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Dedicated to Giovanni Paolo Galdi at the occasion of his 60th Birthday

Abstract. This contribution is devoted to the Oseen equations, a linearized
form of the Navier-Stokes equations. We give here some results concerning the
scalar Oseen operator and we prove Hardy inequalities concerning functions
in Sobolev spaces with anisotropic weights that appear in the investigation of
the Oseen equations.
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1. Introduction

In an exterior domain Ω of R3, the Oseen system is obtained by linearizing the
Navier-Stokes equations, describing the flow of a viscous fluid past the obstacle
R3 \ Ω, around a nonzero constant vector which is the velocity at infinity. When
Ω = R3, the system can be written as follow:

−ν∆u + k
∂u

∂x1
+∇π = f in R3,

div u = g in R3,

(1.1)

where we add the condition at infinity

lim
|x|→∞

u(x) = u∞. (1.2)

The data are the viscosity of the fluid ν, the external forces acting on the fluid f , a
function g, a constant vector u∞ and a real k > 0. The unknowns are the velocity
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of the fluid u and the pressure function π. Let us now notice that the pressure
satisfies the Laplace equation

∆π = div f + ν∆g − k
∂g

∂x1
, (1.3)

and each component ui of the velocity satisfies

−ν∆ui + k
∂ui

∂x1
= fi −

∂π

∂xi
. (1.4)

Hence we see that the Oseen problem (1.1) is related to the following equation:

−ν∆u + k
∂u

∂x1
= f in R3. (1.5)

Therefore, the results arising from the analysis of (1.5) can be used for the investi-
gation of the Oseen problem (1.1). To prescribe the growth or the decay properties
of functions at infinity, we consider here weighted Sobolev spaces where the weight
reflects the decay properties of the fundamental solution O of (1.5) defined by

O(x) =
1

4πν|x|
e−k(|x|−x1)/2ν . (1.6)

Note now that, at infnity, O has the same following decay properties than the
fundamental solution of Oseen

O(x) = O(η−1
−1(x)), ∇O(x) = O(η−3/2

−3/2(x)), ∂2O(x) = O(η−2
−2(x)), ....

where ηα
β (x) ≡ ηα

β = (1+ |x|)α(1+ |x|−x1)β will be the weight function considered.
Equation (1.5) has been investigated by Farwig (see[6]) in weighted L2-spaces, with
the weight ηα

β .
Furthermore, for r = |x| sufficiently large, we obtain the following anisotropic es-
timates:

|O(x)| ≤ C r−1(1 + s)−2, | ∂O
∂x1

(x)| ≤ C r−2 (1 + s)−
3
2 ,

| ∂O
∂xj

(x)| ≤ C r−
3
2 (1 + s)−

3
2 (1 + 2

r ), j = 2, 3, if n = 3,
(1.7)

|O(x)| ≤ C r−
1
2 (1 + s)−1, | ∂O

∂x1
(x)| ≤ C r−

3
2 (1 + s)−1,

| ∂O
∂x2

(x)| ≤ C r−1 (1 + s)−1, if n = 2.
(1.8)

Note also the following properties:

∀p > 3, O ∈ Lp(R3) and ∀p ∈ ]
3
2
, 2[, ∇O ∈ Lp(R3), (1.9)

∀p ∈ ]2, 3[, O ∈ Lp(R3) and ∀p ∈ ]
4
3
,
3
2
[, ∇O ∈ Lp(R3), (1.10)

O ∈ L1
loc(Rn) and ∇O ∈ L1

loc(Rn), for n = 2, 3. (1.11)
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Observe that when f ∈ D(R3), then u = O ∗ f is a solution of (1.5). We have also
u = F−1(m0(ξ)Ff), with m0(ξ) = (|ξ|2 +ikξ1)−1 and ∂u

∂xj
= F−1(m1(ξ)Ff), with

m1(ξ) = iξj(|ξ|2 + ikξ1)−1. Here Ff is the Fourier transform of f .

2. Scalar Oseen Potential in three dimensional space

This section is devoted to the Lp estimates of convolutions with Oseen kernels.
Before that, we introduce some basic weighted Sobolev spaces. We first set ρ(x) =
(1+ | x |2) 1

2 , lg ρ = ln(1 + ρ) and we define

W 1,p
0 (R3) =

{
v ∈ D′(R3);

v

ω1
∈ Lp,∇v ∈ Lp(R3)

}
,

with ω1 = ρ if p 6= 3, ω1 = ρ lg ρ if p = 3 and W−1,p′

0 (R3) = (W 1,p
0 (R3))′. We recall

that D(R3) is dense in W 1,p
0 (R3) and the constant functions belong to W 1,p

0 (R3)
if p ≥ 3. We now introduce a second family of weighted spaces:

W̃ 1,p
0 (Rn) =

{
v ∈ W 1,p

0 (Rn),
∂v

∂x1
∈ W−1,p

0 (Rn)
}

and we can prove that

D(Rn) is dense in W̃ 1,p
0 (Rn).

Theorem 2.1. Let f ∈ Lp(R3). Then ∂2O
∂xj∂xk

∗ f ∈ Lp(R3) (in the sense of
principal value), ∂O

∂x1
∗ f ∈ Lp(R3) and the following estimate holds

‖ ∂2O
∂xj∂xk

∗ f‖Lp(R3) + ‖ ∂O
∂x1

∗ f‖Lp(R3) ≤ C‖f‖Lp(R3). (2.1)

Moreover,

1) if 1 < p < 2, then O ∗ f ∈ L
2p

2−p (R3) and satisfies

‖O ∗ f‖
L

2p
2−p (R3)

≤ C‖f‖Lp(R3). (2.2)

2) If 1 < p < 4, then ∂O
∂xj

∗ f ∈ L
4p

4−p (R3) and verifies the estimate

‖ ∂O
∂xj

∗ f‖
L

4p
4−p (R3)

≤ C‖f‖Lp(R3). (2.3)

Proof . By Fourier’s transform, from Equation (1.5) we obtain:

F(
∂2O

∂xj∂xk
∗ f) =

−ξjξk

ξ2 + iξ1

F(f).



4 Chérif Amrouche and Ulrich Razafison

Now, the function ξ 7→ m(ξ) = −ξjξk

ξ2+iξ1
is of class C2 in R3 \ {0} and satisfies for

every α = (α1, α2, α3) ∈ N3

|∂
|α|m

∂ξα (ξ)| ≤ C|ξ|−α,

where, |α| = α1 + α2 + α3 and C is a constant not depending on ξ. Then, the
linear operator

A : f 7→ ∂2O
∂xj∂xk

∗ f(x) =
∫

R3
eixξ −ξjξk

ξ2 + iξ1

Ff(ξ) dξ

is continuous from Lp(R3) into Lp(R3) (see E. Stein [20], Thm 3.2, p.96). There-
fore, ∂2O

∂xj∂xk
∗ f ∈ Lp(R3) and satisfies

‖ ∂2O
∂xj∂xk

∗ f‖Lp(R3) ≤ C‖f‖Lp(R3).

