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Exterior Stokes problem in the half-space
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Laboratoire de Mathématiques et de leurs Applications, UMR, CNRS 5142, Université de
Pau et des Pays de I’Adour, IPRA, Avenue de ’Université, 64000 Pau cedex, France

Abstract The purpose of this work is to solve the exterior Stokes problem in
the half-space R’!. We study the existence and the uniqueness of generalized
solutions in weighted LP theory with 1 < p < co. Moreover, we consider the
case of strong solutions and very weak solutions. This paper extends the studies
done in [3] for an exterior Stokes problem in the whole space and in [5] for the
study of the Laplace equation in the same geometry as here.

Key words Weighted Sobolev spaces; Stokes operator; Dirichlet boundary
conditions ; Exterior problem ; Half-space.
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1 Introduction and preliminaries

Consider wp a compact region of R} = {x € R", x,, > 0}, I'g the boundary
of wop and €2 the complement of wg in R’} . This paper is devoted to the resolution
of the Stokes system

—Au+Vr=f inQ,

divu=~h in Q,
(SD) U = go on FOa
u =gy on R~ 1,

We notice that this problem is an extension of the Stokes system for an exte-
rior domain in the whole space, studied in several works where some of them
introduce the homogeneous Sobolev spaces H " (“wp) (where “wy is the comple-
ment in R™ of wy) obtained as the closure of D(°wy) with respect to the norm
IV - |27 (cwo)- The existence and the uniqueness of a solution of such a problem

with homogeneous boundary conditions in Hy?(‘wg) x LP(°wp) has been stu-
died by Kozono and Sohr (]22], [23]) and Galdi and Simader ([18]). Another
point of view, which is ours, is to search a solution in weighted Sobolev spaces
WP (“wy) (see definition below). These spaces are well-adapted to the Laplace
and Stokes equations because they satisfy an optimal Poincaré-type inequality.
They also provide some precise information on the behaviour of the functions
at infinity, which is not obvious from the definition of Hé’p(cwo). For this ap-
proach, we refer to Girault and Sequeira [19] (when n = 2 orn = 3, p = 2
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and a = 0), Specovius-Neugebauer ([26] when n > 3 and “ia ¢ 7 for strong
p

2
solutions and when n = 2 and — 4+ a ¢ Z for weak solutions in [27]) and to

Alliot and Amrouche [3].

Here, our originality is to solve the exterior Stokes problem in the half-space
and not anymore in the whole space. That implies an additional difficulty due to
the nature of the boundary which is not bounded since it contains R*~!. So, we
have to introduce weights even in the spaces of traces. We can cite Hanouzet [21]
who has given the first results for such spaces in 1971 and Amrouche, Necasova
[9] who have extended these results in 2001 to weighted Sobolev spaces which
possess logarithmic weights (we just recall that logarithmic weights allow us to
have a Poincaré-type inequality even in the “critical” cases; see below for more
details). We remind the works of some authors which have studied the Stokes
problem in the half-space. The first ones are due to Cattabriga [14] who have
chosen the setting of homogeneous Sobolev spaces. Similar results are given by
Farwig and Sohr [16] and Galdi [17]. On the other hand Maz’ya, Plamenevskii
and Stupyalis [24] have studied the problem in weighted Sobolev spaces, but
only in the dimension 3. Finally, we cite the works of Amrouche, Necasovi and
Raudin [10] who consider weak solutions for any dimension. Nevertheless, we
notice that all these works concern only the Stokes system in the half-space
whereas in this paper, we deal with the exterior Stokes problem in the half-
space. We can summarize our work saying that it is an extension of the exterior
problem in the whole space and of the problem in the half-space.

We state that, here, we will concentrate only on the basic weights for the
sake of simplicity and because they are the most usual. The paper is organized
as follows. Sections 2 and 3 are devoted to the case of generalized solutions res-
pectively when p = 2 and p # 2. In Section 4, we consider strong solutions and
give regularity results according to the data. Finally, in Section 5, we find very
weak solutions to the homogeneous problem with singular boundary conditions.
The main results of this work are Theorems 2.5 and 3.6 for generalized solutions,
Theorems 4.2 and 4.4 for strong solutions and Corollary 5.4 and Theorem 5.5
for very weak solutions.

We complete this introduction with a short review of the weighted Sobolev
spaces and their trace spaces. For any integer ¢ we denote by P, the space of
polynomials in n variables, of degree less than or equal to ¢, with the convention
that P, is reduced to {0} when ¢ is negative.

For any real number p € ]1, 4+o00[, we denote by p’ the dual exponent of p :

11
p oy
Let « = (x1,...,2,) be a typical point of R*, &’ = (z1,...,2,—1) and let

r=|x| = (23 4 --- +22)'/? denote its distance to the origin. We shall use two

basic weights :
p(r) = (1+r3)Y% and lgr=In(2+r?).

As usual, D(Q) is the space of indefinitely differentiable functions with compact

support, D'(Q) its dual space, called the space of distributions and D(Q) the



space of restrictions to  of functions in D(R™).

Then, for any nonnegative integers n and m and real numbers p > 1 and «,
setting

-1 if = tad{l,...,m}
p
k=k(m,n,p,a) =

we define the following space :

WoP(Q) = {u e D'(Q);
YAeN":0< A <k, p* " (g r)~ D u e LP(Q);
YAEN":k+1< A\ <m, p* ™ RD M e LP(Q)).

It is a reflexive Banach space equipped with its natural norm :

lullwzo@ = (32 9™ N(ig ) D ulf 0
0<IA<k

— Al DA
+ Z [p* mHAID u”ip(g))l/p'
E+1<|A|<m

We also define the semi-norm :

lulwrr @) = (D ™D ullf )"
[A|=m

The weights defined previously are chosen so that the space D(2) is dense in
WmP(Q) and so that the following Poincaré-type inequality holds in the follo-
wing spaces : let @ be a real number, m > 1 an integer and ¢’ = min(g, m — 1),
where ¢ is the highest degree of the polynomials contained in W7?(Q). Then :

Vu € WihP(€), klef;jf u+ Ellwmr @) < C lulwmrq,
and
° m ——— I/l gy
Yu€e W o 71”(9) = D(Q) wo P(Q), ||u||W(Tp(Q) <C |u|W$p(Q)

This theorem is proved by Amrouche, Girault and Giroire [8] in an exterior

domain and by Amrouche and Ne€asova [9] in the half-space. It is extended to
this domain by an adequate partition of unity. We denote by W_1"F (Q) the

—x

dual space of W P (Q)) and we notice that it is a space of distributions.

