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Dedicated to Giovanni Paolo Galdi at the occasion of his 60th Birthday

Abstract. This contribution is devoted to the Oseen equations, a linearized
form of the Navier-Stokes equations. We give here some results concerning the
scalar Oseen operator and we prove Hardy inequalities concerning functions
in Sobolev spaces with anisotropic weights that appear in the investigation of
the Oseen equations.
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1. Introduction

In an exterior domain € of R3, the Oseen system is obtained by linearizing the
Navier-Stokes equations, describing the flow of a viscous fluid past the obstacle
R3 \ Q, around a nonzero constant vector which is the velocity at infinity. When
) = R3, the system can be written as follow:

oAk S Vr—f R

Oxq (1.1)
divu=g inR3

where we add the condition at infinity

lim u(x) = ue. (1.2)

[x|—o0

The data are the viscosity of the fluid v, the external forces acting on the fluid f, a
function g, a constant vector u,, and a real k > 0. The unknowns are the velocity
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of the fluid u and the pressure function 7. Let us now notice that the pressure
satisfies the Laplace equation

A = div £+ vAg — k22, (1.3)
83?1
and each component u; of the velocity satisfies
87.1,1'

or

Hence we see that the Oseen problem (1.1) is related to the following equation:

ou
—vAu+k=— = f in R®. 15
vAu + D, fin (1.5)
Therefore, the results arising from the analysis of (1.5) can be used for the investi-
gation of the Oseen problem (1.1). To prescribe the growth or the decay properties
of functions at infinity, we consider here weighted Sobolev spaces where the weight
reflects the decay properties of the fundamental solution O of (1.5) defined by

1
O(x) = ——e Fllxl=a)/2v, 1.6
) = Tl (16)
Note now that, at infnity, O has the same following decay properties than the
fundamental solution of Oseen

O(x) = O(n=}(x), VO&) = O(n"Y2(x)), 920(x) = O(M3(x)), ...

where 75 (x) = ng = (1+[x[)*(1+[x] —21)% will be the weight function considered.
Equation (1.5) has been investigated by Farwig (see[6]) in weighted L2-spaces, with
the weight 73.

Furthermore, for r = |x| sufficiently large, we obtain the following anisotropic es-
timates:

OF)| < Crt(1+9)7% [§2(x)] <Cr2(1+s)72,

(1.7)

29| <Cri(l+s)75(1+2), j=23, ifn=3,

0| <Cr2(1+s)7", [22(x)|<Cr2 (1+5)7)
(1.8)

Lo <Crt(l+s7!, ifn=2
Note also the following properties:
Vp>3, OcLP(R® and Vp e]gﬂ[, VO e LF(R?), (1.9)
3 43 3

Vpel2,3[, Oe€LP(R’) and VYpe]-,=[, VO e LP(R?), (1.10)

372
OclLl(R") and VOeL, (R"), forn=23. (1.11)
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Observe that when f € D(R3), then u = O x f is a solution of (1.5). We have also
u=FH(mo(§)Ff), with mo(§) = ([€* +ik&1) ™" and G = F ' (mq (§)F f), with
m1(€) = i&;(|€|? + ik& )™t Here Ff is the Fourier transform of f.

2. Scalar Oseen Potential in three dimensional space

This section is devoted to the LP estimates of convolutions with Oseen kernels.
Before that, we introduce some basic weighted Sobolev spaces. We first set p(x) =
(1+ | x [2)2,1g p = In(1 + p) and we define

Wy (R?) = {v € D'(R%); w% € LP, Vv € LP(R3)} ,

withwy; = pifp# 3, w1 =plgpif p=3 and Wo_l’pl (R3) = (W, P(R3))". We recall
that D(R?) is dense in W, (R?) and the constant functions belong to W, ?(R?)
if p > 3. We now introduce a second family of weighted spaces:

— )
WP (R") = {v e WP (R"), 87;’1 € Wol’p(R")}

and we can prove that

D(R™) is dense in WP (R™).

Theorem 2.1.  Let f € LP(R3). Then af;gk x f € LP(R3) (in the sense of

principal value), 3701 x f € LP(R®) and the following estimate holds

9?0

00
- »(R3 —_— o3y < b REY. 91
||8xjal'k # Sl (RH_”(%I * flloe@s) < CllfllLe@s) (2.1)

Moreover,

1) ifl<p<2 then Oxf € L%(R3) and satisfies
1O fll 2o o < CllflLr@s)- (2.2)

5 (&)
2) If1<p<A4,then % xfe L“%’(RB) and verifies the estimate
00
Oz, 2 R = P(RS)- 2.
Haxj ¥ f”Lffp(m) < Cllf e @) (2.3)

Proof. By Fourier’s transform, from Equation (1.5) we obtain:

520 g6
——*f) = 5
Oz 0z £ +i&

F(f)-
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Now, the function & — m(&) = s_zifé‘l is of class C? in R3 \ {0} and satisfies for
every a = (aq, o, a3) € N3

dlelm

g <clee,

e )1 < Cle
where, || = a1 + a2 + a3 and C' is a constant not depending on €. Then, the

linear operator

. 0’0 _ ixe —Si€k
Arf gl go = [ o S e ag

is continuous from LP(R?) into LP(R?) (see E. Stein [20], Thm 3.2, p.96). There-
fore, =20« f € LP(R3) and satisfies

