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Exterior Stokes problem in the half-spaeChérif Amrouhe ∗, Florian BonzomLaboratoire de Mathématiques et de leurs Appliations, UMR CNRS 5142, Université dePau et des Pays de l'Adour, IPRA, Avenue de l'Université, 64000 Pau edex, FraneAbstrat The purpose of this work is to solve the exterior Stokes problem inthe half-spae R
n
+. We study the existene and the uniqueness of generalizedsolutions in weighted Lp theory with 1 < p < ∞. Moreover, we onsider thease of strong solutions and very weak solutions. This paper extends the studiesdone in [3℄ for an exterior Stokes problem in the whole spae and in [5℄ for thestudy of the Laplae equation in the same geometry as here.Key words Weighted Sobolev spaes ; Stokes operator ; Dirihlet boundaryonditions ; Exterior problem ; Half-spae.AMS Classi�ation 35D05 ; 35D10 ; 35J50 ; 35J55 ; 35Q30 ; 76D07 ; 76N10.1 Introdution and preliminariesConsider ω0 a ompat region of R

n
+ = {x ∈ R

n, xn > 0}, Γ0 the boundaryof ω0 and Ω the omplement of ω0 in R
n
+. This paper is devoted to the resolutionof the Stokes system

(SD)






−∆u + ∇π = f in Ω,div u = h in Ω,
u = g0 on Γ0,
u = g1 on R

n−1.We notie that this problem is an extension of the Stokes system for an exte-rior domain in the whole spae, studied in several works where some of themintrodue the homogeneous Sobolev spaes H
1,p
0 (cω0) (where cω0 is the omple-ment in R

n of ω0) obtained as the losure of D(cω0) with respet to the norm
‖∇ · ‖Lp(cω0). The existene and the uniqueness of a solution of suh a problemwith homogeneous boundary onditions in H

1,p
0 (cω0) × Lp(cω0) has been stu-died by Kozono and Sohr ([22℄, [23℄) and Galdi and Simader ([18℄). Anotherpoint of view, whih is ours, is to searh a solution in weighted Sobolev spaes

W m,p
α (cω0) (see de�nition below). These spaes are well-adapted to the Laplaeand Stokes equations beause they satisfy an optimal Poinaré-type inequality.They also provide some preise information on the behaviour of the funtionsat in�nity, whih is not obvious from the de�nition of H

1,p
0 (cω0). For this ap-proah, we refer to Girault and Sequeira [19℄ (when n = 2 or n = 3, p = 2
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and α = 0), Speovius-Neugebauer ([26℄ when n ≥ 3 and n

p
+ α /∈ Z for strongsolutions and when n = 2 and 2

p
+ α /∈ Z for weak solutions in [27℄) and toAlliot and Amrouhe [3℄.Here, our originality is to solve the exterior Stokes problem in the half-spaeand not anymore in the whole spae. That implies an additional di�ulty due tothe nature of the boundary whih is not bounded sine it ontains R

n−1. So, wehave to introdue weights even in the spaes of traes. We an ite Hanouzet [21℄who has given the �rst results for suh spaes in 1971 and Amrouhe, Ne£asovà[9℄ who have extended these results in 2001 to weighted Sobolev spaes whihpossess logarithmi weights (we just reall that logarithmi weights allow us tohave a Poinaré-type inequality even in the �ritial� ases ; see below for moredetails). We remind the works of some authors whih have studied the Stokesproblem in the half-spae. The �rst ones are due to Cattabriga [14℄ who havehosen the setting of homogeneous Sobolev spaes. Similar results are given byFarwig and Sohr [16℄ and Galdi [17℄. On the other hand Maz'ya, Plamenevskiiand Stupyalis [24℄ have studied the problem in weighted Sobolev spaes, butonly in the dimension 3. Finally, we ite the works of Amrouhe, Ne£asová andRaudin [10℄ who onsider weak solutions for any dimension. Nevertheless, wenotie that all these works onern only the Stokes system in the half-spaewhereas in this paper, we deal with the exterior Stokes problem in the half-spae. We an summarize our work saying that it is an extension of the exteriorproblem in the whole spae and of the problem in the half-spae.We state that, here, we will onentrate only on the basi weights for thesake of simpliity and beause they are the most usual. The paper is organizedas follows. Setions 2 and 3 are devoted to the ase of generalized solutions res-petively when p = 2 and p 6= 2. In Setion 4, we onsider strong solutions andgive regularity results aording to the data. Finally, in Setion 5, we �nd veryweak solutions to the homogeneous problem with singular boundary onditions.The main results of this work are Theorems 2.5 and 3.6 for generalized solutions,Theorems 4.2 and 4.4 for strong solutions and Corollary 5.4 and Theorem 5.5for very weak solutions.We omplete this introdution with a short review of the weighted Sobolevspaes and their trae spaes. For any integer q we denote by Pq the spae ofpolynomials in n variables, of degree less than or equal to q, with the onventionthat Pq is redued to {0} when q is negative.For any real number p ∈ ]1,+∞[, we denote by p′ the dual exponent of p :
1

p
+

1

p′
= 1.Let x = (x1, . . . , xn) be a typial point of R

n, x′ = (x1, . . . , xn−1) and let
r = |x| = (x2

1 + · · · + x2
n)1/2 denote its distane to the origin. We shall use twobasi weights :

ρ(r) = (1 + r2)1/2 and lg r = ln(2 + r2).As usual, D(Ω) is the spae of inde�nitely di�erentiable funtions with ompatsupport, D′(Ω) its dual spae, alled the spae of distributions and D(Ω) the2



spae of restritions to Ω of funtions in D(Rn).Then, for any nonnegative integers n and m and real numbers p > 1 and α,setting
k = k(m,n, p, α) =





−1 if n
p

+ α /∈ {1, . . . ,m},

m−
n

p
− α if n

p
+ α ∈ {1, . . . ,m},we de�ne the following spae :

Wm,p
α (Ω) = {u ∈ D′(Ω);

∀λ ∈ N
n : 0 6 |λ| 6 k, ρα−m+|λ|(lg r)−1Dλu ∈ Lp(Ω);

∀λ ∈ N
n : k + 1 6 |λ| 6 m, ρα−m+|λ|Dλu ∈ Lp(Ω)}.It is a re�exive Banah spae equipped with its natural norm :

‖u‖W m,p
α (Ω) = (

∑

06|λ|6k

‖ρα−m+|λ|(lg r)−1Dλu‖p
Lp(Ω)

+
∑

k+16|λ|6m

‖ρα−m+|λ|Dλu‖p
Lp(Ω))

1/p.We also de�ne the semi-norm :
|u|W m,p

α (Ω) = (
∑

|λ|=m

‖ραDλu‖p
Lp(Ω))

1/p.The weights de�ned previously are hosen so that the spae D(Ω) is dense in
Wm,p

α (Ω) and so that the following Poinaré-type inequality holds in the follo-wing spaes : let α be a real number, m ≥ 1 an integer and q′ = min(q,m− 1),where q is the highest degree of the polynomials ontained in Wm,p
α (Ω). Then :

∀u ∈Wm,p
α (Ω), inf

k∈Pq′

‖u+ k‖W m,p
α (Ω) ≤ C |u|W m,p

α (Ω),and
∀u ∈

◦

W
m,p
α (Ω) = D(Ω)

‖.‖
W

m,p
α (Ω) , ‖u‖W m,p

α (Ω) ≤ C |u|W m,p
α (Ω).This theorem is proved by Amrouhe, Girault and Giroire [8℄ in an exteriordomain and by Amrouhe and Ne£asovà [9℄ in the half-spae. It is extended tothis domain by an adequate partition of unity. We denote by W−m,p′

−α (Ω) thedual spae of ◦

W m,p
α (Ω) and we notie that it is a spae of distributions.Now, we want to de�ne the traes of funtions of Wm,p

α (Ω). These traeshave a omponent on Γ0 and another omponent on R
n−1. For the traes on Γ0,we return to Adams [1℄ or Ne£as [25℄ for the de�nition of Wm−j− 1

p
,p(Γ0) with

j = 0, ...,m − 1 and for the usual trae theorems. In order to de�ne the traes3



of funtions on R
n−1, we intodue, for any σ ∈ ]0, 1[, the spae

W σ,p
0 (Rn) = {u ∈ D′(Rn), ω−σu ∈ Lp(Rn),

∫

Rn×Rn

|u(x) − u(y)|p

|x − y|n+σp
dxdy <∞},where

ω =





ρ if n

p
6= σ,

ρ(lgρ)1/σ if n
p

= σ.It is a re�exive Banah spae equipped with its natural norm
(‖

u

ωσ
‖p

Lp(Rn) +

∫

Rn×Rn

|u(x) − u(y)|p

|x − y|n+σp
dxdy)1/p.For any s ∈ R

+ and α ∈ R, we set
W s,p

α (Rn) = {u ∈W
[s],p
[s]+α−s(R

n), ∀|λ| = [s], ραDλu ∈ W
s−[s],p
0 (Rn)}.It is a re�exive Banah spae equipped with its natural norm

‖u‖W s,p
α (Rn) = ‖u‖

W
[s],p

[s]+α−s
(Rn)

+
∑

|λ|=s

‖ραDλu‖
W

s−[s],p
0 (Rn)