Now, we want to define the traces of functions of W7P(Q). These traces
have a component on I'y and another component on R?~!. For the traces on Iy,
we return to Adams [1] or Necas [25] for the definition of Wm_j_%’p(f‘o) with
7 =0,....,m—1 and for the usual trace theorems. In order to define the traces



of functions on R"~!, we intoduce, for any o € ]0, 1], the space
WoP(R™) = {u € D'(R™),w u € LP(R™),

_ p
IR
RexRe [T — Y|P

where

P if—#‘n

lgp)t/e if — =o.
p(lgp) p

w =

Tt is a reflexive Banach space equipped with its natural norm

u jufe) —u)l
— P +/ ) = I qxdy) /P
U my + [ e giior dodw)

For any s € RT and a € R, we set

WEP(R™) = {ue WP _ (R™), VAl =[s], p*D*ue W P (R™)}.

Tt is a reflexive Banach space equipped with its natural norm

A
”u”W;p(R") = ”u”W[S]vP (R") + E ”paD U‘HWS—[S]’P(Rn)-
[s]+a—s ‘Al 0
=s

We notice that this definition coincides with the definition given at the beginning
of this paper when s = m is a nonnegative integer. As in [9], we have the
following lemma :

Lemma 1.1. For any integer m > 1 and real number o, we define the mapping

v:DER}) — (DR )™
w = (Yol - -+ ) Ym—11),

k

where for any k = 0,....m — 1, yzu = 8—1’: Then, v can be extended by
xn

continuity to a linear and continuous mapping still denoted by ~ from W7P(R? )
m—1

o1
to H Wa ' p’p(Rnfl). Moreover, v is onto and
3=0

o

Ker v =W 3"P(RY).

In all this article, we suppose that Ty is of class C'!, except when p = 2,
where I'y can be considered to be Lipschitz-continuous only.

We will denote by C' a positive and real constant which may vary from line
to line and we set E = E™ for any space FE.



2 Study of the problem (Sp) when p = 2.

First, we notice that it is equivalent to solve the problem with homogeneous

_1
boundary conditions. Indeed, the function g; is in W(l) 2’Q(IR"’l), so, thanks
to Lemma 1.1, there exists uq € W(l)’Q(RT}r) such that u; = g1 on R"~! and

1
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lurllws ey < C laal

W;7 (Rnfl).

Now, let i) be the trace of uy on I'y, g = go — M € H%(Fo) and let R > 0 be
such that wg C Br C R%. It is clear that the function hg defined by

ho=gonly, hg=0ondBg,

belongs to H%(Fo U 0Bgr). We know that there exists an extension up, €
H'(QR), where Qr = QN Bg, such that up, = ho on I'o U 0BR and such that

lunaller @ < C ol gy g,y W set

Ug = Uh, i N, up=01in O\ Qp.
We have ug € H' (), up = g on I'p, up = 0 on R"~! and

luollzr o < C llgl 3
Thus the function ug + uyq is in W(l)’Q(Q) and its traces are gg on I'g and g4

on I';. This allows us to solve only the following problem : let f be in Wam(ﬂ)
and h be in L(Q), we want to find (u,7) € W?(€) x L2(Q) solution of

(So) —Au+Vr=f inQ, divu=h inQ,
Y1 u=0 onTy, u=0 on R,

Now, we want to establish Lemma 2.2 to have a data for the divergence reduced
to zero. For this, we use this preliminary lemma, :

Lemma 2.1. There exists a real constant C > 0 depending only on wqy such that
the following holds. For any h € L2(Q), there exists a unique o € Wg*(Q)/R
solution of

Ap=~hin Q and a—('Ozoon ToUR™ L
on

Moreover, ¢ satisfies
||<P||W§v2(9)/R < C ALz o)

Proof. First, we define €)' the symmetric region of { with respect to R™ !,

Q=QUQUR" ! and I'y = 0. Let h be in L2(2) and let the function h, be
defined, for almost any (x’,z,) € Q, by

, B h(w/vxn) lf In 2 07
ho(x’, xy) = { hx', —x,) if 2, <O.

Then, we set in R™ the function

h=h,inQ, h=0inR"\Q.



So, heL? (R™) and, supposing first that n > 2, as [7] allows us to say that
A:WE(R™) — L*(R™)

is onto, we deduce that there exists & € W2?(R™) such that AT = hin R™ and
Hﬂ”wﬁv%n«ﬂ < O ||h]lz2(q). We denote by u € W22(2) the restriction of @ to

_ ~ o -

Q. We notice that we have Au = h, in 2 and that 8_u € H%(I‘O). Thanks to
n

Proposition 3.12 in [8], (there is no condition of compatibility because n > 2),

there exists z € W22(Q) ¢ W2?(Q) such that

Az=0inQ and g—:l:g—:ionf‘o,
checking
1Zlwz2@) < C llullyzzg-
Now, we set w =u — z. Then w € W(%Q(SND satisfies

Aw=h, in Q and 8—w:00nf0, (1)
on

and we have
lullyzag < C Il

If n = 2, we can not apply this reasoning because a condition of compatibility
appears when we want to use Proposition 3.12 of [8]. Nevertheless, we can find
directly w € W2?(Q), solution of (1), without needing the space W22(Q) (see
Theorem 7.13 in [20]). Then, we set, for almost any (x’,z,) € Q,

vz z,) = w(x', —x,).
As h, is even with respect to x,, we easily check that v is solution of the same
problem that w satisfies. So, noticing that the kernel of this problem is R, we
Lo ow
deduce that v = w + ¢ in 2, with ¢ € R, and consequently, In 0 on R*1,
n

Thus, the function wyo € W(Q)’Z(Q) is solution of our problem. Moreover, this
solution is unique up to a real constant. Indeed, if z € W(Q)’Q(Q) is in the kernel

of this problem, z, € Wgz(ﬁ) is in R, the kernel of the problem (1), so z € R.
O

Lemma 2.2. There exists a real constant C > 0 depending only on wy such
[e]
that for any h € L*(Q), there exists w € W §*(Q) checking

divw=hinQ and |w|y12q) <C ]2

Proof. Let h be in L?(Q2). We know, thanks to the previous lemma, that
there exists a unique ¢ € W5>(Q)/R satisfying

Ap=hin Q and 8—<'0 =0onToUR" 1!,
on

with
Il e < € lallza).



We set v = Vo € W2(Q). So ||'u||W[1),2(Q) < C ||kl z2(q)- Moreover, we set
_1
(1) 2’Q(R”_l). Thanks to Theorem

go = v, € H%(Fo) and g; = vgn—1 € W
4.2 in [10], there exists (2,0) € W ?(R?) x L2(R") solution of

—Az+VO0=0inRY, divz=0inRY, 2z=g;on R™L,

satisfying
%,2

HZ”W};?(M) <C ||91HW(1)7 (Rn-1)’

We denote again by z the restriction of z to Q and g = go — 2|1, € H%(PO).
We observe that

/g-nda:/ v-nda—/ z-ndaz/ %da—/ div z dez = 0.
To To Ty 1—‘0({9"’1’ wo

Now, let R > 0 be such that wg C Br C R’} and Qr = Br N Q. Then, the
previous condition being checked, we have the following result (see [6]) : there

exists y € H'(Qg) such that

divy=0inQr, y=gonly, y=0ondBpg,

).

and
Il o) < Cr (ol gy + ol ey
We denote again by y its extension by 0 in Q. So y € W(l) 2(Q) and

divy=0inQ, y=gonly, y=0onR"!

