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This paper is devoted to thoroughly investigating how to bootstrap the ROC curve, a widely used visual tool for evaluating the accuracy of test/scoring statistics s(X) in the bipartite setup. The issue of confidence bands for the ROC curve is considered and a resampling procedure based on a smooth version of the empirical distribution called the "smoothed bootstrap" is introduced. Theoretical arguments and simulation results are presented to show that the "smoothed bootstrap" is preferable to a "naive" bootstrap in order to construct accurate confidence bands.

Introduction

Since the seminal contribution of [START_REF] Green | Signal detection theory and psychophysics[END_REF], so-called ROC curves (ROC standing for Receiving Operator Characteristic) have been extensively used in a wide variety of applications (anomaly detection in signal analysis, medical diagnosis, search engines, credit-risk screening) as a visual tool for evaluating the performance of a test statistic regarding its capacity of discrimination between two populations [START_REF] Fawcett | ROC graphs: Notes and practical considerations for data mining researchers[END_REF]. Whereas the statistical properties of their empirical counterparts have been only lately studied from the asymptotic angle [START_REF] Hsieh | Nonparametric and semi-parametric statistical estimation of the ROC curve[END_REF][START_REF] Girling | ROC confidence bands: An empirical evaluation[END_REF][START_REF] Ghosal | Bayesian ROC curve estimation under binormality using a partial likelihood based on ranks[END_REF][START_REF] Hall | Improved methods for bandwidth selection when estimating ROC curves[END_REF], ROC curves also have recently received much attention in the machine-learning literature through the development of statistical learning procedures tailored for the ranking problem [START_REF] Freund | An efficient boosting algorithm for combining preferences[END_REF][START_REF] Clémençon | Ranking and scoring using empirical risk minimization[END_REF]. The latter consists of determining, based on training data, a test statistic s(X) (also called a scoring function) with a ROC curve "as high as possible" at all points of the ROC space. Given a candidate s(X), it is thus of prime importance to assess its performance by computing a confidence band for the corresponding ROC curve, in a data-driven fashion preferably. Indeed, in such a functional setup, resampling-based procedures should naturally be preferred to those relying on computing/simulating the (gaussian) limiting distribution, as first observed in [START_REF] Macskassy | Confidence bands for ROC curves: methods and an empirical study[END_REF] and [START_REF] Macskassy | ROC confidence bands: An empirical evaluation[END_REF]2005a), where the use of the bootstrap is promoted for building confidence bands in the ROC space.

By building on recent works [START_REF] Hall | Nonparametric confidence intervals for receiver operating characteristic curves[END_REF][START_REF] Ghosal | Strong approximations for resample quantile process and application to ROC methodology[END_REF], it is the purpose of this paper to investigate how the bootstrap approach should be practically implemented based on a thorough analysis of the asymptotic properties of empirical ROC curves. Beyond the pointwise analysis developed in the studies mentioned above, here we tackle the problem from a functional angle, considering the entire ROC curve or parts of it. This viewpoint indeed appears as particularly relevant in scoring applications. Although the asymptotic results established in this paper are of a theoretical nature, they are considerably meaningful from a computational perspective. It turns out indeed that smoothing is the key ingredient for the boot-strap confidence band to be accurate, whereas a naive bootstrap approach would yield bands of low coverage probability in this case and should be consequently avoided by practicioners for analyzing ROC curves.

The rest of the paper is organized as follows. In Section 2, notations are first set out and certain key notions of ROC analysis are briefly recalled. The choice of an adequate (pseudo-) metric on the ROC space, a crucial point of the analysis, is also considered. The smoothed bootstrap algorithm is presented in Section 3, together with the theoretical results establishing its asymptotic accuracy. In particular, the gain in convergence rate acquired by the smoothing step is thoroughly discussed. This fact is also supported by strong empirical evidence: Section 4 is devoted to displaying preliminary numerical results, illustrating the impact of smoothing on the bootstrap performance. Eventually, technical details are postponed to the Appendix.

