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A MONOTONIC METHOD FOR SOLVING NONLINEAR OPTIMAL

CONTROL PROBLEMS WITH CONCAVE DEPENDENCE ON THE STATE

JULIEN SALOMON AND GABRIEL TURINICI

Abstract. Initially introduced in the framework of quantum control, the so-called monotonic
algorithms have demonstrated excellent numerical results when dealing with various bilinear
optimal control problems. This paper presents a unified formulation that can be applied to
more nonlinear settings. In this framework, we show that the well-posedness of the general
algorithm is related to a nonlinear evolution equation. We prove the existence of the solution
to this equation and give important properties of the optimal control functional. Finally we
show how the algorithm works for selected models from the literature.

1. Introduction

This paper aims at presenting a general unified formulation of several algorithms that were
proposed in different areas of nonlinear (bilinear) control. Given a cost functional J(v) depending
on the control v, these algorithms are iterative procedures that construct a sequence of solution
candidates vk with the important ”monotonic” behavior, i.e. J(vk+1) ≤ J(vk) ; the algorithms
have been named after this property as ”monotonic”. An convenient property of these procedures
is that the monotonicity does not requires any additional computational effort, but results from
the construction of the procedure itself.

These procedures have first been used in the field of quantum control, where quantum particles’
dynamics is controlled by a laser field as described by the Schrödinger equation (cf. Section 4.1
for more details about the modeling of this problem). In this framework, the function that
to each control associates the final state of the system is highly nonlinear. This induces poor
performance of standard, gradient-based algorithms. The ”monotonic schemes” introduced in [2,
49, 55] appeared in this context and were found to perform excellently in this very nonlinear
setting. These schemes were used in bi-linear situations where the control multiplies the state.
These were soon followed variants [54, 56] that generalized the cost functional to include situations
more complicated that a distance to a given target.

At first the relationship between the procedures introduced in the cited works was not obvious
but in [29] it was showed that there are all particular cases of a two-parameter class of algorithms.

Though the monotonic schemes are based on algebraic calculations, the specific setting induced
by the Schrödinger equation enables in [43] to relate the monotonic schemes to trajectory tracking
algorithm [30, 31]. At the numerical level, efficient discretizations of the procedure have been
proposed in [28, 11] and a time parallelized version was introduced in [27]. Continuing interest in
the monotonic schemes lead to the introduction in [14] of versions that ensure that the resulting
field will fit in a given frequency window.

In previous works the objective was encoded through a criterion on the final state but adapta-
tions were proposed in [36, 35] to deal with the case where the optimal control functional depends
on the whole dynamics of the control process or when the dynamics involve integro-differential
equations. Additional situations involving dissipation operators were proposed in [32] with a
non-Markovian version in [33].
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Further different examples consider the case where the system is described by a density matrix
operator instead of a wave function: details on the computation and convergence proofs limited
to this case were given in [44, 47, 48] and in [18] this is applied to create a quantum computer
gate; further applications can be found in [37, 9].

At some point similar procedures were also proposed in other control applications ([8, 19].
The convergence of the algorithm has been obtained in the case of quantum control (see

Section 4.1) using  Lojasiewicz-Simon inequality (see [7, 17, 26, 45] and the references therein)
and also in discrete and continuous settings in [3, 41]. The structure of the proofs shows that
when J is analytic and its gradient is Fredholm, convergence is guaranteed as soon as J contains
a penalization term of the L2-norm of the control v. Note also that another proof has been
presented in the framework of semi-group theory [15] using compactness arguments. All these
results are available for a bi-linear setting when the control multiplies the state and are specific
to the Schrödinger equations.

Up to this point all works presented above considered bi-linear situations (in all cases the opti-
mal control functional is a non-linear functional) ; only recently different cases were documented
in the literature: in [42, 20] the procedures were tailored to tackle specific non-bilinear models
in which the control field appears up to power 3. A situation when a unique control appears at
arbitrary powers of polynomial was proposed in [34]. A model where the system is a nonlinear
Bose-Einstein condensate was given in [46].

In all situations where monotonic algorithms were introduced the well-posedness of the algo-
rithms were proved by ad-hoc techniques and the same for convergence, although the algebraic
computations share similar points. The purpose of this paper is to identify the similarities present
in all these situations, and present a general setting to which the ”monotonic” algorithms belong ;
we also propose corresponding formulas and procedures to solve such type of problems. This al-
lows to tackle general non-linear situations the cannot be solved with techniques presented in the
literature.

The paper is structured as follows: Section 2 defines the general framework where our pro-
cedure applies. The algorithm itself is presented in Section 3. At this point we show that the
well-posedness of the algorithm is related to a nonlinear evolution equation. and prove the exis-
tence of the solution to this equation. We also give important properties of the optimal control
functional. Some examples of concrete realizations follow in Section 4 together with numerical
results illustrating the application of the algorithm.

2. Problem formulation

Let E, H and V be Hilbert spaces with V densely included in H. We denote by ·E and 〈·, ·〉V
the scalar product associated with E and V.