We also have
F(

∂O
∂x1

∗ f) =
iξ1

ξ2 + iξ1

F(f)

and since the function ξ 7→ m1(ξ) = iξ1
ξ2+iξ1

have the same properties than m(ξ),
it follows that ∂O

∂x1
∗ f ∈ Lp(R3) and satisfies the estimate

‖ ∂O
∂x1

∗ f‖Lp(R3) ≤ C‖f‖Lp(R3),

which proves the first part of the proposition and Estimate (2.1). Next, to prove
inequalities (2.2) and (2.3), we adapt the technique used by Stein in [20] who
studied the convolution of f ∈ Lp(Rn) with the kernel |x|α−n. Let us decompose
the function K as K1 + K∞ where,

K1(x) = K(x) if |x| ≤ µ and K1(x) = 0 if |x| > µ,

K∞(x) = 0 if |x| ≤ µ and K∞(x) = K(x) if |x| > µ.
(2.4)

The function K will denote successively O and ∂O
∂xj

and µ is a fixed positive
constant which need not be specified at this instance. Next, we shall show that the
mapping f 7→ K ∗f is of weak-type (p, q), with q = 2p

2−p when K = O and q = 4p
4−p

when K = ∂O
∂xj

, in the sense that:

for all λ > 0, mes {x ; |(K ∗ f)(x)| > λ} ≤
(

Cp,q

‖f‖Lp(R3)

λ

)q

. (2.5)

Since K ∗ f = K1 ∗ f + K∞ ∗ f , we have now:

mes {x ; |K ∗ f | > 2λ} ≤ mes {x ; |K1 ∗ f | > λ}+ mes {x ; |K∞ ∗ f | > λ}. (2.6)

Note that it is enough to prove inequality (2.5) with ‖f‖Lp(R3) = 1. We have also:

mes {x ; |(K1 ∗ f)(x)| > λ} ≤
‖K1 ∗ f‖p

Lp(R3)

λp
≤

‖K1‖p
L1(R3)

λp
, (2.7)
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and
‖K∞ ∗ f‖L∞(R3) ≤ ‖K∞‖Lp′ (R3). (2.8)

1) Estimate (2.2). Observe that O1 ∈ L1(R3) and O∞ ∈ Lp′(R3) for 1 ≤ p < 2.
Then, the integral O1 ∗ f converges almost everywhere and O∞ ∗ f converges
everywhere. Thus, O ∗ f converges almost everywhere. But

∀µ > 0, ‖O1‖L1(R3) ≤ Cµ. (2.9)

Next, by using (1.7), we have for any p′ > 2:

∀µ > 0, ‖O∞‖Lp′ (R3) ≤ Cµ
2−p′

p′ . (2.10)

Choosing now λ = Cµ
2−p′

p′ or equivalently µ = C ′λ
p

p−2 . Then from (2.10) and
(2.8) we have ‖O∞ ∗ f‖L∞(R3) < λ and so mes {x ; |O∞ ∗ f | > λ} = 0. Finally, for
1 ≤ p < 2, we get from inequalities (2.9), (2.6) and (2.7):

mes {x ∈ R3; |(O ∗ f)(x)| > λ} ≤
(

Cp
1
λ

) 2p
2−p

. (2.11)

Therefore, for 1 ≤ p < 2, the operator R : f 7→ O ∗ f is of weak-type (p, 2p
2−p ).

2) Estimate (2.3). Here we take K = ∂O
∂xj

. First, according to (2.1), ∂O
∂x1

∗ f ∈
W 1,p(R3) then, by the Sobolev embedding results, we have in particular, ∂O

∂x1
∗f ∈

L
4p

4−p (R3). It remains to prove Estimate (2.3) for j = 2, 3. First we have:

‖ ∂O
∂xj

‖L1(R3) ≤ cµ, if µ ≤ 1 and ‖ ∂O
∂xj

‖L1(R3) ≤ cµ
1
2 , if µ > 1.

Furthermore, we have for p′ > 4
3 :∫

|x|>µ

∣∣∣∣ ∂O∂xj
(x)
∣∣∣∣p′ dx ≤ Cµ4−3p′ , if µ ≤ 1,

∫
|x|>µ

∣∣∣∣ ∂O∂xj
(x)
∣∣∣∣p′ dx ≤ Cµ

4−3p′
2 , if µ > 1.

Summarising we obtain:
a) If 0 < µ < 1,∫

|x|<µ

| ∂O
∂xj

(x)| dx ≤ cµ and
∫
|x|>µ

| ∂O
∂xj

(x)|p
′
dx ≤ Cµ4−3p′ ,

b) if µ ≥ 1,∫
|x|<µ

| ∂O
∂xj

(x)| dx ≤ cµ
1
2 and

∫
|x|>µ

| ∂O
∂xj

(x)|p
′
dx ≤ Cµ

4−3p′
2 .
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Setting λ = Cµ
4−3p′

p′ in the case a) or λ = Cµ
4−3p′
2p′ in the case b), we get in both

cases:

mes {x ∈ R3; |K ∗ f(x)| > λ} ≤
(

Cp
1
λ

) 4p
4−p

. (2.12)

Thus, for 1 ≤ p < 4, the operator Rj : f 7→ ∂O
∂xj

∗ f is of weak-type (p, 4p
4−p ).

Applying now the Marcinkiewicz interpolation’s theorem, we deduce that, for 1 <

p < 2, the linear operator R is continuous from Lp(R3) into L
2p

2−p (R3) and for
1 < p < 4, Rj is continuous from Lp(R3) into L

4p
4−p (R3). �

Remark 2.2. Another proof of Theorem 2.1 consists in using Fourier’s approach.
Let (fj)j∈N ⊂ D(R3) be a sequence which converges to f ∈ Lp(R3). Then the
sequence (uj)j∈N given by:

uj = F−1(m0(ξ)Ffj), m0(ξ) = (|ξ|2 + iξ1)−1, (2.13)

satisfies the equation −∆uj + ∂uj

∂x1
= fj . Let us recall now the:

Lizorkin Theorem. Let D = {ξ ∈ R3; |ξ| > 0} and m : D −→ C, a continuous
function such that its derivatives ∂km

∂ξ
k1
1 ∂ξ

k2
2 ∂ξ

k3
3

are continuous and verify

|ξ1|k1+β |ξ2|k2+β |ξ3|k3+β

∣∣∣∣∣ ∂km

∂ξk1
1 ∂ξk2

2 ∂ξk3
3

∣∣∣∣∣ ≤ M, (2.14)

where k1, k2, k3 ∈ {0, 1}, k = k1 + k2 + k3 and 0 ≤ β < 1. Then, the operator

A : g 7−→ F−1(m0 Fg),

is continuous from Lp(R3) into Lr(R3) with 1
r = 1

p − β.
Applying this continuity property with fj ∈ Lp(R3) and β = 1

2 , we show that

(uj) is bounded in L
2p

2−p (R3) if 1 < p < 2. Thus, this sequence has a subsequence
still denoted by (uj) which converges weakly to u and which satisfies Tu = f .
For the derivative of uj with respect to x1, the corresponding multiplier is of the
form m(ξ) = iξ1(|ξ|2 + iξ1)−1. It follows that (2.14) is satisfied for β = 0 and
∂u
∂x1

