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Exterior Stokes problem in the half-spa
eChérif Amrou
he ∗, Florian BonzomLaboratoire de Mathématiques et de leurs Appli
ations, UMR CNRS 5142, Université dePau et des Pays de l'Adour, IPRA, Avenue de l'Université, 64000 Pau 
edex, Fran
eAbstra
t The purpose of this work is to solve the exterior Stokes problem inthe half-spa
e R
n
+. We study the existen
e and the uniqueness of generalizedsolutions in weighted Lp theory with 1 < p < ∞. Moreover, we 
onsider the
ase of strong solutions and very weak solutions. This paper extends the studiesdone in [3℄ for an exterior Stokes problem in the whole spa
e and in [5℄ for thestudy of the Lapla
e equation in the same geometry as here.Key words Weighted Sobolev spa
es ; Stokes operator ; Diri
hlet boundary
onditions ; Exterior problem ; Half-spa
e.AMS Classi�
ation 35D05 ; 35D10 ; 35J50 ; 35J55 ; 35Q30 ; 76D07 ; 76N10.1 Introdu
tion and preliminariesConsider ω0 a 
ompa
t region of R

n
+ = {x ∈ R

n, xn > 0}, Γ0 the boundaryof ω0 and Ω the 
omplement of ω0 in R
n
+. This paper is devoted to the resolutionof the Stokes system

(SD)






−∆u + ∇π = f in Ω,div u = h in Ω,
u = g0 on Γ0,
u = g1 on R

n−1.We noti
e that this problem is an extension of the Stokes system for an exte-rior domain in the whole spa
e, studied in several works where some of themintrodu
e the homogeneous Sobolev spa
es H
1,p
0 (cω0) (where cω0 is the 
omple-ment in R

n of ω0) obtained as the 
losure of D(cω0) with respe
t to the norm
‖∇ · ‖Lp(cω0). The existen
e and the uniqueness of a solution of su
h a problemwith homogeneous boundary 
onditions in H

1,p
0 (cω0) × Lp(cω0) has been stu-died by Kozono and Sohr ([22℄, [23℄) and Galdi and Simader ([18℄). Anotherpoint of view, whi
h is ours, is to sear
h a solution in weighted Sobolev spa
es

W m,p
α (cω0) (see de�nition below). These spa
es are well-adapted to the Lapla
eand Stokes equations be
ause they satisfy an optimal Poin
aré-type inequality.They also provide some pre
ise information on the behaviour of the fun
tionsat in�nity, whi
h is not obvious from the de�nition of H

1,p
0 (cω0). For this ap-proa
h, we refer to Girault and Sequeira [19℄ (when n = 2 or n = 3, p = 2
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and α = 0), Spe
ovius-Neugebauer ([26℄ when n ≥ 3 and n

p
+ α /∈ Z for strongsolutions and when n = 2 and 2

p
+ α /∈ Z for weak solutions in [27℄) and toAlliot and Amrou
he [3℄.Here, our originality is to solve the exterior Stokes problem in the half-spa
eand not anymore in the whole spa
e. That implies an additional di�
ulty due tothe nature of the boundary whi
h is not bounded sin
e it 
ontains R

n−1. So, wehave to introdu
e weights even in the spa
es of tra
es. We 
an 
ite Hanouzet [21℄who has given the �rst results for su
h spa
es in 1971 and Amrou
he, Ne£asovà[9℄ who have extended these results in 2001 to weighted Sobolev spa
es whi
hpossess logarithmi
 weights (we just re
all that logarithmi
 weights allow us tohave a Poin
aré-type inequality even in the �
riti
al� 
ases ; see below for moredetails). We remind the works of some authors whi
h have studied the Stokesproblem in the half-spa
e. The �rst ones are due to Cattabriga [14℄ who have
hosen the setting of homogeneous Sobolev spa
es. Similar results are given byFarwig and Sohr [16℄ and Galdi [17℄. On the other hand Maz'ya, Plamenevskiiand Stupyalis [24℄ have studied the problem in weighted Sobolev spa
es, butonly in the dimension 3. Finally, we 
ite the works of Amrou
he, Ne£asová andRaudin [10℄ who 
onsider weak solutions for any dimension. Nevertheless, wenoti
e that all these works 
on
ern only the Stokes system in the half-spa
ewhereas in this paper, we deal with the exterior Stokes problem in the half-spa
e. We 
an summarize our work saying that it is an extension of the exteriorproblem in the whole spa
e and of the problem in the half-spa
e.We state that, here, we will 
on
entrate only on the basi
 weights for thesake of simpli
ity and be
ause they are the most usual. The paper is organizedas follows. Se
tions 2 and 3 are devoted to the 
ase of generalized solutions res-pe
tively when p = 2 and p 6= 2. In Se
tion 4, we 
onsider strong solutions andgive regularity results a

ording to the data. Finally, in Se
tion 5, we �nd veryweak solutions to the homogeneous problem with singular boundary 
onditions.The main results of this work are Theorems 2.5 and 3.6 for generalized solutions,Theorems 4.2 and 4.4 for strong solutions and Corollary 5.4 and Theorem 5.5for very weak solutions.We 
omplete this introdu
tion with a short review of the weighted Sobolevspa
es and their tra
e spa
es. For any integer q we denote by Pq the spa
e ofpolynomials in n variables, of degree less than or equal to q, with the 
onventionthat Pq is redu
ed to {0} when q is negative.For any real number p ∈ ]1,+∞[, we denote by p′ the dual exponent of p :
1

p
+

1

p′
= 1.Let x = (x1, . . . , xn) be a typi
al point of R

n, x′ = (x1, . . . , xn−1) and let
r = |x| = (x2

1 + · · · + x2
n)1/2 denote its distan
e to the origin. We shall use twobasi
 weights :

ρ(r) = (1 + r2)1/2 and lg r = ln(2 + r2).As usual, D(Ω) is the spa
e of inde�nitely di�erentiable fun
tions with 
ompa
tsupport, D′(Ω) its dual spa
e, 
alled the spa
e of distributions and D(Ω) the2



spa
e of restri
tions to Ω of fun
tions in D(Rn).Then, for any nonnegative integers n and m and real numbers p > 1 and α,setting
k = k(m,n, p, α) =





−1 if n
p

+ α /∈ {1, . . . ,m},

m−
n

p
− α if n

p
+ α ∈ {1, . . . ,m},we de�ne the following spa
e :

Wm,p
α (Ω) = {u ∈ D′(Ω);

∀λ ∈ N
n : 0 6 |λ| 6 k, ρα−m+|λ|(lg r)−1Dλu ∈ Lp(Ω);

∀λ ∈ N
n : k + 1 6 |λ| 6 m, ρα−m+|λ|Dλu ∈ Lp(Ω)}.It is a re�exive Bana
h spa
e equipped with its natural norm :

‖u‖W m,p
α (Ω) = (

∑

06|λ|6k

‖ρα−m+|λ|(lg r)−1Dλu‖p
Lp(Ω)

+
∑

k+16|λ|6m

‖ρα−m+|λ|Dλu‖p
Lp(Ω))

1/p.We also de�ne the semi-norm :
|u|W m,p

α (Ω) = (
∑

|λ|=m

‖ραDλu‖p
Lp(Ω))

1/p.The weights de�ned previously are 
hosen so that the spa
e D(Ω) is dense in
Wm,p

α (Ω) and so that the following Poin
aré-type inequality holds in the follo-wing spa
es : let α be a real number, m ≥ 1 an integer and q′ = min(q,m− 1),where q is the highest degree of the polynomials 
ontained in Wm,p
α (Ω). Then :

∀u ∈Wm,p
α (Ω), inf

k∈Pq′

‖u+ k‖W m,p
α (Ω) ≤ C |u|W m,p

α (Ω),and
∀u ∈

◦

W
m,p
α (Ω) = D(Ω)

‖.‖
W

m,p
α (Ω) , ‖u‖W m,p

α (Ω) ≤ C |u|W m,p
α (Ω).This theorem is proved by Amrou
he, Girault and Giroire [8℄ in an exteriordomain and by Amrou
he and Ne£asovà [9℄ in the half-spa
e. It is extended tothis domain by an adequate partition of unity. We denote by W−m,p′

−α (Ω) thedual spa
e of ◦

W m,p
α (Ω) and we noti
e that it is a spa
e of distributions.Now, we want to de�ne the tra
es of fun
tions of Wm,p

α (Ω). These tra
eshave a 
omponent on Γ0 and another 
omponent on R
n−1. For the tra
es on Γ0,we return to Adams [1℄ or Ne£as [25℄ for the de�nition of Wm−j− 1

p
,p(Γ0) with

j = 0, ...,m − 1 and for the usual tra
e theorems. In order to de�ne the tra
es3



of fun
tions on R
n−1, we intodu
e, for any σ ∈ ]0, 1[, the spa
e

W σ,p
0 (Rn) = {u ∈ D′(Rn), ω−σu ∈ Lp(Rn),

∫

Rn×Rn

|u(x) − u(y)|p

|x − y|n+σp
dxdy <∞},where

ω =





ρ if n

p
6= σ,

ρ(lgρ)1/σ if n
p

= σ.It is a re�exive Bana
h spa
e equipped with its natural norm
(‖

u

ωσ
‖p

Lp(Rn) +

∫

Rn×Rn

|u(x) − u(y)|p

|x − y|n+σp
dxdy)1/p.For any s ∈ R

+ and α ∈ R, we set
W s,p

α (Rn) = {u ∈W
[s],p
[s]+α−s(R

n), ∀|λ| = [s], ραDλu ∈ W
s−[s],p
0 (Rn)}.It is a re�exive Bana
h spa
e equipped with its natural norm