For any two vector spaces A and B we denote by L(A,B) the space of linear continuous of
operator between A and B.

Given a real or complex valued function ϕ, we denote by ∇xϕ its gradient with respect to
the variable x. We also denote by Dx and Dx,x the first and the second derivative of vectorial
functions in the Fréchet sense.

Remark 1. Recall that, given H1 and H2 two Banach spaces and U ⊂ H1 an open subset of H1,
a function f : U → H2 is said to be Fréchet differentiable at x ∈ U if there exists a continuous
linear operator Ax ∈ L(H1, H2) such that

lim
h→0

‖f(x + h)− f(x)−Ax(h)‖H2

‖h‖H1

= 0.
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If this is the case the operator Ax is called the Fréchet differential (or Fréchet derivative) of f at
x and is denoted Ax = Dxf .

Let us also recall that for a open set Ω ⊂ Rγ and any Hilbert space H1, L
∞(Ω;H1) is the space

of functions f from Ω with values in the Hilbert space H1 such that for almost all t ∈ Ω the norm
‖f(t)‖H1 is bounded by the same constant (the lowest of which will be the L∞(Ω;H1) norm of f).

In the same way one can define L2(Ω;H1)

(1) L2(Ω;H1) = {f : Ω→ H1 such that

∫

Ω

‖f(t)‖2H1
dt <∞}.

When the derivatives of functions of f are considered the Sobolev spaces W 1,∞ have to be
introduced; we refer to [1, 53] for further details.

Within an optimal control formulation, the evolution of a system X(t) is encoded in the
following optimization problem:

(2) min
v

J(v),

where

(3) J(v) :=

∫ T

0

F
(
t, v(t), X(t)

)
dt + G

(
X(T )

)
.

The functions F : R× E ×V→ R and G : V→ R are assumed to be differentiable and integral
assumed to exist. The system is described by a state function X(t) ∈ V being governed by the
evolution equation

∂tX + A(t, v(t))X = B(t, v(t))(4)

X(0) = X0.(5)

where v : [0, T ] → E is the control. The unbounded operator A(t, v) : R × E × H → H is such
that for almost all t ∈ [0, T ] the domain of A(t, v)1/2 includes V; furthermore we take B(t, v) such
that for almost all t ∈ [0, T ] and all v ∈ E we have B(t, v) ∈ L(H,H)∩L(V,V∗). We postpone to
Section 3 (cf. Lemma 3.4, Theorem 1) the precise formulation of additional regularity assumptions
to be imposed on A,B, F,G.

Remark 2. Finally, note that E is not necessarily a real number, neither finite dimensional, cf.
Section 4.2. This means that the control can be a set of several time-dependent function but also
a distributed control depending on time and also on a spacial variable.

Let us stress that although the equation is linear in X (for v fixed) the mapping v 7→ X is not
linear ; the term A(t, v(t)) multiplies the state X and as such the mapping is highly nonlinear
(of non-commuting exponential type).

Remark 3. Most of the previous works considered a bilinear operator A(t, v) i.e., A(t, v)X = vX;
the only exceptions (cf. discussion in the Introduction) were of the polynomial type (of order at
most 3 in [42, 20] and polynomial with E = R1 in [34]). The techniques present in the above
papers cannot be used for general operators A(t, v). On the contrary the results in this paper
include all the situations considered in the bibliography but also apply to all nonlinearities in v
compatible with the hypothesis of Lemma 3.4 and Thm. 1 below.

Moreover, the following concavity with respect to X will be assumed throughout the paper:

(6) ∀X,X ′ ∈ V, G(X ′)−G(X) ≤ 〈∇XG(X), X ′ −X〉V,

(7) ∀t ∈ R, ∀v ∈ E, ∀X,X ′ ∈ V, F (t, v,X ′)− F (t, v,X) ≤ 〈∇XF (t, v,X), X ′ −X〉V.
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Remark 4. Contrary to the more technical hypothesis that will be assumed latter, the properties
(6), (7) and the linearity of (4) are crucial to the existence of the monotonic algorithms.

3. Monotonic algorithms

We now present the structure of our optimization procedure together with the general algo-
rithm.

3.1. Tools for monotonic algorithms. The monotonic algorithms exploit a specific factoriza-
tion which is the consequence of the results in this section. To ease the notations we will make
explicit the dependence of X on v, i.e. we will write Xv instead of X in Eqs. (4–5).

We define the adjoint state Yv (see [13, 25]) by:

∂tYv −A∗(t, v(t)
)
Yv +∇XF

(
t, v(t), Xv(t)

)
= 0(8)

Yv(T ) = ∇XG
(
Xv(T )

)
.(9)

A first estimate about the variations in J can be obtained:

Lemma 3.1. For any v′, v : [0, T ]→ E denote

Υ
(
t,Xv(t), v(t), v′(t), Yv(t), Xv′(t)

)
= −〈Yv(t),

(
A
(
t, v′(t)

)
−A

(
t, v(t)

))
Xv′(t)〉V

〈Yv(t), B
(
t, v′(t)

)
−B

(
t, v(t)

)
〉V + F

(
t, v′(t), Xv′(t)

)
− F

(
t, v(t), Xv′(t)

)
.(10)

Then

(11) J(v′)− J(v) ≤
∫ T

0

Υ
(
t,Xv(t), v(t), v′(t), Yv(t), Xv′(t)

)
dt.