Finally, we set u = 2o +y € W(l)’Q(Q). The function w satifies

divu=0inQ, wu=goonly, wu=g;onR"

and the estimate
lullwrzq) < C llvllyizq)-

Finally the function w = v — w is solution of the setted problem. U

So to solve (Sp), it is sufficient to solve the following problem (Spo) : find

(u,7) € W (Q) x L2() solution of

inQ, diva=0 in{,
on R~ 1,

—Au+Vr=f
(SOO){u:O onl'yg, ©u=0

For this, as an immediate consequence of the previous lemma, we derive first
the following Babugka-Brezzi condition (see [12] and [13]).

Corollary 2.3. There ezists a real constant § > 0, depending only on wq, such

that
/ h div w dx
Q

ir12f sup
heL?(Q
L )we v%/})*z

—_

5 (2)

@ Hw||v(;,(1),2(ﬂ)||h||L2(Q)



We introduce the continuous bilinear form defined on W 52(9) x L2(Q) by
b(w,q) = —/ q div w dex.
Q

Let B € £L (W %(Q),L*(Q)) be the associated linear operator and let B’ €
L (L2(Q), W %(Q)) the dual operator of B, i.e

— _ /
b(w,q) = < Bw,q >12)x12(0)= < w, B'q >v%/é’2(9),W51'2(Q) .

It is clear that B = — div and that B’ = V. As a consequence of the “inf-sup”
condition (2), we know that B is an isomorphism from W y*(2)/V onto L*(Q)

and B’ is an isomorphism from L?() onto V° with
V={ve W *Q), diveo=0in Q},
which is an Hilbert space and

Ve ={feW, (), VvweV, < fw> =0}.

W)W (@)
Thus, we have the following De Rham’s theorem :
Corollary 2.4. The operator V is an isomorphism from L*(Q) to V°.

Now, we define the problem : find w € V such that

(./TV) Yv € V, AVU Vvde =< f,’U >W31"2(Q)7"%/(1)‘2(Q) :

Using the second Poincaré-type inequality given in the introduction for the equi-

valence of the norm and the semi-norm in V%/' (1)’2(&'2) and applying Lax-Milgram
theorem, we check that (FV) has a unique solution w € V. Finally, we notice
that problems (Spp) and (FV) are equivalent, obtaining the pressure thanks to
Corollary 2.4. Thus, there exists a unique (u,7) € W5 (Q) x L?(€2) solution of
(S()()).

In consequence, we have the following theorem :

Theorem 2.5. For any f € W5 %(Q), h € L*(Q), go € H%(FO) and g1 €

W(l)_%’z(]R"_l), there exists a unique (u, ) € W 2(Q) x L2(Q) solution of the
problem

(Sp) —Au+Vr=f inQ, divu=h inQ,
PIY uw=go only, u=gqy on R* 1,

Moreover, (u, ) satisfies
el oy + [l < € (1F Iy + [Al2e)
+ [lgoll

H%(Fo) + ||ngWC1)7%,2(]Rn71))a

where C' is a real positive constant which depends only on wy.



3 Study of the problem (Sp) when p # 2.

First, we suppose that p > 2 and we want to study the kernel of the Stokes
system. We set, :

D2(Q) = {(z,7) € W P(Q) x LP(Q), —Az + Vn =0 and div z = 0 in Q}.
To characterize this space, it is useful to show the following lemma :

Lemma 3.1. Let p > 2, f be in Wy P(R?) and h be in LP(R"), both with
compact support in R’ , and (v,7n) € W(l)’Q(RT}r) x L*(R") the unique solution of

—Av+Vn=f inRY,
(§4)q divo=h in R%,
v=0 on R~ 1,

Then, we have (v,n) € W(l)’p(R’}r) x LP(R%) and (v,n) satisfies

”"’Hwé’l’(m) + lInller )

Flvlwizgn) + ey < C (fllwgrrgn) + 10lLees)),

where C' is a real positive constant which depends only on p, wg and the support

of f and h.

Proof. Let f be in ng’p(]Ri) and h in LP(R? ) with compact support in
R" ; we easily check that f € Wal’Q(Ri) and h € L?(R) because p > 2 and
let (v,m) € Wy?(R%) x L2(R) be the solution of (S) satisfying

||v”Wé‘2(1R1) + ||77||L2(]R1) <C (”f”WO—l’Q(Ri) + ||h||L2(R1))~ (3)

Thanks to [10], there exists (u,7) € W(l)’p(]RT}r) x LP(R? ) solution of (Sy) such
that

el sy + 7wy < € (flwe oy + Bl @)
We set (w,7) = (u — v, 7 — 1) which satisfies
~Aw+Vr=0inR}, divw=0inR}, w=0onR"",

and we want to prove that (w,7) = (0,0). We easily show (see Proposition 4.1
in [10]) that w,, the nth component of w, which is in WP (R?) + W*(R7),
satisfies
2 : n n—1 8wn n—1
A*w, =0in R}, w,=0onR""", —=0onR""".
o0z,

Here, the discussion splits into three steps : first, if p # n and n # 2, then
Wy, € W%’f(Ri) + W(E(R’}r) For almost all (2, x,) € R™, we set

wp (2, ) if ¢, >0,
., _ 5
Wn (@', 2n) Un 22 Awy) (2, —x,)  if x, <0,

(—wp, — 2z,
Tn



and we check (see [11], [15]) that @, is the unique extension of w, such that
A%, = 0 in R™. Moreover, for any ¢ € D(R"), we have

~ 0
< Wn, Y >Dp/(Rn),D(R")= / W [p — Y — Gxnaw
R7 4

+

— 22 AY)] de

where ¢ € D(R™) is defined by «(2’,2,) = ¢(2’,—x,), which allows us to
prove that @, is in W37 (R™) + W_2%(R"). So @, is a biharmonic tempered
distribution and consequently a biharmonic polynomial. Finally, as the space
W—2P(R™) 4+ W ~5*(R") does not contain polynomial, we deduce from this that

W, = 0 in R" and so w, = 0 in R?. Now, if n = p, we have WP (R?) C
W(f’f,_l(]R’_i), and we may proceed with the same reasoning since the loga-
rithmic factor does not change the proof. When n = 2, we have W(l)’Q(R’}r) -
W(f%__l(]Rfﬁ) and get the same result with the same arguments, simply noticing

that w, could be equal to a constant in R’} but that this constant would be
necessary equal to zero because w, = 0 on R*~1.