Background

Here we briefly recall basic concepts of the bipartite ranking problem as well as key results related to the statistical estimation of ROC curves and set out the notations that shall be needed throughout the paper. Although the results contained in this paper can be formulated without referring to the bipartite ranking framework, in the purpose of motivating the present analysis we intentionally connected them to this major statistical learning problem, which has recently revitalized the interest for the problem of assessing the accuracy of empirical ROC curves [START_REF] Cohen | Learning to order things[END_REF]Clémençon et al., 2007).

Assumptions and notation

In the bipartite ranking problem, the matter is to order all the elements X of a set X by degree of relevance, when relevancy may be observed through some binary indicator variable Y. Precisely, one has a system consisting of a binary random output Y, taking its values in {-1, 1} say, and a random input X, taking its values in a (generally high-dimensional) feature space X , which models some observation for predicting Y. The probabilistic setup is the same as for standard binary classification, except one is concerned, borrowing the jargon of information retrieval applications for instance, by ordering all the documents x of the list X by degree of relevance for a particular request, rather than simply classifying them as relevant or not. This amounts to assign to each document x in X a score s(x) indicating its degree of relevance for this specific query. The challenge is thus to build a scoring func-tion s : X → R from sampling data, so as to rank the observations x by increasing order of their score s(x) as accurately as possible: the higher the score s(X) is, the more likely one should observe Y = +1.

True ROC curves. A standard way of measuring the ranking performance consists of plotting the ROC curve, namely the graph of the mapping

ROC s : α ∈ (0, 1) → 1 -(G s • H -1 s )(1 -α), (1) 
where G s (respectively H s ) denotes s(X)'s cdf conditioned on Y = +1 (resp. conditioned on Y = -1) and 

F -1 (α) = inf{x ∈ R/ F(x
(α) = 1 -G s • H -1 s (1 -α) (2)
from empirical cdf estimates:

G s (x) = 1 n+ n i=1 I {Y i =+1} K(x -s(X i )) H s (x) = 1 n- n i=1 I {Y i =-1} K(x -s(X i ))
,

where n + = n i=1 I{Y i = +1} = n -n -is the (ran- dom)
number of positive instances among the sample (distributed as the binomial Bin(n, p)) and K(u) denotes the step function I {u≥0} . In order to obtain smoothed versions G s (x) and F s (x) of the latter cdf's, a typical choice consists of picking instead a function

K(u) of the form v≥0 K h (u -v)dv, with K h (u) = h -1 K(h -1 • u)
where K ≥ 0 is a regularizing Parzen-Rosenblatt kernel (i.e. a bounded square integrable function such that K(v)dv = 1) and h > 0 is the smoothing bandwidth. Here and throughout, I {A} denotes the indicator function of any event A.

Metrics on the ROC space. When it comes to measure closeness between curves in the ROC space, various metrics may be used [START_REF] Flach | The geometry of roc space: understanding machine learning metrics through roc isometrics[END_REF]. Viewing the ROC space as a subset of the Skorohod's space D([0, 1]) 1 , essential cases include the standard metric induced by the sup norm ||.|| ∞ and the Hausdorff distance 2 d H . If the former choice appears natural when considering continuous curves, the latter is more pertinent for analyzing stepwise graphs, such as empirical ROC curves. Indeed, equipped with this metric, two piecewise constant ROC curves may be close to each other, even if their jumps do not exactly match. In particular, the topology induced by d H (which is finer than the one related to the sup norm since

d H (f 1 , f 2 ) ≤ ||f1 -f 2 || ∞ )
is much more appropriate for describing the fluctuations of the empirical ROC curve (and the deviation between the latter and its bootstrap counterpart as well). As shall be seen below, asymptotic arguments for grounding the bootstrapping of the empirical ROC curve fluctuations, when measured in terms of the sup norm ||.|| ∞ , are rather straightforward. However, given the geometry of empirical ROC curves, this metric is not convenient for our purpose and produce very wide, and thus noninformative, bands. Besides, providing a theoretical basis in the case of the Hausdorff distance is very challenging and will not be addressed in this paper, owing to space limitations. Instead, we shall consider the closely related pseudometric defined as follows:

