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A MONOTONIC METHOD FOR SOLVING NONLINEAR OPTIMAL
CONTROL PROBLEMS

JULIEN SALOMON, GABRIEL TURINICI∗

Abstract. Initially introduced in the framework of quantum control, the so-called monotonic
algorithms have shown excellent numerical results when dealing with various bilinear optimal control
problems. This paper aims at presenting a unified formulation of such procedures and the intrinsic
assumptions they require. In this framework, we prove the feasibility of the general algorithm.
Finally, we explain how these assumptions can be relaxed.
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1. Introduction. We document in this paper a general unified formulation for
several algorithms that were proposed in different areas of nonlinear (bilinear) control.

Historically first to appear in quantum control (cf. Section 3.1), it was noted
that the nonlinearity of the mapping control→ state induces poor performance of the
standard, gradient-based algorithms; as such new numerical procedures have been
proposed [1, 39, 47] and were found to perform excellently in this very nonlinear
setting. These were soon followed by scores of variants [32, 9, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 28, 33, 34, 35, 37, 38, 40, 41, 42, 45, 46, 48]. At some point
similar procedures were also proposed in other control or optimization settings (cf.
Section 3.2).

Given a cost functional J , these algorithms are iterative procedures that construct
a sequence of solution candidates vk with the important ”monotonic” behavior, i.e.
J(vk+1) ≤ J(vk) ; the algorithms have been named after this property as ”mono-
tonic”. It is interesting to note that the monotonicity does not requires any additional
computational effort, but results from the construction of the procedure itself.

The purpose of this paper is to investigate what is the most general class to which
”monotonic” algorithms apply and propose a general framing for procedures tailored
to solve such classes of problems.

The paper is structured as follows: Section 2 provides the general framework
where our procedure applies; some examples of concrete realization follow in Sec-
tion 3. The algorithm itself is presented in Section 4. In Section 5 we briefly explain
some extensions to more nonlinear settings and then we give details about the conver-
gence of the procedure (in Section 6). Finally, the Section 7 discusses the numerical
implementation of the algorithm.

2. Setting of the problem. Let E and H be two Hilbert spaces and 〈·, ·〉 the
scalar product associated with H. Given a real or complex valued function ϕ, we
denote by ∇xϕ its gradient with respect to the variable x. We also denote by Dx and
Dx,x the first and the second derivative of vectorial functions.
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We consider a system whose state X(t) ∈ H is governed by the evolution equation

∂tX +A(t, v(t))X = B(t, v(t)) (2.1)

X(0) = X0. (2.2)

where v : [0, T ]→ E is a control. Note that although the equation is linear in X (for
v fixed) the mapping v 7→ X is not linear ; the term A(t, v(t)) multiplies the state
X and as such the mapping is highly nonlinear (of non-commuting exponential type).

Within an optimal control formulation, the desirable evolution of the system is
encoded in the following optimization problem:

min
v
J(v), (2.3)

where

J(v) :=

∫ T

0

F
(
t, v(t), X(t)

)
dt+G

(
X(T )

)
. (2.4)

The functions F : R × E × H → R and G : H → R are supposed to be differ-
entiable and integral supposed to exist. Except where stated otherwise, the following
concavity with respect to X will be assumed:

∀X,X ′ ∈ H, G(X ′)−G(X) ≤ 〈∇XG(X), X ′ −X〉, (2.5)

∀t ∈ R,∀v ∈ E,∀X,X ′ ∈ H, F (t, v,X ′)−F (t, v,X) ≤ 〈∇XF (t, v,X), X ′−X〉. (2.6)

Remark 1. Contrary to the more technical hypothesis that will be assumed latter,
the properties (2.5), (2.6) and the linearity of (2.1) are crucial to the existence of the
monotonic algorithms. We will discuss in the Section 5 some possible ideas to relax
the form (2.1) of the state evolution or the concavity.