‖u‖W s,p
α (Rn) = ‖u‖

W
[s],p

[s]+α−s
(Rn)

+
∑

|λ|=s

‖ραDλu‖
W

s−[s],p
0 (Rn)

.We noti
e that this de�nition 
oin
ides with the de�nition given at the beginningof this paper when s = m is a nonnegative integer. As in [9℄, we have thefollowing lemma :Lemma 1.1. For any integer m ≥ 1 and real number α, we de�ne the mapping
γ : D(Rn

+) → (D(Rn−1))m

u 7→ (γ0u, . . . , γm−1u),where for any k = 0, . . . ,m − 1, γku =
∂ku

∂xk
n

. Then, γ 
an be extended by
ontinuity to a linear and 
ontinuous mapping still denoted by γ from Wm,p
α (Rn

+)to m−1∏

j=0

W
m−j− 1

p
,p

α (Rn−1). Moreover, γ is onto andKer γ =
◦

W
m,p
α (Rn

+).In all this arti
le, we suppose that Γ0 is of 
lass C1,1, ex
ept when p = 2,where Γ0 
an be 
onsidered to be Lips
hitz-
ontinuous only.We will denote by C a positive and real 
onstant whi
h may vary from lineto line and we set E = En for any spa
e E.
4



2 Study of the problem (SD) when p = 2.First, we noti
e that it is equivalent to solve the problem with homogeneousboundary 
onditions. Indeed, the fun
tion g1 is in W
1− 1

2 ,2
0 (Rn−1), so, thanksto Lemma 1.1, there exists u1 ∈ W

1,2
0 (Rn

+) su
h that u1 = g1 on R
n−1 and

‖u1‖W
1,2
0 (Rn

+) ≤ C ‖g1‖
W

1− 1
2

,2

0 (Rn−1)
.Now, let η be the tra
e of u1 on Γ0, g = g0 − η ∈ H

1
2 (Γ0) and let R > 0 besu
h that ω0 ⊂ BR ⊂ R

n
+. It is 
lear that the fun
tion h0 de�ned by
h0 = g on Γ0, h0 = 0 on ∂BR,belongs to H

1
2 (Γ0 ∪ ∂BR). We know that there exists an extension uh0

∈
H1(ΩR), where ΩR = Ω ∩BR, su
h that uh0

= h0 on Γ0 ∪ ∂BR and su
h that
‖uh0

‖H1(ΩR) ≤ C ‖h0‖
H

1
2 (Γ0∪∂BR)

. We set
u0 = uh0

in ΩR, u0 = 0 in Ω \ ΩR.We have u0 ∈ H1(Ω), u0 = g on Γ0, u0 = 0 on R
n−1 and

‖u0‖H1(Ω) ≤ C ‖g‖
H

1
2 (Γ0)

.Thus the fun
tion u0 + u1|Ω is in W
1,2
0 (Ω) and its tra
es are g0 on Γ0 and g1on Γ1. This allows us to solve only the following problem : let f be in W

−1,2
0 (Ω)and h be in L2(Ω), we want to �nd (u, π) ∈ W

1,2
0 (Ω) × L2(Ω) solution of

(S0)

{
−∆u + ∇π = f in Ω, div u = h in Ω,
u = 0 on Γ0, u = 0 on R

n−1.Now, we want to establish Lemma 2.2 to have a data for the divergen
e redu
edto zero. For this, we use this preliminary lemma :Lemma 2.1. There exists a real 
onstant C > 0 depending only on ω0 su
h thatthe following holds. For any h ∈ L2(Ω), there exists a unique ϕ ∈ W 2,2
0 (Ω)/Rsolution of

∆ϕ = h in Ω and
∂ϕ

∂n
= 0 on Γ0 ∪ R

n−1.Moreover, ϕ satis�es
‖ϕ‖W 2,2

0 (Ω)/R
≤ C ‖h‖L2(Ω).Proof. First, we de�ne Ω′ the symmetri
 region of Ω with respe
t to R

n−1,
Ω̃ = Ω ∪ Ω′ ∪ R

n−1 and Γ̃0 = ∂Ω̃. Let h be in L2(Ω) and let the fun
tion h∗ bede�ned, for almost any (x′, xn) ∈ Ω̃, by
h∗(x

′, xn) =

{
h(x′, xn) if xn ≥ 0,
h(x′,−xn) if xn < 0.Then, we set in R

n the fun
tion
h̃ = h∗ in Ω̃, h̃ = 0 in R

n \ Ω̃.5



So, h̃ ∈ L2(Rn) and, supposing �rst that n > 2, as [7℄ allows us to say that
∆ : W 2,2

0 (Rn) −→ L2(Rn)is onto, we dedu
e that there exists ũ ∈ W 2,2
0 (Rn) su
h that ∆ũ = h̃ in R

n and
‖ũ‖W 2,2

0 (Rn) ≤ C ‖h‖L2(Ω). We denote by u ∈ W 2,2
0 (Ω̃) the restri
tion of ũ to

Ω̃. We noti
e that we have ∆u = h∗ in Ω̃ and that ∂u

∂n
∈ H

1
2 (Γ̃0). Thanks toProposition 3.12 in [8℄, (there is no 
ondition of 
ompatibility be
ause n > 2),there exists z ∈W 2,2

1 (Ω̃) ⊂W 2,2
0 (Ω̃) su
h that

∆z = 0 in Ω̃ and ∂z

∂n
=
∂u

∂n
on Γ̃0,
he
king

‖z‖W 2,2
0 (eΩ) ≤ C ‖u‖W 2,2

0 (eΩ).Now, we set w = u− z. Then w ∈W 2,2
0 (Ω̃) satis�es

∆w = h∗ in Ω̃ and ∂w

∂n
= 0 on Γ̃0, (1)and we have

‖w‖W 2,2
0 (eΩ) ≤ C ‖h‖L2(Ω).If n = 2, we 
an not apply this reasoning be
ause a 
ondition of 
ompatibilityappears when we want to use Proposition 3.12 of [8℄. Nevertheless, we 
an �nddire
tly w ∈ W 2,2

0 (Ω̃), solution of (1), without needing the spa
e W 2,2
1 (Ω̃) (seeTheorem 7.13 in [20℄). Then, we set, for almost any (x′, xn) ∈ Ω̃,

v(x′, xn) = w(x′,−xn).As h∗ is even with respe
t to xn, we easily 
he
k that v is solution of the sameproblem that w satis�es. So, noti
ing that the kernel of this problem is R, wededu
e that v = w + c in Ω̃, with c ∈ R, and 
onsequently, ∂w
∂n

= 0 on R
n−1.Thus, the fun
tion w|Ω ∈ W 2,2

0 (Ω) is solution of our problem. Moreover, thissolution is unique up to a real 
onstant. Indeed, if z ∈W 2,2
0 (Ω) is in the kernelof this problem, z∗ ∈ W 2,2

0 (Ω̃) is in R, the kernel of the problem (1), so z ∈ R.
�Lemma 2.2. There exists a real 
onstant C > 0 depending only on ω0 su
hthat for any h ∈ L2(Ω), there exists w ∈

◦

W
1,2
0 (Ω) 
he
king

div w = h in Ω and ‖w‖
W

1,2
0 (Ω) ≤ C ‖h‖L2(Ω).Proof. Let h be in L2(Ω). We know, thanks to the previous lemma, thatthere exists a unique ϕ ∈W 2,2

0 (Ω)/R satisfying
∆ϕ = h in Ω and

∂ϕ

∂n
= 0 on Γ0 ∪ R

n−1,with
‖ϕ‖W 2,2

0 (Ω)/R
≤ C ‖h‖L2(Ω).6



We set v = ∇ϕ ∈ W
1,2
0 (Ω). So ‖v‖

W
1,2
0 (Ω) ≤ C ‖h‖L2(Ω). Moreover, we set

g0 = v|Γ0
∈ H

1
2 (Γ0) and g1 = v|Rn−1 ∈ W

1− 1
2 ,2

0 (Rn−1). Thanks to Theorem4.2 in [10℄, there exists (z, θ) ∈ W
1,2
0 (Rn

+) × L2(Rn
+) solution of

−∆z + ∇θ = 0 in R
n
+, div z = 0 in R

n
+, z = g1 on R

n−1,satisfying
‖z‖

W
1,2
0 (Rn

+) ≤ C ‖g1‖
W

1− 1
2

,2

0 (Rn−1)
.We denote again by z the restri
tion of z to Ω and g = g0 − z|Γ0

∈ H
1
2 (Γ0).We observe that

∫

Γ0

g · n dσ =

∫

Γ0

v · n dσ −

∫

Γ0

z · n dσ =

∫

Γ0

∂ϕ

∂n
dσ −

∫

ω0

div z dx = 0.Now, let R > 0 be su
h that ω0 ⊂ BR ⊂ R
n
+ and ΩR = BR ∩ Ω. Then, theprevious 
ondition being 
he
ked, we have the following result (see [6℄) : thereexists y ∈ H1(ΩR) su
h thatdiv y = 0 in ΩR, y = g on Γ0, y = 0 on ∂BR,and

‖y‖H1(ΩR) ≤ CR (‖g0‖
H

1
2 (Γ0)

+ ‖g1‖
W

1− 1
2

,2

0 (Rn−1)
).We denote again by y its extension by 0 in Ω. So y ∈ W

1,2
0 (Ω) anddiv y = 0 in Ω, y = g on Γ0, y = 0 on R

n−1,Finally, we set u = z|Ω + y ∈ W
1,2
0 (Ω). The fun
tion u sati�esdiv u = 0 in Ω, u = g0 on Γ0, u = g1 on R

n−1,and the estimate
‖u‖

W
1,2
0 (Ω) ≤ C ‖v‖

W
1,2
0 (Ω).Finally the fun
tion w = v − u is solution of the setted problem. �So to solve (S0), it is su�
ient to solve the following problem (S00) : �nd