∀(f 1 , f 2 ) ∈ D([0, 1]) 2 , d B (f 1 , f 2 ) sup t∈[0,1] d B (f 1 , f 2 ; t),
where d B (f 1 , f 2 ; t) denotes the minimum among these three quantities

|f 1 (t) -f 2 (t)|, |f -1 2 • f 1 (t) -t|, and |f -1 1 • f 2 (t) -t|.
We clearly have

d H (f 1 , f 2 ) ≤ d B (f 1 , f 2 ) ≤ ||f 1 -f 2 || ∞ .
The major advantage of considering this pseudo-metric is that it provides a control on vertical and horizontal jumps of ROC curves both at the same time, treating both types of error in a symmetric fashion. This way, d B permits to contruct builds bands of reasonable size, well adapted to the stepwise shape of empirical ROC curves, with better coverage probabilities.

1 Recall that D([0, 1]) is the set of càd-làg functions f : [0, 1] → R, i.e. functions f such that limu→x+ f(u) = f(x) and lim sup u→ x-f(u) < ∞ for all x ∈ (0, 1)
2 The Hausdorff distance between two elements f 1 and f 2 in D([0, 1]) is simply the distance between the completed graphs, obtained by connecting (x,

f i (x-)) to (x, f i (x)) with a line segment at any jump point x ∈ [0, 1]. If f i is a stepwise constant function with jump points {α (i) k } for i ∈ {1, 2}, we have d H (f 1 , f 2 ) = max i min j m i,j , where m i,j = min{|α (1) i -α (2) j |, |f 1 (α (1) i ) -f 2 (α (2) j )|}.
As the goal pursued in the present paper is to build, in the ROC space viewed as a subspace of the Skorohod's space D([0, 1]) equipped with a proper (pseudo-) metric, a confidence band for the ROC curve of a given diagnosis test statistic s(X), we shall omit to index by s the quantities considered and denote by Z the r.v. s(X) (and by Z i , 1 ≤ i ≤ n, the s(X i )'s) for notational simplicity. Throughout the paper, we assume that H(dx) and G(dx) are continuous probability distributions, with densities h(x) and g(x) respectively. Eventually, denote by P the joint distribution of (Z, Y) on R × {-1, +1} and by P n its empirical version based on the sample

D n = {(Z i , Y i )} 1≤i≤n .
Equipped with the notations above, one may write P(dz, y) = pI {y=+1} H(dz) + (1p)I {y=-1} G(dz).

Asymptotic law -Gaussian approximation

in the situation described above, the next theorem establishes the strong consistency of the empirical ROC curve (2) in sup norm and provides a strong approximation at the rate 1/ √ n, up to logarithmic factors, for the fluctuation process:

r n (α) = √ n( ROC n (α) -ROC(α)), α ∈ [0, 1]. (3) 
This (gaussian) approximation plays a crucial role in understanding the asymptotic behavior of the empirical ROC curve and of its bootstrap counterpart. The following technical assumptions are also required.

H 1 The slope of the ROC curve is bounded on [0, 1]:

sup α∈[0,1] g(H -1 (α)) h(H -1 (α)) < ∞. (4) 
H 2 H is twice differentiable on [0, 1]. Furthermore, ∀α ∈ [0, 1], h(α) > 0, (5) 
and there exists γ > 0 such that sup

α∈[0,1] α(1 -α) d log(h • H -1 (α)) dα ≤ γ < ∞. (6)
Theorem 1 (Functional limit theorem) Suppose that assumptions H 1 -H 2 are fulfilled. Then, (i) the empirical ROC curve is strongly consistent

sup α∈[0,1] | ROC n (α) -ROC(α)| → 0 a.s. as n → ∞,
(ii) there exist a sequence of two independent brownian bridges {(B

(n) 1 (α), B (n) 2 (α))} α∈[0,1] such that
we almost surely have, uniformly over [0, 1],

r n (α) = z (n) (α) + o( (log log n) ρ 1 (γ) log ρ 2 (γ) n √ n ), (7) 
where

z (n) (α) = (1 -p) -1/2 g(H -1 (1 -α)) h(H -1 (1 -α)) B (n) 1 (α) + p -1/2 B (n) 2 (ROC(α)). and    ρ 1 (γ) = 0, ρ 2 (γ) = 1, if γ < 1 ρ 1 (γ) = 0, ρ 2 (γ) = 2, if γ = 1 ρ 1 (γ) = γ, ρ 2 (γ) = γ -1 + ε, ε > 0, if γ > 1
.