Remark 2. The intrinsic nonlinear regime is manifest from the explicit concave
dependence of the functionals F and G on the state ; certainly a linear v 7→ X
minimization problem would only have trivial solutions for such functionals.

3. Examples. Within the framework of control theory, nonlinear formulations
prove useful nowadays in domains as diverse as the laser control of quantum phenom-
ena [13, 27, 29, 30, 43, 44] or the modeling of a equilibrium (or again social beliefs,
product prices, etc) within a game with infinite numbers of agents [10, 11, 12]. Yet
other applications arise from modern formulations of the Monge-Kantorovich mass
transfer problem [3, 4], see [32].

3.1. (I): Quantum control. The evolution of a quantum system is described
by the Schrödinger equation

i
∂

∂t
Ψ(t, x) = H(t)Ψ(t, x)

Ψ(0, x) = Ψ0(x),

where H(t) is the Hamiltonian of the system and x ∈ Rγ the set of internal degrees
of freedom. The Hamiltonian will be supposed to be an auto-adjoint operator over,
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L2(Rγ), i.e. H(t)∗ = H(t)1. Note that this results in the following norm conservation
property

‖Ψ(t, ·)‖L2(Rγ) = ‖Ψ0‖L2(Rγ), ∀t > 0,

so that the state (or wave-) function Ψ(t, ·), evolves on the (complex) unit sphere

S :=
{
ψ ∈ L2(Rγ) : ‖ψ‖L2(Rγ) = 1

}
.

The Hamiltonian is composed of two parts: a free evolution Hamiltonian H0

and a part that describes the coupling of the system with an external laser source
of intensity ε(t) ∈ R, t ≥ 0 ; a first order approximation leads to adding a time-
independent dipole moment operator µ(x) resulting in the formula H(t) = H0− ε(t)µ
and the dynamics:

i
∂

∂t
Ψ(t, x) = (H0 − ε(t)µ) Ψ(t, x)

Ψ(0, x) = Ψ0(x).

The purpose of control may be formulated as to drive the system from its initial
state Ψ0 to a final state Ψtarget compatible with predefined requirements. Here, the
control is the laser intensity ε(t). Because the control is multiplying the state, this
formulation is called “bilinear” control. The dependence ε 7→ Ψ(T ) is of course not
linear.

The optimal control approach can be implemented by introducing a cost func-
tional

J(ε) := ‖Ψ(T, ·)−Ψtarget‖
2
L2(Rγ) +

∫ T

0

α(t)ε2(t)dt, (3.1)

where α(t) > 0 is a parameter that penalizes large (in the L2 sense) controls. The
goal is thus to minimize J(ε) with respect to ε.

Remark 3. Note that this cost functional does not satisfy the assumptions (2.5)
and (2.6). Yet, our method applies in this case, see Section 5.1.

3.2. (II) : Mean field games. Although the Nash equilibrium in game theory
has been initially formulated for a finite number of players, modern results [11] indicate
that it is possible to extend it to a infinite number of players and obtain the equations
that describe this equilibrium ; applications have already been proposed in economic
theory and other are expected in the behavior of multi-agents ensembles and decision
theory.

The equations describe evolution of the density m(t, x) of players at time t and
position x ∈ Q in terms of a control α(t, x) and a fixed parameter ν > 0:

∂

∂t
m(t, x)− ν∆m(t, x) + div(α(t, x)m(t, x)) = 0,

m(0, x) = m0(x).

The control α(t, x) is chosen to minimize the cost criterion (cf [11])

J(α) := Ψ(m(·, T )) +

∫ T

0

{
Φ(m(t, ·)) +

∫

Q

L(x, α)m(t, x)dx

}
dt

1For any operator M , we denote by M
∗ its adjoint.
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where L and Φ,Ψ are various functionals that describe the sought-after properties of
the solution. For reasons linked to the economic modeling Φ,Ψ are often concave,
while a typical example for L is

L(x, α) =
α2

2
. (3.2)

4. Monotonic algorithms. We now present the structure of our optimization
procedure together with the general algorithm.

4.1. Tools for monotonic algorithms. The monotonic algorithms are mainly
based on a special factorization obtained after algebraic manipulations that are build
on the results presented in this section. To ease the notations we will make explicit
the dependence of X on v, i.e. we will write Xv instead of X in Eqs. (2.1–2.2).