.We notie that this de�nition oinides with the de�nition given at the beginningof this paper when s = m is a nonnegative integer. As in [9℄, we have thefollowing lemma :Lemma 1.1. For any integer m ≥ 1 and real number α, we de�ne the mapping
γ : D(Rn

+) → (D(Rn−1))m

u 7→ (γ0u, . . . , γm−1u),where for any k = 0, . . . ,m − 1, γku =
∂ku

∂xk
n

. Then, γ an be extended byontinuity to a linear and ontinuous mapping still denoted by γ from Wm,p
α (Rn

+)to m−1∏

j=0

W
m−j− 1

p
,p

α (Rn−1). Moreover, γ is onto andKer γ =
◦

W
m,p
α (Rn

+).In all this artile, we suppose that Γ0 is of lass C1,1, exept when p = 2,where Γ0 an be onsidered to be Lipshitz-ontinuous only.We will denote by C a positive and real onstant whih may vary from lineto line and we set E = En for any spae E.
4



2 Study of the problem (SD) when p = 2.First, we notie that it is equivalent to solve the problem with homogeneousboundary onditions. Indeed, the funtion g1 is in W
1− 1

2 ,2
0 (Rn−1), so, thanksto Lemma 1.1, there exists u1 ∈ W

1,2
0 (Rn

+) suh that u1 = g1 on R
n−1 and

‖u1‖W
1,2
0 (Rn

+) ≤ C ‖g1‖
W

1− 1
2

,2

0 (Rn−1)
.Now, let η be the trae of u1 on Γ0, g = g0 − η ∈ H

1
2 (Γ0) and let R > 0 besuh that ω0 ⊂ BR ⊂ R

n
+. It is lear that the funtion h0 de�ned by
h0 = g on Γ0, h0 = 0 on ∂BR,belongs to H

1
2 (Γ0 ∪ ∂BR). We know that there exists an extension uh0

∈
H1(ΩR), where ΩR = Ω ∩BR, suh that uh0

= h0 on Γ0 ∪ ∂BR and suh that
‖uh0

‖H1(ΩR) ≤ C ‖h0‖
H

1
2 (Γ0∪∂BR)

. We set
u0 = uh0

in ΩR, u0 = 0 in Ω \ ΩR.We have u0 ∈ H1(Ω), u0 = g on Γ0, u0 = 0 on R
n−1 and

‖u0‖H1(Ω) ≤ C ‖g‖
H

1
2 (Γ0)

.Thus the funtion u0 + u1|Ω is in W
1,2
0 (Ω) and its traes are g0 on Γ0 and g1on Γ1. This allows us to solve only the following problem : let f be in W

−1,2
0 (Ω)and h be in L2(Ω), we want to �nd (u, π) ∈ W

1,2
0 (Ω) × L2(Ω) solution of

(S0)

{
−∆u + ∇π = f in Ω, div u = h in Ω,
u = 0 on Γ0, u = 0 on R

n−1.Now, we want to establish Lemma 2.2 to have a data for the divergene reduedto zero. For this, we use this preliminary lemma :Lemma 2.1. There exists a real onstant C > 0 depending only on ω0 suh thatthe following holds. For any h ∈ L2(Ω), there exists a unique ϕ ∈ W 2,2
0 (Ω)/Rsolution of

∆ϕ = h in Ω and
∂ϕ

∂n
= 0 on Γ0 ∪ R

n−1.Moreover, ϕ satis�es
‖ϕ‖W 2,2

0 (Ω)/R
≤ C ‖h‖L2(Ω).Proof. First, we de�ne Ω′ the symmetri region of Ω with respet to R

n−1,
Ω̃ = Ω ∪ Ω′ ∪ R

n−1 and Γ̃0 = ∂Ω̃. Let h be in L2(Ω) and let the funtion h∗ bede�ned, for almost any (x′, xn) ∈ Ω̃, by
h∗(x

′, xn) =

{
h(x′, xn) if xn ≥ 0,
h(x′,−xn) if xn < 0.Then, we set in R

n the funtion
h̃ = h∗ in Ω̃, h̃ = 0 in R

n \ Ω̃.5



So, h̃ ∈ L2(Rn) and, supposing �rst that n > 2, as [7℄ allows us to say that
∆ : W 2,2

0 (Rn) −→ L2(Rn)is onto, we dedue that there exists ũ ∈ W 2,2
0 (Rn) suh that ∆ũ = h̃ in R

n and
‖ũ‖W 2,2

0 (Rn) ≤ C ‖h‖L2(Ω). We denote by u ∈ W 2,2
0 (Ω̃) the restrition of ũ to

Ω̃. We notie that we have ∆u = h∗ in Ω̃ and that ∂u

∂n
∈ H

1
2 (Γ̃0). Thanks toProposition 3.12 in [8℄, (there is no ondition of ompatibility beause n > 2),there exists z ∈W 2,2

1 (Ω̃) ⊂W 2,2
0 (Ω̃) suh that

∆z = 0 in Ω̃ and ∂z

∂n
=
∂u

∂n
on Γ̃0,heking

‖z‖W 2,2
0 (eΩ) ≤ C ‖u‖W 2,2

0 (eΩ).Now, we set w = u− z. Then w ∈W 2,2
0 (Ω̃) satis�es

∆w = h∗ in Ω̃ and ∂w

∂n
= 0 on Γ̃0, (1)and we have

‖w‖W 2,2
0 (eΩ) ≤ C ‖h‖L2(Ω).If n = 2, we an not apply this reasoning beause a ondition of ompatibilityappears when we want to use Proposition 3.12 of [8℄. Nevertheless, we an �nddiretly w ∈ W 2,2

0 (Ω̃), solution of (1), without needing the spae W 2,2
1 (Ω̃) (seeTheorem 7.13 in [20℄). Then, we set, for almost any (x′, xn) ∈ Ω̃,

v(x′, xn) = w(x′,−xn).As h∗ is even with respet to xn, we easily hek that v is solution of the sameproblem that w satis�es. So, notiing that the kernel of this problem is R, wededue that v = w + c in Ω̃, with c ∈ R, and onsequently, ∂w
∂n

= 0 on R
n−1.Thus, the funtion w|Ω ∈ W 2,2

0 (Ω) is solution of our problem. Moreover, thissolution is unique up to a real onstant. Indeed, if z ∈W 2,2
0 (Ω) is in the kernelof this problem, z∗ ∈ W 2,2

0 (Ω̃) is in R, the kernel of the problem (1), so z ∈ R.
�Lemma 2.2. There exists a real onstant C > 0 depending only on ω0 suhthat for any h ∈ L2(Ω), there exists w ∈

◦

W
1,2
0 (Ω) heking

div w = h in Ω and ‖w‖
W

1,2
0 (Ω) ≤ C ‖h‖L2(Ω).Proof. Let h be in L2(Ω). We know, thanks to the previous lemma, thatthere exists a unique ϕ ∈W 2,2

0 (Ω)/R satisfying
∆ϕ = h in Ω and

∂ϕ

∂n
= 0 on Γ0 ∪ R

n−1,with
‖ϕ‖W 2,2

0 (Ω)/R
≤ C ‖h‖L2(Ω).6



We set v = ∇ϕ ∈ W
1,2
0 (Ω). So ‖v‖

W
1,2
0 (Ω) ≤ C ‖h‖L2(Ω). Moreover, we set

g0 = v|Γ0
∈ H

1
2 (Γ0) and g1 = v|Rn−1 ∈ W

1− 1
2 ,2

0 (Rn−1). Thanks to Theorem4.2 in [10℄, there exists (z, θ) ∈ W
1,2
0 (Rn

+) × L2(Rn
+) solution of

−∆z + ∇θ = 0 in R
n
+, div z = 0 in R

n
+, z = g1 on R

n−1,satisfying
‖z‖

W
1,2
0 (Rn

+) ≤ C ‖g1‖
W

1− 1
2

,2

0 (Rn−1)
.We denote again by z the restrition of z to Ω and g = g0 − z|Γ0

∈ H
1
2 (Γ0).We observe that

∫

Γ0

g · n dσ =

∫

Γ0

v · n dσ −

∫

Γ0

z · n dσ =

∫

Γ0

∂ϕ

∂n
dσ −

∫

ω0

div z dx = 0.Now, let R > 0 be suh that ω0 ⊂ BR ⊂ R
n
+ and ΩR = BR ∩ Ω. Then, theprevious ondition being heked, we have the following result (see [6℄) : thereexists y ∈ H1(ΩR) suh thatdiv y = 0 in ΩR, y = g on Γ0, y = 0 on ∂BR,and

‖y‖H1(ΩR) ≤ CR (‖g0‖
H

1
2 (Γ0)

+ ‖g1‖
W

1− 1
2

,2

0 (Rn−1)
).We denote again by y its extension by 0 in Ω. So y ∈ W

1,2
0 (Ω) anddiv y = 0 in Ω, y = g on Γ0, y = 0 on R

n−1,Finally, we set u = z|Ω + y ∈ W
1,2
0 (Ω). The funtion u sati�esdiv u = 0 in Ω, u = g0 on Γ0, u = g1 on R

n−1,and the estimate
‖u‖

W
1,2
0 (Ω) ≤ C ‖v‖

W
1,2
0 (Ω).Finally the funtion w = v − u is solution of the setted problem. �So to solve (S0), it is su�ient to solve the following problem (S00) : �nd