∈ Lp(R3). The same property takes place for the derivatives of second order
with m(ξ) = ξkξl(|ξ|2 + iξ1)−1. Finally, we verify with β = 1

4 , that the derivative

of (uj) with respect to xk is bounded in L
4p

4−p (R3), which implies ∂u
∂xk

∈ L
4p

4−p (R3).
�

Theorem 2.1 states that ∂2O
∂xj∂xk

∗ f ∈ Lp(R3) and under some conditions on p,
∂O
∂xj

∗ f ∈ L
4p

4−p (R3) and O ∗ f ∈ L
2p

2−p (R3). Now, using these results and the
classical Sobolev embedding results, we have the following:

Theorem 2.3. Let f ∈ Lp(R3).
1) Assume that 1 < p < 4. Then ∇O ∗ f ∈ L

4p
4−p (R3) with the estimate (2.3).
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Moreover,
i) if 1 < p < 3, then ∇O ∗ f ∈ L

3p
3−p (R3) with the estimate

‖∇O ∗ f‖
L

3p
3−p (R3)

≤ C‖f‖Lp(R3). (2.15)

ii) If p = 3, then ∇O ∗ f ∈ Lr(R3) for any r ≥ 12 and satisfies

‖∇O ∗ f‖Lr(R3) ≤ C‖f‖Lp(R3). (2.16)

iii) If 3 < p < 4, then ∇O ∗ f ∈ L∞(R3) and verifies the estimate

‖∇O ∗ f‖L∞(R3) ≤ C‖f‖Lp(R3). (2.17)

2) Assume that 1 < p < 2. Then O ∗ f ∈ L
2p

2−p (R3) with the estimate (2.2).
Moreover,
i) if 1 < p < 3

2 , then O ∗ f ∈ L
3p

3−2p (R3) and satisfies

‖O ∗ f‖
L

3p
3−2p (R3)

≤ C‖f‖Lp(R3). (2.18)

ii) If p = 3
2 , then O ∗ f ∈ Lr(R3) for any r ≥ 6 and

‖O ∗ f‖Lr(R3) ≤ C‖f‖Lp(R3). (2.19)

iii) If 3
2 < p < 2, then O ∗ f ∈ L∞(R3) and the following estimate holds

‖O ∗ f‖L∞(R3) ≤ C‖f‖Lp(R3). (2.20)

Proof . 1) If 1 < p < 4, the previous theorem asserts that ∂O
∂xj

∗ f ∈ L
4p

4−p (R3)

and ∂2O
∂xj∂xk

∗f ∈ Lp(R3). If 1 < p < 3, there exists a unique constant k(f) ∈ R such

that v = ∂O
∂xj

∗f+k(f) ∈ W 1,p
0 (R3). Then k(f) = v− ∂O

∂xj
∗f ∈ W 1,p

0 (R3)+L
4p

4−p (R3).
As none of both spaces contains constants then k(f) = 0, which implies that
∂O
∂xj

∗f ∈ W 1,p
0 (R3). Now, the Sobolev embedding results yield ∂O

∂xj
∗f ∈ L

3p
3−p (R3)

and Estimate (2.15). If p ≥ 3, again by the previous theorem, we have ∂O
∂xj

∗ f ∈
W 1,p

0 (R3). Then ∂O
∂xj

∗ f ∈ BMO(R3) if p = 3. Applying now the interpolation
theorem between BMO(R3) and Lp(R3), we get ∂O

∂xj
∗ f ∈ Lr(R3) for any r ≥ 12.

By Sobolev embedding results, if 3 < p < 4, we have ∂O
∂xj

∗ f ∈ L∞(R3), ) and the
case 1) is proved.
2) By the previous theorem, if 1 < p < 2, we have O∗f ∈ L

2p
2−p (R3) and ∇O∗f ∈

L
3p

3−p (R3). Now by Sobolev embedding results, O ∗ f ∈ Lp∗(R3), where 1
p∗ =

3−p
3p − 1

3 = 1
p −

2
3 if 1 < p < 3

2 , which yields (2.15). For the remainder of the proof,
we use the same arguments that in the previous case with O ∗ f instead of ∂O

∂xj
∗ f

and ∂O
∂xj

∗ f instead of ∂2O
∂xj∂xk

∗ f . �

Remark 2.4. In Farwig and Sohr [8], Theorem 2.3 proves existence of solutions to
the Oseen equations with forces in Lp, thanks to the Lizorkin theorem’s. These
solutions, which are not explicit, belong to homogeneous Sobolev spaces. Here, in
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Theorem 2.1, we prove some continuity properties for the Oseen potential, without
using Lizorkin theorem’s, and in Theorem 2.3, we complete thoses properties,
thanks to Sobolev embeddings and we find the same results as the ones given in
[8].

Remark 2.5. i) We can also have the result given by Theorem 2.3 2), by showing
that O ∈ L2,∞(R3), i.e.

sup
µ>0

µ2 mes {x ∈ R3; O(x) > µ} < +∞. (2.21)

So that, for any 1 < q < 2, according to weak Young inequality (cf. [19], chap.
IX.4), we obtain:

‖O ∗ f‖
L

2q
2−q

,∞
(R3)

≤ C‖O‖L2,∞(R3)‖f‖Lq(R3). (2.22)

Let now p ∈ ]1, 2[. There exist p0 and p1 such that 1 < p0 < p < p1 < 2 and such

that the operator R : f 7−→ O ∗ f is continuous from Lp0(R3) into L
2p0

2−p0
,∞(R3)

and from Lp1(R3) into L
2p1

2−p1
,∞(R3). The Marcinkiewicz theorem allows again to

conclude that the operator R is continuous from Lp(R3) into L
2p

2−p (R3)
ii) The same remark remains valid for ∇O that belongs to L

4
3 ,∞(R3). �

Using the Young inequality with the relations (1.10) and (1.11), we get the follow-
ing result:

Proposition 2.6. Let f ∈ L1(R3). Then
1) O ∗ f ∈ Lp(R3) for any p ∈ ]2, 3[ and satisfies the estimate

‖O ∗ f‖Lp(R3) ≤ C‖f‖L1(R3), (2.23)

2) ∇O ∗ f ∈ Lp(R3) for any p ∈ ] 43 , 3
2 [ and the following estimate holds

‖∇O ∗ f‖Lp(R3) ≤ C‖f‖L1(R3). (2.24)

Remark 2.7. Taking ”formally” p = 1 in Theorem 2.3, we find that O∗f ∈ Lq(R3)
for any q ∈ ]2, 3[ and ∇O ∗ f ∈ Lq(R3) for any q ∈ ] 43 , 3

2 [. We notice that they are
the same results obtained in Theorem 2.6 by using the Young inequality.