We define the adjoint state Yv by:

∂tYv −A
∗
(
t, v(t)

)
Yv +∇XF

(
t, v(t), Xv(t)

)
= 0 (4.1)

Yv(T ) = ∇XG
(
Xv(T )

)
. (4.2)

Thanks to this auxiliary variable, a first estimate about the variations in J can be
obtained.

Lemma 4.1. For any v′, v : [0, T ]→ E,

J(v′)− J(v) ≤

∫ T

0

−〈Yv(t),
(
A
(
t, v′(t)

)
−A

(
t, v(t)

))
Xv′(t)〉

+ 〈Yv(t), B
(
t, v′(t)

)
−B

(
t, v(t)

)
〉

+ F
(
t, v′(t), Xv′(t)

)
− F

(
t, v(t), Xv′

)
dt. (4.3)

Proof. Using successively (2.5),(2.6), (2.1) and finally (4.2), we find that:

J(v′)− J(v) =

∫ T

0

F
(
t, v(t), Xv′(t)

)
− F

(
t, v(t), Xv(t)

)

+ F
(
t, v′(t), Xv′(t)

)
− F

(
t, v(t), Xv′(t)

)
dt

+G
(
Xv′(T )

)
−G

(
Xv(T )

)

≤

∫ T

0

〈∇XF
(
t, v(t), Xv(t)

)
, Xv′(t)−Xv(t)〉

+ F
(
t, v′(t), Xv′(t)

)
− F

(
t, v(t), Xv′(t)

)
dt

+〈Yv(T ), Xv′(T )−Xv(T )〉

≤

∫ T

0

〈
∂

∂t
Yv(t)−A

(
t, v(t)

)∗
Yv(t) +∇XF

(
t, v(t), Xv(t)

)
, Xv′(t)−Xv(t)〉

− 〈Yv(t),
(
A
(
t, v′(t)

)
−A

(
t, v(t)

))
Xv′(t)〉

+ 〈Yv(t), B(t, v′(t))−B(t, v(t))〉

+ F
(
t, v′(t), Xv′

)
− F

(
t, v(t), Xv′(t)

)
dt.
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Thanks to (4.1), the first term of the left-hand side of this last inequality cancels and
the results follows.

Remark 4. We can intuitively assume that the right hand side term of (4.3) has
the factorized form:

∆(v, v′)(t) ·E
(
v′(t)− v(t)

)
= −〈Yv(t),

(
A
(
t, v′(t)

)
−A

(
t, v(t)

))
Xv′(t)〉

+〈Yv(t), B
(
t, v′(t)

)
−B

(
t, v(t)

)
〉

+F
(
t, v′(t), Xv′(t)

)
− F

(
t, v(t), Xv′(t)

)
, (4.4)

with ·E the E scalar product. Thus v′ can always be chosen so as to make it negative
(in the worse case set it null by the choice v′ = v). We will come back with details in
Section 4.3.

A more general formulation can be obtained if we suppose that the backward
propagation of the adjoint state is performed with intermediate field ṽ [18], i.e. ac-
cording to the equation :

∂

∂t
Yev −A

∗
(
t, ṽ(t)

)
Yev +∇XF

(
t, v(t), Xv(t)

)
= 0

Yev(T ) = ∇XG
(
Xv(T )

)
.

Note that because of its final condition, Yev actually also depends on v. Nevertheless,
for sake of simplicity, we keep the previous notation. We then obtain the following
lemma.