(u, π) ∈ W
1,2
0 (Ω) × L2(Ω) solution of
(S00)

{
−∆u + ∇π = f in Ω, div u = 0 in Ω,
u = 0 on Γ0, u = 0 on R

n−1.For this, as an immediate 
onsequen
e of the previous lemma, we derive �rstthe following Babu²ka-Brezzi 
ondition (see [12℄ and [13℄).Corollary 2.3. There exists a real 
onstant β > 0, depending only on ω0, su
hthat
inf

h∈L2(Ω)
sup

w∈
◦

W
1,2
0 (Ω)

∫

Ω

h div w dx

‖w‖ ◦

W
1,2
0 (Ω)

‖h‖L2(Ω)
≥

1

β
. (2)7



We introdu
e the 
ontinuous bilinear form de�ned on ◦

W
1,2
0 (Ω) × L2(Ω) by

b(w, q) = −

∫

Ω

q div w dx.Let B ∈ L (
◦

W
1,2
0 (Ω), L2(Ω)) be the asso
iated linear operator and let B′ ∈

L (L2(Ω),W−1,2
0 (Ω)) the dual operator of B, i.e

b(w, q) = < Bw, q >L2(Ω)×L2(Ω)= < w, B′q > ◦

W
1,2
0 (Ω),W−1,2

0 (Ω)
.It is 
lear that B = − div and that B′ = ∇. As a 
onsequen
e of the �inf-sup�
ondition (2), we know that B is an isomorphism from ◦

W
1,2
0 (Ω)/V onto L2(Ω)and B′ is an isomorphism from L2(Ω) onto V ◦ with

V = {v ∈
◦

W
1,2
0 (Ω), div v = 0 in Ω},whi
h is an Hilbert spa
e and

V ◦ = {f ∈ W
−1,2
0 (Ω), ∀w ∈ V , < f ,w >

W
−1,2
0 (Ω),

◦

W
1,2
0 (Ω)

= 0}.Thus, we have the following De Rham's theorem :Corollary 2.4. The operator ∇ is an isomorphism from L2(Ω) to V ◦.Now, we de�ne the problem : �nd u ∈ V su
h that
(FV) ∀v ∈ V ,

∫

Ω

∇u · ∇v dx = < f ,v >
W

−1,2
0 (Ω),

◦

W
1,2
0 (Ω)

.Using the se
ond Poin
aré-type inequality given in the introdu
tion for the equi-valen
e of the norm and the semi-norm in ◦

W
1,2
0 (Ω) and applying Lax-Milgramtheorem, we 
he
k that (FV) has a unique solution u ∈ V . Finally, we noti
ethat problems (S00) and (FV) are equivalent, obtaining the pressure thanks toCorollary 2.4. Thus, there exists a unique (u, π) ∈ W

1,2
0 (Ω)×L2(Ω) solution of

(S00).In 
onsequen
e, we have the following theorem :Theorem 2.5. For any f ∈ W
−1,2
0 (Ω), h ∈ L2(Ω), g0 ∈ H

1
2 (Γ0) and g1 ∈

W
1− 1

2 ,2
0 (Rn−1), there exists a unique (u, π) ∈ W

1,2
0 (Ω)×L2(Ω) solution of theproblem

(SD)

{
−∆u + ∇π = f in Ω, div u = h in Ω,
u = g0 on Γ0, u = g1 on R

n−1.Moreover, (u, π) satis�es
‖u‖

W
1,2
0 (Ω) + ‖π‖L2(Ω) ≤ C (‖f‖

W
−1,2
0 (Ω) + ‖h‖L2(Ω)

+ ‖g0‖
H

1
2 (Γ0)

+ ‖g1‖
W

1− 1
2

,2

0 (Rn−1)
),where C is a real positive 
onstant whi
h depends only on ω0.8



3 Study of the problem (SD) when p 6= 2.First, we suppose that p > 2 and we want to study the kernel of the Stokessystem. We set :
Dp

0(Ω) = {(z, η) ∈
◦

W
1,p
0 (Ω) × Lp(Ω), −∆z + ∇η = 0 and div z = 0 in Ω}.To 
hara
terize this spa
e, it is useful to show the following lemma :Lemma 3.1. Let p > 2, f be in W

−1,p
0 (Rn

+) and h be in Lp(Rn
+), both with
ompa
t support in R

n
+, and (v, η) ∈ W

1,2
0 (Rn

+)×L2(Rn
+) the unique solution of

(S+)






−∆v + ∇η = f in R
n
+,

div v = h in R
n
+,

v = 0 on R
n−1.Then, we have (v, η) ∈ W

1,p
0 (Rn

+) × Lp(Rn
+) and (v, η) satis�es

‖v‖
W

1,p
0 (Rn

+) + ‖η‖Lp(Rn
+)

+ ‖v‖
W

1,2
0 (Rn

+) + ‖η‖L2(Rn
+) ≤ C (‖f‖

W
−1,p
0 (Rn

+) + ‖h‖Lp(Rn
+)),where C is a real positive 
onstant whi
h depends only on p, ω0 and the supportof f and h.Proof. Let f be in W

−1,p
0 (Rn

+) and h in Lp(Rn
+) with 
ompa
t support in

R
n
+ ; we easily 
he
k that f ∈ W

−1,2
0 (Rn

+) and h ∈ L2(Rn
+) be
ause p > 2 andlet (v, η) ∈ W

1,2
0 (Rn

+) × L2(Rn
+) be the solution of (S+) satisfying

‖v‖
W

1,2
0 (Rn

+) + ‖η‖L2(Rn
+) ≤ C (‖f‖

W
−1,2
0 (Rn

+) + ‖h‖L2(Rn
+)). (3)Thanks to [10℄, there exists (u, π) ∈ W

1,p
0 (Rn

+)× Lp(Rn
+) solution of (S+) su
hthat

‖u‖
W

1,p
0 (Rn

+) + ‖π‖Lp(Rn
+) ≤ C (‖f‖

W
−1,p
0 (Rn

+) + ‖h‖Lp(Rn
+)). (4)We set (w, τ) = (u − v, π − η) whi
h satis�es

−∆w + ∇τ = 0 in R
n
+, div w = 0 in R

n
+, w = 0 on R

n−1,and we want to prove that (w, τ) = (0, 0). We easily show (see Proposition 4.1in [10℄) that wn, the nth 
omponent of w, whi
h is in W 1,p
0 (Rn

+) +W 1,2
0 (Rn

+),satis�es
∆2wn = 0 in R

n
+, wn = 0 on R

n−1,
∂wn

∂xn
= 0 on R

n−1.Here, the dis
ussion splits into three steps : �rst, if p 6= n and n 6= 2, then
wn ∈W 0,p

−1(R
n
+) +W 0,2

−1(R
n
+). For almost all (x′, xn) ∈ R

n, we set
w̃n(x′, xn) =





wn(x′, xn) if xn ≥ 0,

(−wn − 2xn
∂wn

∂xn
− x2

n∆wn)(x′,−xn) if xn < 0,9



and we 
he
k (see [11℄, [15℄) that w̃n is the unique extension of wn su
h that
∆2w̃n = 0 in R

n. Moreover, for any ϕ ∈ D(Rn), we have
< w̃n, ϕ >D′(Rn),D(Rn)=

∫

R
n
+

wn[ϕ− 5ψ − 6xn
∂ψ

∂xn
− x2

n∆ψ] dxwhere ψ ∈ D(Rn) is de�ned by ψ(x′, xn) = ϕ(x′,−xn), whi
h allows us toprove that w̃n is in W−2,p
−3 (Rn) +W−2,2

−3 (Rn). So w̃n is a biharmoni
 tempereddistribution and 
onsequently a biharmoni
 polynomial. Finally, as the spa
e
W−2,p

−3 (Rn)+W−2,2
−3 (Rn) does not 
ontain polynomial, we dedu
e from this that

w̃n = 0 in R
n and so wn = 0 in R

n
+. Now, if n = p, we have W 1,p

0 (Rn
+) ⊂

W 0,p
−1,−1(R

n
+), and we may pro
eed with the same reasoning sin
e the loga-rithmi
 fa
tor does not 
hange the proof. When n = 2, we have W 1,2

0 (Rn
+) ⊂

W 0,2
−1,−1(R

n
+) and get the same result with the same arguments, simply noti
ingthat wn 
ould be equal to a 
onstant in R

n
+ but that this 
onstant would bene
essary equal to zero be
ause wn = 0 on R

n−1.Consequently, in any 
ase, we have wn = 0 in R
n
+. We dedu
e from this (seeProposition 4.1, [10℄) that τ ∈ Lp(Rn

+) + L2(Rn
+) satis�es

∆τ = 0 in R
n
+,

∂τ

∂n
= 0 on R

n−1.Now, we set for almost any (x′, xn) ∈ R
n,

τ∗(x
′, xn) =

{
τ(x′, xn) if xn ≥ 0,
τ(x′,−xn) if xn < 0,and we easily 
he
k that τ∗ is a harmoni
 tempered distribution, so a harmo-ni
 polynomial, in
luded in Lp(Rn) + L2(Rn), a spa
e whi
h does not 
ontainpolynomial. Thus, we 
on
lude that τ = 0 in R

n
+. Then, we show that w′ =

(w1, . . . wn−1) ∈ W
1,p
0 (Rn

+) + W
1,2
0 (Rn

+) satis�es
∆w′ = 0 in R

n
+, w′ = 0 on R

n−1.We set for almost any (x′, xn) ∈ R
n,

w′∗(x′, xn) =

{
w′(x′, xn) if xn ≥ 0,
−w′(x′,−xn) if xn < 0,and we easily 
he
k that w′∗ ∈ W
1,p
0 (Rn) + W