Now, we are going to study the Oseen potentialO∗f when f belongs to W−1,p
0 (R3).

For that purpose, we give the following definition of the convolution of f with the
fundamental solution O:

∀ϕ ∈ D(R3), 〈O ∗ f, ϕ〉 =: 〈f, Ŏ ∗ ϕ〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

, (2.25)

where Ŏ(x) = O(−x). With the L∞ weighted estimates obtained in [14] (Thms 3.1
and 3.2), we get an estimate on the convolution of Ŏ with a function ϕ ∈ D(R3)
which we shall use afterward as follow

Lemma 2.8. For any ϕ ∈ D(R3) we have the estimates

|Ŏ ∗ ϕ(x)| ≤ Cϕ
1

|x|(1 + |x|+ x1)
, (2.26)
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|∇ Ŏ ∗ ϕ(x)| ≤ Cϕ
1

|x| 32 (1 + |x|+ x1)
3
2
, (2.27)

where Cϕ depends on the support of ϕ.

Remark 2.9. 1) The behaviour on |x| of Ŏ ∗ ϕ and its first derivatives is the same
that of Ŏ, but the behaviour on 1 + s′ is slightly different (see (1.7).
2) From estimates (2.26), (2.27) we find that

∀q >
4
3
, Ŏ ∗ ϕ ∈ W 1,q

0 (R3). (2.28)

3) In (2.26) and (2.27), when ϕ tends to zero in D(R3), then Cϕ tends to zero in
R.

The next theorem studies the continuity of the operators R and Rj when f

belongs to W−1,p
0 (R3).

Theorem 2.10. Assume that 1 < p < 4 and let f ∈ W−1,p
0 (R3) satisfying the

compatibility condition

〈f, 1〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

= 0, when 1 < p ≤ 3
2
. (2.29)

Then O ∗ f ∈ L
4p

4−p (R3) and ∇O ∗ f ∈ Lp(R3) with the following estimate

‖O ∗ f‖
L

4p
4−p (R3)

+ ‖∇O ∗ f‖Lp(R3) ≤ C‖f‖W−1,p
0 (R3). (2.30)

Moreover,
i) if 1 < p < 3, then O ∗ f ∈ L

3p
3−p (R3) and the following estimate holds

‖O ∗ f‖
L

3p
3−p (R3)

≤ C‖f‖W−1,p
0 (R3). (2.31)

ii) If p = 3, then O ∗ f ∈ Lr(R3) for any r ≥ 12 and satisfies

‖O ∗ f‖Lr(R3) ≤ C‖f‖W−1,p
0 (R3). (2.32)

iii) If 3 < p < 4, then O ∗ f ∈ L∞(R3) and we have the estimate

‖O ∗ f‖L∞(R3) ≤ C‖f‖W−1,p
0 (R3). (2.33)

Proof . Let 1 < p < 4. By Lemma 2.8 and Remark 2.9 point 3), if ϕ → 0 in
D(R3), then Cϕ → 0 where Cϕ is defined by (2.26). Thus, Ŏ ∗ϕ → 0 in W 1,p′

0 (R3)
for all p ∈ ]1, 4[, which implies that O ∗ f ∈ D′(R3). Next, there exists F ∈ Lp(R3)
such that

f = div F and ‖F‖Lp(R3) ≤ C‖f‖W−1,p
0 (R3). (2.34)

According to (2.1), we have for any ϕ ∈ D(R3),

|〈 ∂O
∂xj

∗ f, ϕ〉D′(R3)×D(R3)| = |〈F,∇ ∂

∂xj
Ŏ ∗ ϕ〉Lp(R3)×Lp′ (R3)|

≤ C‖f‖W−1,p
0 (R3)‖ϕ‖Lp′ (R3).
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Then we deduce the second part of (2.30). We also have for all ϕ ∈ D(R3):

〈O ∗ f, ϕ〉D′(R3)×D(R3) = −〈F,∇Ŏ ∗ ϕ〉Lp(R3)×Lp′ (R3),

and by (2.3):

|〈O ∗ f, ϕ〉D′(R3)×D(R3)| ≤ C‖f‖W−1,p
0 (R3)‖ϕ‖L

4p
5p−4 (R3)

.

Note that 1 < p < 4 ⇐⇒ 1 < 4p
5p−4 < 4. Consequently, we have the first part of

(2.30). Moreover, by Sobolev embeddings, O ∗ f ∈ L
3p

3−p (R3) if 1 < p < 3, O ∗ f
belongs to Lr(R3) for all r ≥ 12 if p = 3 and belongs to L∞(R3) if 3 < p < 4.
Thus, we showed that if 1 < p < 4, the operators R and Rj are continuous. �

Corollary 2.11. Assume that 1 < p < 4. If u is a distribution such that ∇u ∈
Lp(R3) and ∂u

∂x1
∈ W−1,p

0 (R3), then there exists a unique constant k(u) such that

u + k(u) ∈ L
4p

4−p (R3) and

‖ u + k(u) ‖
L

4p
4−p (R3)

≤ C(‖ ∇u ‖Lp(R3) + ‖ ∂u

∂x1
‖W−1,p

0 (R3)). (2.35)

Moreover, if 1 < p < 3, then u + k(u) ∈ L
3p

3−p (R3), where k(u) is defined by:

k(u) = − lim
|x|→∞

1
ω3

∫
S2

u(σ|x|) dσ, (2.36)

where, ω3 denotes the area of the sphere S2 and u tends to the constant −k(u) as
x tends to infinity in the following sense:

lim
|x|→∞

∫
S2

|u(σ|x|) + k(u)| dσ = 0. (2.37)

If p = 3, then u + k(u) belongs to Lr(R3) for any r ≥ 12. If 3 < p < 4, then u
belongs to L∞(R3), is continuous in R3 and tends to −k(u) pointwise.