(u, π) ∈ W
1,2
0 (Ω) × L2(Ω) solution of
(S00)

{
−∆u + ∇π = f in Ω, div u = 0 in Ω,
u = 0 on Γ0, u = 0 on R

n−1.For this, as an immediate onsequene of the previous lemma, we derive �rstthe following Babu²ka-Brezzi ondition (see [12℄ and [13℄).Corollary 2.3. There exists a real onstant β > 0, depending only on ω0, suhthat
inf

h∈L2(Ω)
sup

w∈
◦

W
1,2
0 (Ω)

∫

Ω

h div w dx

‖w‖ ◦

W
1,2
0 (Ω)

‖h‖L2(Ω)
≥

1

β
. (2)7



We introdue the ontinuous bilinear form de�ned on ◦

W
1,2
0 (Ω) × L2(Ω) by

b(w, q) = −

∫

Ω

q div w dx.Let B ∈ L (
◦

W
1,2
0 (Ω), L2(Ω)) be the assoiated linear operator and let B′ ∈

L (L2(Ω),W−1,2
0 (Ω)) the dual operator of B, i.e

b(w, q) = < Bw, q >L2(Ω)×L2(Ω)= < w, B′q > ◦

W
1,2
0 (Ω),W−1,2

0 (Ω)
.It is lear that B = − div and that B′ = ∇. As a onsequene of the �inf-sup�ondition (2), we know that B is an isomorphism from ◦

W
1,2
0 (Ω)/V onto L2(Ω)and B′ is an isomorphism from L2(Ω) onto V ◦ with

V = {v ∈
◦

W
1,2
0 (Ω), div v = 0 in Ω},whih is an Hilbert spae and

V ◦ = {f ∈ W
−1,2
0 (Ω), ∀w ∈ V , < f ,w >

W
−1,2
0 (Ω),

◦

W
1,2
0 (Ω)

= 0}.Thus, we have the following De Rham's theorem :Corollary 2.4. The operator ∇ is an isomorphism from L2(Ω) to V ◦.Now, we de�ne the problem : �nd u ∈ V suh that
(FV) ∀v ∈ V ,

∫

Ω

∇u · ∇v dx = < f ,v >
W

−1,2
0 (Ω),

◦

W
1,2
0 (Ω)

.Using the seond Poinaré-type inequality given in the introdution for the equi-valene of the norm and the semi-norm in ◦

W
1,2
0 (Ω) and applying Lax-Milgramtheorem, we hek that (FV) has a unique solution u ∈ V . Finally, we notiethat problems (S00) and (FV) are equivalent, obtaining the pressure thanks toCorollary 2.4. Thus, there exists a unique (u, π) ∈ W

1,2
0 (Ω)×L2(Ω) solution of

(S00).In onsequene, we have the following theorem :Theorem 2.5. For any f ∈ W
−1,2
0 (Ω), h ∈ L2(Ω), g0 ∈ H

1
2 (Γ0) and g1 ∈

W
1− 1

2 ,2
0 (Rn−1), there exists a unique (u, π) ∈ W

1,2
0 (Ω)×L2(Ω) solution of theproblem

(SD)

{
−∆u + ∇π = f in Ω, div u = h in Ω,
u = g0 on Γ0, u = g1 on R

n−1.Moreover, (u, π) satis�es
‖u‖

W
1,2
0 (Ω) + ‖π‖L2(Ω) ≤ C (‖f‖

W
−1,2
0 (Ω) + ‖h‖L2(Ω)

+ ‖g0‖
H

1
2 (Γ0)

+ ‖g1‖
W

1− 1
2

,2

0 (Rn−1)
),where C is a real positive onstant whih depends only on ω0.8



3 Study of the problem (SD) when p 6= 2.First, we suppose that p > 2 and we want to study the kernel of the Stokessystem. We set :
Dp

0(Ω) = {(z, η) ∈
◦

W
1,p
0 (Ω) × Lp(Ω), −∆z + ∇η = 0 and div z = 0 in Ω}.To haraterize this spae, it is useful to show the following lemma :Lemma 3.1. Let p > 2, f be in W

−1,p
0 (Rn

+) and h be in Lp(Rn
+), both withompat support in R

n
+, and (v, η) ∈ W

1,2
0 (Rn

+)×L2(Rn
+) the unique solution of

(S+)






−∆v + ∇η = f in R
n
+,

div v = h in R
n
+,

v = 0 on R
n−1.Then, we have (v, η) ∈ W

1,p
0 (Rn

+) × Lp(Rn
+) and (v, η) satis�es

‖v‖
W

1,p
0 (Rn

+) + ‖η‖Lp(Rn
+)

+ ‖v‖
W

1,2
0 (Rn

+) + ‖η‖L2(Rn
+) ≤ C (‖f‖

W
−1,p
0 (Rn

+) + ‖h‖Lp(Rn
+)),where C is a real positive onstant whih depends only on p, ω0 and the supportof f and h.Proof. Let f be in W

−1,p
0 (Rn

+) and h in Lp(Rn
+) with ompat support in

R
n
+ ; we easily hek that f ∈ W

−1,2
0 (Rn

+) and h ∈ L2(Rn
+) beause p > 2 andlet (v, η) ∈ W

1,2
0 (Rn

+) × L2(Rn
+) be the solution of (S+) satisfying

‖v‖
W

1,2
0 (Rn

+) + ‖η‖L2(Rn
+) ≤ C (‖f‖

W
−1,2
0 (Rn

+) + ‖h‖L2(Rn
+)). (3)Thanks to [10℄, there exists (u, π) ∈ W

1,p
0 (Rn

+)× Lp(Rn
+) solution of (S+) suhthat

‖u‖
W

1,p
0 (Rn

+) + ‖π‖Lp(Rn
+) ≤ C (‖f‖

W
−1,p
0 (Rn

+) + ‖h‖Lp(Rn
+)). (4)We set (w, τ) = (u − v, π − η) whih satis�es

−∆w + ∇τ = 0 in R
n
+, div w = 0 in R

n
+, w = 0 on R

n−1,and we want to prove that (w, τ) = (0, 0). We easily show (see Proposition 4.1in [10℄) that wn, the nth omponent of w, whih is in W 1,p
0 (Rn

+) +W 1,2
0 (Rn

+),satis�es
∆2wn = 0 in R

n
+, wn = 0 on R

n−1,
∂wn

∂xn
= 0 on R

n−1.Here, the disussion splits into three steps : �rst, if p 6= n and n 6= 2, then
wn ∈W 0,p

−1(R
n
+) +W 0,2

−1(R
n
+). For almost all (x′, xn) ∈ R

n, we set
w̃n(x′, xn) =





wn(x′, xn) if xn ≥ 0,

(−wn − 2xn
∂wn

∂xn
− x2

n∆wn)(x′,−xn) if xn < 0,9



and we hek (see [11℄, [15℄) that w̃n is the unique extension of wn suh that
∆2w̃n = 0 in R

n. Moreover, for any ϕ ∈ D(Rn), we have
< w̃n, ϕ >D′(Rn),D(Rn)=

∫

R
n
+

wn[ϕ− 5ψ − 6xn
∂ψ

∂xn
− x2

n∆ψ] dxwhere ψ ∈ D(Rn) is de�ned by ψ(x′, xn) = ϕ(x′,−xn), whih allows us toprove that w̃n is in W−2,p
−3 (Rn) +W−2,2

−3 (Rn). So w̃n is a biharmoni tempereddistribution and onsequently a biharmoni polynomial. Finally, as the spae
W−2,p

−3 (Rn)+W−2,2
−3 (Rn) does not ontain polynomial, we dedue from this that

w̃n = 0 in R
n and so wn = 0 in R

n
+. Now, if n = p, we have W 1,p

0 (Rn
+) ⊂

W 0,p
−1,−1(R

n
+), and we may proeed with the same reasoning sine the loga-rithmi fator does not hange the proof. When n = 2, we have W 1,2

0 (Rn
+) ⊂

W 0,2
−1,−1(R

n
+) and get the same result with the same arguments, simply notiingthat wn ould be equal to a onstant in R

n
+ but that this onstant would beneessary equal to zero beause wn = 0 on R

n−1.Consequently, in any ase, we have wn = 0 in R
n
+. We dedue from this (seeProposition 4.1, [10℄) that τ ∈ Lp(Rn

+) + L2(Rn
+) satis�es

∆τ = 0 in R
n
+,

∂τ

∂n
= 0 on R

n−1.Now, we set for almost any (x′, xn) ∈ R
n,

τ∗(x
′, xn) =

{
τ(x′, xn) if xn ≥ 0,
τ(x′,−xn) if xn < 0,and we easily hek that τ∗ is a harmoni tempered distribution, so a harmo-ni polynomial, inluded in Lp(Rn) + L2(Rn), a spae whih does not ontainpolynomial. Thus, we onlude that τ = 0 in R

n
+. Then, we show that w′ =

(w1, . . . wn−1) ∈ W
1,p
0 (Rn

+) + W
1,2
0 (Rn

+) satis�es
∆w′ = 0 in R

n
+, w′ = 0 on R

n−1.We set for almost any (x′, xn) ∈ R
n,

w′∗(x′, xn) =

{
w′(x′, xn) if xn ≥ 0,
−w′(x′,−xn) if xn < 0,and we easily hek that w′∗ ∈ W
1,p
0 (Rn) + W