1,2
0 (Rn) is a harmoni
 tempereddistribution, so a harmoni
 polynomial in R

n. Thus, w′ is a harmoni
 polyno-mial in R
n
+ and ∇w′ is an harmoni
 polynomial in Lp(Rn

+) + L2(Rn
+), a spa
ewhi
h does not 
ontain polynomial. So ∇w′ = 0 in R

n
+ and like w′ = 0 in R

n−1,we have w′ = 0 in R
n
+. Finally, we dedu
e from this that (w, τ) = (0, 0). �Now, we have the following theorem :Theorem 3.2. The kernel Dp

0(Ω) is redu
ed to {(0, 0)} when p > 2.Proof. Let (z, π) be in Dp
0(Ω). We denote by z̃ and π̃ the extensions by

0 of z and π in R
n
+. We have z̃ ∈ W

1,p
0 (Rn

+) and π̃ ∈ Lp(Rn
+). We set h̃ =10



−∆z̃ +∇π̃ ∈ W
−1,p
0 (Rn

+) and we easily 
he
k that h̃ has a 
ompa
t support in
R

n
+. Thus, we 
an apply the previous lemma whi
h assures us that there existsa unique (v, η) ∈ (W 1,p

0 (Rn
+) ∩ W

1,2
0 (Rn

+)) × (Lp(Rn
+) ∩ L2(Rn

+)) solution of
−∆v + ∇η = h̃ in R

n
+, div v = 0 in R

n
+, v = 0 on R

n−1.Noti
ing that div z̃ = 0 in R
n
+, we see that (z̃, π̃) and (v, η) are solutions ofthe same problem, whi
h, thanks to [10℄, has a unique solution in W

1,p
0 (Rn

+) ×
Lp(Rn

+). So (z̃, π̃) = (v, η) in R
n
+ and, setting again v and η the restri
tions of

v and η to Ω, we dedu
e that
v = z, η = π in Ω.So, (v, η) ∈ W

1,p
0 (Ω) × Lp(Ω) satis�es

−∆v + ∇η = 0 in Ω, div v = 0 in Ω, v = 0 on Γ0 ∪ R
n−1.But, (v, η) ∈ W

1,2
0 (Ω) × L2(Ω) and in this spa
e, there is, thanks to Theorem2.5, a unique solution to the above problem, whi
h is (0, 0). Thus, Dp

0(Ω) =
{(0, 0)}. �Now, supposing that p > 2, we want to solve the Stokes system with homo-gemeous boundary 
onditions, that is to say : let f be in W

−1,p
0 (Ω) and h bein Lp(Ω), we want to �nd (u, π) ∈ W

1,p
0 (Ω) × Lp(Ω) solution of the problem

(S0)

{
−∆u + ∇π = f in Ω, div u = h in Ω,
u = 0 on Γ0, u = 0 on R

n−1.First, we establish the following lemma :Lemma 3.3. For ea
h p > 2 and for any f ∈ W
−1,p
0 (Ω) and h ∈ Lp(Ω), bothwith 
ompa
t support in Ω, there exists a unique (u, π) ∈ (W 1,p

0 (Ω)∩W
1,2
0 (Ω))×

(Lp(Ω) ∩ L2(Ω)) solution of (S0).Proof. Let f be in W
−1,p
0 (Ω) and h be in Lp(Ω) with 
ompa
t support in

Ω. Then, like p > 2, we easily 
he
ks that f ∈ W
−1,2
0 (Ω) and h ∈ L2(Ω) andthat

‖f‖
W

−1,2
0 (Ω) + ‖h‖L2(Ω) ≤ C (‖f‖

W
−1,p
0 (Ω) + ‖h‖Lp(Ω)),where C is a real positive 
onstant whi
h depends only on p, ω0 and the supportsof f and h. We dedu
e from Theorem 2.5 that there exists a unique (u, π) ∈

W
1,2
0 (Ω) × L2(Ω) solution of (S0). It stays to show that (u, π) ∈ W

1,p
0 (Ω) ×

Lp(Ω). We denote by ũ ∈ W
1,2
0 (Rn

+) and π̃ ∈ L2(Rn
+) the extensions by 0 in R

n
+of u and π and we set

f̃ = −∆ũ + ∇π̃ and h̃ = div ũ.Let us show now that f̃ ∈ W
−1,p
0 (Rn

+) and h̃ ∈ Lp(Rn
+). We de�ne the fun
tion

χ ∈ D(Ω) su
h that χ = 1 in θ where θ is an open bounded subset of Ω su
h thatsupp f ⊂ θ. We denote by χ̃ the extension of χ by 0 in R
n
+. For ϕ ∈ D(Rn

+),we have
< f̃ ,ϕ >D′(Rn

+),D(Rn
+)= < f̃ , χ̃ϕ >D′(Rn

+),D(Rn
+)= < f , χϕ >D′(Ω),D(Ω)11



and for ϕ ∈ D(Rn
+), we have

< h̃, ϕ >D′(Rn
+),D(Rn

+)=

∫

Ω

hϕ dx.So, f̃ ∈ W
−1,p
0 (Rn

+) and h̃ ∈ Lp(Rn
+). Finally, we 
an apply Lemma 3.1 to
on
lude that (ũ, π̃) ∈ W

1,p
0 (Rn

+) × Lp(Rn
+). Thus, by restri
tion, (u, π) ∈

W
1,p
0 (Ω) × Lp(Ω). �Now, we establish the following theorem :Theorem 3.4. For ea
h p > 2, there exists a real 
onstant C > 0 dependingonly on ω0 and p su
h that the following holds. For any g0 ∈ W 1− 1

p
,p(Γ0) and

g1 ∈ W
1− 1

p
,p

0 (Rn−1), there exists a unique (u, π) ∈ W
1,p
0 (Ω) × Lp(Ω) solutionof

(S′)

{
−∆u + ∇π = 0 in Ω, div u = 0 in Ω,
u = g0 on Γ0, u = g1 on R

n−1.Moreover, (u, π) satis�es
‖u‖

W
1,p
0 (Ω) + ‖π‖Lp(Ω) ≤ C (‖g0‖

W
1− 1

p
,p

(Γ0)
+ ‖g1‖

W
1− 1

p
,p

0 (Rn−1)
).Proof. The uniqueness 
omes from Theorem 3.2. Then, thanks to Propo-sition 4.1 of [10℄, there exists a unique (w, τ) ∈ W

1,p
0 (Rn

+) × Lp(Rn
+) solutionof

−∆w + ∇τ = 0 in R
n
+, div w = 0 in R

n
+, w = g1 on R

n−1.We denote again by w and τ the restri
tions of w and τ to Ω and we set
g = g0 − w|Γ0

∈ W 1− 1
p

,p(Γ0). Thus, it remains to show that there exists
(y, λ) ∈ W

1,p
0 (Ω) × Lp(Ω) solution of (S′′)

(S′′)

{
−∆y + ∇λ = 0 in Ω, div y = 0 in Ω,
y = g on Γ0, y = 0 on R

n−1.For this, let R > 0 be su
h that w0 ⊂ BR ⊂ R
n
+, ΩR = BR ∩ Ω and ψ ∈ D(Rn)with support in
luded in ΩR su
h that

∫

ΩR

ψ(x) dx +

∫

Γ0

g · n dσ = 0.Thanks to results in bounded domains (see [6℄), there exists (v, η) ∈ W 1,p(ΩR)×
Lp(ΩR) su
h that

{
−∆v + ∇η = 0 in ΩR, div v = ψ in ΩR,
v = g on Γ0, v = 0 on ∂BR.Next, we extend (v, η) by (0, 0) in Ω and we denote by (ṽ, η̃) ∈ W

1,p
0 (Ω)×Lp(Ω)this extension whi
h satis�es

{
−∆ṽ + ∇η̃ = ξ in Ω, div ṽ = ψ in Ω,
ṽ = g on Γ0, ṽ = 0 on R

n−1,12



where ξ ∈ W
−1,p
0 (Ω). We noti
e that ξ and ψ have a 
ompa
t support in ΩR sothat by the previous lemma, there exists (z, ν) ∈ W

1,p
0 (Ω) × Lp(Ω) solution of

{
−∆z + ∇ν = −ξ in Ω, div z = −ψ in Ω,
z = 0 on Γ0, z = 0 on R

n−1.Finally, (y, λ) = (ṽ + z, η̃ + ν) ∈ W
1,p
0 (Ω) × Lp(Ω) is solution of (S′′), so

(u, π) = (w + y, µ+ λ) ∈ W
1,p
0 (Ω)×Lp(Ω) is solution of (S′) and the estimatefollows immediately. �Now, we 
an solve the problem with homogeneous boundary 
onditions inthe 
ase p > 2.Theorem 3.5. For any p > 2, f ∈ W

−1,p
0 (Ω) and h ∈ Lp(Ω), there exists

(u, π) ∈ W
1,p
0 (Ω) × Lp(Ω) solution of (S0). Moreover, (u, π) satis�es
‖u‖

W
1,p
0 (Ω) + ‖π‖Lp(Ω) ≤ C (‖f‖

W
−1,p
0 (Ω) + ‖h‖Lp(Ω)),where C is a real positive 
onstant whi
h depends only on p and ω0.Proof. The uniqueness 
omes from Theorem 3.2. Then, as a 
onsequen
e ofthe se
ond Poin
aré-type inequality given in the introdu
tion, we know thereexists a tensor of se
ond order F ∈ Lp(Ω) su
h that div F = f . We extend F(respe
tively h) by 0 in R

n, and we denote by F̃ (respe
tively h̃) this extension.Then, we set f̃ = div F̃ and we noti
e that f̃ |Ω = f . We have f̃ ∈ W
−1,p
0 (Rn)and h̃ ∈ Lp(Rn). Thanks to [2℄, there exists (v, η) ∈ W