Proof. Using successively (6),(7), (4) and finally (9), we find that:

J(v′)− J(v) =

∫ T

0

F
(
t, v(t), Xv′(t)

)
− F

(
t, v(t), Xv(t)

)

+ F
(
t, v′(t), Xv′(t)

)
− F

(
t, v(t), Xv′(t)

)
dt

+G
(
Xv′(T )

)
−G

(
Xv(T )

)

≤
∫ T

0

〈∇XF
(
t, v(t), Xv(t)

)
, Xv′(t)−Xv(t)〉V

+ F
(
t, v′(t), Xv′(t)

)
− F

(
t, v(t), Xv′(t)

)
dt

+〈Yv(T ), Xv′(T )−Xv(T )〉V

≤
∫ T

0

〈 ∂
∂t

Yv(t)−A
(
t, v(t)

)∗
Yv(t) +∇XF

(
t, v(t), Xv(t)

)
, Xv′(t)−Xv(t)〉V

− 〈Yv(t),
(
A
(
t, v′(t)

)
−A

(
t, v(t)

))
Xv′(t)〉V

+ 〈Yv(t), B(t, v′(t))−B(t, v(t))〉V

+ F
(
t, v′(t), Xv′(t)

)
− F

(
t, v(t), Xv′ (t)

)
dt.

Due to (8), the first term of the left-hand side of this last inequality cancels and the result
follows. �
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Remark 5. The focus of the result is not on obtaining an estimation of the increment J(v′)−J(v)
via the adjoint (which is well documented in optimal control theory, cf. [13, 25]); we rather
emphasis that the evaluation of the integrand Υ(...) at time t requires information on the control
v(s) for all s ∈ [0, T ] (in order to compute Xv(T ) then Yv(t)) but on the second control v′(s)
only for s ∈ [0, t] (because this is enough to compute Xv′(t)). This estimate can be useful in
deciding, at time t if the current value of the control v′(t) will result in an increase or decrease
of J(v′). This localization property is a consequence of the concavity of F and G (in X) and
bi-linearity induced by A. The purpose of the paper is to construct and theoretically support a
general numerical algorithm that exploits this remark.

Remark 6. We can intuitively note that Υ(...) has the factorized form:

Υ
(
t,Xv(t), v(t), v′(t), Yv(t), Xv′(t)

)
= ∆(v, v′)(t) ·E

(
v′(t)− v(t)

)
,(12)

with ·E the E scalar product. Thus v′ can always be chosen so as to make it negative (in the worse
case set it null by the choice v′ = v). We will come back with a formal definition of ∆(v, v′)(t)
and a proof of the previous relation in Section 3.3.

A more general formulation can be obtained if we suppose that the backward propagation
of the adjoint state is performed with intermediate field ṽ (cf. also [29]), i.e. according to the
equation :

∂

∂t
Yṽ −A∗(t, ṽ(t)

)
Yṽ +∇XF

(
t, v(t), Xv(t)

)
= 0

Yṽ(T ) = ∇XG
(
Xv(T )

)
.

Note that because of its final condition, Yṽ actually also depends on v. Nevertheless, for sake of
simplicity, we keep the previous notation. We then obtain the following lemma.

Lemma 3.2. For any v′, ṽ, v : [0, T ]→ E,

J(v′)− J(v) ≤
∫ T

0

−〈Yṽ(t),
(
A
(
t, v′(t)

)
−A

(
t, ṽ(t)

))
Xv′(t)〉V

+ 〈Yṽ(t), B
(
t, v′(t)

)
−B

(
t, ṽ(t)

)
〉V

+ F
(
t, v′(t), Xv′(t)

)
− F

(
t, ṽ(t), Xv′(t)

)
dt

+

∫ T

0

−〈Yṽ(t),
(
A
(
t, ṽ(t)

)
−A

(
t, v(t)

))
Xv(t)〉V

+ 〈Yṽ(t)(t), B
(
t, ṽ(t)

)
−B

(
t, v(t)

)
〉V

+ F
(
t, ṽ(t), Xṽ(t)

)
− F

(
t, v(t), Xṽ(t)

)
dt.

In this lemma, the variation in the cost functional J is expressed as the sum of two terms, and
can be considered as factorized with respect to v′ − ṽ and ṽ − v.

Remark 7. Lemmas 3.1 and 3.2 are generalization of previous results that were proved in the bi-
linear case. To the best of our knowledge, only specific corollaries requiring additional assumptions
have been used in the literature up to now.
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3.2. The algorithms. The factorization obtained above enables to design various ways to ensure
that J(v′) ≤ J(v), i.e. that guaranty the monotonicity resulting from the update v′ ← v. This
allows to present a general structure for our class of optimization algorithms. We focus on the
one that results from Lemma 3.1.