) axjaa?k
0?0
Hm * fllr sy < Cllfllpe(rs)-
We also have 50 ”
i&
Flz—=*f)= F
and since the function & — m4(€) = 5226-;&1 have the same properties than m(&),
it follows that g—g x f € LP(R?) and satisfies the estimate
00
||67x1 * flle sy < Ol flloe@s),

which proves the first part of the proposition and Estimate (2.1). Next, to prove
inequalities (2.2) and (2.3), we adapt the technique used by Stein in [20] who
studied the convolution of f € LP(R™) with the kernel |x|* ™. Let us decompose
the function K as K + K., where,

Ki(x)=K(x) if |x|<p and Ki(x)=0 if x| >y,

(2.4)

Ko(x)=0 if |x|<p and Ko (x)=K(x) if |x| > pu.

The function K will denote successively O and % and p is a fixed positive
J

constant which need not be specified at this instance. Next, we shall show that the
mapping f — K « f is of weak-type (p,q), with ¢ = 522 when K = O and ¢ = 44—

2
2—p —p
when K = %, in the sense that:
J

forall A > 0, mes{x;|(K * f)(x)] > A} < (CpﬂHfHL;UW))q. (2.5)

Since K x f = Ky *x f + K, * f, we have now:
mes {x ; |K * f| > 2} <mes{x;|Ky * f| > A} + mes {x;|Kw * f| > A}, (2.6)
Note that it is enough to prove inequality (2.5) with || f|| »(rs) = 1. We have also:

1 1y WKl ooy
AP - AP ’

mes {x;|(K1 * f)(x)] > A} < (2.7)
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and
Koo * fllzoe®s) < [[Kooll Lo (r3)- (2.8)

1) Estimate (2.2). Observe that O; € L*(R3) and O € L¥ (R?) for 1 < p < 2.
Then, the integral O; * f converges almost everywhere and Oy * f converges
everywhere. Thus, O * f converges almost everywhere. But

Yu >0, H01||L1(]R3) < Cpu. (2.9)

Next, by using (1.7), we have for any p’ > 2:
2-p’
Vi >0, ||O<><>||LP’(R3) <Cp . (2.10)

Choosing now A = CMQ_T’I) or equivalently p = C'A7°2. Then from (2.10) and
(2.8) we have [|Ox * f|| oo ®s) < A and so mes {x; O * f| > A} = 0. Finally, for
1 < p < 2, we get from inequalities (2.9), (2.6) and (2.7):

mes {x € R%; |(O % f)(x)| > A} < (q&) o 2.11)

Therefore, for 1 < p < 2, the operator R: f — O x f is of weak-type (p, ;Tpp).
2) Estimate (2.3). Here we take K = 2. First, according to (2.1), 2 « f €

) 6:E1

WLP(R3) then, by the Sobolev embedding results, we have in particular, g—g xf €
L%(R?’). It remains to prove Estimate (2.3) for j = 2, 3. First we have:

00 90
Hé@ﬂymnﬁcmifuélamwagmmwﬁgwi i o> 1

Furthermore, we have for p’ > %:

’
p

/| %(X) dx < Cp*™, if p<1,
x| >p J

00 | 1-3p/

— dx < 2 if 1.
/x|>u (%j(x) x <Cpu , if p>

Summarising we obtain:

a) If0< <1,
/ 6—O(x)|alx <ep  and / |6—O(x)\p/ dx < Copt=,
xl<p 0% Ki>u 07j
b)if p > 1,

/ 8—O(x)|dx <cp?  and / @(X)V’l dx <Cu >
| \

x|<p axj X|>p axj
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4-3p’ 4-3p’
Setting A = Cu " in the case a)or A=Cu %' in the case b), we get in both
cases:
1\ 57
mes {x € R?; |K x f(x)| > A} < <C’p/\) : (2.12)
Thus, for 1 < p < 4, the operator R; : f — 372 * f is of weak-type (p, ffpp).
Applying now the Marcinkiewicz interpolation’s theorem, we deduce that, for 1 <
2p P
p < 2, the linear operator R is continuous from LP(R?) into L2-7(R3) and for
4p
1 < p <4, R; is continuous from LP(R?) into L7-7 (R%). MW

Remark 2.2. Another proof of Theorem 2.1 consists in using Fourier’s approach.
Let (f;)jen C D(R?) be a sequence which converges to f € LP(R3). Then the
sequence (u;);en given by:

uj = F - mo(€)F f), mo(€) = (€ +i1)™" (2.13)

satisfies the equation —Au; + g—;‘i = f;. Let us recall now the:
Lizorkin Theorem. Let D = {¢ € R3; €| > 0} and m : D — C, a continuous
k

function such that its derivatives w are continuous and verify

9"m
oektoch2 o¢k

oFm

k140 ka4 k3+0 <
|§1‘ |€2| |§3‘ affl 855285;?3 =

M, (2.14)

where ki, ko, ks € {0,1}, k =k1 + k2 + k3 and 0 < 8 < 1. Then, the operator
Az g— FH(mo Fyg),

is continuous from LP(R®) into L"(R3) with % = % - 6.