1,2
0 (Rn) is a harmoni tempereddistribution, so a harmoni polynomial in R

n. Thus, w′ is a harmoni polyno-mial in R
n
+ and ∇w′ is an harmoni polynomial in Lp(Rn

+) + L2(Rn
+), a spaewhih does not ontain polynomial. So ∇w′ = 0 in R

n
+ and like w′ = 0 in R

n−1,we have w′ = 0 in R
n
+. Finally, we dedue from this that (w, τ) = (0, 0). �Now, we have the following theorem :Theorem 3.2. The kernel Dp

0(Ω) is redued to {(0, 0)} when p > 2.Proof. Let (z, π) be in Dp
0(Ω). We denote by z̃ and π̃ the extensions by

0 of z and π in R
n
+. We have z̃ ∈ W

1,p
0 (Rn

+) and π̃ ∈ Lp(Rn
+). We set h̃ =10



−∆z̃ +∇π̃ ∈ W
−1,p
0 (Rn

+) and we easily hek that h̃ has a ompat support in
R

n
+. Thus, we an apply the previous lemma whih assures us that there existsa unique (v, η) ∈ (W 1,p

0 (Rn
+) ∩ W

1,2
0 (Rn

+)) × (Lp(Rn
+) ∩ L2(Rn

+)) solution of
−∆v + ∇η = h̃ in R

n
+, div v = 0 in R

n
+, v = 0 on R

n−1.Notiing that div z̃ = 0 in R
n
+, we see that (z̃, π̃) and (v, η) are solutions ofthe same problem, whih, thanks to [10℄, has a unique solution in W

1,p
0 (Rn

+) ×
Lp(Rn

+). So (z̃, π̃) = (v, η) in R
n
+ and, setting again v and η the restritions of

v and η to Ω, we dedue that
v = z, η = π in Ω.So, (v, η) ∈ W

1,p
0 (Ω) × Lp(Ω) satis�es

−∆v + ∇η = 0 in Ω, div v = 0 in Ω, v = 0 on Γ0 ∪ R
n−1.But, (v, η) ∈ W

1,2
0 (Ω) × L2(Ω) and in this spae, there is, thanks to Theorem2.5, a unique solution to the above problem, whih is (0, 0). Thus, Dp

0(Ω) =
{(0, 0)}. �Now, supposing that p > 2, we want to solve the Stokes system with homo-gemeous boundary onditions, that is to say : let f be in W

−1,p
0 (Ω) and h bein Lp(Ω), we want to �nd (u, π) ∈ W

1,p
0 (Ω) × Lp(Ω) solution of the problem

(S0)

{
−∆u + ∇π = f in Ω, div u = h in Ω,
u = 0 on Γ0, u = 0 on R

n−1.First, we establish the following lemma :Lemma 3.3. For eah p > 2 and for any f ∈ W
−1,p
0 (Ω) and h ∈ Lp(Ω), bothwith ompat support in Ω, there exists a unique (u, π) ∈ (W 1,p

0 (Ω)∩W
1,2
0 (Ω))×

(Lp(Ω) ∩ L2(Ω)) solution of (S0).Proof. Let f be in W
−1,p
0 (Ω) and h be in Lp(Ω) with ompat support in

Ω. Then, like p > 2, we easily heks that f ∈ W
−1,2
0 (Ω) and h ∈ L2(Ω) andthat

‖f‖
W

−1,2
0 (Ω) + ‖h‖L2(Ω) ≤ C (‖f‖

W
−1,p
0 (Ω) + ‖h‖Lp(Ω)),where C is a real positive onstant whih depends only on p, ω0 and the supportsof f and h. We dedue from Theorem 2.5 that there exists a unique (u, π) ∈

W
1,2
0 (Ω) × L2(Ω) solution of (S0). It stays to show that (u, π) ∈ W

1,p
0 (Ω) ×

Lp(Ω). We denote by ũ ∈ W
1,2
0 (Rn

+) and π̃ ∈ L2(Rn
+) the extensions by 0 in R

n
+of u and π and we set

f̃ = −∆ũ + ∇π̃ and h̃ = div ũ.Let us show now that f̃ ∈ W
−1,p
0 (Rn

+) and h̃ ∈ Lp(Rn
+). We de�ne the funtion

χ ∈ D(Ω) suh that χ = 1 in θ where θ is an open bounded subset of Ω suh thatsupp f ⊂ θ. We denote by χ̃ the extension of χ by 0 in R
n
+. For ϕ ∈ D(Rn

+),we have
< f̃ ,ϕ >D′(Rn

+),D(Rn
+)= < f̃ , χ̃ϕ >D′(Rn

+),D(Rn
+)= < f , χϕ >D′(Ω),D(Ω)11



and for ϕ ∈ D(Rn
+), we have

< h̃, ϕ >D′(Rn
+),D(Rn

+)=

∫

Ω

hϕ dx.So, f̃ ∈ W
−1,p
0 (Rn

+) and h̃ ∈ Lp(Rn
+). Finally, we an apply Lemma 3.1 toonlude that (ũ, π̃) ∈ W

1,p
0 (Rn

+) × Lp(Rn
+). Thus, by restrition, (u, π) ∈

W
1,p
0 (Ω) × Lp(Ω). �Now, we establish the following theorem :Theorem 3.4. For eah p > 2, there exists a real onstant C > 0 dependingonly on ω0 and p suh that the following holds. For any g0 ∈ W 1− 1

p
,p(Γ0) and

g1 ∈ W
1− 1

p
,p

0 (Rn−1), there exists a unique (u, π) ∈ W
1,p
0 (Ω) × Lp(Ω) solutionof

(S′)

{
−∆u + ∇π = 0 in Ω, div u = 0 in Ω,
u = g0 on Γ0, u = g1 on R

n−1.Moreover, (u, π) satis�es
‖u‖

W
1,p
0 (Ω) + ‖π‖Lp(Ω) ≤ C (‖g0‖

W
1− 1

p
,p

(Γ0)
+ ‖g1‖

W
1− 1

p
,p

0 (Rn−1)
).Proof. The uniqueness omes from Theorem 3.2. Then, thanks to Propo-sition 4.1 of [10℄, there exists a unique (w, τ) ∈ W

1,p
0 (Rn

+) × Lp(Rn
+) solutionof

−∆w + ∇τ = 0 in R
n
+, div w = 0 in R

n
+, w = g1 on R

n−1.We denote again by w and τ the restritions of w and τ to Ω and we set
g = g0 − w|Γ0

∈ W 1− 1
p

,p(Γ0). Thus, it remains to show that there exists
(y, λ) ∈ W

1,p
0 (Ω) × Lp(Ω) solution of (S′′)

(S′′)

{
−∆y + ∇λ = 0 in Ω, div y = 0 in Ω,
y = g on Γ0, y = 0 on R

n−1.For this, let R > 0 be suh that w0 ⊂ BR ⊂ R
n
+, ΩR = BR ∩ Ω and ψ ∈ D(Rn)with support inluded in ΩR suh that

∫

ΩR

ψ(x) dx +

∫

Γ0

g · n dσ = 0.Thanks to results in bounded domains (see [6℄), there exists (v, η) ∈ W 1,p(ΩR)×
Lp(ΩR) suh that

{
−∆v + ∇η = 0 in ΩR, div v = ψ in ΩR,
v = g on Γ0, v = 0 on ∂BR.Next, we extend (v, η) by (0, 0) in Ω and we denote by (ṽ, η̃) ∈ W

1,p
0 (Ω)×Lp(Ω)this extension whih satis�es

{
−∆ṽ + ∇η̃ = ξ in Ω, div ṽ = ψ in Ω,
ṽ = g on Γ0, ṽ = 0 on R

n−1,12



where ξ ∈ W
−1,p
0 (Ω). We notie that ξ and ψ have a ompat support in ΩR sothat by the previous lemma, there exists (z, ν) ∈ W

1,p
0 (Ω) × Lp(Ω) solution of

{
−∆z + ∇ν = −ξ in Ω, div z = −ψ in Ω,
z = 0 on Γ0, z = 0 on R

n−1.Finally, (y, λ) = (ṽ + z, η̃ + ν) ∈ W
1,p
0 (Ω) × Lp(Ω) is solution of (S′′), so

(u, π) = (w + y, µ+ λ) ∈ W
1,p
0 (Ω)×Lp(Ω) is solution of (S′) and the estimatefollows immediately. �Now, we an solve the problem with homogeneous boundary onditions inthe ase p > 2.Theorem 3.5. For any p > 2, f ∈ W

−1,p
0 (Ω) and h ∈ Lp(Ω), there exists

(u, π) ∈ W
1,p
0 (Ω) × Lp(Ω) solution of (S0). Moreover, (u, π) satis�es
‖u‖

W
1,p
0 (Ω) + ‖π‖Lp(Ω) ≤ C (‖f‖

W
−1,p
0 (Ω) + ‖h‖Lp(Ω)),where C is a real positive onstant whih depends only on p and ω0.Proof. The uniqueness omes from Theorem 3.2. Then, as a onsequene ofthe seond Poinaré-type inequality given in the introdution, we know thereexists a tensor of seond order F ∈ Lp(Ω) suh that div F = f . We extend F(respetively h) by 0 in R

n, and we denote by F̃ (respetively h̃) this extension.Then, we set f̃ = div F̃ and we notie that f̃ |Ω = f . We have f̃ ∈ W
−1,p
0 (Rn)and h̃ ∈ Lp(Rn). Thanks to [2℄, there exists (v, η) ∈ W