Algorithm 1. ( Monotonic algorithm )
Given an initial control v0, the sequence (vk)k∈N is computed iteratively by:

(1) Compute the solution Xvk of (4–5) with v = vk.
(2) Compute the solution Yvk of (8–9) with v = vk, starting from

Yvk(T ) := ∇XG
(
Xvk(T )

)
.

(3) Define vk+1 together with Xvk+1 such that for all t ≤ T the following monotonicity con-
dition be satisfied :

(13) ∆(vk+1, vk)(t) ·E
(
vk+1(t)− vk(t)

)
≤ 0.

Lemma 3.1 then guarantees that J(vk+1) ≤ J(vk). Several strategies can be used to ensure (13);
we will present one below. Its importance stems from the fact that no further optimization is
necessary once this condition is fulfilled. In order to guarantee (13), many authors (see [29, 49, 55])
consider an update formula of the form:

(14) vk+1(t)− vk(t) = −1

θ
∆(vk+1, vk)(t),

where θ is a positive number, that can also depend on k and t. In what follows, we focus on the
existence of solution of (14), and on practical methods to compute it. If vk+1 satisfies (14), the
variations in J satisfy:

J(vk+1)− J(vk) ≤ −θ
∫ T

0

(vk+1(t)− vk(t))2dt.

Note that (14) reads as an update formula combining on the one hand a gradient method:

vk+1(t)− vk(t) = −1

θ
∆(vk, vk)(t),

and on the other hand the so-called Proximal Algorithm (introduced by [6]), which prescribes:

vk+1(t)− vk(t) = −1

θ
∆(vk+1, vk+1)(t).

Remark 8. When F = 0 and A is independent of v, i.e. linear control with final objective, (14)
coincides with a gradient method.

3.3. Well-posedness of the algorithm. In this section, we focus on the procedure obtained
when using Algorithm 1 with the update formula (14). Since this procedure involves the resolution
of an implicit equation, see Eq. (14), we prove the existence of a solution and present a convergent
procedure to compute it. As a by-product, we obtain a proof of the monotonicity of the algorithm.

Lemma 3.3. Suppose that for any t ∈ [0, T ]:
- A : R ×V ×V × E → R defined by A(t,X, Y, v) = 〈Y,A(t, v)X〉V is Fréchet differentiable

everywhere with respect to v for any X,Y, v.
- B : R×V × E → R with B(t, Y, v) = 〈Y,B(t, v)〉V is Fréchet differentiable everywhere with

respect to v for any Y, v.
- F is Fréchet differentiable everywhere with respect to v ∈ E for any X,Y, v.
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Then there exists ∆(·, ·; t,X, Y ) ∈ C0(E2, E) such that, for all v, v′ ∈ E

∆(v′, v; t,X, Y ) ·E
(
v′ − v

)
= −

〈
Y,

(
A(t, v′)−A(t, v)

)
X + B(t, v′)−B(t, v)

〉

V

+F (t, v′, X)− F (t, v,X).(15)

Moreover, if A,B,F are of C1 class in v then ∆(·, ·; t,X, Y ) can be defined through the explicit
formula:

∆(v′, v; t,X, Y ) =

∫ 1

0

−∇w

(
〈Y,A(t, w)X −B(t, w)〉

V

)∣∣∣
w=v+λ(v′−v)

+∇vF (t, v + λ(v′ − v), X)dλ.(16)

Proof. We denote by ‖ · ‖ the norm associated with E. Since A,B,F are Fréchet differ-
entiable with respect to v the full expression in Eq. (15) is of the form Ξ(v′) − Ξ(v) with
Ξ(v) = −A(t,X, Y, v) + B(t, Y, v)− F (t, v,X) differentiable in v; we introduce

(17) ∆Ξ(v′, v) :=
Ξ(v′)− Ξ(v)

‖v′ − v‖2 (v′ − v) ∈ E.

Since Ξ is differentiable, we obtain the continuity of ∆Ξ(v′, v) for all points v′ = v and ∆Ξ(v, v) =
∇vΞ(v) (the continuity is obvious everywhere else) hence the conclusion.

Finally, Eq. (16) is an application of the identity

Ξ(v′)− Ξ(v) =

∫ 1

0

∇vΞ(v + λ(v′ − v))dλ ·E (v′ − v).

�

Lemma 3.4. Suppose that
- A,B, F are of (Fréchet) C2 class with respect to v with DvvA, DvvB uniformly bounded as

soon as X,Y are in a bounded set;
- ∇vF is of C1 class in X;
- DvvF (t, ·, X) is bounded by a positive, continuous, increasing, bounded from below function

X 7→ k(‖X‖).
Given ε > 0, (t, v,X, Y ) ∈ R×E×V×V and a bounded neighborhood W of (t, v,X, Y ), there

exists θ⋆ > 0 depending only on ε, W , ‖v‖, ‖X‖ and ‖Y ‖ such that, for any θ > θ⋆

(1) ∆(v′, v; t,X, Y ) = −θ(v′ − v) has an unique solution v′ = Vθ(t, v,X, Y ) ∈ E.
(2) Vθ(t, v,X, Y ) = v implies

(18) −∇v

(
〈Y,A(t, v)X〉

V

)
(v) +∇v

(
〈Y,B(t, v)〉

V

)
(v) +∇vF (t, v,X) = 0.