Applying this continuity property with f; € LP(R3) and 8 = 1

2 )
(uj) is bounded in L7 (R3) if 1 < p < 2. Thus, this sequence has a subsequence
still denoted by (u;) which converges weakly to w and which satisfies Tu = f.
For the derivative of u; with respect to 1, the corresponding multiplier is of the
form m(€) = & (|€|* +i&) L. Tt follows that (2.14) is satisfied for f = 0 and
667;1 € LP(R?). The same property takes place for the derivatives of second order
with m(&) = & (/€)% +i&1) 7. Finally, we verify with 3 = %, that the derivative
of (u;) with respect to xj, is bounded in L35 (R?), which implies aaTuk € Li (R3).
|

we show that

Theorem 2.1 states that 65;51 - feLP (R?) and under some conditions on p,

g—g x f € L%(R% and O f € LZ’%(R?’). Now, using these results and the
classical Sobolev embedding results, we have the following:
Theorem 2.3. Let f € LP(R3).

1) Assume that 1 < p < 4. Then VO % f € L%(RS) with the estimate (2.3).
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Moreover, \
i) ifl<p<3, then VOx f € LTPP(R?’) with the estimate
IVO % £l 2, oy = CF o). (2.15)
ii) If p=3, then VO x f € L"(R®) for any r > 12 and satisfies
VO = fllur®s) < CllfllLews).- (2.16)
iii) If3<p<4,then VO x f € L*(R3) and verifies the estimate
VO * fllvee sy < Cllfl| Lo gs)- (2.17)

2) Assume that 1 < p < 2. Then O x f € L%(RB) with the estimate (2.2).
Moreowver,

i) ifl<p<3, then Oxfe L%(R‘?’) and satisfies

[|O N < O\l fllLrrs)- (2.18)
i) Ifp= %, then O * f € L"(R®) for any r > 6 and

10 Fllor sy < Clf oo e (2.19)

iii) If 3 <p<2, then Ox f € L>®(R®) and the following estimate holds
10 * fllzoe sy < Ol fllpews)- (2:20)
Proof. 1) If 1 < p < 4, the previous theorem asserts that gTOj xf € L5 (R3)
and 89? 8% xf € LP(R3). If 1 < p < 3, there exists a unique constant k(f) € R such
that v = 22 f+K(f) € Wy ”(R®). Then k(f) = v— 32 «f € Wy *(R®)+L77 (R?).

As none of both spaces contains constants then k( f) = 0, which 1mplies that
Wj x f € Wy P(R3). Now, the Sobolev embedding results yield 22 f € L3 7 (R3)
and Estimate (2. 15) If p > 3, again by the previous theorem, we have bz, * fe
Wol’p(]Rg) Then 99 « f € BMO(R?) if p = 3. Applylng now the interpolation
theorem between BMO(R3) and LP(R?), we get 92 f € L"(R3) for any r > 12.
By Sobolev embedding results, if 3 < p < 4, we have Wj * f € L°°(R3), ) and the
case 1) is proved.

2) By the previous theorem, if 1 < p < 2, we have Ox f € L5 (R3) and VOx f €
L%(R:*). Now by Sobolev embedding results, O * f € LP"(R?), where p% =

1_1

?’3;[)1’ —3=5" % ifl<p< %, which yields (2.15). For the remainder of the proof,

we use the same arguments that in the previous case with O x f instead of % x f
J

and * f instead of 83‘? gﬁ «f. N

Remark 2.4. In Farwig and Sohr [8], Theorem 2.3 proves existence of solutions to
the Oseen equations with forces in LP, thanks to the Lizorkin theorem’s. These
solutions, which are not explicit, belong to homogeneous Sobolev spaces. Here, in
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Theorem 2.1, we prove some continuity properties for the Oseen potential, without
using Lizorkin theorem’s, and in Theorem 2.3, we complete thoses properties,
thanks to Sobolev embeddings and we find the same results as the ones given in
[8].

Remark 2.5. 1) We can also have the result given by Theorem 2.3 2), by showing
that O € L?>°(R3), i.e.

sup p? mes {x € R*; O(x) > u} < +oo. (2.21)
pn>0

So that, for any 1 < ¢ < 2, according to weak Young inequality (cf. [19], chap.
IX.4), we obtain:
011, 21

Let now p €]1,2[. There exist pg and p; such that 1 < pg < p < p1 < 2 and such
that the operator R : f —— O x f is continuous from LP?(R3) into L’f—Lon’OO(Rg’)
and from LP'(R3) into L22*L1’11’°°(]R3 ). The Marcinkiewicz theorem allows again to
conclude that the operator R is continuous from LP(R?) into L%(Rg’)

ii) The same remark remains valid for V O that belongs to L%’OO(R3). [ |

) < OO L2 @3 1 f | Lags)- (2.22)

Using the Young inequality with the relations (1.10) and (1.11), we get the follow-
ing result:

Proposition 2.6. Let f € L*(R3). Then
1) O x f € LP(R3) for any p €]2,3[ and satisfies the estimate

||O*f||Lp(R3) S C”fHLl(]Rg), (223)
2) VO« f € LP(R?) for any p €3, 3] and the following estimate holds
HVO*fHL:D(RB) < C||f||L1(R3). (2.24)

Remark 2.7. Taking ”formally” p = 1 in Theorem 2.3, we find that Ox f € L4(R?)
for any q €]2,3[ and VO = f € L1(R?) for any q €]3, 3[. We notice that they are
the same results obtained in Theorem 2.6 by using the Young inequality.