1,p
0 (Rn)×Lp(Rn) solutionof

−∆v + ∇η = f̃ and div v = h̃ in R
n.We denote again by v ∈ W

1,p
0 (Ω) and η ∈ Lp(Ω) the restritions of v and η to

Ω. We have v|Γ0
∈ W 1− 1

p
,p(Γ0) and v|Rn−1 ∈ W

1− 1
p

,p

0 (Rn−1), thus, thanks toTheorem 3.4, there exists (w, τ) ∈ W
1,p
0 (Ω) × Lp(Ω) solution of

{
−∆w + ∇τ = 0 in Ω, div w = 0 in Ω,
w = −v|Γ0

on Γ0, w = −v|Rn−1 on R
n−1.So, (u, π) = (v + w, η + τ) ∈ W

1,p
0 (Ω) × Lp(Ω) is solution of (S0) and theestimate follows immediately. �Now, we suppose that 1 < p < 2. Thanks to the previous theorem,

T :
◦

W
1,p′

0 (Ω) × Lp′

(Ω) −→ W
−1,p′

0 (Ω) × Lp′

(Ω),

(u, π) −→ (−∆u + ∇π, div u),is an isomorphism. So, by duality,
T ∗ :

◦

W
1,p
0 (Ω) × Lp(Ω) −→ W

−1,p
0 (Ω) × Lp(Ω),is also an isomorphism and, as it is standard to hek that T ∗(u, π) = (−∆u−

∇π,−div u), we have Theorem 3.5 for any p < 2. �13



Finally, it remains to return to the general problem with p 6= 2 and nonhomo-geneous boundary onditions. For this, like for the ase p = 2, we show that thereexists a funtion w ∈ W
1,p
0 (Ω) suh that w = g0 in Γ0 and w = g1 in R

n−1.Then, we have just seen that there exists a unique (v, π) ∈ W
1,p
0 (Ω) × Lp(Ω)solution of

{
−∆v + ∇π = f + ∆w in Ω, v = 0 on Γ0,div v = h− div w in Ω, v = 0 on R

n−1.In onsequene, the funtion (u = v + w, π) ∈ W
1,p
0 (Ω) × Lp(Ω) is a solutionof the problem (SD) and we have the following theorem :Theorem 3.6. For any p 6= 2, f ∈ W

−1,p
0 (Ω), h ∈ Lp(Ω) , g0 ∈ W 1− 1

p
,p(Γ0)and g1 ∈ W

1− 1
p

,p

0 (Rn−1), there exists a unique (u, π) ∈ W
1,p
0 (Ω) × Lp(Ω)solution of the problem (SD)

(SD)

{
−∆u + ∇π = f in Ω, div u = h in Ω,
u = g0 on Γ0, u = g1 on R

n−1.Moreover, (u, π) satis�es
‖u‖

W
1,p
0 (Ω) + ‖π‖Lp(Ω) ≤ C (‖f‖

W
−1,p
0 (Ω) + ‖h‖Lp(Ω)

+ ‖g0‖
W

1− 1
p

,p
(Γ0)

+ ‖g1‖
W

1− 1
p

,p

0 (Rn−1)
),where C is a real positive onstant whih depends only on p and ω0.4 Strong solutions and regularity for the Stokessystem (SD).In this setion, we are interested in the existene of strong solutions of theStokes system (SD), i.e. of solutions (u, π) ∈ W

2,p
ℓ+1(Ω) ×W 1,p

ℓ+1(Ω). Here, welimit ourselves to the two ases ℓ = 0 and ℓ = −1.First, we give results for the ase ℓ = 0. We notie that in this ase, we havethe ontinuous injetions W
2,p
1 (Ω) →֒ W

1,p
0 (Ω) and W 1,p

1 (Ω) →֒ Lp(Ω). So, thetwo theorems whih follow show that generalized solutions of Theorems 2.5 and3.6, with a stronger hypothesis on the data, are in fat strong solutions.Theorem 4.1. For any p > 1 satisfying n

p′
6= 1, f ∈ W

0,p
1 (Ω) and h ∈

W 1,p
1 (Ω), there exists a unique (u, π) ∈ W

2,p
1 (Ω) ×W 1,p

1 (Ω) solution of (S0).Moreover, (u, π) satis�es
‖u‖

W
2,p
1 (Ω) + ‖π‖W 1,p

1 (Ω) ≤ C (‖f‖
W

0,p
1 (Ω) + ‖h‖W 1,p

1 (Ω)),where C is a real positive onstant whih depends only on p and ω0.Proof. First, we notie that we have the ontinuous injetions W
0,p
1 (Ω) →֒

W
−1,p
0 (Ω) beause n

p′
6= 1 and W 1,p

1 (Ω) →֒ Lp(Ω). Thus, thanks to Theorems14



2.5 (p = 2) and 3.6 (p 6= 2), there exists a unique (u, π) ∈ W
1,p
0 (Ω) × Lp(Ω)solution of (S0). It remains to show that (u, π) ∈ W

2,p
1 (Ω)×W 1,p

1 (Ω). For this,we introdue the following partition of unity :
ψ1, ψ2 ∈ C∞(Rn), 0 ≤ ψ1, ψ2 ≤ 1, ψ1 + ψ2 = 1 in R

n,

ψ1 = 1 in BR, supp ψ1 ⊂ BR+1,whith 0 < R < R′ <∞ suh that ω0 ⊂ BR ⊂ BR′ ⊂ R
n
+. We set ΩR = Ω ∩BR,

ΩR+1 = Ω ∩BR+1, ui = ψiu ∈
◦

W
1,p
0 (Ω) and πi = ψiπ ∈ Lp(Ω) for i = 1 or 2.We notie that supp (u1, π1) ⊂ ΩR+1 and we denote by (ũ1, π̃1) the extensionby (0, 0) of (u1, π1) in cω0. Finally, we set

f̃1 = −∆ũ1 + ∇π̃1, h̃1 = div ũ1and (f1, h1) their restrition to Ω. We have in Ω :
f1 = −∆u1 + ∇π1 = ψ1f − 2∇ψ1 · ∇u − ∆ψ1 u + π∇ψ1and

h1 = div u1 = ψ1h+ div ψ1u.As u ∈ W
1,p
0 (Ω) and supp ψ1 ⊂ ΩR+1, then f1 ∈ W

0,p
1 (Ω) and h1 ∈ W 1,p

1 (Ω).Thus f̃1 ∈ W
0,p
1 (cω0), h̃1 ∈W 1,p

1 (cω0) and (ũ1, π̃1) satis�es




−∆ũ1 + ∇π̃1 = f̃1 in cω0,div ũ1 = h̃1 in cω0,
ũ1 = 0 on Γ0.So, thanks to regularity results in a �lassial� exterior domain (see [3℄), wehave (ũ1, π̃1) ∈ W

2,p
1 (cω0)×W

1,p
1 (cω0) and onsequently (u1, π1) ∈ W

2,p
1 (Ω)×

W 1,p
1 (Ω).Now, we denote by (ũ2, π̃2) the extension by (0, 0) of (u2, π2) in R

n
+ and

f̃2 = −∆ũ2 + ∇π̃2, h̃2 = div ũ2.As supp (f̃2, h̃2) ⊂ Ω and as f̃2|Ω = f − f1 ∈ W
0,p
1 (Ω) and h̃2|Ω = h − h1 ∈

W 1,p
1 (Ω), we have

f̃2 ∈ W
0,p
1 (Rn

+), and h̃2 ∈W 1,p
1 (Rn

+).Thus, thanks to Theorem 5.2 of [10℄, we dedue from this that ũ2 ∈ W
2,p
1 (Rn

+),and π̃2 ∈ W 1,p
1 (Rn

+). By restrition, we have u2 ∈ W
2,p
1 (Ω), π2 ∈ W 1,p

1 (Ω) andso (u, π) ∈ W
2,p
1 (Ω) ×W 1,p

1 (Ω). The estimate follows immediately. �Now, as at the end of the previous setion, we an solve the problem withnonhomogeneous boundary onditions.Theorem 4.2. For any p > 1 satisfying n

p′
6= 1, f ∈ W

0,p
1 (Ω), h ∈ W 1,p

1 (Ω),
g0 ∈ W 2− 1

p
,p(Γ0) and g1 ∈ W

2− 1
p

,p

1 (Rn−1), there exists a unique (u, π) ∈15



W
2,p
1 (Ω) ×W 1,p

1 (Ω) solution of the problem (SD). Moreover, (u, π) satis�es
‖u‖

W
2,p
1 (Ω) + ‖π‖W 1,p

1 (Ω) ≤ C (‖f‖
W

0,p
1 (Ω) + ‖h‖W 1,p

1 (Ω)

+ ‖g0‖
W

2− 1
p

,p
(Γ0)

+ ‖g1‖
W

2− 1
p

,p

1 (Rn−1)
),where C is a real positive onstant whih depends only on p and ω0.Now, we examine the basi ase ℓ = −1, orresponding to f ∈ Lp(Ω). First,we study the kernel of suh a problem. We set