(3) ‖Vθ(t, v,X, Y )− v‖ ≤ ‖X‖‖Y ‖+‖Y ‖+k(‖X‖)
θ {M0(t) +M1‖v‖} with M0(t) and M1 indepen-

dent of v,X, Y . If the dependence of A,B, F on t is smooth then M0(t) is bounded on
[0, T ].

(4) Vθ(t, v,X, Y ) is continuous on W .
(5) Let X belong to a bounded set; then X 7→ Vθ(t, v,X, Y ) is Lipschitz with the Lipschitz

constant smaller than ε.

Proof.

(1) Denote h = v′ − v and Gt,v,X,Y (h) = −∆(v+h,v;t,X,Y )
θ . When the dependence is clear we

will write simply G(h) instead of Gt,v,X,Y (h). We look thus for a solution to the following
fixed point problem: G(h) = h. For θ large enough, the mapping G is a (strict) contraction
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and we obtain the conclusion by a Picard iteration. The uniqueness is a consequence of
the contractivity of G.

(2) If v′ = v then h = 0 thus G(h) = 0 which gives (18) after using (16).
(3) For θ large enough, the mapping G is not only a contraction but has its Lipschitz constant

less than, say, 1/2. Because of the contractivity of G, we have ‖h‖−‖G(0)‖ ≤ ‖h−G(0)‖ =
‖G(h)− G(0)‖ ≤ 1

2‖h‖, which amounts to ‖h‖ ≤ 2‖G(0)‖. Next, we note that

‖G(0)‖ ≤ ‖∆(v, v, t,X, Y )−∆(0, 0, t,X, Y )‖ + ‖∆(0, 0, t,X, Y )‖
θ

≤M2‖v‖+ M3(t)

and the estimates follows.
(4) Formula (16) shows that ∆ depends continuously on t, v, v′, X, Y . Consider converging

sequences tn → t, vn → v, Xn → X , Yn → Y and define hn := Vθ(tn, vn, Xn, Yn) and
h := Vθ(t, v,X, Y ).
Given W and η > 0, consider large value of θ such that:

- for any (t′, v′, X ′, Y ′) ∈ W , Gt′,v′,X′,Y ′ is a contraction with Lipschitz constant less
than 1/2.

- for any (t′, v′, X ′, Y ′), (t′′, v′′, X ′′, Y ′′) ∈W ,

‖∆(v′′ + h, v′′, t′′, X ′′, Y ′′)−∆(v′ + h, v′, t′, X ′, Y ′)‖ ≤ η.

This last property implies ‖Gtn,vn,Xn,Yn
(h)−Gt,v,X,Y (h)‖ ≤ η

θ for n large enough. On
the other hand

‖hn − h‖ = ‖Gtn,vn,Xn,Yn
(hn)− Gt,v,X,Y (h)‖

≤ ‖Gtn,vn,Xn,Yn
(hn)− Gtn,vn,Xn,Yn

(h)‖
+‖Gtn,vn,Xn,Yn

(h)− Gt,v,X,Y (h)‖

≤ 1

2
‖hn − h‖+

η

θ
.

We have thus obtained that for n large enough : 1
2‖hn − h‖ ≤ η

θ and the continuity
follows.

(5) Subtracting the two equalities

∆(V1, v; t,X1, Y ) = −θ(V1 − v), ∆(V2, v; t,X2, Y ) = −θ(V2 − v)

and using that ∆(V, v; t,X, Y ) is C1 in X and v gives to first order

∆V (...)(V1 − V2) + ∆X(...)(X1 −X2) = −θ(V1 − V2).

For θ large enough the operator ∆V (...) + θ · Id is invertible and the conclusion follows.

�

Remark 9. Note that θ⋆ is proportional to (‖X‖V‖Y ‖V + ‖Y ‖V + k(‖X‖V)).

We are thus able to give an example of a setting where the existence of vk+1(t) satisfying (13)
is guaranteed.

Theorem 1. Suppose that A,B, F satisfy hypothesis of Lemma 3.4. Also suppose that the opera-
tors A,B are such that Eqs. (4–5) and (8-9) have solutions for any v ∈ L∞(0, T ;E) with v 7→ X,
v 7→ Y locally Lipschitz.
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(1) For any v ∈ L∞(0, T ;E), there exists θ⋆ > 0 such that for any θ > θ⋆, the (nonlinear)
equation

∂tXv′(t) + A(t, v′)Xv′(t) = B(t, v′)(19)

v′(t) = Vθ(t, v(t), Xv′ (t), Yv(t))(20)

Xv′(0) = X0(21)

has a solution. Here Yv is the adjoint state defined by (8–9) and corresponding to control
v.

