. Consequently, a design is quite a different work
than the writing of scientific paper. However, algorithms
performing well in practice are often based on strong
theoretical background. Not knowing the final results of the
challenge by the time of writing, we humbly hope that lessons
of scientific interest will be learnt.
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