Sp
0(Ω) = {(z, π) ∈ W

2,p
0 (Ω) ×W 1,p

0 (Ω), −∆z + ∇π = 0 in Ω,div z = 0 in Ω and z = 0 on Γ0 ∪ R
n−1}The haraterization of this kernel is given by this proposition :Proposition 4.3. For eah p > 1 suh that n

p′
6= 1, we have the followingstatements : i) If p < n, Sp

0(Ω) = {(0, 0)}.ii) If p ≥ n, Sp
0(Ω) = {(v(λ) − λ, η(λ) − µ), λ ∈ (Rxn)n−1 × {0}, µ ∈ R}where (v(λ), η(λ)) ∈ W

2,p
1 (Ω) ×W 1,p

1 (Ω) is the unique solution of
{

−∆v + ∇η = 0 in Ω, div v = 0 in Ω,
v = λ on Γ0, v = 0 on R

n−1.Proof. Let (z, π) ∈ Sp
0(Ω). We easily show that there exists (z̃, π̃) ∈ W

2,p
0 (Rn

+)×

W 1,p
0 (Rn

+) suh that (z̃, π̃)|Ω = (z, π). We set
ξ = −∆z̃ + ∇π̃ and σ = div z̃ in R

n
+.Then, ξ ∈ Lp(Rn

+), σ ∈ W 1,p
0 (Rn

+) and (z̃, π̃) ∈ W
2,p
0 (Rn

+)×W 1,p
0 (Rn

+) satis�es
(S+)






−∆z̃ + ∇π̃ = ξ in R
n
+,

div z̃ = σ in R
n
+,

z̃ = 0 on R
n−1.Moreover, ξ and σ have a ompat support, so ξ ∈ W

0,p
1 (Rn

+), σ ∈ W 1,p
1 (Rn

+),and thanks to Theorem 5.2 of [10℄, there exists (v, η) ∈ (W 2,p
1 (Rn

+)×W 1,p
1 (Rn

+)) ⊂

(W 2,p
0 (Rn

+) ×W 1,p
0 (Rn

+)) solution of (S+). Thus, (see Theorem 5.6 in [10℄), if
p < n, we dedue from this that

z̃ = v and π̃ = η in R
n
+,and if p ≥ n, there exists λ ∈ (Rxn)n−1 × {0} and µ ∈ R suh that

v − z̃ = λ and η − π̃ = µ in R
n
+.So, if p < n, we have (z, π) ∈ W

2,p
1 (Ω)×W 1,p

1 (Ω) and thanks to the uniquenessof the solution of the problem of Theorem 4.1, we onlude that (z, π) = {(0, 0)}and if p ≥ n, we have the haraterization we were looking for. �We have the following result, orresponding to Theorem 4.2 :16



Theorem 4.4. For any p > 1 satisfying n

p′
6= 1, f ∈ Lp(Ω), h ∈ W 1,p

0 (Ω),
g0 ∈ W 2− 1

p
,p(Γ0) and g1 ∈ W

2− 1
p

,p

0 (Rn−1), there exists a unique (u, π) ∈
(W 2,p

0 (Ω) × W 1,p
0 (Ω))/Sp

0(Ω) solution of the problem (SD). Moreover, (u, π)satis�es
inf

(z,p)∈Sp
0(Ω)

(‖u + z‖
W

2,p
0 (Ω) + ‖π + p‖W 1,p

0 (Ω)) ≤ C (‖f‖Lp(Ω) + ‖h‖W 1,p
0 (Ω)

+ ‖g0‖
W

2− 1
p

,p
(Γ0)

+ ‖g1‖
W

2− 1
p

,p

0 (Rn−1)
),where C is a real positive onstant whih depends only on p and ω0.Proof. We easily show that there exist extensions f̃ ∈ Lp(Rn) of f and

h̃ ∈ W 1,p
0 (Rn) of h in R

n and, thanks to Theorem 3.10 of [3℄, there exists
(v, η) ∈ W

2,p
0 (Rn) ×W 1,p

0 (Rn) solution of
−∆v + ∇η = f̃ in R

n, div v = h̃ in R
n.Now, it remains to solve the problem : �nd (z, µ) ∈ W

2,p
0 (Ω) ×W 1,p

0 (Ω) suhthat {
−∆z + ∇µ = 0 in Ω, div z = 0 in Ω,
z = g0 − v|Γ0

on Γ0, z = g1 − v|Rn−1 on R
n−1,By Theorem 5.6 of [10℄, there exists (w, τ) ∈ W

2,p
0 (Rn

+)×W 1,p
0 (Rn

+) solution of
−∆w + ∇τ = 0 in R

n
+, div w = 0 in R

n
+, w = g1 − v|Rn−1 on R

n−1.Moreover, thanks to Theorem 4.2, there exists (y, p) ∈ (W 2,p
1 (Ω)×W 1,p

1 (Ω)) ⊂
(W 2,p

0 (Ω) ×W 1,p
0 (Ω)) solution of

{
−∆y + ∇p = 0 in Ω, div y = 0 in Ω,
y = g0 − v|Γ0

− w|Γ0
on Γ0, y = 0 on R

n−1.So, (z, µ) = (y + w, p+ τ) ∈ W
2,p
0 (Ω)×W 1,p

0 (Ω) and (u, π) = (v + z, η + µ) issolution to our problem. The estimate follows immediately. �5 Very weak solutions for the homogeneous StokessystemThe aim of this setion is to study the system (SD) with f = 0, h = 0and singular data on the boundary. For this, we must �rstly give a meaning tosingular data for this problem. More preisely, we want to show that boundaryonditions of the form g0 ∈ W− 1
p

,p(Γ0) and g1 ∈ W
− 1

p
,p

ℓ−1 (Rn−1) are meaning-ful. Here, we limit ourselves to the two ases ℓ = 0 and ℓ = 1. Our work isrelated to that of Amrouhe, Ne£asovà and Raudin for the half spae ([10℄) andof Amrouhe and Girault for a bounded domain ([6℄). We refer to these papersfor the ideas of proofs for the �rst results of this setion. Here, we suppose that
n

p
6= 1. 17



We introdue the spae :
M ℓ(Ω) = {u ∈ W

2,p′

−ℓ+1(Ω), u = 0 and div u = 0 on Γ0 ∪ R
n−1},and we show that we have the identity

M ℓ(Ω) = {u ∈ W
2,p′

−ℓ+1(Ω), u = 0 and ∂u

∂n
· n = 0 on Γ0 ∪ R

n−1}.Then, we de�ne
Xℓ(Ω) = {v ∈

◦

W
1,p′

−ℓ (Ω), div v ∈
◦

W
1,p′

−ℓ+1(Ω)},whih is a re�exive Banah spae for the norm
‖v‖Xℓ(Ω) = ‖v‖

W
1,p′

−ℓ
(Ω)

+ ‖div v‖
W 1,p′

−ℓ+1(Ω)
.We hek that D(Ω) is dense in Xℓ(Ω) and we denote by X ′

ℓ(Ω) the dual spaeof Xℓ(Ω). Now, we introdue the spaes
T ℓ(Ω) = {v ∈ W

0,p
ℓ−1(Ω), ∆v ∈ X ′

ℓ(Ω)},

T ℓ,σ(Ω) = {v ∈ T ℓ(Ω), div v = 0 dans Ω},whih are re�exive Banah spaes for the norm
‖v‖T ℓ(Ω) = ‖v‖

W
0,p

ℓ−1(Ω) + ‖∆v‖X′

ℓ
(Ω),where ‖·‖X′

ℓ
(Ω) denotes the dual norm of the spae X ′

ℓ(Ω). It an be shown thatthe spae D(Ω) is dense in T ℓ(Ω) and that the spae {v ∈ D(Ω), div v = 0} isdense in T ℓ,σ(Ω).Finally, using exatly the same reasoning as in Lemma 6.4 and Remark 6.5of [10℄ and Setion 4.2 of [6℄, we onlude that for a funtion u ∈ T ℓ,σ(Ω), thetrae of u on Γ0 is in W− 1
p

,p(Γ0) and the trae of u on R
n−1 is in W

− 1
p

,p

ℓ−1 (Rn−1).Moreover, we have for any ϕ ∈ M ℓ(Ω) and for any v ∈ T ℓ,σ(Ω)

<∆v,ϕ >X′

ℓ
(Ω),Xℓ(Ω)= < v,∆ϕ >

W
0,p

ℓ−1(Ω),W 0,p′

−ℓ+1(Ω)
(5.0)

− < v,
∂ϕ

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
− < v,

∂ϕ

∂n
>

W
−

1
p

,p

ℓ−1 (Rn−1),W
1
p

,p′

−ℓ+1(R
n−1)

.We remind that, for any g0 ∈ W− 1
p

,p(Γ0) and g1 ∈ W
− 1

p
,p

ℓ−1 (Rn−1), we wantto �nd (u, π) ∈ W
0,p
ℓ−1(Ω) ×W−1,p

ℓ−1 (Ω) solution of





−∆u + ∇π = 0 in Ω, (5.1)div u = 0 in Ω, (5.2)
u = g0 on Γ0, (5.3)
u = g1 on R

n−1. (5.4)First, we remark that if (u, π) ∈ W
0,p
ℓ−1(Ω)×W−1,p

ℓ−1 (Ω) satis�es (5.1) and (5.2),then u ∈ T ℓ,σ(Ω) and thus (5.3) and (5.4) make sense. Indeed, the funtion uis in W
0,p
ℓ−1(Ω) and div u = 0 in Ω. Moreover, beause D(Ω) is dense in Xℓ(Ω),we easily show that ∇π ∈ X ′