Proof . We set g = −∆u + ∂u
∂x1

∈ W−1,p
0 (R3). Since P[1− 3

p′ ]
contains at most

constants and according to the density of D(R3) in W̃ 1,p
0 (R3), then g satisfies the

compatibility Condition (2.29). By the previous theorem, there exists a unique
v = O ∗ g ∈ L

4p
4−p (R3) such that ∇ v ∈ Lp(R3) and ∂v

∂x1
∈ Lp(R3), satisfying

T (u− v) = 0, where T is the Oseen operator, with the estimate:

‖ v ‖
L

4p
4−p (R3)

≤ C(‖ ∇u ‖Lp(R3) + ‖ ∂u

∂x1
‖W−1,p

0 (R3)). (2.38)

Setting w = u−v, we have for all i = 1, 2, 3, ∂w
∂xi

∈ Lp(R3) and satisfies T ( ∂w
∂xi

) = 0.
Then by an uniqueness argument, we deduce that ∇u = ∇ v and consequently
there exists a unique constant k(u), defined by (2.36), such that u+k(u) = v. The
last properties are consequences of Sobolev embeddings. �
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Remark 2.12. Let u ∈ D′(R3) such that ∇u ∈ Lp(R3).
i) If 1 < p < 3, we know that there exists a unique constant k(u) such that
u + k(u) ∈ L

3p
3−p (R3). Here, the fact that in addition ∂u

∂x1
∈ W−1,p

0 (R3) we also

have u + k(u) ∈ L
4p

4−p (R3), with 4p
4−p < 3p

3−p .
ii) If 3 ≤ p < 4, for any constant k, u + k belongs only to W 1,p

0 (R3) but not to
the space Lr(R3). But, if moreover ∂u

∂x1
∈ W−1,p

0 (R3) then, u + k(u) ∈ L
4p

4−p (R3)
for some unique constant k(u). Moreover u + k(u) ∈ Lr(R3) for any r ≥ 4p

4−p and
u ∈ L∞(R3) if p > 3.

3. Weighted Hardy inequalities

In this section, our aim is to give some weighted anisotropic Hardy inequalities in
Rn with n ≥ 2.
For α, β ∈ R, we consider the anisotropic weight functions

ηα
β = (1 + r)α(1 + s)β ,

with
s = s(x) = r − x1.

We define the weighted space

Lp
α,β(Rn) = {v ∈ D′(Rn), ηα

β v ∈ Lp(Rn)},
which is a Banach space for its natural norm given by

‖v‖Lp
α,β(Rn) = ‖ηα

β v‖Lp(Rn).

We introduce the first family of weighted Sobolev spaces,

W 1,p
α,β(R3) =

{
v ∈ Lp

α− 1
2 ,β

(Rn),∇v ∈ Lp
α,β(Rn)

}
,

X1,p
α,β(R3) =

{
v ∈ Lp

α− 1
2 ,β− 1

2
(Rn),∇v ∈ Lp

α,β(Rn)
}

,

Y 1,p
α,β(R3) =

{
v ∈ Lp

α−1,β(Rn),∇v ∈ Lp
α,β(Rn)

}
.

These are Banach spaces for their natural norms. Observe that

W 1,p
α,β(R3) ⊂ X1,p

α,β(R3) ⊂ Y 1,p
α,β(R3).

All the local properties of the spaces W 1,p
α,β(R3), X1,p

α,β(R3) and Y 1,p
α,β(R3) coincide

with those of classical Sobolev spaces W 1,p(Rn). Moreover, we have the following
properties:

Proposition 3.1.

The space D(Rn) is dense in W 1,p
α,β(R3)

(
resp. in X1,p

α,β(R3) and in Y 1,p
α,β(R3)

)
.
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Proof. It relies on a truncation procedure. Let u ∈ W 1,p
α,β(R3), ϕ ∈ D(Rn), with

0 ≤ ϕ(x) ≤ 1, ϕ(x) = 1 if r ≤ 1, ϕ(x) = 0 if r ≥ 2, and set ϕk(x) = ϕ(x/k),
uk = uϕk. We have

‖uk − u‖p

W 1,p
α,β(R3)

= ‖uk − u‖p
Lp

α− 1
2 ,β

(Rn)
+ ‖∇(uk − u)‖p

Lp
α,β(Rn)

≤ ‖(ϕk − 1)u‖p
Lp

α− 1
2 ,β

(Rn)
+ C‖(ϕk − 1)∇u‖p

Lp
α,β(Rn)

+ C‖u∇ϕk‖p
Lp

α,β(Rn)
, (3.1)

where C is a positive real. Since u ∈ W 1,p
α,β(R3), it is clear that the first two terms

of the right hand side of (3.1) tend to zero, when k tends to ∞. Now, the last term
of (3.1) can be written,

‖u∇ϕk‖p
Lp

α,β(Rn)
=
∫
{k≤r≤2k}

ηαp
βp |u∇ϕk|pdx

and, since |∇ϕk(x)| ≤ 1
k
|∇ϕ(x/k)|, we arrive at

‖u∇ϕk‖p
Lp

α,β(Rn)
≤ C

∫
{k≤r≤2k}

η
(α−1)p
βp |u|pdx.

Recalling that u ∈ W 1,p
α,β(R3), this last quantity tends to zero as k tends to ∞.

Then, since each uk has a compact support and the topologies of W 1,p
α,β(R3) and

W 1,p(Rn) coincide on this support, the statement of the proposition follows from
the density of D(Rn) in W 1,p(Rn). The proof is the same for the two other spaces.
�

The previous proposition implies that the dual spaces respectively denoted W−1,p′

−α,−β(Rn),

X−1,p′

−α,−β(Rn), Y −1,p′

−α,−β(Rn) are subspaces of D′(Rn). Let ρ be the weight function
ρ = 1 + r = η1

0 and lg r = ln (1 + ρ). For α ∈ R, we recall the following weighted
Sobolev spaces

W 0,p
α (Rn) = {u ∈ D′(Rn), ραu ∈ Lp(Rn)} = Lp

α,0(R
n), (3.2)

W 1,p
α (Rn) = {u ∈ W 0,p

α−1(R
n),∇u ∈ W0,p

α (Rn)}, if
n

p
+ α 6= 1, (3.3)

W 1,p
α (Rn) = {(lg r)−1u ∈ W 0,p

α−1(R
n),∇u ∈ W0,p

α (Rn)}, if
n

p
+ α = 1. (3.4)

We have the following identity:

W 1,p
α (Rn) = Y 1,p

α,0 (Rn) if
n

p
+ α 6= 1.

We will now prove some one-dimensional inequalities.



Weighted Sobolev Spaces for the Oseen Equation 13

Lemma 3.2. Let γ ∈ R satisfy γ +
n− 1

2
> 0 and θ∗ ∈ ]0, π/2[. Then for any

positive measurable function f defined on ]0, θ∗[, such that∫ θ∗

0

(1− cos θ)γ+ p
2 (sin θ)n−2[f(θ)]pdθ < +∞,

one has∫ θ∗

0

(1− cos θ)γ(sin θ)n−2[F (θ)]pdθ ≤ C

∫ θ∗

0

(1− cos θ)γ+ p
2 (sin θ)n−2[f(θ)]pdθ,

(3.5)
with

F (θ) =
∫ θ∗

θ

f(t)dt. (3.6)

Proof. Let us first notice that on ]− π
2 , π

2 [, the following inequality holds

1
2

sin2 θ ≤ 1− cos θ ≤ sin2 θ. (3.7)

We now set

J =
∫ θ∗

0

(1− cos θ)γ(sin θ)n−2(F (θ))pdθ.