1,p
0 (Rn)×Lp(Rn) solutionof

−∆v + ∇η = f̃ and div v = h̃ in R
n.We denote again by v ∈ W

1,p
0 (Ω) and η ∈ Lp(Ω) the restri
tions of v and η to

Ω. We have v|Γ0
∈ W 1− 1

p
,p(Γ0) and v|Rn−1 ∈ W

1− 1
p

,p

0 (Rn−1), thus, thanks toTheorem 3.4, there exists (w, τ) ∈ W
1,p
0 (Ω) × Lp(Ω) solution of

{
−∆w + ∇τ = 0 in Ω, div w = 0 in Ω,
w = −v|Γ0

on Γ0, w = −v|Rn−1 on R
n−1.So, (u, π) = (v + w, η + τ) ∈ W

1,p
0 (Ω) × Lp(Ω) is solution of (S0) and theestimate follows immediately. �Now, we suppose that 1 < p < 2. Thanks to the previous theorem,

T :
◦

W
1,p′

0 (Ω) × Lp′

(Ω) −→ W
−1,p′

0 (Ω) × Lp′

(Ω),

(u, π) −→ (−∆u + ∇π, div u),is an isomorphism. So, by duality,
T ∗ :

◦

W
1,p
0 (Ω) × Lp(Ω) −→ W

−1,p
0 (Ω) × Lp(Ω),is also an isomorphism and, as it is standard to 
he
k that T ∗(u, π) = (−∆u−

∇π,−div u), we have Theorem 3.5 for any p < 2. �13



Finally, it remains to return to the general problem with p 6= 2 and nonhomo-geneous boundary 
onditions. For this, like for the 
ase p = 2, we show that thereexists a fun
tion w ∈ W
1,p
0 (Ω) su
h that w = g0 in Γ0 and w = g1 in R

n−1.Then, we have just seen that there exists a unique (v, π) ∈ W
1,p
0 (Ω) × Lp(Ω)solution of

{
−∆v + ∇π = f + ∆w in Ω, v = 0 on Γ0,div v = h− div w in Ω, v = 0 on R

n−1.In 
onsequen
e, the fun
tion (u = v + w, π) ∈ W
1,p
0 (Ω) × Lp(Ω) is a solutionof the problem (SD) and we have the following theorem :Theorem 3.6. For any p 6= 2, f ∈ W

−1,p
0 (Ω), h ∈ Lp(Ω) , g0 ∈ W 1− 1

p
,p(Γ0)and g1 ∈ W

1− 1
p

,p

0 (Rn−1), there exists a unique (u, π) ∈ W
1,p
0 (Ω) × Lp(Ω)solution of the problem (SD)

(SD)

{
−∆u + ∇π = f in Ω, div u = h in Ω,
u = g0 on Γ0, u = g1 on R

n−1.Moreover, (u, π) satis�es
‖u‖

W
1,p
0 (Ω) + ‖π‖Lp(Ω) ≤ C (‖f‖

W
−1,p
0 (Ω) + ‖h‖Lp(Ω)

+ ‖g0‖
W

1− 1
p

,p
(Γ0)

+ ‖g1‖
W

1− 1
p

,p

0 (Rn−1)
),where C is a real positive 
onstant whi
h depends only on p and ω0.4 Strong solutions and regularity for the Stokessystem (SD).In this se
tion, we are interested in the existen
e of strong solutions of theStokes system (SD), i.e. of solutions (u, π) ∈ W

2,p
ℓ+1(Ω) ×W 1,p

ℓ+1(Ω). Here, welimit ourselves to the two 
ases ℓ = 0 and ℓ = −1.First, we give results for the 
ase ℓ = 0. We noti
e that in this 
ase, we havethe 
ontinuous inje
tions W
2,p
1 (Ω) →֒ W

1,p
0 (Ω) and W 1,p

1 (Ω) →֒ Lp(Ω). So, thetwo theorems whi
h follow show that generalized solutions of Theorems 2.5 and3.6, with a stronger hypothesis on the data, are in fa
t strong solutions.Theorem 4.1. For any p > 1 satisfying n

p′
6= 1, f ∈ W

0,p
1 (Ω) and h ∈

W 1,p
1 (Ω), there exists a unique (u, π) ∈ W

2,p
1 (Ω) ×W 1,p

1 (Ω) solution of (S0).Moreover, (u, π) satis�es
‖u‖

W
2,p
1 (Ω) + ‖π‖W 1,p

1 (Ω) ≤ C (‖f‖
W

0,p
1 (Ω) + ‖h‖W 1,p

1 (Ω)),where C is a real positive 
onstant whi
h depends only on p and ω0.Proof. First, we noti
e that we have the 
ontinuous inje
tions W
0,p
1 (Ω) →֒

W
−1,p
0 (Ω) be
ause n

p′
6= 1 and W 1,p

1 (Ω) →֒ Lp(Ω). Thus, thanks to Theorems14



2.5 (p = 2) and 3.6 (p 6= 2), there exists a unique (u, π) ∈ W
1,p
0 (Ω) × Lp(Ω)solution of (S0). It remains to show that (u, π) ∈ W

2,p
1 (Ω)×W 1,p

1 (Ω). For this,we introdu
e the following partition of unity :
ψ1, ψ2 ∈ C∞(Rn), 0 ≤ ψ1, ψ2 ≤ 1, ψ1 + ψ2 = 1 in R

n,

ψ1 = 1 in BR, supp ψ1 ⊂ BR+1,whith 0 < R < R′ <∞ su
h that ω0 ⊂ BR ⊂ BR′ ⊂ R
n
+. We set ΩR = Ω ∩BR,

ΩR+1 = Ω ∩BR+1, ui = ψiu ∈
◦

W
1,p
0 (Ω) and πi = ψiπ ∈ Lp(Ω) for i = 1 or 2.We noti
e that supp (u1, π1) ⊂ ΩR+1 and we denote by (ũ1, π̃1) the extensionby (0, 0) of (u1, π1) in cω0. Finally, we set

f̃1 = −∆ũ1 + ∇π̃1, h̃1 = div ũ1and (f1, h1) their restri
tion to Ω. We have in Ω :
f1 = −∆u1 + ∇π1 = ψ1f − 2∇ψ1 · ∇u − ∆ψ1 u + π∇ψ1and

h1 = div u1 = ψ1h+ div ψ1u.As u ∈ W
1,p
0 (Ω) and supp ψ1 ⊂ ΩR+1, then f1 ∈ W

0,p
1 (Ω) and h1 ∈ W 1,p

1 (Ω).Thus f̃1 ∈ W
0,p
1 (cω0), h̃1 ∈W 1,p

1 (cω0) and (ũ1, π̃1) satis�es




−∆ũ1 + ∇π̃1 = f̃1 in cω0,div ũ1 = h̃1 in cω0,
ũ1 = 0 on Γ0.So, thanks to regularity results in a �
lassi
al� exterior domain (see [3℄), wehave (ũ1, π̃1) ∈ W

2,p
1 (cω0)×W

1,p
1 (cω0) and 
onsequently (u1, π1) ∈ W

2,p
1 (Ω)×

W 1,p
1 (Ω).Now, we denote by (ũ2, π̃2) the extension by (0, 0) of (u2, π2) in R

n
+ and

f̃2 = −∆ũ2 + ∇π̃2, h̃2 = div ũ2.As supp (f̃2, h̃2) ⊂ Ω and as f̃2|Ω = f − f1 ∈ W
0,p
1 (Ω) and h̃2|Ω = h − h1 ∈

W 1,p
1 (Ω), we have

f̃2 ∈ W
0,p
1 (Rn

+), and h̃2 ∈W 1,p
1 (Rn

+).Thus, thanks to Theorem 5.2 of [10℄, we dedu
e from this that ũ2 ∈ W
2,p
1 (Rn

+),and π̃2 ∈ W 1,p
1 (Rn

+). By restri
tion, we have u2 ∈ W
2,p
1 (Ω), π2 ∈ W 1,p

1 (Ω) andso (u, π) ∈ W
2,p
1 (Ω) ×W 1,p

1 (Ω). The estimate follows immediately. �Now, as at the end of the previous se
tion, we 
an solve the problem withnonhomogeneous boundary 
onditions.Theorem 4.2. For any p > 1 satisfying n

p′
6= 1, f ∈ W

0,p
1 (Ω), h ∈ W 1,p

1 (Ω),
g0 ∈ W 2− 1

p
,p(Γ0) and g1 ∈ W

2− 1
p

,p

1 (Rn−1), there exists a unique (u, π) ∈15



W
2,p
1 (Ω) ×W 1,p

1 (Ω) solution of the problem (SD). Moreover, (u, π) satis�es
‖u‖

W
2,p
1 (Ω) + ‖π‖W 1,p

1 (Ω) ≤ C (‖f‖
W

0,p
1 (Ω) + ‖h‖W 1,p

1 (Ω)

+ ‖g0‖
W

2− 1
p

,p
(Γ0)

+ ‖g1‖
W

2− 1
p

,p

1 (Rn−1)
),where C is a real positive 
onstant whi
h depends only on p and ω0.Now, we examine the basi
 
ase ℓ = −1, 
orresponding to f ∈ Lp(Ω). First,we study the kernel of su
h a problem. We set