Consequently, in any case, we have w, = 0 in R”,. We deduce from this (see
Proposition 4.1, [10]) that 7 € LP(R%) + L?(R".) satisfies

A7 =0in R, g—; =0onR" %

Now, we set for almost any (2, z,) € R",

, B T(ml, xn) lf ITn Z 0)
T*(m ,xn) = { T(IB/, _xn) if z, < 0,

and we easily check that 7, is a harmonic tempered distribution, so a harmo-
nic polynomial, included in LP(R™) + L?(R"), a space which does not contain
polynomial. Thus, we conclude that 7 = 0 in R”. Then, we show that w’ =

(Wi, ... wp—1) € WHP(RY) + W(l)’Q(R’_ﬁ) satisfies
Aw'=0in R}, w =0onR"
We set for almost any (2, z,) € R",

w! (2, x,) if z, >0,
—w'(z’, —x,) if 2, <0,

w' (2! ) = {

and we easily check that w’* € WP(R") + Wy *(R") is a harmonic tempered
distribution, so a harmonic polynomial in R™. Thus, w’ is a harmonic polyno-
mial in R} and Vw’ is an harmonic polynomial in LP(R"}) + LQ(R’_TF), a space
which does not contain polynomial. So Vw’ = 0 in R”; and like w’ = 0 in R"~ 1,
we have w’ = 0 in R". Finally, we deduce from this that (w,7) = (0,0). [

Now, we have the following theorem :
Theorem 3.2. The kernel D}(SY) is reduced to {(0,0)} when p > 2.

Proof. Let (z,m) be in D5(2). We denote by 2z and 7 the extensions by
0 of z and 7 in R?. We have z € Wé’p(Ri) and 7 € LP(R?}). We set h =

10



—AZ+ V7 e ng’p(]Ri) and we easily check that h has a compact support in
R?. Thus, we can apply the previous lemma which assures us that there exists

a unique (v,7) € (WP (R%) N W*(RE)) x (LP(R?) N L*(R™)) solution of
—Av—i—Vn:EinRi, divv =0in RY, v=0onR"1

Noticing that div z = 0 in R}, we see that (2,7) and (v,7) are solutions of
the same problem, which, thanks to [10], has a unique solution in W(l)’p(R’}r) X
LP(RY). So (2,7) = (v,n) in R’} and, setting again v and 7 the restrictions of
v and 7 to 2, we deduce that

v=z, n=7w in.
So, (v,n) € WP() x LP(Q) satisfies
—Av+Vn=0inQ, divv=0in, v=0onToUR" %

But, (v,7) € W§*(Q) x L*(Q) and in this space, there is, thanks to Theorem
2.5, a unique solution to the above problem, which is (0,0). Thus, Dj(Q2) =

{(0,0)}. O

Now, supposing that p > 2, we want to solve the Stokes system with homo-
gemeous boundary conditions, that is to say : let f be in W_1 P(Q) and h be
in LP(Q), we want to find (u,7) € WP () x LP(Q) solution of the problem

(So) —Au+Vr=f inQ, divu=h inQ,
1 u=0 only, u=0 on R*—1,

First, we establish the following lemma :

Lemma 3.3. For each p > 2 and for any f € Wal’

(
with compact support in (2, there exists a unique (u,7) €
(LP(Q) N L%(Q)) solution of (80).

Q) and h € LP(Q), both
(WP (@QNW ™ (2))

Proof. Let f be in W "P(Q) and h be in LP(€) with compact support in
Q. Then, like p > 2, we eaqﬂy checks that f € W5 %(Q) and h € L*(Q) and
that

[Fllw=r2) + I1Rll2@) < C ([ Fllw-rr @) + 1Plze @),

where C'is a real positive constant which depends only on p, wg and the supports
of f and h. We deduce from Theorem 2.5 that there exists a unique (u,w) €
W(l)Q(Q) x L2(£2) solution of (So) Tt stays to show that (u,7) € WP(Q) x

LP(). We denote by € W*(R%) and 7 € L*(R?) the extensions by 0 in R
of w and 7 and we set

f=-Au+V7 and h= diva.

Let us show now that f € Wal’p(Ri) and h € LP(R? ). We define the function
X € D() such that x = 1 in 6 where 6 is an open bounded subset of €2 such that
supp f C 6. We denote by X the extension of x by 0 in R}. For ¢ € D(RY}),
we have

<f.e >p/®n),DERY)T < f.xe >prry), DRy = < i XP >pr(0)D(0)
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and for ¢ € D(R"}), we have

+

< 71, ) >'D’(]R:‘_),’D(]R“): / h(p dx.
Q

So, f € Wal’p(R’}r) and h € LP(R?). Finally, we can apply Lemma 3.1 to
conclude that (@,7) € WyP(R%) x LP(R?). Thus, by restriction, (u,m) €
WiP(Q) x LP(Q). O

Now, we establish the following theorem :

Theorem 3.4. For each p > 2, there exists a real constant C > 0 depending
1
only on wy and p such that the following holds. For any go € Wl_F’p(I‘o) and
1
g1 € W(l] P P(Rn=1), there exists a unique (u,m) € WP (Q) x LP(Q) solution

of
(S8 —Au+Vr=0 inQ, divu=0 in
U = go only, u=g1 on R~ 1,

Moreover, (u, ) satisfies

P P < 1 .
ey + Illecar < € (ol +loal g

Proof. The uniqueness comes from Theorem 3.2. Then, thanks to Propo-
sition 4.1 of [10], there exists a unique (w,7) € WyP(R%) x LP(R%) solution
of

~Aw+Vr=0nR}, divw=0inR}, w=g;onR""
We denote again by w and 7 the restrictions of w and 7 to £ and we set
g = go —wy, € Wlfi’p(ljo). Thus, it remains to show that there exists
(y,\) € W P(Q) x LP(Q) solution of (S”)

(S/I) _Ay + V)\ =0 in Q, div Yy = 0 in Q7
y=g onTy, y=0 on R™*1,

For this, let R > 0 be such that wo C Bgr C R}, Qr = BN Q and ¢ € D(R")
with support included in Qg such that

Y(x) dm+/ g-ndo=0.
QR I—‘0

Thanks to results in bounded domains (see [6]), there exists (v,n) € WP (Qr)x
LP(Qp) such that

—Av+Vn=0 inQpg, diveo=1% in Qg,
v=g only, v=0 on OBpg.

Next, we extend (v,7) by (0,0) in Q and we denote by (v, 7) € WP (Q) x LP(Q)
this extension which satisfies

—Av+Vnp=¢ inQ, divo=1v¢ in Q,
v=g only, =0 on R*~1

12



where £ € W_l’p(Q) We notice that £ and ¢ have a compact support in Qg so
that by the previous lemma, there exists (z,v) € WP (Q) x LP(Q) solution of

{—Az—i—VI/:—ﬁ inQ, divz=-vY inQ,

z=0 only, z=0 on R~ 1,
Finally, (y,)\) = (v + 2, V) WP (Q) x LP(Q) is solution of (S”), so
(u,m) = (w+y, 4+ A) € WP (Q) x Lp( ) is solution of (S8) and the estimate
follows immediately. D

Now, we can solve the problem with homogeneous boundary conditions in
the case p > 2.