Now, we are going to study the Oseen potential Ox f when f belongs to Wofl’p (R3).
For that purpose, we give the following definition of the convolution of f with the
fundamental solution O:

VQD € D(R3)7 <O * f’ ‘P> = <fﬂ @ * 90>W0—1>P(]R3)><W01=F/ (]RB)’ (225)

where O(x) = O(—x). With the L>® weighted estimates obtained in [14] (Thms 3.1
and 3.2), we get an estimate on the convolution of O with a function ¢ € D(R?)
which we shall use afterward as follow

Lemma 2.8. For any ¢ € D(R®) we have the estimates

Ny 1
[Oxp(x)| < C

- 2.26
< ConUa W+ a) (2.26)
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5 1
VO *p(x)] < Cpo—s 5
P1x)3 (1 + x| +a1)?

: (2.27)

where Cy, depends on the support of ¢.

Remark 2.9. 1) The behaviour on |x| of O ¢ and its first derivatives is the same
that of O, but the behaviour on 1 + s is slightly different (see (1.7).
2) From estimates (2.26), (2.27) we find that

4 o
Yg> 3, Oxpe Wyt (R3). (2.28)
3) In (2.26) and (2.27), when ¢ tends to zero in D(R?), then C,, tends to zero in
R.

The next theorem studies the continuity of the operators R and R; when f
belongs to Wy "7 (R3).

Theorem 2.10. Assume that 1 < p < 4 and let f € WO_I’p(Rg) satisfying the
compatibility condition

3
<f, 1>W0_1’p(R3)><Wol’pl(]R3) = 0, When ]. < P S 5 (229)

Then O * f € L%(R3) and VO x f € LP(R3) with the following estimate

10 11, g5, o + 19O * Tl < Ol (2.30)
Moreover,
3p
i) if 1 <p <3, then Ox f € L3-7(R3) and the following estimate holds
1O fHL%(W) < CHfHW(;LP(]RS)' (2.31)
ii) If p=3, then O x f € L"(R3) for any r > 12 and satisfies
10 % Fllur@s) < CllF vy (2.32)
iii) If3 <p<4, then O f € L°(R3) and we have the estimate
HO * fHL“’(]Ri") < CHf||W071’p(R3)' (233)

Proof. Let 1 < p < 4. By Lemma 2.8 and Remark 2.9 point 3), if ¢ — 0 in
D(R?), then C, — 0 where C,, is defined by (2.26). Thus, O % ¢ — 0 in Wol’p/ (R3)
for all p €]1,4[, which implies that O x f € D'(R3). Next, there exists F € L”(R?)
such that

f=divF and [F|gegs) < C||f\|W(;1,p(R3). (2.34)
According to (2.1), we have for any » € D(R?),
00 0
|<67$j * [io)p@syxpey| = [(F,V %jo * ¢>LP(R3)XLP’(R3)|

= C”fHWJl’p(]R?ﬁ)||‘P||LP’(R3)'
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Then we deduce the second part of (2.30). We also have for all ¢ € D(R?):
(O f, @)D’(R'J)XD(]I@) =—(F,V O x <)0>LP(]R3)><L;D' (R3)»
and by (2.3):

(0 £.@pr@syxpi@n| < Cllf g omqan 2], o o

we have the first part of

(2.30). Moreover, by Sobolev embeddings, O x f € L%(R?’) fl<p<3, Oxf
belongs to L"(R3) for all 7 > 12 if p = 3 and belongs to L>=(R?) if 3 < p < 4.
Thus, we showed that if 1 < p < 4, the operators R and R; are continuous. W

Corollary 2.11. Assume that 1 < p < 4. If u is a distribution such that Vu €
L?(R?) and 36—;‘1 € Wy "P(R?), then there exists a unique constant k(u) such that
u+ k(u) € L%(R?’) and

0

u
k@) [, 0 < OOVl + g o) (239

Moreover, if 1 < p < 3, then u+ k(u) € L%(R3), where k(u) is defined by:
1
k(u) = — lim —/ u(olx|) do, (2.36)
Sa

where, ws denotes the area of the sphere Sy and u tends to the constant —k(u) as
x tends to infinity in the following sense:

lim lu(o|x|) + k(u)|do = 0. (2.37)
|x| =00 Ss
If p = 3, then u + k(u) belongs to L"(R3) for any r > 12. If 3 < p < 4, then u
belongs to L= (R3), is continuous in R® and tends to —k(u) pointwise.