Sp
0(Ω) = {(z, π) ∈ W

2,p
0 (Ω) ×W 1,p

0 (Ω), −∆z + ∇π = 0 in Ω,div z = 0 in Ω and z = 0 on Γ0 ∪ R
n−1}The 
hara
terization of this kernel is given by this proposition :Proposition 4.3. For ea
h p > 1 su
h that n

p′
6= 1, we have the followingstatements : i) If p < n, Sp

0(Ω) = {(0, 0)}.ii) If p ≥ n, Sp
0(Ω) = {(v(λ) − λ, η(λ) − µ), λ ∈ (Rxn)n−1 × {0}, µ ∈ R}where (v(λ), η(λ)) ∈ W

2,p
1 (Ω) ×W 1,p

1 (Ω) is the unique solution of
{

−∆v + ∇η = 0 in Ω, div v = 0 in Ω,
v = λ on Γ0, v = 0 on R

n−1.Proof. Let (z, π) ∈ Sp
0(Ω). We easily show that there exists (z̃, π̃) ∈ W

2,p
0 (Rn

+)×

W 1,p
0 (Rn

+) su
h that (z̃, π̃)|Ω = (z, π). We set
ξ = −∆z̃ + ∇π̃ and σ = div z̃ in R

n
+.Then, ξ ∈ Lp(Rn

+), σ ∈ W 1,p
0 (Rn

+) and (z̃, π̃) ∈ W
2,p
0 (Rn

+)×W 1,p
0 (Rn

+) satis�es
(S+)






−∆z̃ + ∇π̃ = ξ in R
n
+,

div z̃ = σ in R
n
+,

z̃ = 0 on R
n−1.Moreover, ξ and σ have a 
ompa
t support, so ξ ∈ W

0,p
1 (Rn

+), σ ∈ W 1,p
1 (Rn

+),and thanks to Theorem 5.2 of [10℄, there exists (v, η) ∈ (W 2,p
1 (Rn

+)×W 1,p
1 (Rn

+)) ⊂

(W 2,p
0 (Rn

+) ×W 1,p
0 (Rn

+)) solution of (S+). Thus, (see Theorem 5.6 in [10℄), if
p < n, we dedu
e from this that

z̃ = v and π̃ = η in R
n
+,and if p ≥ n, there exists λ ∈ (Rxn)n−1 × {0} and µ ∈ R su
h that

v − z̃ = λ and η − π̃ = µ in R
n
+.So, if p < n, we have (z, π) ∈ W

2,p
1 (Ω)×W 1,p

1 (Ω) and thanks to the uniquenessof the solution of the problem of Theorem 4.1, we 
on
lude that (z, π) = {(0, 0)}and if p ≥ n, we have the 
hara
terization we were looking for. �We have the following result, 
orresponding to Theorem 4.2 :16



Theorem 4.4. For any p > 1 satisfying n

p′
6= 1, f ∈ Lp(Ω), h ∈ W 1,p

0 (Ω),
g0 ∈ W 2− 1

p
,p(Γ0) and g1 ∈ W

2− 1
p

,p

0 (Rn−1), there exists a unique (u, π) ∈
(W 2,p

0 (Ω) × W 1,p
0 (Ω))/Sp

0(Ω) solution of the problem (SD). Moreover, (u, π)satis�es
inf

(z,p)∈Sp
0(Ω)

(‖u + z‖
W

2,p
0 (Ω) + ‖π + p‖W 1,p

0 (Ω)) ≤ C (‖f‖Lp(Ω) + ‖h‖W 1,p
0 (Ω)

+ ‖g0‖
W

2− 1
p

,p
(Γ0)

+ ‖g1‖
W

2− 1
p

,p

0 (Rn−1)
),where C is a real positive 
onstant whi
h depends only on p and ω0.Proof. We easily show that there exist extensions f̃ ∈ Lp(Rn) of f and

h̃ ∈ W 1,p
0 (Rn) of h in R

n and, thanks to Theorem 3.10 of [3℄, there exists
(v, η) ∈ W

2,p
0 (Rn) ×W 1,p

0 (Rn) solution of
−∆v + ∇η = f̃ in R

n, div v = h̃ in R
n.Now, it remains to solve the problem : �nd (z, µ) ∈ W

2,p
0 (Ω) ×W 1,p

0 (Ω) su
hthat {
−∆z + ∇µ = 0 in Ω, div z = 0 in Ω,
z = g0 − v|Γ0

on Γ0, z = g1 − v|Rn−1 on R
n−1,By Theorem 5.6 of [10℄, there exists (w, τ) ∈ W

2,p
0 (Rn

+)×W 1,p
0 (Rn

+) solution of
−∆w + ∇τ = 0 in R

n
+, div w = 0 in R

n
+, w = g1 − v|Rn−1 on R

n−1.Moreover, thanks to Theorem 4.2, there exists (y, p) ∈ (W 2,p
1 (Ω)×W 1,p

1 (Ω)) ⊂
(W 2,p

0 (Ω) ×W 1,p
0 (Ω)) solution of

{
−∆y + ∇p = 0 in Ω, div y = 0 in Ω,
y = g0 − v|Γ0

− w|Γ0
on Γ0, y = 0 on R

n−1.So, (z, µ) = (y + w, p+ τ) ∈ W
2,p
0 (Ω)×W 1,p

0 (Ω) and (u, π) = (v + z, η + µ) issolution to our problem. The estimate follows immediately. �5 Very weak solutions for the homogeneous StokessystemThe aim of this se
tion is to study the system (SD) with f = 0, h = 0and singular data on the boundary. For this, we must �rstly give a meaning tosingular data for this problem. More pre
isely, we want to show that boundary
onditions of the form g0 ∈ W− 1
p

,p(Γ0) and g1 ∈ W
− 1

p
,p

ℓ−1 (Rn−1) are meaning-ful. Here, we limit ourselves to the two 
ases ℓ = 0 and ℓ = 1. Our work isrelated to that of Amrou
he, Ne£asovà and Raudin for the half spa
e ([10℄) andof Amrou
he and Girault for a bounded domain ([6℄). We refer to these papersfor the ideas of proofs for the �rst results of this se
tion. Here, we suppose that
n

p
6= 1. 17



We introdu
e the spa
e :
M ℓ(Ω) = {u ∈ W

2,p′

−ℓ+1(Ω), u = 0 and div u = 0 on Γ0 ∪ R
n−1},and we show that we have the identity

M ℓ(Ω) = {u ∈ W
2,p′

−ℓ+1(Ω), u = 0 and ∂u

∂n
· n = 0 on Γ0 ∪ R

n−1}.Then, we de�ne
Xℓ(Ω) = {v ∈

◦

W
1,p′

−ℓ (Ω), div v ∈
◦

W
1,p′

−ℓ+1(Ω)},whi
h is a re�exive Bana
h spa
e for the norm
‖v‖Xℓ(Ω) = ‖v‖

W
1,p′

−ℓ
(Ω)

+ ‖div v‖
W 1,p′

−ℓ+1(Ω)
.We 
he
k that D(Ω) is dense in Xℓ(Ω) and we denote by X ′

ℓ(Ω) the dual spa
eof Xℓ(Ω). Now, we introdu
e the spa
es
T ℓ(Ω) = {v ∈ W

0,p
ℓ−1(Ω), ∆v ∈ X ′

ℓ(Ω)},

T ℓ,σ(Ω) = {v ∈ T ℓ(Ω), div v = 0 dans Ω},whi
h are re�exive Bana
h spa
es for the norm
‖v‖T ℓ(Ω) = ‖v‖

W
0,p

ℓ−1(Ω) + ‖∆v‖X′

ℓ
(Ω),where ‖·‖X′

ℓ
(Ω) denotes the dual norm of the spa
e X ′

ℓ(Ω). It 
an be shown thatthe spa
e D(Ω) is dense in T ℓ(Ω) and that the spa
e {v ∈ D(Ω), div v = 0} isdense in T ℓ,σ(Ω).Finally, using exa
tly the same reasoning as in Lemma 6.4 and Remark 6.5of [10℄ and Se
tion 4.2 of [6℄, we 
on
lude that for a fun
tion u ∈ T ℓ,σ(Ω), thetra
e of u on Γ0 is in W− 1
p

,p(Γ0) and the tra
e of u on R
n−1 is in W

− 1
p

,p

ℓ−1 (Rn−1).Moreover, we have for any ϕ ∈ M ℓ(Ω) and for any v ∈ T ℓ,σ(Ω)

<∆v,ϕ >X′

ℓ
(Ω),Xℓ(Ω)= < v,∆ϕ >

W
0,p

ℓ−1(Ω),W 0,p′

−ℓ+1(Ω)
(5.0)

− < v,
∂ϕ

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
− < v,

∂ϕ

∂n
>

W
−

1
p

,p

ℓ−1 (Rn−1),W
1
p

,p′

−ℓ+1(R
n−1)

.We remind that, for any g0 ∈ W− 1
p

,p(Γ0) and g1 ∈ W
− 1

p
,p

ℓ−1 (Rn−1), we wantto �nd (u, π) ∈ W
0,p
ℓ−1(Ω) ×W−1,p

ℓ−1 (Ω) solution of





−∆u + ∇π = 0 in Ω, (5.1)div u = 0 in Ω, (5.2)
u = g0 on Γ0, (5.3)
u = g1 on R

n−1. (5.4)First, we remark that if (u, π) ∈ W
0,p
ℓ−1(Ω)×W−1,p

ℓ−1 (Ω) satis�es (5.1) and (5.2),then u ∈ T ℓ,σ(Ω) and thus (5.3) and (5.4) make sense. Indeed, the fun
tion uis in W
0,p
ℓ−1(Ω) and div u = 0 in Ω. Moreover, be
ause D(Ω) is dense in Xℓ(Ω),we easily show that ∇π ∈ X ′