Theorem 3.5. For any p > 2, f € W5 P(Q) and h € LP(Q), there exists
(u, ) € WP(Q) x LP(Q) solution of (Sy). Moreover, (u, ) satisfies

lallwr iy + Il < € (1Flwroy + Iallzoa).

where C' is a real positive constant which depends only on p and wy.

Proof. The uniqueness comes from Theorem 3.2. Then, as a consequence of
the second Poincaré-type inequality given in the introduction, we know there
exists a tensor of second order I € LP(Q) such that div F' = f. We extend F’

(respectively h) by 0 in R", and we denote by F (respectively h) this extension.
Then, we set f = div F and we notice that le = f. We have f € W_l’p(]R”)

and h € LP(R™). Thanks to [2], there exists (v,7) € W P(R"™) x LP(R™) solution
of
—Av+Vn= f and div v = h in R".

We denote again by v € WP(Q) and 5 € LP(Q) the restrictions of v and 7 to

1
Q. We have v|r, € Wl_%’p(I‘o) and vjgn-1 € W(l) »P(R"=1), thus, thanks to
Theorem 3.4, there exists (w,7) € WP (Q) x LP(Q) solution of

—Aw+Vr=0 inQ, divw=0 in Q,
w = —v|r, only, w=—-vRge-1 on R 1.

So, (u,m) = (v +w,n+71) € W5P(Q) x LP(Q) is solution of (Sy) and the
estimate follows immediately. O

Now, we suppose that 1 < p < 2. Thanks to the previous theorem,

T:W L(Q) x LV (Q) — W% () x LY (),
(u,m) — (—Au + Vr,div u),

is an isomorphism. So, by duality,
T : W yP(Q) x LP(Q) — W "P(Q) x LP(Q),

is also an isomorphism and, as it is standard to check that T*(u,7) = (—Au —
Vr,—div u), we have Theorem 3.5 for any p < 2. O
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Finally, it remains to return to the general problem with p # 2 and nonhomo-
geneous boundary conditions. For this, like for the case p = 2, we show that there
exists a function w € Wy () such that w = go in Ty and w = gy in R* ',
Then, we have just seen that there exists a unique (v,7) € WP (Q) x LP(Q)
solution of

—Av+Vr=f+Aw inQ, v=0 only,
div v = h —div w inQ, v=0 onR" L

In consequence, the function (u = v 4+ w, ) € Wy*(2) x LP(Q2) is a solution

of the problem (Sp) and we have the following theorem :

Theorem 3.6. For anyp #2, f € W5 "P(Q), h € LP(Q) , go € W' 2(Tg)
_1

and g1 € W(l) PP(R™1), there exists a unique (u,T) € WP(Q) x LP(Q)

solution of the problem (Sp)

(Sp) —Au+Vr=f inQ, divu=h inQ,
D U = go only, u=g1 on R 1,

Moreover, (u, ) satisfies

lullr iy + Il < € (1F 2oy + Ilzogay

> )
1, I
p'?

+lgoll,, -3 -

vy lall

1—
0

where C' is a real positive constant which depends only on p and wy.

4 Strong solutions and regularity for the Stokes
system (Sp).

In this section, we are interested in the existence of strong solutions of the

Stokes system (Sp), i.e. of solutions (u,7) € W?fl(ﬂ) X W;fl(ﬂ). Here, we

limit ourselves to the two cases ¢ = 0 and ¢ = —1.

First, we give results for the case £ = 0. We notice that in this case, we have
the continuous injections W37 (Q) < WP (2) and WP(Q) < LP(Q). So, the
two theorems which follow show that generalized solutions of Theorems 2.5 and
3.6, with a stronger hypothesis on the data, are in fact strong solutions.

Theorem 4.1. For any p > 1 satisfying ]% # 1, f € W?’p(Q) and h €
WP(Q), there exists a unique (u,7) € W2P(Q) x W1P(Q) solution of (So).

Moreover, (u, ) satisfies

lullw2r ) + I7llwirg) < C UIFfllworq) + 1Blwre )
where C is a real positive constant which depends only on p and wy.

Proof. First, we notice that we have the continuous injections W9?(Q) <
W, 'P(Q) because ﬁ/ # 1 and W1?(Q) — LP(Q). Thus, thanks to Theorems
p
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2.5 (p = 2) and 3.6 (p # 2), there exists a unique (u,7) € Wy*() x LP(Q)
solution of (Sp). It remains to show that (u,7) € WP (Q) x W1P(Q). For this,
we introduce the following partition of unity :

1, Yo € C(R™), 0 <4p1,92 <1, 91 +1P2 = 1in R",
Y1 =1in Bg, supp ¢1 C Bry1,

whith 0 < R < R’ < oo such that wy C Bg C Brr C R%. We set Qr = QN B,

Qr+1 =QN Bry1, us =Yue W é’p(Q) and m; = Y;m € LP(Q) for t =1 or 2.
We notice that supp (u1,71) C Qg1 and we denote by (uq,71) the extension
by (0,0) of (u1,71) in ‘wp. Finally, we set

.fl = —Auy + V7, 7L1 = div uq
and (f1,h1) their restriction to . We have in  :
f1 =—-Auy +Vm = ¢1f — 2V - Vu — A¢1 u + 7V

and
hl =div uy = ¢1h + div wlu.

As u € WP (Q) and supp ¢ C Qpy1, then f1 € WP(Q) and hy € WP(Q).
Thus f1 € WP(Cwy), hy € WP (“wo) and (@1, 7 ) satisfies

—Au; +Vm = fl in “wg,

div ’l~Ll = h1 in Cwo,

u; =0 on I'y.
So, thanks to regularity results in a ”classical exterior domain (see [3]), we
have (@1,71) € WP (Cwo) x W1P(¢wg) and consequently (uy,m) € W2P(Q) x
WP(Q).

Now, we denote by (@2, 72) the extension by (0,0) of (uz,72) in R’} and
.fg = —Auy + V7~r2, }NLQ = div us.

As supp (f2,h2) C Q and as fajq = f — f1 € WIP(Q) and hogjg = h — hy €
W1P(Q), we have

f2 € WIP(RY), and hy € WIP(RD).

Thus, thanks to Theorem 5.2 of [10], we deduce from this that uq € W%’p(R’_ﬁ),
and 7 € W1P(R%). By restriction, we have uz € Wi*(Q), m € W1P(Q) and
so (u,7) € WP(Q) x W1P(Q). The estimate follows immediately. [

Now, as at the end of the previous section, we can solve the problem with
nonhomogeneous boundary conditions.

Theorem 4.2. For any p > 1 satisfying ﬁ/ 41, f e WIP(Q), h e WP(Q),
p

2—-1, . .
go € szi’p(ljo) and g1 € W, *P(R"Y), there exists a unique (u,m) €
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W2P(Q) x W1P(Q) solution of the problem (Sp). Moreover, (u, ) satisfies

w2 ) + Imllwio < C (Ifllwor@ + 1Allwieg
+ ||gollwz_%,p(ro) + ”glnwf‘%*”(w—n)’

where C is a real positive constant which depends only on p and wy.