These results may be immediately derived from classical strong approximations for the empirical and quantile processes (see [START_REF] Csorgo | Strong approximations in probability and statistics[END_REF], and also [START_REF] Hsieh | Nonparametric and semi-parametric statistical estimation of the ROC curve[END_REF]). Incidentally, we mention that the approximation rate is not always log 2 (n)/ √ n, contrarily to what is claimed in the paper by [START_REF] Hsieh | Nonparametric and semi-parametric statistical estimation of the ROC curve[END_REF].

Remark 1 (On assumptions H 1 -H 2 ) Hypothesis H 2 is standard for obtaining strong approximation of the quantile process (see [START_REF] Csorgo | Strong approximations of the quantile process[END_REF] or [START_REF] Csorgo | Strong approximations in probability and statistics[END_REF]). It is possible to weaken conditions (4)-( 6) in a way that they are required to hold on any compact subinterval of ]0, 1[ solely. However, in this case, one can only guarantee (ii) to be valid uniformly over compact subintervals of ]0, 1[.

Bootstrapping empirical ROC curves

Beyond consistency of the empirical curve in sup norm and the asymptotic normality of the fluctuation process, we now tackle the question of constructing confidence bands for the true ROC curve via the bootstrap approach introduced by (Efron, 1979) (extending pointwise results established in [START_REF] Hall | Nonparametric confidence intervals for receiver operating characteristic curves[END_REF]). The latter suggests to consider, as an estimate of the law of the fluctuation process r n = {r n (α)} α∈[0,1] , the conditional law given D n of the bootstrapped fluctuation process

r * n = { √ n(ROC * (α) -ROC(α))} α∈[0,1] , (8) 
where ROC * is the ROC curve corresponding to a sample 

D * n = {(Z * i , Y * i )}

The Algorithm

Here we describe the algorithm for building a confidence band at level 1ǫ in the ROC space from sampling data

D n = {(Z i , Y i ); 1 ≤ i ≤ n}. Set n + = 1≤i≤n I {Y i =1} = n -n -.
It is performed in four steps as follows.

Before turning to the theoretical properties of this algorithm and related numerical experiments, a few remarks are in order.

Remark 2 (Monte-Carlo approximation) From a computational angle, the true smoothed bootstrap distribution must be approximated in its turn, using a Monte-Carlo approximation scheme. A convenient way of doing this in practice, while reproducing theoretical advantages of smoothing, consists of drawing B bootstrap samples, of size n, with replacement in the original data and then perturbating each drawn data by independent centered gaussian random variables of variance h 2 (this procedure is equivalent to drawing bootstrap data from a smooth estimate P n (dz, dy) computed using a gaussian kernel K h (u) = (2πh 2 ) -1/2 exp(-u 2 /(2h 2 ))), see [START_REF] Silverman | The bootstrap: to smooth or not to smooth?[END_REF]. Regarding the choice of the number of bootstrap replications, picking B = n does not modify the rate of convergence. However, choosing B of magnitude comparable to n so that (1 + B)ǫ is an Algorithm 1 smoothed ROC bootstrap 1. Based on D n , compute the empirical class cdf estimates G and H, as well as their smoothed versions G and H. Plot the ROC curve estimate:

ROC(α) = 1 -G • H -1 (1 -α), α ∈ [0, 1].
2. From the smooth distribution estimate

P n (dz, y) = n - n I {y=+1} H(dz)+ n + n I {y=-1} G(dz), draw a bootstrap sample D * n = {(Z * i , Y * i )} 1≤i≤n conditioned on D n .