(2) There exists a sequence (θk)k∈N such that the algorithm (cf Section 3.2)
a/ initialization v0 ∈ L∞(0, T ;E),
b/ vk+1(t) = Vθk(t, vk(t), Xvk+1(t), Yvk (t))
is monotonic and satisfies

J(vk+1)− J(vk) ≤ −θk‖vk+1 − vk‖2L2([0,T ]).

(3) With the notations above, if for all t ∈ [0, T ] vk+1(t) = vk(t) (i.e. algorithm stops) then
vk is a critical point of J : ∇vJ(vk) = 0.

Proof. Most of the proof is already contained in the previous lemmas. The part that still has
to be proved is the existence of a solution to (19)-(21).

Given v ∈ L∞(0, T ;E), consider the following iterative procedure :

v0 = v, vl+1(t) = Vθ(t, v(t), Xvl(t), Yv(t)).

We take a spherical neighborhood Bv(R) of v of radius R and suppose

∀k ≤ l, vk ∈ Bv(R).

Since the correspondence v 7→ Xv is continuous, it follows that the set of solutions Sv,R :=
{Xw;w ∈ Bv(R)} of (4) is bounded. In particular for w = vl by the item 3 of Lemma 3.4 the
quantity ‖Vθ(t, v(t), Xvl(t), Yv(t)) − v‖ will be bounded by R for θ large enough (depending on
R, independent of l), i.e. vl+1 ∈ Bv(R). Thus vl ∈ Bv(R) for all l ≥ 1.

Since Sv,R is bounded, recall that by item 5 of Lemma 3.4 the mapping X 7→ Vθ(t, v(t), X, Yv(t))
has on Sv,R a Lipschitz constant as small as desired. Since the mapping w 7→ Xw is Lipschitz,
for θ large enough, w ∈ Bv(R) 7→ Vθ(t, v(t), Xw , Yv(t)) is a contraction. By a Picard argument
the sequence vl is converging. The limit will be a solution of (19–20). �

4. Examples

We now present two examples that fit into the setting of Theorem 1. The space does not allow
to treat all other variants (cf. references in Introduction) so we leave them as an exercise to the
reader.

Within the framework of control theory, nonlinear formulations prove useful nowadays in do-
mains as diverse as the laser control of quantum phenomena (see [24, 38, 39, 40, 51, 52]) or the
modeling of a equilibrium (or again social beliefs, product prices, etc) within a game with infinite
numbers of agents (see [21, 22, 23]). Yet other applications arise from modern formulations of
the Monge-Kantorovich mass transfer problem (see [5, 4, 8]).

In the following, we present some examples coming from these fields of application and present
the corresponding monotonic algorithm resulting from Theorem 1.

4.1. (I): Quantum control.
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4.1.1. Setting. The evolution of a quantum system is described by the Schrödinger equation

∂tX + iH(t)X = 0

X(0, z) = X0(z),

where i =
√
−1, H(t) is the Hamiltonian of the system and z ∈ Rγ the set of internal degrees

of freedom. We assume that the Hamiltonian is an auto-adjoint operator over L2(Rγ ;C), i.e.
H(t)∗ = H(t)1. Note that this results in the following norm conservation property

(22) ‖X(t, ·)‖L2(Rγ ;C) = ‖X0‖L2(Rγ ;C), ∀t > 0,

so that the state (or wave-) function X(t, ·), evolves on the (complex) unit sphere S :=
{
X ∈ L2(Rγ ;C) : ‖X‖L2(R

The Hamiltonian is composed of two parts: a free evolution Hamiltonian H0 and a part that
describes the coupling of the system with an external laser source of intensity v(t) ∈ R, t ≥ 0;
a first order approximation leads to adding a time-independent dipole moment operator µ(x)
resulting in the formula H(t) = H0 − v(t)µ and the dynamics:

∂tX + i (H0 − v(t)µ)X = 0

X(0) = X0.

The purpose of control may be formulated as to drive the system from its initial state X0

to a final state Xtarget compatible with predefined requirements. Here, the control is the laser
intensity v(t). Because the control is multiplying the state, this formulation is called “bilinear”
control. The dependence v 7→ X(T ) is of course not linear.

The optimal control approach can be implemented by introducing a cost functional. The
following functionals are often considered:

(23) J(v) := ‖X(T )−Xtarget‖2L2(Rγ ;C) +

∫ T

0

α(t)v2(t)dt,

(24) J̃(v) := −〈X(T ), O(X(T ))〉L2(Rγ ;C) +

∫ T

0

α(t)v2(t)dt,

where O is a positive linear operator defined on H, characterizing an observable quantity and
α(t) > 0 is a parameter that penalizes large (in the L2 sense) controls. The goal is thus to
minimize these functionals with respect to v. According to (22) the cost functional J is equal to

(25) J(v) := 2− 2Re〈X(T ), Xtarget〉L2(Rγ ;C) +

∫ T

0

α(t)v2(t)dt,

so that the functionals J and J̃ satisfy assumptions (6) and (7).