Now, we examine the basic case ¢ = —1, corresponding to f € LP(Q). First,
we study the kernel of such a problem. We set

SP(Q) = {(z,7) € WIP(Q) x WiP(Q), —Az+Vr=0inQ,
divz=0inQ and z =0 on Ty UR" "'}

The characterization of this kernel is given by this proposition :

Proposition 4.3. For each p > 1 such that ﬁ/ # 1, we have the following
p

statements : i) If p < n, S5(Q) = {(0,0)}.
ii) If p > n, S§(Q) = {(v(A) = A n(A) —p), X € (Ra)" "' x {0}, p € R}
where (v(A),n(A)) € W2P(Q) x WP(Q) is the unique solution of

—Av+Vn=0 inQ, dive=0 inQ,
v=AA onTy, v=0 on R* 1,

Proof. Let (z,7) € S} (£2). We easily show that there exists (2, 7) € W(Q)’p(]RT}r) X
WEP(R?) such that (2,7)q = (2,7). We set

£€=—-Az+V7r and o=divz inR].
Then, £ € LP(R%), 0 € WyP(R%) and (2,7) € WP(R%) x WP(R%) satisfies
~AZ+Vi=¢ inRZ,
(S4)q divz=0o in R},

z=0 on R*—1.

Moreover, € and o have a compact support, so € € W(l)’p(]Rfﬁ), o€ W%’p(]Rfﬁ),
and thanks to Theorem 5.2 of [10], there exists (v,n) € (W%’p(Ri) xW%’p(R’_ﬁ)) C
(WP(R?) x WP (R?)) solution of (S;). Thus, (see Theorem 5.6 in [10]), i
p < n, we deduce from this that

z=v and 7=n inRY,
and if p > n, there exists A € (Rz,,)"~! x {0} and p € R such that
v—z=A and n—-7=p inR].

So, if p < n, we have (z,7) € W3P(Q) x W1P(Q) and thanks to the uniqueness
of the solution of the problem of Theorem 4.1, we conclude that (z,7) = {(0,0)}
and if p > n, we have the characterization we were looking for. O

We have the following result, corresponding to Theorem 4.2 :
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Theorem 4.4. For any p > 1 satisfying ﬁ/ 41, f € LP(Q), h € WHP(Q),
p

_1
go € szi’p(ljo) and g1 € W(Q) P P(R"=1), there exists a unique (u,m) €
(WEP(Q) x WP (Q))/SP(Q) solution of the problem (Sp). Moreover, (u,n)

satisfies

i f 5P 3P < C P h 3P
B (It 2l + 7+ Blhwyy) € € S lasge) +Hlhwyocey

)a

+ligoll 1.0

(

R PSS,

where C is a real positive constant which depends only on p and wy.

Proof. We easily show that there exist extensions f € LP(R") of f and
h € WiP(R") of h in R” and, thanks to Theorem 3.10 of [3], there exists
(v,m) € WIP(R™) x WP (R™) solution of

—Av+Vp=finR", dive=hinR"

Now, it remains to solve the problem : find (z, 1) € WP () x Wy () such

that
{—Az—i—Vu:O inQ, divz=0 in Q,

z =go — V|r, only, z=g1—vgn-1 on R 1,
By Theorem 5.6 of [10], there exists (w,7) € WP (R7}) x W(l)’p(]Ri) solution of
—Aw+Vr=0inR}, divw=0inR}, w=gs—vg.—1onR""

Moreover, thanks to Theorem 4.2, there exists (y,p) € (W>P(Q) x W1P(Q)) €
(WEP(Q) x WP(2)) solution of

~Ay+Vp=0 inQ, divy=0 inQ,
Yy=go—vr, —wr, only, y=0 on R*1.

So, (z,1) = (Y +w,p+7) € WIP(Q) x W5P(Q) and (u, ) = (v + 2,1+ p) is
solution to our problem. The estimate follows immediately. [

5 Very weak solutions for the homogeneous Stokes
system

The aim of this section is to study the system (Sp) with f = 0, h = 0
and singular data on the boundary. For this, we must firstly give a meaning to
singular data for this problem. More precisely, we Wantlto show that boundary
conditions of the form go € Wﬁi’p(FO) and g1 € W;fl’p(]Rnfl) are meaning-
ful. Here, we limit ourselves to the two cases £ = 0 and ¢ = 1. Our work is
related to that of Amrouche, Necasova and Raudin for the half space ([10]) and
of Amrouche and Girault for a bounded domain ([6]). We refer to these papers
for the ideas of proofs for the first results of this section. Here, we suppose that

.
p
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We introduce the space :
M(Q) = {ue WP, (Q), u=0and divu =0 on Ty UR" '},

and we show that we have the identity
M) ={uc W%Zfl(ﬁ), u = 0 and Z—Z ‘n=0onTyUR" '}
Then, we define
X((Q) = {ve W (@), divee W ¥, (@),
which is a reflexive Banach space for the norm
lvllx @) = 10l o) + 1AV vl o)

We check that D(€) is dense in X ,(£2) and we denote by X;(f2) the dual space
of X,(Q2). Now, we introduce the spaces

T(Q) = {v e W (Q), Av e X} ()},
T:,(Q) ={veT(Q), dive =0 dans Q},
which are reflexive Banach spaces for the norm
[ollz,@) = [lvlwor @) + 1A[x; @)

where ||| x; (o) denotes the dual norm of the space X7 (). It can be shown that

the space D(Q) is dense in T, () and that the space {v € D(Q), div v =0} is
dense in Ty ().

Finally, using exactly the same reasoning as in Lemma 6.4 and Remark 6.5
of [10] and Section 4.2 of [6], we conclude that for a function w € Ty (£2), the

_1
trace of w on T'y is in W_%’p(I‘o) and the trace of w on R" "1 is in We_”l’p (R~ 1),
Moreover, we have for any ¢ € M ,(2) and for any v € T ,(£2)

<Aw, [02) >X2(Q),XE(Q): <, AQO >W0 P (), W [+1(Q) (50)
0 0
— <0, L <22 1 .
on w~ i P(To),Ww»'P (To) " On w, (]R7L71)’er+1(]R7zfl)

We remind that, for any go € W7 (T'y) and g; € W, ”’p(]R"_l), we want
to find (u,7) € WO”’ () x W, 5P(Q) solution of

~Au+Vr=0 inQ, (5.1)
divu =20 in €, (5.2)
u=go on Ty, (5.3)
u=g on R"~1. (5.4)

First, we remark that if (u, ) € WP (Q) x W, 5P(Q) satisfies (5.1) and (5.2),
then u € Ty »(£2) and thus (5.3) and (5.4) make sense. Indeed, the function u
is in ngl(Q) and div u = 0 in Q. Moreover, because D(€2) is dense in X (),
we easily show that Vr € X(Q2). Thus, thanks to (5.1), we have Au € X} (Q2)
and u € Tga( ). So, in this case, we have seen that w, € Wﬁi’p(I‘o) and

u‘Rn 1€ WZ P’p(Rn—l).
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Proposition 5.1. For each p > 1 such that = # 1, we suppose that the func-
p
tions go € Wﬁi’p(Fo) and g1 € W;f{p(R”_l) satisfy

go-m=0 only and g1 -n=0 onR" %L (5.5)