In view of Inequality (3.7), we find

J =
∫ θ∗

0

(1− cos θ)γ(sin θ)n−3 sin θ(F (θ))pdθ

≤ 2(n−3)/2

∫ θ∗

0

(1− cos θ)γ+ n−3
2 sin θ(F (θ))pdθ.

From (3.6) and since γ + n−1
2 > 0, an integration by parts yields

J ≤ C

∫ θ∗

0

(1− cos θ)γ+ n−1
2 f(θ)(F (θ))p−1dθ.

Using the Hölder inequality, we obtain

J ≤ C

∫ θ∗

0

(1− cos θ)γ+ n−1
2 p(sin θ)−(n−2)(p−1)(f(θ))pdθ

and from (3.7), we prove (3.5). �

Remark 3.3. By the same way, we can prove that, if γ ∈ R, satisfy γ + 1
2 > 0 and

θ∗ ∈ ]0, π/2[, then for any positive measurable function f defined on ]−θ∗, 0[, such
that ∫ 0

−θ∗
(1− cos θ)γ+ p

2 [f(θ)]pdθ < +∞,
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one has ∫ 0

−θ∗
(1− cos θ)γ [F (θ)]pdθ ≤ C

∫ 0

−θ∗
(1− cos θ)γ+ p

2 [f(θ)]pdθ, (3.8)

with

F (θ) =
∫ θ

−θ∗
f(t)dt.

Remark 3.4. (i) As a consequence of Inequality (3.5) for n = 2 and Inequality
(3.8), for any w ∈ D(]− θ∗, θ∗[) with γ + 1

2 > 0, one has∫ θ∗

−θ∗
(1− cos θ)γ |w(θ)|pdθ ≤ C

∫ θ∗

−θ∗
(1− cos θ)γ+ p

2 |w′(θ)|pdθ. (3.9)

(ii) Inequality (3.5) also implies that for any w ∈ D([0, θ∗[), γ + n−1
2 > 0, one has∫ θ∗

0

(1− cos θ)γ(sin θ)n−2|w(θ)|pdθ ≤ C

∫ θ∗

0

(1− cos θ)γ+ p
2 (sin θ)n−2|w′(θ)|pdθ.

(3.10)

We now consider the sector

S = SR,λ = {x ∈ Rn, r > R, 0 < s < λr}, with R > 0 and 0 < λ < 1. (3.11)

We start to prove a Hardy-type inequality in the sector S.

Lemma 3.5. Let α, β ∈ R such that β > max(0, (1− n + p)/2p). Then we have

∀u ∈ D(S), ‖u‖Lp

α− 1
2 ,β− 1

2
(S) ≤ C‖∇u‖Lp

α,β(S). (3.12)

Proof. Let u be in D(S). Since β > 0, it is enough to prove

I =
∫

S

(1 + r)(α−
1
2 )ps(β− 1

2 )p|u|pdx ≤ C

∫
S

(1 + r)αpsβp|∇u|pdx. (3.13)

Indeed, let us assume that Inequality (3.13) holds. Then, if 0 < β <
1
2
, thanks to

(3.13), we have∫
S

(1 + r)(α−
1
2 )p(1 + s)(β−

1
2 )p|u|pdx ≤

∫
S

(1 + r)(α−
1
2 )ps(β− 1

2 )p|u|pdx

≤ C

∫
S

(1 + r)αpsβp|∇u|pdx

≤ C

∫
S

(1 + r)αp(1 + s)βp|∇u|pdx.
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Now, if β ≥ 1
2
,∫

S

(1 + r)(α−
1
2 )p(1 + s)(β−

1
2 )p|u|pdx ≤ C

∫
S

(1 + r)(α−
1
2 )p(1 + s(β− 1

2 )p)|u|pdx

≤ C

∫
S

(1 + r)αp(sp/2 + sβp)|∇u|pdx

and we obtain (3.12). First, we prove Inequality (3.13) for the case n ≥ 3. Let
θ = (θ1, θ2, ..., θn−1) ∈]0, π[n−2×]0, 2π[, R > 0, θ∗ ∈]0, π

2 [ fixed and consider

∆ = {(r, θ) ∈ R+×]0, π[n−2×]0, 2π[, r > R, θ1 ∈]0, θ∗[}. (3.14)

To establish (3.13), we introduce the generalized spherical coordinates

x1 = r cos θ1, x2 = r sin θ1 cos θ2, ..., xn−1 = r sin θ1... sin θn−2 cos θn−1,

xn = r sin θ1... sin θn−2 sin θn−1,
(3.15)

where (r, θ) ∈ ∆. Now taking u(x) = v(r, θ) and observing that∣∣∣∣ ∂v

∂θ1

∣∣∣∣ ≤ r|∇u|,

it is sufficient to prove that

I =
∫

∆

(1 + r)(α−
1
2 )p(r − r cos θ1)(β−

1
2 )prn−1(sin θ1)n−2|v|pdrdθ

≤ C

∫
∆

(1 + r)αp(r − r cos θ1)βprn−1(sin θ1)n−2r−p

∣∣∣∣ ∂v

∂θ1

∣∣∣∣p drdθ.

(3.16)

We immediately have

I ≤
∫

∆

(1 + r)αprβp(1− cos θ1)(β−
1
2 )prn−1(sin θ1)n−2r−p|v|pdrdθ. (3.17)

We now set

J =
∫ θ∗

0

(1− cos θ1)(β−
1
2 )p(sin θ1)n−2|v|pdθ1.

Since β > (1−n+ p)/2p, we have (β− 1
2 )p+ n−1

2 > 0. Moreover u ∈ D(S) implies
that, for (r, θ) ∈ ∆, the function θ1 → v(r, θ) belongs to D([0, θ∗[). Therefore from
(3.10), we get

J ≤ C

∫ θ∗

0

(1− cos θ1)βp(sin θ1)n−2

∣∣∣∣ ∂v

∂θ1

∣∣∣∣p dθ1. (3.18)

In view of inequalities (3.17) and (3.18), we obtain (3.16).
We now continue the proof of (3.13) for the case n = 2. We define

∆ = {(r, θ) ∈ R+×]− π, π[, r > R, θ ∈]− θ∗, θ∗[} (3.19)

and we introduce the polar coordinates

x1 = r cos θ , x2 = r sin θ, (3.20)
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where (r, θ) ∈ ∆. Taking u(x) = v(r, θ), it is sufficient to prove

I =
∫ θ∗

−θ∗

∫ ∞

R

(1 + r)(α−
1
2 )p(r − r cos θ)(β−

1
2 )pr2|v|pdrdθ

≤ C

∫ θ∗

−θ∗

∫ ∞

R

(1 + r)αp(r − r cos θ)βpr2−p

∣∣∣∣∂v

∂θ

∣∣∣∣p drdθ.