Lemma 4.2. For any v′, ṽ, v : [0, T ]→ E,

J(v′)− J(v) ≤

∫ T

0

−〈Yev(t),
(
A
(
t, v′(t)

)
−A

(
t, ṽ(t)

))
Xv′(t)〉

+ 〈Yev(t), B
(
t, v′(t)

)
−B

(
t, ṽ(t)

)
〉

+ F
(
t, v′(t), Xv′(t)

)
− F

(
t, ṽ(t), Xv′(t)

)
dt

+

∫ T

0

−〈Yev(t),
(
A
(
t, ṽ(t)

)
−A

(
t, v(t)

))
Xv(t)〉

+ 〈Yev(t)(t), B
(
t, ṽ(t)

)
−B

(
t, v(t)

)
〉

+ F
(
t, ṽ(t), Xev(t)

)
− F

(
t, v(t), Xev(t)

)
dt.

In this lemma, the variation in the cost functional J is expressed as the sum of two
terms, that can be considered as factorized with respect to v′ − ṽ and ṽ − v.

4.2. The algorithms. The factorization obtained in the previous lemmas brings
to light various arguments to ensure that J(v′) ≤ J(v), i.e. that guaranty the mono-
tonicity of the update v′ ← v. This allows to present a general structure for our class
of optimization algorithms. We focus on the one that results from Lemma 4.1.

Algorithm 1. ( Monotonic algorithm )
Given an initial control v0, the sequence (vk)k∈N is computed iteratively by:
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1. Compute the solution Xvk of (2.1–2.2) with v = vk.
2. Compute the solution Yvk of (4.1–4.2) with v = vk, starting from

Yvk(T ) := ∇XG
(
Xvk(T )

)
.

3. Define vk+1 together with Xvk+1 such that for all t ≤ T the following mono-
tonicity condition be satisfied :

∆(vk+1, vk)(t) ·E

(
vk+1(t)− vk(t)

)
≤ 0. (4.5)

Lemma 4.1 then guarantees that J(vk+1) ≤ J(vk). Many strategies can be used
to ensure (4.5). Its importance stems from the fact that no further optimization is
necessary once this condition is fulfilled. In order to guarantee (4.5), many authors
[18, 39, 47] consider an update formula of the form:

vk+1(t)− vk(t) = −θ∆(vk+1, vk)(t), (4.6)

where θ is a positive number, that can also depend on k and t. In this case, the
variations in J are such that:

J(vk+1)− J(vk) ≤ −
1

θ

∫ T

0

(vk+1(t)− vk(t))2dt.

Note that (4.6) reads as an intermediate update formula between a gradient method:

vk+1(t)− vk(t) = −θ∆(vk, vk)(t),

and the proximal algorithm [5], which prescribes:

vk+1(t)− vk(t) = −θ∆(vk+1, vk+1)(t).

Remark 5. In the case F = 0 and A independent of v, i.e. linear control with
final objective, (4.6) coincides with a gradient method.

4.3. Wellposedness of the algorithm. In this section, we focus on the proce-
dure obtained when using Algorithm 1 with the update formula (4.6).

Lemma 4.3. Suppose that A,B, F are differentiable everywhere in v ∈ E and
X,Y ∈ H. Then there exists ∆(·, ·; t,X, Y ) ∈ C0(E2, E) such that, for all v, v′ ∈ E

∆(v′, v; t,X, Y ) ·E

(
v′ − v

)
= −

〈
Y,
(
A(t, v′)−A(t, v)

)
X +B(t, v′)−B(t, v)

〉

+F (t, v′, X)− F (t, v,X). (4.7)

Moreover, if A,B,F are of C1 class in v then ∆(·, ·; t,X, Y ) can be defined through
the explicit formula:

∆(v′, v; t,X, Y ) =

∫ 1

0

−∇w

(
〈Y,A(t, w)X −B(t, w)〉

)

|w=v+λ(v′−v)

+∇vF (t, v + λ(v′ − v), X)dλ. (4.8)
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Proof. We denote by ‖ · ‖ the norm associated with E. Let us consider a differ-
entiable function F : E → R and introduce

∆F (v′, v) :=
F(v′)−F(v)

‖v′ − v‖2
(v′ − v) ∈ E. (4.9)

Since F is differentiable, we obtain the continuity of ∆F (v′, v) for all points v′ = v
with value ∆F (v, v) = ∇vF(v); the continuity is obvious everywhere else.