ℓ(Ω). Thus, thanks to (5.1), we have ∆u ∈ X ′
ℓ(Ω)and u ∈ T ℓ,σ(Ω). So, in this ase, we have seen that u|Γ0

∈ W− 1
p

,p(Γ0) and
u|Rn−1 ∈ W

− 1
p

,p

ℓ−1 (Rn−1). 18



Proposition 5.1. For eah p > 1 suh that n
p
6= 1, we suppose that the fun-tions g0 ∈ W− 1

p
,p(Γ0) and g1 ∈ W

− 1
p

,p

ℓ−1 (Rn−1) satisfy
g0 · n = 0 on Γ0 and g1 · n = 0 on R

n−1. (5.5)Then, problem (5.1)-(5.4) is equivalent to �nd (u, π) ∈ W
0,p
ℓ−1(Ω) ×W−1,p

ℓ−1 (Ω)suh that for any v ∈ M ℓ(Ω) and for any η ∈ W 1,p′

−ℓ+1(Ω), we have
(FV) < u,−∆v + ∇η >

W
0,p

ℓ−1(Ω),W 0,p′

−ℓ+1(Ω)
− < π, div v >

W−1,p

ℓ−1 (Ω),
◦

W
1,p′

−ℓ+1(Ω)
=

− < g0,
∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
− < g1,

∂v

∂n
>

W
−

1
p

,p

ℓ−1
(Rn−1),W

1
p

,p′

−ℓ+1
(Rn−1)

.Proof. Let (u, π) ∈ W
0,p
ℓ−1(Ω) × W−1,p

ℓ−1 (Ω) be a solution of (5.1)-(5.4).Thanks to the previous remark, we have u ∈ T ℓ,σ(Ω). Let v be in M ℓ(Ω).We dedue from (5.0) and (5.1) that
< u,−∆v >

W
0,p

ℓ−1(Ω),W 0,p′

−ℓ+1(Ω)
− < π, div v >

W−1,p

ℓ−1 (Ω),
◦

W
1,p′

−ℓ+1(Ω)
=

− < g0,
∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
− < g1,

∂v

∂n
>

W
−

1
p

,p

ℓ−1 (Rn−1),W
1
p

,p′

−ℓ+1(R
n−1)

.Moreover, like n
p
6= 1, the spae {v ∈ D(Ω), div v = 0} is dense in T ℓ,σ(Ω) andusing (5.2) and (5.5), we show that for any η ∈W 1,p′

−ℓ+1(Ω)

< u,∇η >
W

0,p

ℓ−1(Ω),W 0,p′

−ℓ+1(Ω)
= 0.Thus, we onlude that (u, π) is solution of (FV). Reiproally, let (u, π) ∈

W
0,p
ℓ−1(Ω) ×W−1,p

ℓ−1 (Ω) be a solution of (FV). With η = 0 and v ∈ D(Ω), wehave
< −∆u + ∇π,v >D′(Ω),D(Ω)= 0,and with v = 0 and η ∈ D(Ω), we have

< div u, η >D′(Ω),D(Ω)= 0.Thus, (5.1) and (5.2) hold. It remains to show (5.3) and (5.4). Let v ∈ M ℓ(Ω).Thanks to Green's formula (5.0) and (FV), we have
< u,

∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
+ < u,

∂v

∂n
>

W
−

1
p

,p

ℓ−1 (Rn−1),W
1
p

,p′

−ℓ+1(R
n−1)

=

< g0,
∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
+ < g1,

∂v

∂n
>

W
−

1
p

,p

ℓ−1 (Rn−1),W
1
p

,p′

−ℓ+1(R
n−1)

.Now, let µ be in W
1
p

,p′

(Γ0). We denote by µτ the tangential omponent of µ.It is de�ned by
µ = µτ + (µ · n)n.We easily show that there exists w ∈ W

2,p′

−ℓ+1(Ω) suh that





w = 0 and ∂w

∂n
= µτ on Γ0,

w =
∂w

∂n
= 0 on R

n−1.19



So, w ∈ M ℓ(Ω) and
< u,

∂w

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
= < g0,

∂w

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
.Thus

< u,µτ >
W

−
1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
= < g0,µτ >

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
.Finally, sine u · n = 0 on Γ0 and by hypothesis g0 · n = 0 on Γ0, we onludethat

< u,µ >
W

−
1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
= < g0,µ >

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
,i.e. u = g0 on Γ0. Now, let µ be in W

1
p

,p′

−ℓ+1(R
n−1). We know that there exists

s ∈ W
2,p′

−ℓ+1(R
n
+) suh that

s = 0 and ∂s

∂n
= µτ on R

n−1.Moreover, as above, we an �nd y ∈ W
2,p′

−ℓ+1(Ω) suh that





y = −s and ∂y

∂n
= −

∂s

∂n
on Γ0,

y =
∂y

∂n
= 0 on R

n−1.So, z = s|Ω + y ∈ W
2,p′

−ℓ+1(Ω) satis�es




z =
∂z

∂n
= 0 on Γ0,

z = 0 and ∂z

∂n
= µτ on R

n−1.Then, z ∈ M ℓ(Ω) and we easily onlude like above that u = g1 on R
n−1.Thus, we have the equivalene of the two problems. �Now, we an solve the homogeneous Stokes system (5.1)-(5.4) with singularboundary onditions. We will give separately the results for ℓ = 0 and ℓ = 1.Note that the �rst theorem (for the ase ℓ = 0) extends Theorems 2.5 and 3.6(with f = 0 and h = 0) sine W

1,p
0 (Ω) ⊂ W

0,p
−1(Ω) if n 6= p.Theorem 5.2. For any p > 1 suh that n

p
6= 1, g0 ∈ W− 1

p
,p(Γ0) and g1 ∈

W
− 1

p
,p

−1 (Rn−1) satisfying (5.5), there exists a unique (u, π) ∈ W
0,p
−1(Ω)×W−1,p

−1 (Ω)solution of (5.1)-(5.4). Moreover, (u, π) satis�es
‖u‖

W
0,p

−1 (Ω) + ‖π‖W−1,p

−1 (Ω) ≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

−1 (Rn−1)
),where C is a real positive onstant whih depends only on p and ω0.20



Proof. In fat, we solve (FV). For this, we argue by duality. Sine n
p
6= 1,thanks to Theorem 4.1, we an say that for any f ∈ W

0,p′

1 (Ω) and h ∈
◦

W
1,p′

1 (Ω), there exists a unique (v, η) ∈ W
2,p′

1 (Ω) ×W 1,p′

1 (Ω) solution of
{

−∆v + ∇η = f in Ω, div v = h in Ω,
v = 0 on Γ0, v = 0 on R

n−1,satisfying
‖v‖

W
2,p′

1 (Ω)
+ ‖η‖

W 1,p′

1 (Ω)
≤ C (‖f‖

W
0,p′

1 (Ω)
+ ‖h‖

W 1,p′

1 (Ω)
).Then,

| < g0,
∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
+ < g1,

∂v

∂n
>

W
−

1
p

,p

−1 (Rn−1),W
1
p

,p′

1 (Rn−1)
|

≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

−1 (Rn−1)
)(‖f‖

W
0,p′

1 (Ω)
+ ‖h‖

W 1,p′

1 (Ω)
).We an dedue from this that the linear mapping T de�ned by

T (f , h) = < g0,
∂v

∂n
> + < g1,

∂v

∂n
>, (5.6)on W

0,p′

1 (Ω)×
◦

W
1,p′

1 (Ω) is ontinuous. So, aording to the Riesz representa-tion theorem, there exists a unique (u, π) ∈ W
0,p
−1(Ω) ×W−1,p

−1 (Ω) suh that
< u,f >

W
0,p

−1 (Ω),W 0,p′

1 (Ω)
+ < π, h >

W−1,p

−1 (Ω),W 1,p′

1 (Ω)
=

− < g0,
∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
− < g1,

∂v

∂n
>

W
−

1
p

,p

−1 (Rn−1),W
1
p

,p′

1 (Rn−1)
.Thus, notiing that v ∈ M0(Ω), we dedue that (u, π) satis�es (FV). �The next orollary relaxes the onstraint (5.5) on the data. In order to es-tablish this orollary, we give the following lemma.Lemma 5.3. For any p > 1, g0 ∈ W− 1

p
,p(Γ0) and g1 ∈ W

− 1
p

,p

−1 (Rn−1), thereexists a funtion s ∈W 1,p
−1(Ω) solution of

∆s = 0 in Ω,
∂s

∂n
= g0 on Γ0,

∂s

∂n
= g1 on R

n−1.Moreover, s satis�es
‖s‖W 1,p

−1 (Ω) ≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

−1 (Rn−1)
),where C is a real positive onstant whih depends only on p and ω0.Proof. Using results in the half spae (see Theorem 3.7 in [4℄), we knowthere exists z ∈W 1,p