Proof. We set g = —Au —|— € Wo_l’p(R?’) Since 7317;] contains at most

constants and according to the dens1ty of D(R3) in WP(R3), then g satisfies the

compatibility Condition (2.29). By the previous theorem, there exists a unique
4

v =0%xg € LT (R? such that Vv € LP(R?) and (%’1 € LP(R3), satisfying

T(u—v) =0, where T is the Oseen operator, with the estimate:

Ju
101, 5y < O V0 )+ 1 ) (2.38)
Setting w = u—wv, we have for alli = 1,2, 3, aw € LP(R3) and satisfies T'( a“’) = 0.
Then by an uniqueness argument, we deduce that Vu = Vo and consequently
there exists a unique constant k(u), defined by (2.36), such that u+ k(u) = v. The
last properties are consequences of Sobolev embeddings. W
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Remark 2.12. Let u € D'(R3) such that Vu € LP(R3?).

i) If 1 < p < 3, we know that there exists a unique constant k(u) such that
u+ k(u) € L%(RS) Here, the fact that in addition 2% € Wy P (R3) we also
have u + k(u) € L7 (R?), with 72 < 22
ii) If 3 < p < 4, for any constant k, u + k belongs only to Wol’p(R3) but not to
the space L"(R3). But, if moreover g—;‘l € Wy "P(R3) then, u + k(u) € L%(R%
for some unique constant k(u). Moreover u + k(u) € L"(R3) for any r > 44%1] and
u e L®(R3) if p > 3.

3. Weighted Hardy inequalities

In this section, our aim is to give some weighted anisotropic Hardy inequalities in
R™ with n > 2.
For a, § € R, we consider the anisotropic weight functions

g =(1+1)*1+s)’,
with
s=s(x) =1 —2x1.

We define the weighted space

LZ”@(}R”) ={veD'(R"), ngve LP(R")},
which is a Banach space for its natural norm given by
||UHL§’W(RTL) = ||77§U||LP(R7L)-
We introduce the first family of weighted Sobolev spaces,
1, n n
WL (R?) = {v e !, ,(R"), Vo e L} ,(R )},

@) ={verl , . (R"),Vve L} ,RM},
YLP(R3) = {v €L, 4(R"), Vv e Lgﬁ(w)} .
These are Banach spaces for their natural norms. Observe that
WP (R?) C X, B(R®) C Y B(R?).

All the local properties of the spaces Wi:g(RB), X;’,’é(Rg) and Y;”S(R‘?’) coincide
with those of classical Sobolev spaces W?(R™). Moreover, we have the following
properties:

Proposition 3.1.

The space D(R™) is dense in Wi:Z(R?’) (resp. in Xil%(R3) and in Yi7’§(R3)> .
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Proof. It relies on a truncation procedure. Let u € Wal:g(R?’), » € D(R™), with
0<px) <1,¢x) =1ifr <1, p(x) =0if r > 2, and set pr(x) = p(x/k),
up = ugpy. We have

Iluk - U”‘p;V;Z(Rs) = Huk - u”ZI)‘if%’B(Rn) + ||V(Uk‘ - u)Hizﬁ(ﬂan)

< (e = Dullfe Jan Tt Cll(px — I)VUHZQB(RH)

a—3,

+C||UV§D[€H€£§(RH), (31)

where C is a positive real. Since u € Wig (R3), it is clear that the first two terms
of the right hand side of (3.1) tend to zero, when & tends to co. Now, the last term
of (3.1) can be written,

O N
L) T frcony P
1
and, since |V (x)| < —|Vp(x/k)|, we arrive at
a—1
eV erlLy @ < C eV |ulPdx.

{k<r<2k}

Recalling that u € Woll’g(R?’), this last quantity tends to zero as k tends to oo.
Then, since each u; has a compact support and the topologies of Wi’g(Re’) and

WLP(R™) coincide on this support, the statement of the proposition follows from
the density of D(R™) in W1P(R"). The proof is the same for the two other spaces.
|

The previous proposition implies that the dual spaces respectively denoted W:;:Zi/ 5 (R™),
Xﬁl’plﬁ(R"), Yﬁl’flﬂ(R") are subspaces of D'(R"). Let p be the weight function

p= 147 = ne and lgr =In(1+ p). For @ € R, we recall the following weighted
Sobolev spaces

WoP(R™) = {u € D'(R"), p*u € LP(R™)} = LL, ,(R™), (3.2)
WLP(R™) = {u € WP, (R"), Vu € WOP(R™)}, if % ta#l, (3.3)

WiP(R™) = {(gr)"lu € WP, (R"), Vu € WOP(R™)}, if g ta=1. (34
We have the following identity:
WIP(R™) = YIZ(R™) if % ta#l

We will now prove some one-dimensional inequalities.
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-1
Lemma 3.2. Let v € R satisfy v + nT > 0 and 0* €]0,7/2[. Then for any

positive measurable function f defined on ]0,0%[, such that

o
/ (1 —cos 9)7+%(sin 0)”*2[f(9)]pd9 < +o0,
0
one has

0 0
/ (1 — cos 0) (sin 0)"2[F(0)]Pdo < C’/ (1 — cos )72 (sin 0)"~2[f(0)]"d6,
0 0

(3.5)
with
o
F6) = / F(t)dt. (3.6)
0
Proof. Let us first notice that on | — 7, Z[, the following inequality holds
1
3 sin? < 1 — cos® < sin? 6. (3.7
We now set
o
J = (1 — cos ) (sin 0)"~2(F(0))Pdo.