It suffices now to note that A,B, F being differentiable in v then the full expression
in Eq. (4.7) is of the form F(v′) − F(v) with F differentiable in v; the previous
calculation leads to the conclusion.
Finally, Eq. (4.8) is an application of the identity

F(v′)−F(v) =

∫ 1

0

∇vF(v + λ(v′ − v))dλ ·E (v′ − v).

Lemma 4.4. Suppose that
- A,B, F are C2 in v with DvvA, DvvB uniformly bounded;
- ∇vF is of C1 class in X;
- DvvF (t, ·, X) is bounded by a positive, continuous, increasing, bounded from

below function X 7→ k(‖X‖).
Given ε > 0, (t, v,X, Y ) ∈ R × E × H × H and a bounded neighborhood W of

(t, v,X, Y ), there exists θ? > 0 depending only on ε, W , ‖v‖, ‖X‖ and ‖Y ‖ such that,
for any θ > θ?

1. ∆(v′, v; t,X, Y ) = −θ(v′ − v) has an unique solution v′ = Vθ(t, v,X, Y ) ∈ E.
2. Vθ(t, v,X, Y ) = v implies

−∇v

(
〈Y,A(t, v)X〉

)
(v) +∇v

(
〈Y,B(t, v)〉

)
(v) +∇vF (t, v,X) = 0. (4.10)

3. ‖Vθ(t, v,X, Y ) − v‖ ≤ ‖X‖‖Y ‖+‖Y ‖+k(‖X‖)
θ

{M0(t) + M1‖v‖} with M0(t) and
M1 independent of v,X, Y . If the dependence of A,B, F on t is smooth then
M0(t) is bounded on [0, T ].

4. Vθ(t, v,X, Y ) is continuous on W .
5. Let X belong to a bounded set; then X 7→ Vθ(t, v,X, Y ) is Lipschitz with the

Lipschitz constant smaller than ε.
Proof.

1. Denote h = v′ − v and Gt,v,X,Y (h) = −∆(v+h,v;t,X,Y )
θ

. When the dependence
is clear we will write simply G(h) instead of Gt,v,X,Y (h). We look thus for a
solution to the following fixed point problem: G(h) = h. For θ large enough,
the mapping G is a (strict) contraction and we obtain the conclusion by a
Picard iteration. The uniqueness is a consequence of the contrativity of G.

2. If v′ = v then h = 0 thus G(h) = 0 which gives (4.10) after using (4.8).
3. For θ large enough, the mapping G is not only a contraction but has its

Lipschitz constant less than, say, 1/2. Because of the contractivity of G, we
have ‖h‖ − ‖G(0)‖ ≤ ‖h− G(0)‖ = ‖G(h)− G(0)‖ ≤ 1

2‖h‖, which amounts to
‖h‖ ≤ 2‖G(0)‖. Next, we note that

‖G(0)‖ ≤
‖∆(v, v, t,X, Y )−∆(0, 0, t,X, Y )‖+ ‖∆(0, 0, t,X, Y )‖

θ
≤M2‖v‖+M3(t)

and the estimates follows.