Based on D *

n , compute the bootstrap versions of the empirical class cdf estimates G * and H * . Plot the bootstrap ROC curve

ROC * (α) = 1 -G * • H * -1 (1 -α), α ∈ [0, 1].
4. Eventually, get the bootstrap confidence bands at level 1ǫ defined by the ball of center ROC and radius

δ ǫ / √ n in D([0, 1])
, where δ ǫ is defined by integer may be more appropriate: the ǫ-quantile of the approximate bootstrap distribution is the uniquely defined and this will not modify the rate of convergence neither [START_REF] Hall | On the number of bootstrap simulations required to construct a confidence interval[END_REF].

P * (||r * n || ∞ ≤ δ ǫ ) = 1 -ǫ in
Remark 3 (On tuning parameters) The primary parameters of Algorithm 1 are those related to the smoothing stage. When using a gaussian regularizing kernel, one should typically choose a bandwidth h n of order n -1/5 in order to minimize the mean square error.

Remark 4 (On recentering) From the asymptotic analysis viewpoint, it would be fairly equivalent to recenter by a smoothed version of the original empirical curve ROC(.) = 1 -G • H -1 (1 -.) in the computation of the bootstrap fluctuation process. However, numerically speaking, computing the sup norm of the estimate ( 8) is much more tractable, insofar as it solely requires to evaluate the distance between piecewise constant curves over the pooled set of jump points. It should also be noticed that smoothing the original curve, as proposed in [START_REF] Hall | Nonparametric confidence intervals for receiver operating characteristic curves[END_REF], should be also avoided in practice, since it hides the jump locations, which constitute the essential part of the information.

Remark 5 (Subsampling) A possible alternative for improving the accuracy of the bootstrap approximation could consist of using subsampling, namely drawing m bootstrap data without replacement in the original data, with m much smaller than the original sample size n [START_REF] Arcones | On the asymptotic accuracy of the bootstrap under arbitrary resampling size[END_REF]. Due to space limitations, we leave aside this question for further research.

Asymptotic analysis

We now investigate the accuracy of the bootstrap estimate output by Algorithm 1. The result stated in the next theorem extend those established in [START_REF] Hall | Nonparametric confidence intervals for receiver operating characteristic curves[END_REF] in the pointwise framework. The functional nature of the approximation result below is essential, since it should be enhanced that, in most ranking applications, assessing the uncertainty about the whole estimated ROC curve, or some part of it at least, is what really matters. In the sequel, we assume that the kernel K used in the smoothing step is "pyramidal"3 (e.g. gaussian or of the form I {u∈[-1,+1]} ).

Theorem 2 (Asymptotic accuracy) Suppose that the hypotheses of Theorem 1 are fulfilled. Assume further that smoothed versions of the cdf 's G and H are computed at step 1 using a scaled kernel K hn (u) with h n ↓ 0 as n → ∞ in a way that nh 3 n → ∞ and nh 5 n log 2 n → 0. Then, the bootstrap distribution estimates output by Algorithm 1 are such that

sup t∈R |P * (||r * n || ∞ ≤ t) -P(||r n || ∞ ≤ t)| = o P ( log(h -1 n ) √ nh n ), sup t∈R |P * (d * n ≤ t) -P(d n ≤ t)| = o P ( log(h -1 n ) √ nh n ).
Hence, up to logarithmic factors, choosing h n ∼ 1/(log 2+η n 1/5 ) with η > 0 yields an approximation error of order n -2/5 for the bootstrap estimate. Although its rate is slower than the one of the gaussian approximation (7), the smoothed bootstrap method remains very appealing from a computational perspective, the construction of confidence bands from simulated brownian bridges being very difficult to implement in practice. As shall be seen below, the rate reached by the smoothed bootstrap distribution is nevertheless a great improvement, compared to the naive bootstrap approach (see the discussion below).

Remark 6 (Bootstrapping summary statistics) From Theorem 1 above, asymptotic validity of the smooth bootstrap method for estimating the distribution of the fluctuations of a functional Φ( ROC) of the empirical ROC curve may be deduced, as soon as the function Φ defined on D([0, 1]) is sufficiently smooth (namely continuously Hadamard differentiable). For instance, it could be applied to summary statistics involving a specific piece of the ROC curve only in order to focus on the "best instances" (Clémençon & Vayatis, 2007), or more classically to the area under the ROC curve (AUC). However, in the latter case, due to the fact that this particular summary statistic is of the form of a U-statistic (Clémençon et al., 2007), the naive bootstrap rate is faster than the one we obtained here (of order n -1 ).