ℓ(Ω). Thus, thanks to (5.1), we have ∆u ∈ X ′
ℓ(Ω)and u ∈ T ℓ,σ(Ω). So, in this 
ase, we have seen that u|Γ0

∈ W− 1
p

,p(Γ0) and
u|Rn−1 ∈ W

− 1
p

,p

ℓ−1 (Rn−1). 18



Proposition 5.1. For ea
h p > 1 su
h that n
p
6= 1, we suppose that the fun
-tions g0 ∈ W− 1

p
,p(Γ0) and g1 ∈ W

− 1
p

,p

ℓ−1 (Rn−1) satisfy
g0 · n = 0 on Γ0 and g1 · n = 0 on R

n−1. (5.5)Then, problem (5.1)-(5.4) is equivalent to �nd (u, π) ∈ W
0,p
ℓ−1(Ω) ×W−1,p

ℓ−1 (Ω)su
h that for any v ∈ M ℓ(Ω) and for any η ∈ W 1,p′

−ℓ+1(Ω), we have
(FV) < u,−∆v + ∇η >

W
0,p

ℓ−1(Ω),W 0,p′

−ℓ+1(Ω)
− < π, div v >

W−1,p

ℓ−1 (Ω),
◦

W
1,p′

−ℓ+1(Ω)
=

− < g0,
∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
− < g1,

∂v

∂n
>

W
−

1
p

,p

ℓ−1
(Rn−1),W

1
p

,p′

−ℓ+1
(Rn−1)

.Proof. Let (u, π) ∈ W
0,p
ℓ−1(Ω) × W−1,p

ℓ−1 (Ω) be a solution of (5.1)-(5.4).Thanks to the previous remark, we have u ∈ T ℓ,σ(Ω). Let v be in M ℓ(Ω).We dedu
e from (5.0) and (5.1) that
< u,−∆v >

W
0,p

ℓ−1(Ω),W 0,p′

−ℓ+1(Ω)
− < π, div v >

W−1,p

ℓ−1 (Ω),
◦

W
1,p′

−ℓ+1(Ω)
=

− < g0,
∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
− < g1,

∂v

∂n
>

W
−

1
p

,p

ℓ−1 (Rn−1),W
1
p

,p′

−ℓ+1(R
n−1)

.Moreover, like n
p
6= 1, the spa
e {v ∈ D(Ω), div v = 0} is dense in T ℓ,σ(Ω) andusing (5.2) and (5.5), we show that for any η ∈W 1,p′

−ℓ+1(Ω)

< u,∇η >
W

0,p

ℓ−1(Ω),W 0,p′

−ℓ+1(Ω)
= 0.Thus, we 
on
lude that (u, π) is solution of (FV). Re
ipro
ally, let (u, π) ∈

W
0,p
ℓ−1(Ω) ×W−1,p

ℓ−1 (Ω) be a solution of (FV). With η = 0 and v ∈ D(Ω), wehave
< −∆u + ∇π,v >D′(Ω),D(Ω)= 0,and with v = 0 and η ∈ D(Ω), we have

< div u, η >D′(Ω),D(Ω)= 0.Thus, (5.1) and (5.2) hold. It remains to show (5.3) and (5.4). Let v ∈ M ℓ(Ω).Thanks to Green's formula (5.0) and (FV), we have
< u,

∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
+ < u,

∂v

∂n
>

W
−

1
p

,p

ℓ−1 (Rn−1),W
1
p

,p′

−ℓ+1(R
n−1)

=

< g0,
∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
+ < g1,

∂v

∂n
>

W
−

1
p

,p

ℓ−1 (Rn−1),W
1
p

,p′

−ℓ+1(R
n−1)

.Now, let µ be in W
1
p

,p′

(Γ0). We denote by µτ the tangential 
omponent of µ.It is de�ned by
µ = µτ + (µ · n)n.We easily show that there exists w ∈ W

2,p′

−ℓ+1(Ω) su
h that





w = 0 and ∂w

∂n
= µτ on Γ0,

w =
∂w

∂n
= 0 on R

n−1.19



So, w ∈ M ℓ(Ω) and
< u,

∂w

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
= < g0,

∂w

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
.Thus

< u,µτ >
W

−
1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
= < g0,µτ >

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
.Finally, sin
e u · n = 0 on Γ0 and by hypothesis g0 · n = 0 on Γ0, we 
on
ludethat

< u,µ >
W

−
1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
= < g0,µ >

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
,i.e. u = g0 on Γ0. Now, let µ be in W

1
p

,p′

−ℓ+1(R
n−1). We know that there exists

s ∈ W
2,p′

−ℓ+1(R
n
+) su
h that

s = 0 and ∂s

∂n
= µτ on R

n−1.Moreover, as above, we 
an �nd y ∈ W
2,p′

−ℓ+1(Ω) su
h that





y = −s and ∂y

∂n
= −

∂s

∂n
on Γ0,

y =
∂y

∂n
= 0 on R

n−1.So, z = s|Ω + y ∈ W
2,p′

−ℓ+1(Ω) satis�es




z =
∂z

∂n
= 0 on Γ0,

z = 0 and ∂z

∂n
= µτ on R

n−1.Then, z ∈ M ℓ(Ω) and we easily 
on
lude like above that u = g1 on R
n−1.Thus, we have the equivalen
e of the two problems. �Now, we 
an solve the homogeneous Stokes system (5.1)-(5.4) with singularboundary 
onditions. We will give separately the results for ℓ = 0 and ℓ = 1.Note that the �rst theorem (for the 
ase ℓ = 0) extends Theorems 2.5 and 3.6(with f = 0 and h = 0) sin
e W

1,p
0 (Ω) ⊂ W

0,p
−1(Ω) if n 6= p.Theorem 5.2. For any p > 1 su
h that n

p
6= 1, g0 ∈ W− 1

p
,p(Γ0) and g1 ∈

W
− 1

p
,p

−1 (Rn−1) satisfying (5.5), there exists a unique (u, π) ∈ W
0,p
−1(Ω)×W−1,p

−1 (Ω)solution of (5.1)-(5.4). Moreover, (u, π) satis�es
‖u‖

W
0,p

−1 (Ω) + ‖π‖W−1,p

−1 (Ω) ≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

−1 (Rn−1)
),where C is a real positive 
onstant whi
h depends only on p and ω0.20



Proof. In fa
t, we solve (FV). For this, we argue by duality. Sin
e n
p
6= 1,thanks to Theorem 4.1, we 
an say that for any f ∈ W

0,p′

1 (Ω) and h ∈
◦

W
1,p′

1 (Ω), there exists a unique (v, η) ∈ W
2,p′

1 (Ω) ×W 1,p′

1 (Ω) solution of
{

−∆v + ∇η = f in Ω, div v = h in Ω,
v = 0 on Γ0, v = 0 on R

n−1,satisfying
‖v‖

W
2,p′

1 (Ω)
+ ‖η‖

W 1,p′

1 (Ω)
≤ C (‖f‖

W
0,p′

1 (Ω)
+ ‖h‖

W 1,p′

1 (Ω)
).Then,

| < g0,
∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
+ < g1,

∂v

∂n
>

W
−

1
p

,p

−1 (Rn−1),W
1
p

,p′

1 (Rn−1)
|

≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

−1 (Rn−1)
)(‖f‖

W
0,p′

1 (Ω)
+ ‖h‖

W 1,p′

1 (Ω)
).We 
an dedu
e from this that the linear mapping T de�ned by

T (f , h) = < g0,
∂v

∂n
> + < g1,

∂v

∂n
>, (5.6)on W

0,p′

1 (Ω)×
◦

W
1,p′

1 (Ω) is 
ontinuous. So, a

ording to the Riesz representa-tion theorem, there exists a unique (u, π) ∈ W
0,p
−1(Ω) ×W−1,p

−1 (Ω) su
h that
< u,f >

W
0,p

−1 (Ω),W 0,p′

1 (Ω)
+ < π, h >

W−1,p

−1 (Ω),W 1,p′

1 (Ω)
=

− < g0,
∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
− < g1,

∂v

∂n
>

W
−

1
p

,p

−1 (Rn−1),W
1
p

,p′

1 (Rn−1)
.Thus, noti
ing that v ∈ M0(Ω), we dedu
e that (u, π) satis�es (FV). �The next 
orollary relaxes the 
onstraint (5.5) on the data. In order to es-tablish this 
orollary, we give the following lemma.Lemma 5.3. For any p > 1, g0 ∈ W− 1

p
,p(Γ0) and g1 ∈ W

− 1
p

,p

−1 (Rn−1), thereexists a fun
tion s ∈W 1,p
−1(Ω) solution of

∆s = 0 in Ω,
∂s

∂n
= g0 on Γ0,

∂s

∂n
= g1 on R

n−1.Moreover, s satis�es
‖s‖W 1,p

−1 (Ω) ≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

−1 (Rn−1)
),where C is a real positive 
onstant whi
h depends only on p and ω0.Proof. Using results in the half spa
e (see Theorem 3.7 in [4℄), we knowthere exists z ∈W 1,p

−1(R
n
+) solution of

−∆z = 0 in R
n
+,

∂z

∂n
= g1 on R

n−1,21



satisfying
‖z‖W 1,p

−1 (Rn
+) ≤ C ‖g1‖

W
−

1
p

,p

−1 (Rn−1)
.We have g = g0 −

∂z

∂n
∈ W− 1

p
,p(Γ0) and it remains to solve the followingproblem : �nd v ∈W 1,p

−1(Ω) solution of
∆v = 0 in Ω,

∂v

∂n
= g on Γ0,

∂v

∂n
= 0 on R

n−1. (5.7)To solve this problem, we solve �rst the following one : �nd y ∈ W 1,p
−1(Ω̃) solutionof