0
In view of Inequality (3.7), we find

J= / " (1 cos0)"(sin )" sin 6(F(0))7d0
O *

< on=3)/2 / (1 — cos )+ sin O(F(0))7do.
0
From (3.6) and since v + %‘1 > 0, an integration by parts yields
J< 0/09*(1 ~ cos )1+ F(0)(F(0))7~do.
Using the Holder inequality, we obtain
J< 0/09*(1 — cos0)7T 7 P (sin 0)~ ("~ D@=1) (£(9))Pdp

and from (3.7), we prove (3.5). W

Remark 3.3. By the same way, we can prove that, if v € R, satisfy v+ % > 0 and
0* €]0,7/2[, then for any positive measurable function f defined on ] —6*, 0], such
that

/0 (1 = cos 6) " 5 [£(8)]Pd0 < +o0,
_p*
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one has

/ (1 - cos 0)'[F(6)]d6 < C /_ sty TEOPa. (33)

—0*

with
0
F(0) = f(t)dt.
—0g*
Remark 3.4. (1) As a consequence of Inequality (3.5) for n = 2 and Inequality
(3.8), for any w € D(] — 6*,0%[) with v + 2 > 0, one has

0 0
/ (1 —cos8)|w(0)Pdd < C/ (1 — cos )75 |w' (0)[Pd6. (3.9)
_p* _g=

(ii) Inequality (3.5) also implies that for any w € D([0,6*[), v + %5+ > 0, one has

0% 0
/ (1 — cos 0) (sin 0)"2[w(0)[7d0 < C / (1 cos 0)7+% (sin 6)" 2w’ (9)[7do.
0 0
(3.10)

We now consider the sector
S=Spr={x€eR", r>R, 0<s<Ar}, withR>0 and 0 <A< 1. (3.11)

We start to prove a Hardy-type inequality in the sector S.
Lemma 3.5. Let o, 8 € R such that 8 > max(0, (1 —n +p)/2p). Then we have
Vu € D(S), lullr | 51 (8) < O Vullr 5(9)- (3.12)
a=5.6-5 ’
Proof. Let u be in D(S). Since > 0, it is enough to prove

I= /(1 + )= g(B=2)p |y Pax < c/(1 + 1) PP |V u|Pdx. (3.13)
S S

1
Indeed, let us assume that Inequality (3.13) holds. Then, if 0 < 8 < > thanks to
(3.13), we have

/(1 + )@= (1 4 ) B3Py Pax < /(1 + r)(afé)ps(ﬁ*%)pm\pdx
s s
< C/(l + 7)°P 7P| Vu|Pdx
s

< C/(1+7’)°‘p(1—|—5)ﬁp|Vu\pdx.
S
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1
NOW, lfﬂ 2 5,

/(1 + )@= (1 4 ) B3Py Pdx < C/(l + )= 2P(1 4 (B=2)P) |y |Pax
s s

< c/(1+r)ap(sp/2+sﬁp)|vu|f’dx
s
and we obtain (3.12). First, we prove Inequality (3.13) for the case n > 3. Let
0 = (61,62, ...,0,—1) €)0,7["2x]0,27[, R > 0, 6* €]0, 3| fixed and consider
A ={(r,0) € RTx]0,7[""2x]0,2x[,r > R,0; €]0,0%[}. (3.14)
To establish (3.13), we introduce the generalized spherical coordinates
r1 =rcosby, xo =7rsinf;cosbs,..., x,_1 =rsinf;...sinf,_scosb,_1,
. . . (3.15)
T, =rsinf...sinf, _osind, 1,
where (r,60) € A. Now taking u(x) = v(r, ) and observing that
ov

<
20, | = r|Vul,

it is sufficient to prove that

I= / (1+ r)(o‘_%)p(r —rcos 91)(5_%)”7“"_1(5111 61)"2|v|Pdrd6
A . (3.16)

Ov I grde.

< C/ (1 =+ r)o‘p(T — rcos el)ﬁprn—l(sin 91)71—2T—p
A 061

We immediately have
I< / (1 +7)*PrPP(1 — cos 91)('8_%)pr"_1(sin 01)" " 2r~P|v[Pdrdf. (3.17)
A

We now set
o
J :/ (1- cos91)(5_%)p(sin91)"_2|v|pd91.
0

Since 8 > (1 —n+p)/2p, we have (8 — 1)p+ 25% > 0. Moreover u € D(S) implies
that, for (r,0) € A, the function ; — v(r, 8) belongs to D([0, 8*[). Therefore from
(3.10), we get

p

% 1" 1o, (3.18)

90,
In view of inequalities (3.17) and (3.18), we obtain (3.16).
We now continue the proof of (3.13) for the case n = 2. We define

A={(r0) eR x| —m [, >R, 0€]—0° 0 (3.19)

o*
J < C’/ (1 — cos ;) P(sin ;)" 2
0

and we introduce the polar coordinates

x1=rcosf , xo =rsind, (3.20)
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where (r,0) € A. Taking u(x) = v(r, 0), it is sufficient to prove

9* %)
I:/ / (1+T)(a_%)p(7"—rcos@)(ﬁ_%)pTQ\derd@
—o* JR

o (3.21)

0" 0 p
< C’/ / (1 +7)°P(r — r cos §)Pr2=P drd®.
-0+ JR

Proceeding as for the case n > 3 and the use of Inequality (3.9) give us Inequality
(3.21). m

Let R be a positive real number fixed large enough. In the sequel, we will need the
following Hardy-type inequality (cf. Hardy-Littlewood-Polya [12] : we have