4.1.2. Mathematical formulation. We have
• A(t, v) = H0 + v(t)µ with (possibly) unbounded v-independent operator H0 (but which

generates a C0 semi group) and bounded operator µ. The dependence of A on v is smooth
(linear) and therefore all hypotheses on A are satisfied.

• E = R, H = L2(Rd;C), V = dom(H
1/2
0 ) (over C), or their realifications H = L2 × L2,

V = dom(H
1/2
0 )× dom(H

1/2
0 ) (over R) see [16];

• B(t, v) = 0.
• F (t, v,X) = α(t)v(t)2 with α(t) ∈ L∞(R); here the second derivative DvvF is obviously

bounded. Since it is independent of X it will be trivially concave.

1For any operator M , we denote by M
∗ its adjoint.
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• G is either (see, e.g., [27, 29]) 2 − 2Re〈Xtarget, X(T )〉V or −〈X(T ), OX(T )〉V where O is a
positive semi-definite operator; both are concave in X .
• Here

(26) ∆(v′, v; t,X, Y ) = −Re〈Y, iµX〉V + α(t)(v′ + v)

and the equation in v′ ∆(v′, v; t,X, Y ) = −θ(v′ − v) has, for θ large enough, an unique solution

v′ = Vθ(t, v,X, Y ) := (θ−α(t))v+Re〈Y,iµX〉V
θ+α(t) .

• at the k + 1-th iteration, Theorem 1 guarantees the existence of the solution Xk+1 of the
following nonlinear evolution equation:

(27) i∂tX
k+1(t) =

(
H0 +

(θ − α(t))vk + Re〈Yvk , iµXk+1〉V
θ + α(t)

µ

)
Xk+1(t)

Then

(28) vk+1 =
(θ − α(t))vk + Re〈Yvk , iµXk+1〉V

θ + α(t)
, Xvk+1 = Xk+1.

4.1.3. Numerical test. In order to test the performance of the algorithm we have chosen a case
already treated in the literature. The system under consideration is the O−H bond that vibrates
in a Morse type potential V (x) = D0(exp(−β(x− x′))− 1)2 −D0. The dipole moment operator
of this system is modeled by µ(x) = µ0.xe

− x
x⋆ We refer to [55] for more details concerning this

system. The objective is to localize the wavefunction in a time T = 131000 at a given location x0 ;

this is expressed through the requirement that the functional J̃ is maximized, where the observable

O is defined by O(x) = γ0√
π
e−γ2

0(x−x0)
2

. We consider a constant penalization parameter α = 1

and optimization parameter θ = 10−2. The numerical values we use are give in the next table.

D0 β x′ x⋆ x0 γ0 µ0

0.1994 1.189 1.821 0.6 2.5 25 3.088

Results are presented in Fig. 1.

0 5 10 15 20 25 30
−2.5

−2

−1.5

−1

−0.5

0

iterations

J
(v

k
)

Figure 1. For the example in Section 4.1 we plot the evolution of the cost
functional values J(vk) as function of the iteration number k. Monotonic decrease
is observed as expected by the theoretical arguments.

4.2. (II) : Mean field games.
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4.2.1. Setting. Although the Nash equilibrium in game theory has been initially formulated for a
finite number of players, modern results (see [21, 22, 23]) indicate that it is possible to extend it to
a infinite number of players and obtain the equations that describe this equilibrium; applications
have already been proposed in economic theory and other are expected in the behavior of multi-
agents ensembles and decision theory.

The equations describe evolution of the density X(t, z) of players at time t and position z ∈
Q = [0, 1] in terms of a control v(t, z) and a fixed parameter ν > 0:

∂tX − ν∆X + div(v(t, z)X) = 0,

X(0) = X0.

The control v is chosen to minimize the cost criterion (3). For reasons related to economic
modeling interesting examples include situations where F,G are concave in X , e.g., as in [19]

(29) G = 0, F (t, z,X) =

∫

Q

p(t)(1 − βz)X(t, z) +
c0 · z ·X(t, z)

c1 + c2X(t, z)
+

v2(t)

2
X(t, z)dz,

with positive constants β, c0, c1, c2 and p(t) a positive function. Another example is given in [8]:

(30) G(X(T )) =

∫

Q

V (z)X(T, z)dz, F (t, z,X) =

∫

Q

X(t, z)v2(t, z)dz,

where V encodes a potential. The interpretation of this terminal cost is that the crowd aims at
reaching zones of low potential V at the terminal time T .

The relevance of the monotonic algorithms to this setting has been established in several
works [8, 19].

4.2.2. Mathematical formulation. We have
• E = W 1,∞(0, 1), H = L2(0, 1), V = H1(0, 1) see [19] and [10] (Chap XVIII §4.4)
• A(t, v) = −ν∆ · +div(v·). The dependence of A on v is smooth (linear) and therefore all

hypotheses on A are satisfied (DvvA = 0, ...).
• B(t, v) = 0.