−1(R
n
+) solution of

−∆z = 0 in R
n
+,

∂z

∂n
= g1 on R

n−1,21



satisfying
‖z‖W 1,p

−1 (Rn
+) ≤ C ‖g1‖

W
−

1
p

,p

−1 (Rn−1)
.We have g = g0 −

∂z

∂n
∈ W− 1

p
,p(Γ0) and it remains to solve the followingproblem : �nd v ∈W 1,p

−1(Ω) solution of
∆v = 0 in Ω,

∂v

∂n
= g on Γ0,

∂v

∂n
= 0 on R

n−1. (5.7)To solve this problem, we solve �rst the following one : �nd y ∈ W 1,p
−1(Ω̃) solutionof

∆y = 0 in Ω̃,
∂y

∂n
= g̃ on Γ̃0 (5.8)suh that

‖y‖W 1,p

−1 (eΩ) ≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

−1 (Rn−1)
);here we remind that Ω̃ = Ω∪Ω′ ∪R

n−1 with Ω′ the symmetri region of Ω withrespet to R
n−1 and Γ̃0 = ∂Ω̃ and that g̃ is an extension of g in W− 1

p
,p(Γ̃0)symmetri with respet to R

n−1 (we refer to Theorem 3.3 in [5℄ to �nd suh anextension). To �nd a solution y of (5.8), we split the proof into two ases. First,if n
p′
> 1, we apply Theorem 3.11 in [8℄ (there is no ondition of ompatibility),so there exists y ∈ W 1,p

0 (Ω̃) ⊂ W 1,p
−1(Ω̃) solution of (5.8) and satisfying theestimate. Next, if n

p′
≤ 1, we set for any x in Ω̃

w(x) = −
1

2π

∫

eΓ0

E(x − y) dx,where E is the fundamental solution of the Laplaian and we easily show that
w ∈ W 1,p

−1(Ω̃) (but w /∈ W 1,p
0 (Ω̃)), that ∆w = 0 in Ω̃ and < ∂w

∂n
, 1 >eΓ0

6= 0. Wede�ne λ by
λ =

< g̃, 1 >eΓ0

<
∂w

∂n
, 1 >eΓ0

,so that the ompatibility ondition
< g̃ − λ

∂w

∂n
, 1 >eΓ0

= 0is satis�ed. Thanks to Theorem 3.11 in [8℄, there exists u ∈W 1,p
0 (Ω̃) ⊂W 1,p

−1(Ω̃)solution of
∆u = 0 in Ω̃,

∂u

∂n
= g̃ − λ

∂w

∂n
on Γ̃0satisfying

‖u‖W 1,p
0 (eΩ) ≤ C ‖g̃ − λ

∂w

∂n
‖

W
−

1
p

,p
(Γ0)

.22



Thus, y = λw + u is solution of (5.8) and satis�es the estimate. Now, let y0 ∈

W 1,p
−1(Ω̃) a solution of (5.8) and let s0 ∈ W 1,p

−1(Ω̃) be de�ned, for almost all
(x′, xn) ∈ Ω̃, by

s0(x
′, xn) = y0(x

′,−xn).Thanks to the symmetry of Ω̃ and g̃ with respet to R
n−1, we prove that s0 isalso a solution of (5.8) (here again, for more details, we refer to the proof ofTheorem 3.3 in [5℄). Then, setting v =

1

2
(y0 + s0)|Ω ∈W 1,p

−1(Ω), we show that vsatis�es (5.7) and we have
‖v‖W 1,p

−1 (Ω) ≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

−1 (Rn−1)
).Finally, the funtion s = z + v solves the problem and the estimate followsimmediately. �Now, we have the following result.Corollary 5.4. For any p > 1 satisfying n

p
6= 1, g0 ∈ W− 1

p
,p(Γ0) and g1 ∈

W
− 1

p
,p

−1 (Rn−1) there exists a unique (u, π) ∈ W
0,p
−1(Ω) ×W−1,p

−1 (Ω) solution of(5.1)-(5.4). Moreover, (u, π) satis�es
‖u‖

W
0,p

−1 (Ω) + ‖π‖W−1,p

−1 (Ω) ≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

−1 (Rn−1)
),where C is a real positive onstant whih depends only on p and ω0.Proof. The uniqueness omes from Theorem 5.2. For the existene, thanksto the previous lemma, there exists s ∈W 1,p

−1(Ω) solution of
∆s = 0 in Ω,

∂s

∂n
= g0 · n on Γ0,

∂s

∂n
= g1 · n on R

n−1.Now, we de�ne w by w = ∇s ∈ W
0,p
−1(Ω) and we easily show that traes of won Γ0 and R

n−1 have a sense respetively in W− 1
p

,p(Γ0) and W
− 1

p
,p

−1 (Rn−1). Weset g0
∗ = g0−w|Γ0

and g1
∗ = g0−w|Rn−1 and we notie that the funtions g0

∗and g1
∗ satisfy (5.5). So we an apply the previous theorem and there exists

(v, π) ∈ W
0,p
−1(Ω) ×W−1,p

−1 (Ω) solution of
{

−∆v + ∇π = 0 in Ω, div v = 0 in Ω,
v = g0

∗ on Γ0, v = g1
∗ on R

n−1,and satisfying
‖v‖

W
0,p

−1 (Ω) + ‖π‖W−1,p

−1 (Ω) ≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

−1 (Rn−1)
),Finally, (u = v + w, π) is solution of (5.1)-(5.4) and the estimates followsimmediately. �Now, we desribe a result for the ase ℓ = 1.23



Theorem 5.5. For any p > 1 suh that n
p

6= 1, g0 ∈ W− 1
p

,p(Γ0) and g1 ∈

W
− 1

p
,p

0 (Rn−1) satisfying (5.5) and the following ompatibility ondition if p ≤
n

n− 1
: for eah (z, p) ∈ Sp′

0 (Ω)

< g0,
∂z

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
+ < g1,

∂z

∂n
>

W
−

1
p

,p

0 (Rn−1),W
1
p

,p′

0 (Rn−1)
= 0,there exists a unique (u, π) ∈ Lp(Ω)×W−1,p

0 (Ω) solution of (5.1)-(5.4). Moreo-ver, (u, π) satis�es
‖u‖Lp(Ω) + ‖π‖W−1,p

0 (Ω) ≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

0 (Rn−1)
),where C is a real positive onstant whih depends only on p and ω0.Proof. In fat, here again, we solve (FV). For this, we apply a duality argu-ment. Like n

p
6= 1, thanks to Theorem 4.4, we an say that for any f ∈ Lp′

(Ω)and h ∈
◦

W
1,p′

0 (Ω), there exists a unique (v, η) ∈ (W 2,p′

0 (Ω)×W 1,p′

0 (Ω))/Sp′

0 (Ω)solution of
{

−∆v + ∇η = f in Ω, div v = h in Ω,
v = 0 on Γ0, v = 0 on R

n−1,satisfying
inf

(z,p)∈Sp′

0 (Ω)

(‖v + z‖
W

2,p′

0 (Ω)
+ ‖η + p‖

W 1,p′

0 (Ω)
) ≤ C (‖f‖

Lp′

(Ω) + ‖h‖
W 1,p′

0 (Ω)
).Then, for any (z, p) ∈ Sp′

0 (Ω)

| < g0,
∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
+ < g1,

∂v

∂n
>

W
−

1
p

,p

0 (Rn−1),W
1
p

,p′

0 (Rn−1)
|

= | < g0,
∂

∂n
(v + z) >

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)

+ < g1,
∂

∂n
(v + z) >

W
−

1
p

,p

0 (Rn−1),W
1
p

,p′

0 (Rn−1)
|

≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

0 (Rn−1)
)(‖f‖

Lp′ (Ω) + ‖h‖
W 1,p′

0 (Ω)
).We dedue from this that the linear mapping T de�ned on Lp′

(Ω)×
◦

W
1,p′

0 (Ω)by (5.6) is ontinuous. So, aording to the Riesz representation theorem, thereexists a unique (u, π) ∈ Lp(Ω) ×W−1,p
0 (Ω) suh that

< u,f >
Lp(Ω),Lp′(Ω) + < π, h >

W−1,p
0 (Ω),W 1,p′

0 (Ω)
=

− < g0,
∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
− < g1,

∂v

∂n
>

W
−

1
p

,p

0 (Rn−1),W
1
p

,p′

0 (Rn−1)
.Thus, notiing that v ∈ M1(Ω), we dedue that (u, π) satis�es (FV). �Here again, with a similar proof as in Corollary 5.4, we want to relax theonstraint on the data : 24



Corollary 5.6. For any p > n

n− 1
, g0 ∈ W− 1

p
,p(Γ0) and g1 ∈ W

− 1
p

,p

0 (Rn−1),there exists a unique (u, π) ∈ Lp(Ω)×W−1,p
0 (Ω) solution of (5.1)-(5.4). Moreo-ver, (u, π) satis�es

‖u‖Lp(Ω) + ‖π‖W−1,p
0 (Ω) ≤ C (‖g0‖

W
−

1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

0 (Rn−1)
),where C is a real positive onstant whih depends only on p and ω0.Proof. When p > n

n− 1
, we follow the same reasoning as in Corollary 5.4using Theorem 3.3 in [5℄ to �nd s ∈ W 1,p

0 (Ω) suh that
∆s = 0 in Ω,

∂s

∂n
= g0 · n on Γ0,

∂s

∂n
= g1 · n on R

n−1.and using the previous theorem. �Remark : When 1 < p ≤
n

n− 1
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