+oo +oo

[f(r)[Pr7dr < C’/ |f/(r)[Pr7Pdr,  with v+ 1 # 0.
R
(3.22)
Let now Bpg denotes the open ball centered at the origin and with radius R and
B}, = R™\ Bg. We are going to prove Inequality (3.12) for a function v € D(Bj).

vf € DR, o)), /

R

Lemma 3.6. Let o, § € R satisfy 8 > max(0, (1 —n+p)/2p) and a+LB+n/p—1#
0.Then, for any large enough positive real number R, we have

Yu € D(Bg), |ullr LBy SCIVulle (s (3.23)
a-gz.8-%

5.8 P

Proof. Let u be in D(BY). We introduce the open set
Dry={xeR",r>R,Ar <s}

and the following partition of unity

©1,02 € C¥(BR), 0< 1,902 <1, o1+ 2 =1in Bp,

with
w1 =11in Sg x/2, supp 1 C Sr.a
and Vo1 (x)| < i, x € SgaNDpg /2 (3.24)
We have
lullee oy (BR) < lluealler B + ||u@2||L27%167%(B§3)'
Let us prove that
HU<P1||L27%’B7%(B;%) < ClVullwy 5y (3.25)

Since upy € D(Sg,») and 8 > max(0, (1 — n + p)/2p), Lemma 3.5 yields
luprller | (s < C||V(H<P1)||LZYB(SR,A)~ (3.26)
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Furthermore, we have

IVl (500 SC [ (LF7)7(1+5)7 |Vl dx

SR,

+C (1 +7)°P(1 4 8) P |uV i, [Pdx. (3.27)

SrANDR A/2

Since s ~ r in Sgpx N Dp x/2 and from (3.24), for the second term of the right
hand side of (3.27), we find

/ (1 +7)°P(1 4 5)P|uV, [Pdx < C’/ (1 + 7)@+B=DP |y |Pdx
SrANDR /2 SrANDR /2
<C r(a+ﬂ*1)p|u|pdx.
SrANDR A/2

(3.28)

Now, we introduce the generalized spherical coordinates defined by (3.15), where
(r,0) € RT x]0, 7[*~2x]0, 2|, for the case n > 3, or the polar coordinates defined
by (3.20), where (r,0) € RT x] — 7, x|, for the case n = 2. We take u(x) = v(r, )
and, recalling that a4+ 3+4+n/p—1 # 0, we apply (3.22) to the function r — v(r, ).
Thus, it comes

“+o0 “+oo
/ ‘U|pr(a+ﬂfl)p+nfldr < C’/ ‘31}
R R or

p
platPptn=1g,

which immediately yields

/ r(a+ﬁ_1)p|u\pdx <C r(a+6)p|vu|pdx
Sr,ANDR /2 SrANDR x/2

<C (1+7)°P(1 + 5)PP|VulPdx. (3.29)

Sr,ANDR A/2

Summarizing (3.26), (3.27), (3.28) and (3.29), we deduce (3.25). Let us now prove
that

lugpallr gy < ClVuller sy (3.30)
2’ 2

Since the support of ¢ is included in Dpg 5/ and p2 < 1, we have
[rzeny B = / (1+ )@ 2P(1 4 5)P= 2Py, Pdx
a—g.8-5 & DR x/2
< / (14 7)(@=2)P(1 4 5)F=2)P|y Px.
Dpg,x/2

Moreover, recalling that s ~ r in Dg y/2, we get

/ (1+ 7,)(ozf%)p(l + s)(ﬁ*%)p|u|pdx < C/ r(o‘+ﬁ*1)p|u\pdx.
DR /2 DR x/2
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Next, we use generalized spherical coordinates for n > 3 or polar coordinates for
n = 2, with u(x) = v(r,0). Since a + S+ n/p — 1 # 0, Inequality (3.22) yields
+oo +o0 ov P

/ T(a+ﬂ—1)p+n—1‘v‘pd7a < C/ platB)ptn—112"7 dr,

R R or
which implies that

/ pOFtB=Dp |y Pdx < C r(OFBP| Ty Pdx
Dpg,x/2 DpRr,x/2

< C'/ (1 +7)°P(1 4 5)°P|VulPdx.
DRr /2

The previous inequalities yield (3.30) and that concludes the proof. W
We are now in a position to give the following Hardy-type inequality.

Theorem 3.7. Let o, 8 € R satisfy 8 > max(0, (1—n+p)/2p) and a+B+n/p—1 #
0. Let 3/ = min (j,0), where j is the highest degree of the polynomials contained
in Xi’%(R?’). Then, we have

Vu € X, B(R?), Jof Jlut My @ < ClIVully @e)- (3.31)
J 2

1
1
In other words, the semi-norm | . |X(11,7;;’(R3) defines on Xi:’é(R3)/IP’j/ a norm which

is equivalent to the quotient norm.