Discussion

Let us now give an insight into the reason why the smoothed bootstrap procedure outperforms the nonsmoothed one. In most statistical problems where the nonparametric bootstrap is useful, there is no particular reason for implementing it from a smoothed version of the empirical df rather from the raw empirical distribution itself [START_REF] Silverman | The bootstrap: to smooth or not to smooth?[END_REF]. However, in the present case, smoothing affects the rate of convergence.

Theorem 3 (Pointwise convergence rate) Suppose that the bootstrap process ( 8) is built by drawing from the raw cdf 's G and H instead of their smoothed versions at step 2 of Algorithm 1. Then, for any α ∈]0, 1[,

sup t∈R |P * (r * n (α) ≤ t) -P(r n (α) ≤ t)| = O P (n -1/4 ). (9)
Hence, the naive bootstrap rate induces an error of order O(n -1/4 ) cannot be improved, whereas it may be shown that the rate n -2/5 is attained by the smoothed bootstrap (in a similar fashion to the functional setup), provided that the amount of smoothing is properly chosen. Heuristically, this is a consequence of the oscillation behavior of the deviation between the bootstrap quantile H * -1 (1α) and its expected value H -1 (1α) given the data D n , due to the fact that the step cdf H is not regular around H -1 (1α): this corresponds to a jump with probability one.

Higher-order accuracy. A classical way of improving the pointwise approximation rate (9) consists of bootstrapping a standardized version of the r.v. r n (α).

It is natural to consider, as standardization factor, the square root of an estimate of the asymptotic variance:

σ 2 (α) = var(z (n) (α)) = α(1 -α) 1 -p g(H -1 (1 -α)) 2 h(H -1 (1 -α)) 2 + ROC(α)(1 -ROC(α)) p . ( 10 
)
An estimate σ 2 n of plug-in type could be considered, obtained by plugging n + /n, ROC and smoothed density estimators h = H ′ and g = G ′ into (10) instead of their (unknown) theoretical counterparts. More interestingly, from a computational viewpoint, a bootstrap estimator of the variance could also be used. Following the argument used in [START_REF] Hall | Nonparametric confidence intervals for receiver operating characteristic curves[END_REF] for a smoothed original estimate of the ROC curve, one may show that a smoothed bootstrap of the studentized statistic r n (α)/σ n (α) yields a better pointwise rate of convergence than 1/ √ n, the one of the gaussian approximation in the Central Limit Theorem. Precisely, for a given α ∈]0, 1[, if the bandwidth used in the computation of σ 2 n (α) is chosen of order n -1/3 , we have: n (α). Notice that the bandwidth used in the standardization step (i.e. for estimating the variance) is not the same as the one used at the resampling stage of the procedure. This is a key point for achieving second-order accuracy. This time, the smoothed (studentized) bootstrap method widely outperforms the gaussian approach, when the matter is to build confidence intervals for the ordinate ROC(α) of a point of abciss α on the empirical ROC curve. However, it is not clear yet, whether this result remains true for confidence bands, when considering the whole ROC curve (this would actually require to establish an Edgeworth expansion for the supremum ||r n / σ n || ∞ ). This will be the scope of further research.

Simulation results

The striking advantage of the smoothed bootstrap is the improved rate of convergence of the resulting estimator. Furthermore, choosing d B for measuring the magnitude order of curve fluctuations has an even larger impact on the accuracy of the empirical bands.

  the case of the sup norm or by P * (d * n ≤ δ ǫ ) = 1-ǫ, when considering the d B distance, denoting by P * (.) the conditional probability given the original data D n .