(3.21)

Proceeding as for the case n ≥ 3 and the use of Inequality (3.9) give us Inequality
(3.21). �

Let R be a positive real number fixed large enough. In the sequel, we will need the
following Hardy-type inequality (cf. Hardy-Littlewood-Polya [12] : we have

∀f ∈ D(]R,∞[),
∫ +∞

R

|f(r)|prγdr ≤ C

∫ +∞

R

|f ′(r)|prγ+pdr, with γ + 1 6= 0.

(3.22)
Let now BR denotes the open ball centered at the origin and with radius R and
B′

R = Rn \BR. We are going to prove Inequality (3.12) for a function u ∈ D(B′
R).

Lemma 3.6. Let α, β ∈ R satisfy β > max(0, (1−n+p)/2p) and α+β +n/p−1 6=
0.Then, for any large enough positive real number R, we have

∀u ∈ D(B′
R), ‖u‖Lp

α− 1
2 ,β− 1

2
(B′

R) ≤ C‖∇u‖Lp
α,β(B′

R). (3.23)

Proof. Let u be in D(B′
R). We introduce the open set

DR,λ = {x ∈ Rn, r > R, λr < s}

and the following partition of unity

ϕ1, ϕ2 ∈ C∞(B′
R), 0 ≤ ϕ1, ϕ2 ≤ 1, ϕ1 + ϕ2 = 1 in B′

R,

with
ϕ1 = 1 in SR,λ/2, supp ϕ1 ⊂ SR,λ

and |∇ϕ1(x)| ≤ C

|x|
, x ∈ SR,λ ∩DR,λ/2.

(3.24)

We have

‖u‖Lp

α− 1
2 ,β− 1

2
(B′

R) ≤ ‖uϕ1‖Lp

α− 1
2 ,β− 1

2
(B′

R) + ‖uϕ2‖Lp

α− 1
2 ,β− 1

2
(B′

R).

Let us prove that

‖uϕ1‖Lp

α− 1
2 ,β− 1

2
(B′

R) ≤ C‖∇u‖Lp
α,β(B′

R). (3.25)

Since uϕ1 ∈ D(SR,λ) and β > max(0, (1− n + p)/2p), Lemma 3.5 yields

‖uϕ1‖Lp

α− 1
2 ,β− 1

2
(SR,λ) ≤ C‖∇(uϕ1)‖Lp

α,β(SR,λ). (3.26)
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Furthermore, we have

‖∇(uϕ1)‖p
Lp

α,β(SR,λ)
≤ C

∫
SR,λ

(1 + r)αp(1 + s)βp|∇u|pdx

+ C

∫
SR,λ∩DR,λ/2

(1 + r)αp(1 + s)βp|u∇ϕ1|pdx. (3.27)

Since s ∼ r in SR,λ ∩ DR,λ/2 and from (3.24), for the second term of the right
hand side of (3.27), we find∫

SR,λ∩DR,λ/2

(1 + r)αp(1 + s)βp|u∇ϕ1|pdx ≤ C

∫
SR,λ∩DR,λ/2

(1 + r)(α+β−1)p|u|pdx

≤ C

∫
SR,λ∩DR,λ/2

r(α+β−1)p|u|pdx.

(3.28)

Now, we introduce the generalized spherical coordinates defined by (3.15), where
(r, θ) ∈ R+×]0, π[n−2×]0, 2π[, for the case n ≥ 3, or the polar coordinates defined
by (3.20), where (r, θ) ∈ R+×]− π, π[, for the case n = 2. We take u(x) = v(r, θ)
and, recalling that α+β+n/p−1 6= 0, we apply (3.22) to the function r → v(r, θ).
Thus, it comes∫ +∞

R

|v|pr(α+β−1)p+n−1dr ≤ C

∫ +∞

R

∣∣∣∣∂v

∂r

∣∣∣∣p r(α+β)p+n−1dr,

which immediately yields∫
SR,λ∩DR,λ/2

r(α+β−1)p|u|pdx ≤ C

∫
SR,λ∩DR,λ/2

r(α+β)p|∇u|pdx

≤ C

∫
SR,λ∩DR,λ/2

(1 + r)αp(1 + s)βp|∇u|pdx. (3.29)

Summarizing (3.26), (3.27), (3.28) and (3.29), we deduce (3.25). Let us now prove
that

‖uϕ2‖Lp

α− 1
2 ,β− 1

2
(B′

R) ≤ C‖∇u‖Lp
α,β(B′

R). (3.30)

Since the support of ϕ2 is included in DR,λ/2 and ϕ2 ≤ 1, we have

‖uϕ2‖p
Lp

α− 1
2 ,β− 1

2
(B′

R)
=
∫

DR,λ/2

(1 + r)(α−
1
2 )p(1 + s)(β−

1
2 )p|uϕ2|pdx

≤
∫

DR,λ/2

(1 + r)(α−
1
2 )p(1 + s)(β−

1
2 )p|u|pdx.

Moreover, recalling that s ∼ r in DR,λ/2, we get∫
DR,λ/2

(1 + r)(α−
1
2 )p(1 + s)(β−

1
2 )p|u|pdx ≤ C

∫
DR,λ/2

r(α+β−1)p|u|pdx.
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Next, we use generalized spherical coordinates for n ≥ 3 or polar coordinates for
n = 2, with u(x) = v(r, θ). Since α + β + n/p− 1 6= 0, Inequality (3.22) yields∫ +∞

R

r(α+β−1)p+n−1|v|pdr ≤ C

∫ +∞

R

r(α+β)p+n−1

∣∣∣∣∂v

∂r

∣∣∣∣p dr,

which implies that∫
DR,λ/2

r(α+β−1)p|u|pdx ≤ C

∫
DR,λ/2

r(α+β)p|∇u|pdx

≤ C

∫
DR,λ/2

(1 + r)αp(1 + s)βp|∇u|pdx.

The previous inequalities yield (3.30) and that concludes the proof. �
We are now in a position to give the following Hardy-type inequality.

Theorem 3.7. Let α, β ∈ R satisfy β > max(0, (1−n+p)/2p) and α+β+n/p−1 6=
0. Let j′ = min (j, 0), where j is the highest degree of the polynomials contained
in X1,p

α,β(R3). Then, we have

∀u ∈ X1,p
α,β(R3), inf

λ∈Pj′
‖u + λ‖Lp

α− 1
2 ,β− 1

2
(Rn) ≤ C‖∇u‖Lp

α,β(Rn). (3.31)

In other words, the semi-norm | . |X1,p
α,β(R3) defines on X1,p

α,β(R3)/Pj′ a norm which
is equivalent to the quotient norm.

Proof. The proof of this theorem is similar to that given in Amrouche-Girault-
Giroire [2] (Theorem 8.3p 598). �

Remark 3.8. Note that the particular case n = 3, p = 2, β > 0 and α + β + 1
2 > 0

of previous theorem for was proved by Farwig (see [6]). Next, observe that the
previous theorem also improves the inequalities proved in [13] (Lemma 2.3) for
the case n = 3, p = 2, β > 0, α ≥ 0 and α + β < 3

2 .