Then, problem (5.1)-(5.4) is equivalent to find (u 7T) € WP (Q) x W, P (Q)
such that for any v € My(Q) and for anyne W' “_1(9), we have

(FV) <u,—-Av+Vn >W0 P, WO () T < m,div v >WZ,1’1’“(Q),V?/E§;1(Q) =
< > < O >
- 3 1 - - _1 1 .
90 n “w B g, W (1) 9 on w, 5w WP (R

Proof. Let (u,7) € WY (Q) x W, P(Q) be a solution of (5.1)-(5.4).
Thanks to the previous remark, we have u € T (). Let v be in M ,(Q).
We deduce from (5.0) and (5.1) that

— < m,div v >

u, —Av
< >WS ()W i+1(Q) ’ w;hP(Q), w! r+1(Q)

ov
—<go, 7 > — <91, 57—

> .
on W~ P (Fo) WP ( 0) on W P (Rn 1), WPI/+1(R7L—1)

Moreover, like L # 1, the space {v € D(Q2), div v = 0} is dense in Ty ,(2) and
p

using (5.2) and (5.5), we show that for any 7 € W_“_l(Q)

<u,Vn> =0.

WO P (Q)7 [+1(Q)
Thus, we conclude that (u, ) is solution of (FV). Reciprocally, let (u,7) €
WP (Q) x W, () be a solution of (FV). With = 0 and v € D(Q), we
have

< —Au+Vm,v >D(Q),D(Q)= 0,

and with v = 0 and 7 € D(Q), we have
< div u,n >D’(Q),’D(Q): 0.

Thus, (5.1) and (5.2) hold. It remains to show (5.3) and (5.4). Let v € M ().
Thanks to Green’s formula (5.0) and (FV), we have

<u 8_’0 > 1 1, +<u @ > ! =
TOn T W P(0g), W () Ton T w, 7T (re-), Wpi+1(R"_l)
<go,a—v> 1 1 +<g1,8—v> 1, L .
On = w7 (ro), W (To) on = w, n" @)W e+1(R” b

Now, let w be in WP (To). We denote by p, the tangential component of p.
It is defined by

p=pr+(p-n)n
We easily show that there exists w € W%Zfl(Q) such that

—Oanda—w:p,T on Iy,
ow on
w=—=0 on R*—1.
on
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So, w € M,(Q2) and

< ow - < ow S
w, — , = —_— ’ .
on T w )W () 9% n Tw g, wE (o)
Thus
<u > o' =< > , o' .
Wb w g T S IOET T g w )

Finally, since w-n = 0 on I'y and by hypothesis go - n = 0 on 'y, we conclude
that

S gy W ()T S IOH T g w1y
i.e. u = go on I'g. Now, let g be in W7 e_H(R"’l). We know that there exists
s€ W2’§+1(Ri) such that
0
s=0 and <5 = pr on R"L
on

Moreover, as above, we can find y € W £+1(Q) such that

O0s

y=—sand — Y _ on Iy,
9 on~ On
Yy = a—y = on Rn_l.
n
So,z=8q+yE€E w? z+1(Q) satisfies
0
£ _0 on T,
~on 9%
z=0and —— =, onR"L
n

Then, 2 € M () and we easily conclude like above that u = g; on R"~L.
Thus, we have the equivalence of the two problems. ([

Now, we can solve the homogeneous Stokes system (5.1)-(5.4) with singular
boundary conditions. We will give separately the results for £ = 0 and ¢ = 1.
Note that the first theorem (for the case £ = 0) extends Theorems 2.5 and 3.6
(with f = 0 and h = 0) since W*(Q) € WP(Q) if n # p.

Theorem 5.2. For any p > 1 such that n #1, go € Wﬁi’p(FO) and g1 €
p

W_ ”’p(R” 1) satisfying (5.5), there exists a unique (u, ) € WP (Q)x W~ 1P(Q)
solution of (5.1)-(5.4). Moreover, (u,m) satisfies

Ielhwogioy + Ity < © 190l + sl g0 )

where C' is a real positive constant which depends only on p and wy.
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Proof. In fact, we solve (FV). For this, we argue by duality. Since n # 1,
p

thanks to Theorem 4.1, we can say that for any f € W(l]’pl (Q) and h e W
1P(Q), there exists a unique (v,7) € W2 (Q) x WP (Q) solution of

—Av+Vnp=f inQ, divv=h inQ,
v=0 only, v=0 on R~ 1,

satisfying

oll oy + Ilhg1r iy < € (UF st gy + 0l )

Then,
| < Ov > + < ov >
o 1 1 . '~ -1, 1
90 0n “w B e W (1) Ton “w e W e
< Clgolly -1 p,, * ”91HWjvP(Rnfl)m'fHW?""(Q) e g))-

We can deduce from this that the linear mapping 7" defined by
ov ov
T(f,h) = — — 5.6
(fih) =< go, 5>+ <g1. 5> (5.6)

’ o ’
on W (Q)x W 1 (Q) is continuous. So, according to the Riesz representa-
tion theorem, there exists a unique (u,7) € WP (Q) x W-1*() such that

<u,f > +<mh>,,

W), Wi (@) S wh @)

v
—<gl,%> _

- < 0y 7 > _ 1, 1 1 1 .
90 on “w T o). W (1) w_P P @re-1) wrP (re-1)

Thus, noticing that v € M(f2), we deduce that (u, ) satisfies (FV). O

The next corollary relaxes the constraint (5.5) on the data. In order to es-
tablish this corollary, we give the following lemma.

_1
Lemma 5.3. For anyp > 1, go € W_%’p(f‘o) and g, € W_P"(R"1), there
exists a function s € WP (Q) solution of

0s Os

) 8_ =4go On FO) - — 91 on Rn_l-
n

As = in Q
s=0 in o

Moreover, s satisfies

lsllwrpe < € (ol oy, +lorl o).

1,
p’p(Fo) _P(Rn-Y)
where C is a real positive constant which depends only on p and wy.