Proof. The proof of this theorem is similar to that given in Amrouche-Girault-
Giroire [2] (Theorem 8.3p 598). W

Remark 3.8. Note that the particular casen =3, p =2, 8 >0and a+ 3+ % >0
of previous theorem for was proved by Farwig (see [6]). Next, observe that the
previous theorem also improves the inequalities proved in [13] (Lemma 2.3) for
thecasen=3,p=2,0>0,a>0and a+ 6 < %

Lemma 3.9. Let o, 8 be two reals such that 8 <0 and a+n/p—1<0 ora+ [+
n/p—1> 0. Then, for any large enough positive real number R, we have

Vu € D(Bg), luller | sy < CliVuller (s (3.32)

Proof. Let u € D(B%). We first prove (3.32) for n > 3. Let 6 = (64, ...,0,,_1) and
consider the following set
D = {(r,0) € RTx]0,7[""?x]0, 27[,r > R}.

We introduce the generalized spherical coordinates (3.15) with (r,0) € D. Taking
u(x) = v(r, ), Inequality (3.32) is equivalent to

I= / PO DPHn=1(1 4 cos61)PP (sin 6;)" 2 |v[Pdrdf
b . (3.33)

01" grde.

< C’/ rePINL(1 4 — rcos )PP (sinf;)" 2
D
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~ 1
and 0 €]0, 7| such that R = ————. We divide D
1 — cos b, 1 — cos
into three subdomains:

Dy ={(r,0) € D,R<r <7(6),0<6; <8} where 1 +7 —rcosf ~ 1,
Dy ={(r,0) € D,r > 7(6,),0 < 6, <8} where 1 +7 —rcosfy ~r —rcosb,

We define 7(60;) =

Ds={(r,0) € D,r > R,9~< 01 <7} where 1 +r —rcosfy ~ 1 —rcosb.

Thus, we obtain
I~1 + I+ I,
with

I :/ pla=Dptn=1(gin 6,)"=2|v[Pdrde,
Dy

I :/ paFB=Dptn=1(1 _ co50,)7P (sin 6, )" 2|v|Pdrdé,
Dy

I3 :/ paFB=Dptn=1(1 _ co50,)7P (sin 6, )" 2 |v[Pdrdo.
D3

n
Let us now estimate the three integrals. Since o + — — 1 # 0, an integration by

parts and the Hélder’s inequality yield

r(91)
[ e el < e (5(01)) P o7 (60), O) P

R (a—1p+n
p 1/p
dr) ,

(61 1/p’ (6,
+ p /( ;a(a—l)p—f—n—l'U‘pdT /( )T,ap-f-n_l v
lap—p+n| \ Jr R
i U U é
n<-— 1 / i / / / (7(61)) @ DP0 (sin 1) 2 0(7(61), 0)|PdBy ..d0
(a=Dp+nlty Jo Jo Jo

or

and consequently

ovl?
+C roPt=l(5in )2 | == | drdf.
D aT
(3.34)
Similarly, since a4 3 + T # 0, we get for the two other integrals
p
1
I, < - I
= (a+p-1p+n?
9u P (3.35)
+C / pOFAPEn=1(1 _ cos60,)P(sin 6,)" "2 || drdé,
D> 87“

with

27 pm © 0
Ih = /0 /O /0 /O (7(61))@FBA=DPHn (1 _cos 0, )P (sin 0,) "~ 2|v(7(01), 0)[PdO;....d6,, 1,
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P

Ly (3.36)

I3 <C r(o‘+ﬁ)p+"_1(1 — cos 91)ﬁp(sin 91)"_2 —
Ds or
Summarizing (3.34), (3.35), (3.36), we obtain

1< C’/ rePTNL(1 4 — rcos6y)PP(sin 6;)" 2 ov
D or

1 2w pm ™ 7 _ ) _
+m/0 /OA ‘/0 (T‘(@l))(a_l)p+n(51n91)n_2|v(7’(91)79)|pd91...d9n,1
1 7

B (a+B8—-1p+n?

p
drdf

Recalling that (7(6;)(1 — cos6;))’P = 1, and since # < 0 with a + " 1<0or
p
a+ﬁ+ﬁ—1>07wehave
p
1 1
(@=Dp+n (a+f-1p+n "

Thus, we deduce Inequality (3.33).
For the case n = 2, we use polar coordinates (3.20), with (r,0) € D, where

D={(r,0) e R"x] —m,7[,r > R}.

We set 7(0) = ﬁ and 0 such that R = % We devide D as follow
— Cos — cos
Dy ={(r,0) e D,R<r <#0),—0 <0 <0}
Dy ={(r,0) € D,r > #0),—0 < 6, < 6}

D3 ={(r,0) € D,r > R,0 €] — 7, —0[U]d, x[}.

We then proceed as for the proof of the case n > 3. W

Now proceeding as for the case 8 > 0, we obtain the Hardy-type inequality.

Theorem 3.10. Let «, (3 be two real satisfying 0 < 0 and o + L < 0 or
p
a+ 8+ 1> 0. Let j' = min (§,0), where j is the highest degree of the
p
polynomials contained in Y;’g(R3). Then we have
1, 3 :
Yu € Y, 5(R?), Aler%P’fj/ lu+ Al | @y < ClVullee @ (3.37)

In other words, the semi-norm |.|Y1,S(R3) defines on Y;’g(R3)/IE”j/ a norm which

is equivalent to the quotient norm.
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Remark 3.11. For the case § = 0, we get the result proved by Amrouche-Girault-
Giroire [2] for the space W1 P(R") when « + Ty # 0.
p
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