Lemma 3.9. Let α, β be two reals such that β ≤ 0 and α + n/p− 1 < 0 or α + β +
n/p− 1 > 0. Then, for any large enough positive real number R, we have

∀u ∈ D(B′
R), ‖u‖Lp

α−1,β(B′
R) ≤ C‖∇u‖Lp

α,β(B′
R). (3.32)

Proof. Let u ∈ D(B′
R). We first prove (3.32) for n ≥ 3. Let θ = (θ1, ..., θn−1) and

consider the following set

D = {(r, θ) ∈ R+×]0, π[n−2×]0, 2π[, r > R}.
We introduce the generalized spherical coordinates (3.15) with (r, θ) ∈ D. Taking
u(x) = v(r, θ), Inequality (3.32) is equivalent to

I =
∫

D

r(α−1)p+n−1(1 + r − r cos θ1)βp(sin θ1)n−2|v|pdrdθ

≤ C

∫
D

rαp+n−1(1 + r − r cos θ1)βp(sin θ1)n−2

∣∣∣∣∂v

∂r

∣∣∣∣p drdθ.

(3.33)
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We define r̃(θ1) =
1

1− cos θ1
and θ̃ ∈]0, π[ such that R =

1
1− cos θ̃

. We divide D

into three subdomains:
D1 = {(r, θ) ∈ D,R < r < r̃(θ1), 0 < θ1 < θ̃} where 1 + r − r cos θ1 ∼ 1,

D2 = {(r, θ) ∈ D, r > r̃(θ1), 0 < θ1 < θ̃} where 1 + r − r cos θ1 ∼ r − r cos θ1,

D3 = {(r, θ) ∈ D, r > R, θ̃ < θ1 < π} where 1 + r − r cos θ1 ∼ r − r cos θ1.

Thus, we obtain
I ∼ I1 + I2 + I3,

with

I1 =
∫

D1

r(α−1)p+n−1(sin θ1)n−2|v|pdrdθ,

I2 =
∫

D2

r(α+β−1)p+n−1(1− cos θ1)βp(sin θ1)n−2|v|pdrdθ,

I3 =
∫

D3

r(α+β−1)p+n−1(1− cos θ1)βp(sin θ1)n−2|v|pdrdθ.

Let us now estimate the three integrals. Since α +
n

p
− 1 6= 0, an integration by

parts and the Hölder’s inequality yield∫ r̃(θ1)

R

r(α−1)p+n−1|v|pdr ≤ 1
(α− 1)p + n

(r̃(θ1))(α−1)p+n|v(r̃(θ1), θ))|p

+
p

|αp− p + n|

(∫ r̃(θ1)

R

r(α−1)p+n−1|v|pdr

)1/p′ (∫ r̃(θ1)

R

rαp+n−1

∣∣∣∣∂v

∂r

∣∣∣∣p dr

)1/p

,

and consequently

I1 ≤
1

(α− 1)p + n

∫ 2π

0

∫ π

0

...

∫ π

0

∫ θ̃

0

(r̃(θ1))(α−1)p+n(sin θ1)n−2|v(r̃(θ1), θ)|pdθ1...dθn−1

+ C

∫
D1

rαp+n−1(sin θ1)n−2

∣∣∣∣∂v

∂r

∣∣∣∣p drdθ.

(3.34)

Similarly, since α + β +
n

p
− 1 6= 0, we get for the two other integrals

I2 ≤ − 1
(α + β − 1)p + n

I ′2

+ C

∫
D2

r(α+β)p+n−1(1− cos θ1)βp(sin θ1)n−2

∣∣∣∣∂v

∂r

∣∣∣∣p drdθ,

(3.35)

with

I ′2 =
∫ 2π

0

∫ π

0

...

∫ π

0

∫ θ̃

0

(r̃(θ1))(α+β−1)p+n(1−cos θ1)βp(sin θ1)n−2|v(r̃(θ1), θ)|pdθ1...dθn−1,
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I3 ≤ C

∫
D3

r(α+β)p+n−1(1− cos θ1)βp(sin θ1)n−2

∣∣∣∣∂v

∂r

∣∣∣∣p drdθ. (3.36)

Summarizing (3.34), (3.35), (3.36), we obtain

I ≤ C

∫
D

rαp+n−1(1 + r − r cos θ1)βp(sin θ1)n−2

∣∣∣∣∂v

∂r

∣∣∣∣p drdθ

+
1

(α− 1)p + n

∫ 2π

0

∫ π

0

...

∫ π

0

∫ θ̃

0

(r̃(θ1))(α−1)p+n(sin θ1)n−2|v(r̃(θ1), θ)|pdθ1...dθn−1

− 1
(α + β − 1)p + n

I ′2.

Recalling that (r̃(θ1)(1 − cos θ1))βp = 1, and since β ≤ 0 with α +
n

p
− 1 < 0 or

α + β +
n

p
− 1 > 0, we have

1
(α− 1)p + n

− 1
(α + β − 1)p + n

≤ 0.

Thus, we deduce Inequality (3.33).
For the case n = 2, we use polar coordinates (3.20), with (r, θ) ∈ D, where

D = {(r, θ) ∈ R+×]− π, π[, r > R}.

We set r̃(θ) =
1

1− cos θ
and θ̃ such that R =

1
1− cos θ̃

. We devide D as follow

D1 = {(r, θ) ∈ D,R < r < r̃(θ),−θ̃ < θ < θ̃}

D2 = {(r, θ) ∈ D, r > r̃(θ),−θ̃ < θ1 < θ̃}

D3 = {(r, θ) ∈ D, r > R, θ ∈]− π,−θ̃[∪]θ̃, π[}.

We then proceed as for the proof of the case n ≥ 3. �

Now proceeding as for the case β > 0, we obtain the Hardy-type inequality.

Theorem 3.10. Let α, β be two real satisfying β ≤ 0 and α +
n

p
− 1 < 0 or

α + β +
n

p
− 1 > 0. Let j′ = min (j, 0), where j is the highest degree of the

polynomials contained in Y 1,p
α,β(R3). Then we have

∀u ∈ Y 1,p
α,β(R3), inf

λ∈Pj′
‖u + λ‖Lp

α−1,β(Rn) ≤ C‖∇u‖Lp
α,β(Rn). (3.37)

In other words, the semi-norm | . |Y 1,p
α,β(R3) defines on Y 1,p

α,β(R3)/Pj′ a norm which
is equivalent to the quotient norm.
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Remark 3.11. For the case β = 0, we get the result proved by Amrouche-Girault-
Giroire [2] for the space W 1,p

α (Rn) when α +
n

p
− 1 6= 0.
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Université de Pau et des Pays de l’Adour, IPRA,
Avenue de l’Université, 64000 Pau, France.
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