Proof. Using results in the half space (see Theorem 3.7 in [4]), we know
there exists z € Wlff(]Rﬁﬁ) solution of

0z

—Az=0 inRY, n

_ n—1
=g; onR ,
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satisfying

_1
P
-1

Izllwrr@ny < C lloal

W ®e-y)

0
We have g = go — 92 Wfi’p(I‘o) and it remains to solve the following

on
problem : find v € W?(Q) solution of

Av =10 in Q, @:g on Iy, @:O on R"~!

on on (5.7)

To solve this problem, we solve first the following one : find y € W?(2) solution
of

Ay=0 inQ, g_:,:g on Ty (5.8)
such that

Illwipe < € lgoll -1 roy T ||91||W7%,p(w71));

(

here we remind that Q = QU UR™! with Q' the symmetric region of  with
respect to R"1 and Ty = 09 and that § is an extension of g in Wfi’p(fo)
symmetric with respect to R"~! (we refer to Theorem 3.3 in [5] to find such an
extension). To find a solution y of (5.8), we split the proof into two cases. First,

if }% > 1, we apply Theorem 3.11 in [8] (there is no condition of compatibility),
so there exists y € W(l)’p(ﬁ) C Wlff(ﬁ) solution of (5.8) and satisfying the
estimate. Next, if 2/ <1, we set for any « in Q
p
(@)= 5 [ B@-y)d
w(x) = —— T — x,
27 JE, Y
where FE is the fundamental solution of the Laplacian and we easily show that
~ ~ .o~ ow

w e WH(Q) (but w ¢ WP (Q)), that Aw = 0 in Q and < 8_n’1 >, 7 0. We
define A\ by

< g,1 >F,
T Ow ) ’
< %, >‘I:0
so that the compatibility condition
~ ow
<g-— )\a—n, 1 >f0:

is satisfied. Thanks to Theorem 3.11 in [8], there exists u € W?(Q) € W2 (Q)
solution of

Au=20 in&'N), S—Z:'gv—)\g—i} on Iy
satisfying
~ ow
lullgo@) < C 1T A5l drcr
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Thus, y = Aw + u is solution of (5.8) and satisfies the estimate. Now, let yo €
WhP(Q) a solution of (5.8) and let s € W?(Q) be defined, for almost all
(x’,z,) € Q, by

so(@',zn) = yo(x', —xp).

Thanks to the symmetry of Q and g with respect to R™~!, we prove that sq is
also a solution of (5.8) (here again, for more details, we refer to the proof of

1
Theorem 3.3 in [5]). Then, setting v = 5(2/0 +50)j0 € WhP(Q), we show that v

satisfies (5.7) and we have

lelwoy < C Ugoll -1 +lanll 2, ).

57(To) w_ PP (rn-1)

Finally, the function s = z + v solves the problem and the estimate follows
immediately. O

Now, we have the following result.

Corollary 5.4. For any p > 1 satisfying n #1, go € W_%’p(f‘o) and g1 €
p
_1
W_PP(R"1) there exists a unique (u,7) € WOP(Q) x W_1P(Q) solution of
(5.1)-(5.4). Moreover, (u, ) satisfies
)

lullwep ) + Il -1y < € lgolly, 0, + ol

1,
( P ®rY

where C is a real positive constant which depends only on p and wy.

Proof. The uniqueness comes from Theorem 5.2. For the existence, thanks
to the previous lemma, there exists s € W% (Q) solution of

5] 5]
8—8290"0 on T'o, —szgl-n on R*1,
n

As=0 inQ
s=0 in €, o

Now, we define w by w = Vs € W(lf(Q) and we easily show that traces of w
1

on I'g and R"~1 have a sense respectively in W~ »?(I'g) and W_? " (R"~1). We

set go™ = go —wjr, and g1* = go — wr~-1 and we notice that the functions go*

and g1* satisfy (5.5). So we can apply the previous theorem and there exists

(v,m) € W2P(Q) x W_1(Q) solution of

—Av+Vr=0 in2, dive=0 inQ,
v =go* onTy, v=g1* onR" !

and satisfying

1 )
-1, )
5P

[ollwor )+ I7llw—1rq) < C (lgoll,,-. o
-1

-+ lga

(To w

Finally, (v = v + w, ) is solution of (5.1)-(5.4) and the estimates follows
immediately. O

Now, we describe a result for the case ¢ = 1.
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Theorem 5.5. For any p > 1 such that n #1, go € W_%’p(f‘o) and g1 €
p

_1
w, ”7P(R"_1) satisfying (5.5) and the following compatibility condition if p <

— for each (z,p) € S} ()

- =0,

0z
+ < — > _1 1 =
gL, on w, Ilfp(R7L71)7W0pyp (Rn—1)

S0 G0 Tw g W ()

there exists a unique (u, ) € LP(Q) x W5 "P(Q) solution of (5.1)-(5.4). Moreo-
ver, (u,m) satisfies

lellze oy + 7l e = € (lgoll -2 .+ llga );

( Wo_%’p(Rn—l)

where C is a real positive constant which depends only on p and wy.

Proof. In fact, here again, we solve (FV). For this, we apply a duality argu-
ment. Like # 1, thanks to Theorem 4.4, we can say that for any f € L?' ()
p

and h e W é’p,(ﬂ), there exists a unique (v,n) € (W(Z)’pl (Q) x W(l)’p,(ﬂ))/Sg, Q)
solution of

—Av+Vnp=f inQ, divv=h inQ,

v=0 only, v=0 on R~ 1,

satisfying

inf v+ z o on I+ o < C oy T Pl oy )-
(zp)gsg'(ﬂ)(” ”Wg (Q) ”77 p”wé (Q)) (”-fHL Q) || ”Wé (Q))

Then, for any (z,p) € S} ()

| < Ov > + < Ov >
do, on Wﬁé"p(l—‘o),W%"p/(Fo) g1, on lw’(

—1
w, p‘p(]Rn71)’Wg’ Rn—1)

=|< i('tH—z)>
- g()van

_1 1 7
W (Do), W? " (Iy)

YUz @) + 12l 10 0))-

0
+<glva_n(v+z) >w
0

D Lop
Rr-1H),WF (R™—1)

=

A

< C(lgolly 30, + -

1
- P
o P (]R”_l)

’ ° /
We deduce from this that the linear mapping T defined on L (Q)x W ;7 (Q)
by (5.6) is continuous. So, according to the Riesz representation theorem, there
exists a unique (u,7) € LP(Q) x Wy "P(Q) such that

< f > o)) T < T Sy ) wie )=

< hd > < >
- ~ 1 1 - _ _1 1 .
99 9n “w B e, W (1) IV o Tw B e @)

Thus, noticing that v € M1(£), we deduce that (u, ) satisfies (FV). O

Here again, with a similar proof as in Corollary 5.4, we want to relax the
constraint on the data :
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_1
Corollary 5.6. For any p > Ll’ go € W_%’p(I‘o) and g1 € W, p’p(R"’l),
n_

there exists a unique (u,m) € LP(Q) x W5 "?(Q) solution of (5.1)-(5.4). Moreo-
ver, (u,m) satisfies

lullzr @) + Il o) < C (Igoll 30 - llgnll -z ),

( 0 (R™—1)
where C' is a real positive constant which depends only on p and wy.

Proof. When p > Ll’ we follow the same reasoning as in Corollary 5.4
n—

using Theorem 3.3 in [5] to find s € WP (Q) such that

0 0
As=0 1in Q, —Szgg-n on Iy, —Szgl-n on R* 1.
on on
and using the previous theorem. O

n
Remark : When 1 < p < e we notice that, because of the compatibility
n —

condition of Theorem 5.5, we can not prove a result similar to Corollary 5.4.
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