8

4. Formula (4.8) shows that ∆ depends continuously on t, v, v′, X, Y . Con-
sider converging sequences tn → t, vn → v, Xn → X, Yn → Y and define
hn := Vθ(tn, vn, Xn, Yn) and h := Vθ(t, v,X, Y ).
Given W and η > 0, consider large value of θ such that:

- for any (t′, v′, X ′, Y ′) ∈ W , Gt′,v′,X′,Y ′ is a contraction with Lipschitz con-
stant less than 1/2.

- for any (t′, v′, X ′, Y ′), (t′′, v′′, X ′′, Y ′′) ∈W ,

‖∆(v′′ + h, v′′, t′′, X ′′, Y ′′)−∆(v′ + h, v′, t′, X ′, Y ′)‖ ≤ η.

This last property implies ‖Gtn,vn,Xn,Yn
(h) − Gt,v,X,Y (h)‖ ≤ η

θ
for n large

enough. On the other hand

‖hn − h‖ = ‖Gtn,vn,Xn,Yn
(hn)− Gt,v,X,Y (h)‖

≤ ‖Gtn,vn,Xn,Yn
(hn)− Gtn,vn,Xn,Yn

(h)‖

+‖Gtn,vn,Xn,Yn
(h)− Gt,v,X,Y (h)‖

≤
1

2
‖hn − h‖+

η

θ
.

We have thus obtained that for n large enough : 1
2‖hn − h‖ ≤

η
θ

and the
continuity follows.

5. Subtracting the two equalities

∆(V1, v; t,X1, Y ) = −θ(V1 − v), ∆(V2, v; t,X2, Y ) = −θ(V2 − v)

and using that ∆(V, v; t,X, Y ) is C1 in X and v gives to first order

∆V (...)(V1 − V2) + ∆X(...)(X1 −X2) = −θ(V1 − V2).

For θ large enough the operator ∆V (...)+θ ·Id is invertible and the conclusion
follows.

Remark 6. Note that θ? is proportional to (‖X‖‖Y ‖+ ‖Y ‖+ k(‖X‖)).

We are thus able to give an example of a setting where the existence of vk+1(t)
satisfying (4.5) is guaranteed.

Theorem 1. Suppose that A,B, F satisfy hypothesis of Lemma 4.4. Also suppose
that the operators A,B are such that Eqs. (2.1–2.2) and (4.1-4.2) have solutions for
any v ∈ L∞([0, T ], E) with v 7→ X, v 7→ Y locally Lipschitz.

1. For any v ∈ L∞([0, T ], E), there exists θ? > 0 such that for any θ > θ?, the
(nonlinear) equation

∂tXv′(t) +A(t, v′)Xv′(t) = B(t, v′) (4.11)

v′(t) = Vθ(t, v(t), Xv′(t), Yv(t)) (4.12)

Xv′(0) = X0 (4.13)

has a solution. Here Yv is the adjoint state defined by (4.1–4.2) and corre-
sponding to control v.
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2. There exists a sequence (θk)k∈N such that the algorithm (cf Section 4.2)
a/ initialization v0 ∈ L∞([0, T ], E),
b/ vk+1(t) = Vθk

(t, vk(t), Xvk+1(t), Yvk(t))
is monotonic and satisfies

J(vk+1)− J(vk) ≤ −θk‖v
k+1 − vk‖2L2([0,T ]);

3. with the notations above, if for all t ∈ [0, T ] vk+1(t) = vk(t) (i.e. algorithm
stops) then vk is a critical point of J : ∇vJ(vk) = 0.

Proof. Most of the proof is already contained in the previous lemmas. The part
that still has to be proven is the existence of a solution to (4.11)-(4.13).

Given v ∈ L∞([0, T ], E), consider the following iterative procedure :

v0 = v, vl+1(t) = Vθ(t, v(t), Xvl
(t), Yv(t)).

We take a spherical neighborhood Bv(R) of v of radius R and suppose

∀k ≤ l, vk ∈ Bv(R).