∆y = 0 in Ω̃,
∂y

∂n
= g̃ on Γ̃0 (5.8)su
h that

‖y‖W 1,p

−1 (eΩ) ≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

−1 (Rn−1)
);here we remind that Ω̃ = Ω∪Ω′ ∪R

n−1 with Ω′ the symmetri
 region of Ω withrespe
t to R
n−1 and Γ̃0 = ∂Ω̃ and that g̃ is an extension of g in W− 1

p
,p(Γ̃0)symmetri
 with respe
t to R

n−1 (we refer to Theorem 3.3 in [5℄ to �nd su
h anextension). To �nd a solution y of (5.8), we split the proof into two 
ases. First,if n
p′
> 1, we apply Theorem 3.11 in [8℄ (there is no 
ondition of 
ompatibility),so there exists y ∈ W 1,p

0 (Ω̃) ⊂ W 1,p
−1(Ω̃) solution of (5.8) and satisfying theestimate. Next, if n

p′
≤ 1, we set for any x in Ω̃

w(x) = −
1

2π

∫

eΓ0

E(x − y) dx,where E is the fundamental solution of the Lapla
ian and we easily show that
w ∈ W 1,p

−1(Ω̃) (but w /∈ W 1,p
0 (Ω̃)), that ∆w = 0 in Ω̃ and < ∂w

∂n
, 1 >eΓ0

6= 0. Wede�ne λ by
λ =

< g̃, 1 >eΓ0

<
∂w

∂n
, 1 >eΓ0

,so that the 
ompatibility 
ondition
< g̃ − λ

∂w

∂n
, 1 >eΓ0

= 0is satis�ed. Thanks to Theorem 3.11 in [8℄, there exists u ∈W 1,p
0 (Ω̃) ⊂W 1,p

−1(Ω̃)solution of
∆u = 0 in Ω̃,

∂u

∂n
= g̃ − λ

∂w

∂n
on Γ̃0satisfying

‖u‖W 1,p
0 (eΩ) ≤ C ‖g̃ − λ

∂w

∂n
‖

W
−

1
p

,p
(Γ0)

.22



Thus, y = λw + u is solution of (5.8) and satis�es the estimate. Now, let y0 ∈

W 1,p
−1(Ω̃) a solution of (5.8) and let s0 ∈ W 1,p

−1(Ω̃) be de�ned, for almost all
(x′, xn) ∈ Ω̃, by

s0(x
′, xn) = y0(x

′,−xn).Thanks to the symmetry of Ω̃ and g̃ with respe
t to R
n−1, we prove that s0 isalso a solution of (5.8) (here again, for more details, we refer to the proof ofTheorem 3.3 in [5℄). Then, setting v =

1

2
(y0 + s0)|Ω ∈W 1,p

−1(Ω), we show that vsatis�es (5.7) and we have
‖v‖W 1,p

−1 (Ω) ≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

−1 (Rn−1)
).Finally, the fun
tion s = z + v solves the problem and the estimate followsimmediately. �Now, we have the following result.Corollary 5.4. For any p > 1 satisfying n

p
6= 1, g0 ∈ W− 1

p
,p(Γ0) and g1 ∈

W
− 1

p
,p

−1 (Rn−1) there exists a unique (u, π) ∈ W
0,p
−1(Ω) ×W−1,p

−1 (Ω) solution of(5.1)-(5.4). Moreover, (u, π) satis�es
‖u‖

W
0,p

−1 (Ω) + ‖π‖W−1,p

−1 (Ω) ≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

−1 (Rn−1)
),where C is a real positive 
onstant whi
h depends only on p and ω0.Proof. The uniqueness 
omes from Theorem 5.2. For the existen
e, thanksto the previous lemma, there exists s ∈W 1,p

−1(Ω) solution of
∆s = 0 in Ω,

∂s

∂n
= g0 · n on Γ0,

∂s

∂n
= g1 · n on R

n−1.Now, we de�ne w by w = ∇s ∈ W
0,p
−1(Ω) and we easily show that tra
es of won Γ0 and R

n−1 have a sense respe
tively in W− 1
p

,p(Γ0) and W
− 1

p
,p

−1 (Rn−1). Weset g0
∗ = g0−w|Γ0

and g1
∗ = g0−w|Rn−1 and we noti
e that the fun
tions g0

∗and g1
∗ satisfy (5.5). So we 
an apply the previous theorem and there exists

(v, π) ∈ W
0,p
−1(Ω) ×W−1,p

−1 (Ω) solution of
{

−∆v + ∇π = 0 in Ω, div v = 0 in Ω,
v = g0

∗ on Γ0, v = g1
∗ on R

n−1,and satisfying
‖v‖

W
0,p

−1 (Ω) + ‖π‖W−1,p

−1 (Ω) ≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

−1 (Rn−1)
),Finally, (u = v + w, π) is solution of (5.1)-(5.4) and the estimates followsimmediately. �Now, we des
ribe a result for the 
ase ℓ = 1.23



Theorem 5.5. For any p > 1 su
h that n
p

6= 1, g0 ∈ W− 1
p

,p(Γ0) and g1 ∈

W
− 1

p
,p

0 (Rn−1) satisfying (5.5) and the following 
ompatibility 
ondition if p ≤
n

n− 1
: for ea
h (z, p) ∈ Sp′

0 (Ω)

< g0,
∂z

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
+ < g1,

∂z

∂n
>

W
−

1
p

,p

0 (Rn−1),W
1
p

,p′

0 (Rn−1)
= 0,there exists a unique (u, π) ∈ Lp(Ω)×W−1,p

0 (Ω) solution of (5.1)-(5.4). Moreo-ver, (u, π) satis�es
‖u‖Lp(Ω) + ‖π‖W−1,p

0 (Ω) ≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

0 (Rn−1)
),where C is a real positive 
onstant whi
h depends only on p and ω0.Proof. In fa
t, here again, we solve (FV). For this, we apply a duality argu-ment. Like n

p
6= 1, thanks to Theorem 4.4, we 
an say that for any f ∈ Lp′

(Ω)and h ∈
◦

W
1,p′

0 (Ω), there exists a unique (v, η) ∈ (W 2,p′

0 (Ω)×W 1,p′

0 (Ω))/Sp′

0 (Ω)solution of
{

−∆v + ∇η = f in Ω, div v = h in Ω,
v = 0 on Γ0, v = 0 on R

n−1,satisfying
inf

(z,p)∈Sp′

0 (Ω)

(‖v + z‖
W

2,p′

0 (Ω)
+ ‖η + p‖

W 1,p′

0 (Ω)
) ≤ C (‖f‖

Lp′

(Ω) + ‖h‖
W 1,p′

0 (Ω)
).Then, for any (z, p) ∈ Sp′

0 (Ω)

| < g0,
∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
+ < g1,

∂v

∂n
>

W
−

1
p

,p

0 (Rn−1),W
1
p

,p′

0 (Rn−1)
|

= | < g0,
∂

∂n
(v + z) >

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)

+ < g1,
∂

∂n
(v + z) >

W
−

1
p

,p

0 (Rn−1),W
1
p

,p′

0 (Rn−1)
|

≤ C (‖g0‖
W

−
1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

0 (Rn−1)
)(‖f‖

Lp′ (Ω) + ‖h‖
W 1,p′

0 (Ω)
).We dedu
e from this that the linear mapping T de�ned on Lp′

(Ω)×
◦

W
1,p′

0 (Ω)by (5.6) is 
ontinuous. So, a

ording to the Riesz representation theorem, thereexists a unique (u, π) ∈ Lp(Ω) ×W−1,p
0 (Ω) su
h that

< u,f >
Lp(Ω),Lp′(Ω) + < π, h >

W−1,p
0 (Ω),W 1,p′

0 (Ω)
=

− < g0,
∂v

∂n
>

W
−

1
p

,p
(Γ0),W

1
p

,p′

(Γ0)
− < g1,

∂v

∂n
>

W
−

1
p

,p

0 (Rn−1),W
1
p

,p′

0 (Rn−1)
.Thus, noti
ing that v ∈ M1(Ω), we dedu
e that (u, π) satis�es (FV). �Here again, with a similar proof as in Corollary 5.4, we want to relax the
onstraint on the data : 24



Corollary 5.6. For any p > n

n− 1
, g0 ∈ W− 1

p
,p(Γ0) and g1 ∈ W

− 1
p

,p

0 (Rn−1),there exists a unique (u, π) ∈ Lp(Ω)×W−1,p
0 (Ω) solution of (5.1)-(5.4). Moreo-ver, (u, π) satis�es

‖u‖Lp(Ω) + ‖π‖W−1,p
0 (Ω) ≤ C (‖g0‖

W
−

1
p

,p
(Γ0)

+ ‖g1‖
W

−
1
p

,p

0 (Rn−1)
),where C is a real positive 
onstant whi
h depends only on p and ω0.Proof. When p > n

n− 1
, we follow the same reasoning as in Corollary 5.4using Theorem 3.3 in [5℄ to �nd s ∈ W 1,p

0 (Ω) su
h that
∆s = 0 in Ω,

∂s

∂n
= g0 · n on Γ0,

∂s

∂n
= g1 · n on R

n−1.and using the previous theorem. �Remark : When 1 < p ≤
n

n− 1
, we noti
e that, be
ause of the 
ompatibility
ondition of Theorem 5.5, we 
an not prove a result similar to Corollary 5.4.Referen
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