  's bootstrap counterpart (i.e. the variance estimator computed from bootstrap data) by σ * 2

  The difficulty is twofold. Firstly, the target of the bootstrap procedure is here a distribution on a path space, the ROC space being viewed as a subspace of D n ([0, 1]), equipped with either ||.|| ∞ ) or else d B (., .). Secondly, both r n and d n are functionals of the quantile process { H -1 (α)} α∈[0,1] . It is well-known that the naive bootstrap (i.e. resampling from the raw empirical distribution) generally provides bad approximations of the distribution of empirical quantiles in practice: the rate of convergence for a given quantile is indeed of order O P (n -1/4 )[START_REF] Falk | Weak convergence of smoothed and nonsmoothed bootstrap quantile estimates[END_REF], whereas the rate of the gaussian approximation is n -1/2 . As shall be seen below (see §3.3), the same phenomenon may be naturally observed for ROC curves. In a similar fashion to what is generally recommended for empirical quantiles, we suggest to implement a smoothed version of the bootstrap algorithm in order to improve the approximation rate of ||r n || ∞ 's distribution, respectively of d n 's distribution . In short, this boils down to resampling the data from a smoothed version of the empirical distribution P n .

1≤i≤n of i.i.d. random pairs with a common distribution P n close to P n . We shall also consider d * n = √ nd B (ROC * , ROC), whose random fluctuations (given D n ) are expected to mimic those of d n = √ nd B ( ROC, ROC).

According to the hypothesis introduced in[START_REF] Giné | Weighted uniform consistency of kernel density estimators[END_REF], a kernel K is pyramidal if in the linear span of functions k ≥ 0 with a subgraph that can be represented as a finite number of Boolean operations among sets of the form {(s, u) : P(s, u) ≥ φ(u)}, where P is a polynomial on R 2 and φ is an arbitrary real function.

As an illustration of this theoretical result, we now display simulation results, emphasizing the gain acquired by smoothing and considering the pseudo-metric d B .

We present confidence bands for a single trajectory and the estimation of the coverage probability of the bands for a simple binormal model :

where ε and X are independent standard normal r.v.'s.

In this example, the scoring function s(x) is the maximum likelihood estimator of the probit model on the training set. We choose here β 0 = β 1 = 1, n = 1000, B = 999 and γ = 0.95 for the targeted coverage probability. Coverage probabilities are obtained over 2000 replications of the procedure, using the package ROCR of statistical software R. As mentioned before, choosing ||.|| ∞ yields very large bands with coverage probability close to 1! Though still large, bands based on the pseudo-metric d B are clearly much more informative (see Fig. 1). It should be noticed that the coverage improvement obtained by smoothing is clearer in the pontwise estimation setup (here α = 0.2) but more difficult to evidence for confidence bands. 

Appendix -Technical details

Theorem 1 is a slight variant of Theorems 2.1 and 2.2 in [START_REF] Hsieh | Nonparametric and semi-parametric statistical estimation of the ROC curve[END_REF]. The proof mainly relies on r n (α)'s Taylor expansion (holding true almost surely, uniformly over

), combined with standard results in strong approximation theory [START_REF] Csorgo | Strong approximations in probability and statistics[END_REF].

Turning to Theorem 2, the proof follows from the strong approximation ( 7), combined with a standard coupling argument. Here we give a brief sketch of the latter. Note firstly that, conditioned on D n , by applying Theorem 1's second part with ROC as a target curve (instead of ROC), one gets that r * n (α) is, uniformly over [0, 1], almost surely equivalent to

with a remainder of order o(

under the stipulated conditions [START_REF] Giné | Rates of strong uniform consistency for multivariate kernel density estimators[END_REF]. Furthermore, from standard result on the modulus of continuity of the brownian bridge [START_REF] Shorack | Empirical processes with applications to statistics[END_REF], we almost surely have

Applying then the LIL to (n -/n) and (n -/n), it follows that almost surely, uniformly in α,

Since this results holds uniformly in α, by the continuous mapping theorem applied to the function sup α∈[0,1] (.), we also get the result in term of distribution up to the given almost sure order.

Eq. ( 11) is a direct consequence of the results established in Falk & Reiss (1994) applied to the second term in the expansion. The studentized version may be obtained by following the arguments of [START_REF] Hall | Nonparametric confidence intervals for receiver operating characteristic curves[END_REF] with the minor modification that the ROC curve itself is not smoothed.