Since the correspondence v 7→ Xv is continuous, it follows that the set of solutions
Sv,R := {Xw;w ∈ Bv(R)} of (2.1) is bounded. In particular for w = vl by the item 3
of Lemma 4.4 the quantity ‖Vθ(t, v(t), Xvl

(t), Yv(t))− v‖ will be bounded by R for θ
large enough (depending on R, independent of l), i.e. vl+1 ∈ Bv(R). Thus vl ∈ Bv(R)
for all l ≥ 1.

Since Sv,R is bounded, recall that by item 5 of Lemma 4.4 the mapping X 7→
Vθ(t, v(t), X, Yv(t)) has on Sv,R a Lipschitz constant as small as desired. Since the
mapping w 7→ Xw is Lipschitz, for θ large enough, w ∈ Bv(R) 7→ Vθ(t, v(t), Xw, Yv(t))
is a contraction. By a Picard argument the sequence vl is converging. The limit will
be a solution of (4.11–4.12).

4.4. Applications. We illustrate here how the examples in Sections 3.1 and 3.2
fit into the setting of the Theorem 1. The space does not allow to treat all other
variants (cf. references in Introduction) so we leave them as an exercise to the reader.

For the example 3.1 we have E = L2([0, T ]) and H depends on H0

- A(t, v) = H0 + vµ with (possibly) unbounded v-independent operator H0 (but
which generates a C0 semi group) and bounded operator µ. The dependence of A on
v is smooth (linear) and therefore all hypotheses on A are satisfied.

- B(t, v) = 0.

- F (t, v,X) = α(t)v(t)2 ; here the second derivative DvvF is obviously bounded.
Since it is independent of X it will be trivially concave.

- G is either of the form ‖Xtarget − X(T )‖2 or (see, e.g., [17, 18]) of the form
−< X(T ), OX(T ) >, where < ·, · > is the hermitian product on L2(Rγ) and O is a
positive semi-definite operator. The first form can be reduced, by the norm invariance,
to 2− 2Re < Xtarget, X(T ) >, where Re(·) denotes the real part, and will be concave
(in fact linear).

For the example 3.2 :

- A(t, v) = −ν∆ + div(v·). The dependence of A on v is smooth (linear) and
therefore all hypotheses on A are satisfied.

- B(t, v) = 0.
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- F (t, v,X) = Φ(m)+ < L(x, v(t)),m > ; the concavity of F will be that of Φ (to
be set as hypothesis) ; the second differential DvvF will depend on DvvL which has
all required properties for the choice (3.2).

- G = Ψ will be required to be concave with respect to m.

5. Extension of the monotonic algorithms. In this section, we discuss the
relaxation of some of the assumptions concerning either the concavity of (parts of) J
or the linearity in Eq. (2.1) (cf. Remark 1).

5.1. Relaxation of concavity assumptions for norm preserving evolu-
tion. In some cases, Eq. 2.1 is endowed with additional properties that enable to
relax the hypothesis of concavity of the cost functional J . For instance, in Section 3.1
the L2 norm of ψ is preserved. Thus, for any G whose second differential with respect
to ψ ∈ L2 is bounded (e.g. by M), our algorithm applies : in this case use G−M · Id
instead of G (see e.g., [33]). The same conclusions also hold for F .

5.2. General evolution equation. We consider a general form of the semi-
group generator

∂tXv + L(t, v(t), Xv(t)) = 0

Xv(0) = X0.

For a given v the corresponding adjoint state Yv is:

∂tYv −DXL
∗(t, v(t), Xv(t))Yv +∇XF (t, v(t), Xv) = 0

Yv(T ) = ∇XG
(
Xv(T )

)
.

Following arguments of the proof of Lemma 4.1, we obtain the following result.

Lemma 5.1. For any v′, v : [0, T ]→ E,

J(v′)− J(v) ≤

∫ T

0

D(v, v′, t)dt

where

D(v, v′, t) = F (t, v′(t), Xv′)− F (t, v(t), Xv′)

+〈Yv(t), L(t, v(t), Xv(t))− L(t, v′(t), Xv′(t))〉

+〈Yv(t), DXL(t, v(t), Xv(t))(Xv′(t)−Xv(t)))〉.