• with definitions in (29) F (t, v,X) =
∫
Q
p(t)(1 − βz)X(t, z) + c0·z·X(t,z)

c1+c2X(t,z) + v(t,z)2

2 X(t, z)dz;

F is concave in X ; the second differential DvvF has all required properties.
• G = 0 (algorithm will apply in general when G is concave with respect to X).
• Here

(31) ∆(v′, v; t,X, Y ) = ∇Y +
v′ + v

2

and the equation in v′ ∆(v′, v; t,X, Y ) = −θ(v′ − v) has for all θ > 0 an unique solution v′ =

Vθ(t, v,X, Y ) := (θ−1/2)v−∇Y
θ+1/2 .

• at the k + 1-th iteration, Theorem 1 guarantees the existence of the solution Xk+1 of the
following nonlinear evolution equation:

(32) ∂tX
k+1(t)− ν∆Xk+1 + div(

(θ − 1/2)vk −∇Yvk

θ + 1/2
Xk+1) = 0.

Then

(33) vk+1 =
(θ − 1/2)vk −∇Yvk

θ + 1/2
, Xvk+1 = Xk+1.

4.2.3. Numerical test. The algorithm is test on the time interval [0, 1] with p(t) = 1 and the
numerical values β = 0.8, c0 = c2 = 1 , c1 = 0.1. Results are presented in Fig. 2.
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Figure 2. For the example in Section 4.2 we plot the evolution of the cost
functional values J(vk) as function of the iteration number k. Monotonic decrease
is observed as expected by the theoretical arguments.

4.3. Additional application. As a third example we consider a nonlinear vectorial case from [12,

50] which differs from that of Section 4.1 in that v(t) =

(
v1
v2

)
∈ E = R2 and A(t, v) =

i[H0 + (v1(t)2 + v2(t)2)µ1 + v1(t)2v2(t)µ2]. Here, denoting ξ1 = −Re〈Y, iµ1X〉V + α(t), ξ2 =
−Re〈Y, iµ2X〉V we obtain

(34) ∆(v′, v; t,X, Y ) = ξ1

(
v1 + v′1
v2 + v′2

)
+ ξ2

(
(v1 + v′1)v′2

(v1)2

)

and the equation in v′: ∆(v′, v; t,X, Y ) = −θ(v′ − v) has, for θ large enough, an unique solution

v′ = Vθ(t, v,X, Y ) =




(θ−ξ1)v2−ξ2v
2
1

θ+ξ1

− θ−ξ1+ξ2
(θ−ξ1)v2−ξ2v21

θ+ξ1

θ+ξ1+ξ2
(θ−ξ1)v2−ξ2v21

θ+ξ1

v1


. We leave as an exercise to the reader the

writing of the equation for Xk+1 and the formula for vk+1.
This model corresponds to the problem of controling the orientation γ of a molecule, considered
as rigid rotator.

4.3.1. Numerical test. To test our approach we have used the parameters of the molecule CO [12,
50], namely H0 = BJ2, where B is the rotational constant and J is the angular momentum. We
consider the basis given by the spherical harmonics ; the corresponding matrix is diagonal with
diagonal coefficients given by (H0)k,k = k(k + 1). The controlled is performed over an interval of
lenght T = 20Tper = 20 π

B . We consider constant penalization factor α = 10−1 and optimization

parameter θ = 103.
The other parameters correspond to the polarizability and the hyperpolarizability components of
the molecule. In this way we have µ1 = − 1

2λ, and µ2 = − 3
4β, with λ = 1

2 (λ‖ cos2 γ + λ⊥ sin2 γ),

β = 1
6 ((β‖ − 3β⊥) cos3 γ + 3β⊥ cos γ). The matrix cos γ is tridiagonal, with:

(cos γ)k,k = 0,

(cos γ)k,k+1 = (cos γ)k+1,k =
k + 1√

(2k + 1)(2k + 3)
.
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We use the numerical values given in [12, 50]:

B λ⊥ λ‖ β‖ β⊥
1.93 11.73 15.65 28.35 6.64

The results are presented in Fig. 3. As in the previous examples, a rapid convergence is
obtained, since about 100 iterations are necessary to reach the numerical convergence.
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Figure 3. For the example in Section 4.3 we plot the evolution of the cost
functional values J(vk) as function of the iteration number k. Monotonic decrease
is observed as expected by the theoretical arguments.

5. Conclusion

Motivated by a set of control algorithms that were initially introduced in the specific context
of quantum control we have presented an abstract formulation that includes them all. It is seen
that the algorithm involves at each step a highly nonlinear evolution equation. We identified the
theoretical assumptions that ensure that the evolution equation is well posed and has a solution.
The proof being constructive it serves as basis for numerical approximations of the solution.
We also proved several properties concerning the algorithms and more specifically concerning
its convergence. Examples are provided to indicate how the procedure proposed solves previous
cases from the literature and also new situations that were not previously considered. Numerical
simulations indicate that the procedures have indeed the expected behavior.
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