We note however that choosing at time t, v′(t) = v(t) does not ensure in general
that D(v, v′, t) is zero; thus the factorization of the form D(v, v′, t) = ∆NL(v, v′) ·E
(v′ − v) is not true any more. In particular we are not sure to be able to find a
v′(t) which sets this term negative. Manifestly the reason is that the adjoint is not
adapted; we do not want to develop here on how to change the adjoint but we are
lead to propose the following procedure: advance in time v′(t) by solving for v′(t) in
the relation D(v, v′, t) = −θ(v′(t) − v(t))2 for as long as possible, say from t1 = 0 to
t2 ≤ T . Then one sets v ← 1[0,t2[v

′(t) + 1[t2,T ]v(t), compute a new adjoint Yv and
advance again in time from t2 to t3, etc.



11

6. About the convergence of the schemes. The convergence of the sequence
given by Algorithm 1 when using (4.6) has been obtained in the case of quantum
control (see Section 3.1) using ÃLojasiewicz-Simon inequality (see [6, 8, 14, 36] and
the references therein) in discrete and continuous settings in [2, 31]. The structure of
the proofs shows that when J is analytic and its gradient is Fredholm, convergence is
guaranteed as soon as J contains a penalization term of the L2-norm of the control
v, as is the case, e.g. in (3.1).
Note also that another proof has been presented in the framework of semi-group
theory [7] using compactness arguments.

7. Time discretized case. This section is devoted to the time-discretization of
our class of algorithm.

7.1. Setting. In order to reproduce at the discrete level the computation in-
volved in the monotonic algorithms, one has to define a time discretized version of J
and a scheme devoted to numerical resolution of (2.1–2.2).
Note that our optimization method does not impose any restrictions thus any scheme
with standard numerical properties (consistency, stability, convergence) is compatible
with our procedure.

Since we only deal with optimizations problems, we consider arbitrary time-
discretizations of the functional (2.4):

J∆t(v) = ∆t

N−1∑

n=0

F (vn, xn) +G(xN ),

together with the general numerical scheme

xn+1 = A∆t(vn)xn +B∆t(vn), (7.1)

where N is a positive integer, ∆t = T/N and v = (vn)n=0...N−1. We assume that the
functions F and G have the same properties as in Section 2.

7.2. Discrete adjoint and factorization. As in the continuous case, the ad-
joint operator definition directly follows from the state equation evolution. Given a
numerical solver (7.1), the discrete adjoint operator is defined by :

yn = A∗
∆t(vn)yn+1 + ∆t∇xF (vn, xn)

yN = ∇xG
(
xN

)
.

With this definition, a factorization similar to the one of Lemma 4.1 can be obtained.
Lemma 7.1. For any v′ = (v′n)n=0...N−1, v = (vn)n=0...N−1,

J∆t(v
′)− J∆t(v) ≤

N−1∑

n=0

〈yn, (A∆t(v
′
n−1)−A∆t(vn−1))x′n−1〉

+ 〈yn+1, B∆t(v
′
n)−B∆t(vn)〉

+ ∆t (F (v′n, x
′
n)− F (vn, x

′
n)) .

Thanks to this lemma, we obtain a discrete version of monotonicity condition (4.5).
Depending on the way the functions A, B and F depend on v, the computation of a
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v′n satisfying the discrete monotonic condition may requires an inner iterative solver.
In many cases this computation can anyway be parallelized. During an optimization
step, at a given time step n, the terms of the previous sum can be factorized with
respect to each component of the vector v′n − vn and made negative independently.
The fact that the computation of v′n requires x′n makes anyway the time resolution
sequential. To solve this problem, some time parallelizations have been designed in
the case of quantum control [17].
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