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This contribution is devoted to the Oseen equations, a linearized form of the Navier-Stokes equations. We give here some results concerning the scalar Oseen operator and we prove Hardy inequalities concerning functions in Sobolev spaces with anisotropic weights that appear in the investigation of the Oseen equations.

Introduction

In an exterior domain Ω of R 3 , the Oseen system is obtained by linearizing the Navier-Stokes equations, describing the flow of a viscous fluid past the obstacle R 3 \ Ω, around a nonzero constant vector which is the velocity at infinity. When Ω = R 3 , the system can be written as follow:

-ν∆u + k ∂u ∂x 1 + ∇π = f in R 3 , div u = g in R 3 , (1.1) 
where we add the condition at infinity

lim |x|→∞ u(x) = u ∞ . (1.
2)

The data are the viscosity of the fluid ν, the external forces acting on the fluid f , a function g, a constant vector u ∞ and a real k > 0. The unknowns are the velocity of the fluid u and the pressure function π. Let us now notice that the pressure satisfies the Laplace equation

∆π = div f + ν∆g -k ∂g ∂x 1 , (1.3) 
and each component u i of the velocity satisfies

-ν∆u i + k ∂u i ∂x 1 = f i - ∂π ∂x i . (1.4) 
Hence we see that the Oseen problem (1.1) is related to the following equation:

-ν∆u + k ∂u ∂x 1 = f in R 3 . (1.5)
Therefore, the results arising from the analysis of (1.5) can be used for the investigation of the Oseen problem (1.1). To prescribe the growth or the decay properties of functions at infinity, we consider here weighted Sobolev spaces where the weight reflects the decay properties of the fundamental solution O of (1.5) defined by

O(x) = 1 4πν|x|
e -k(|x|-x1)/2ν .

(1.6)

Note now that, at infnity, O has the same following decay properties than the fundamental solution of Oseen

O(x) = O(η -1 -1 (x)), ∇O(x) = O(η -3/2 -3/2 (x)), ∂ 2 O(x) = O(η -2 -2 (x)), ....
where η α β (x) ≡ η α β = (1+|x|) α (1+|x|-x 1 ) β will be the weight function considered. Equation (1.5) has been investigated by Farwig (see [START_REF] Farwig | A variational approach in weighted Sobolev spaces to the operator -∆ + ∂/∂x1 in exterior domains of R 3[END_REF]) in weighted L 2 -spaces, with the weight η α β . Furthermore, for r = |x| sufficiently large, we obtain the following anisotropic estimates:

|O(x)| ≤ C r -1 (1 + s) -2 , | ∂O ∂x1 (x)| ≤ C r -2 (1 + s) -3 2 , | ∂O ∂xj (x)| ≤ C r -3 2 (1 + s) -3 2 (1 + 2 r ), j = 2, 3, if n = 3, (1.7 
)

|O(x)| ≤ C r -1 2 (1 + s) -1 , | ∂O ∂x1 (x)| ≤ C r -3 2 (1 + s) -1 , | ∂O ∂x2 (x)| ≤ C r -1 (1 + s) -1 , if n = 2.
(1.8)

Note also the following properties:

∀p > 3, O ∈ L p (R 3 ) and ∀p ∈ ] 3 2 , 2[, ∇ O ∈ L p (R 3 ), (1.9) ∀p ∈ ]2, 3[, O ∈ L p (R 3 ) and ∀p ∈ ] 4 3 , 3 2 [, ∇ O ∈ L p (R 3 ), (1.10) 
O ∈ L 1 loc (R n ) and ∇ O ∈ L 1 loc (R n ),
for n = 2, 3.

(1.11)

Observe that when f ∈ D(R 3 ), then u = O * f is a solution of (1.5). We have also u = F -1 (m 0 (ξ)Ff ), with m 0 (ξ) = (|ξ| 2 + ikξ 1 ) -1 and ∂u ∂xj = F -1 (m 1 (ξ)Ff ), with m 1 (ξ) = iξ j (|ξ| 2 + ikξ 1 ) -1 . Here Ff is the Fourier transform of f .

Scalar Oseen Potential in three dimensional space

This section is devoted to the L p estimates of convolutions with Oseen kernels. Before that, we introduce some basic weighted Sobolev spaces. We first set ρ(x) = (1+ | x | 2 ) 1 2 , lg ρ = ln(1 + ρ) and we define

W 1,p 0 (R 3 ) = v ∈ D (R 3 ); v ω 1 ∈ L p , ∇v ∈ L p (R 3 ) , with ω 1 = ρ if p = 3, ω 1 = ρ lg ρ if p = 3 and W -1,p 0 (R 3 ) = (W 1,p 0 (R 3 )) . We recall that D(R 3 ) is dense in W 1,p 0 (R 3
) and the constant functions belong to W 1,p 0 (R 3 ) if p ≥ 3. We now introduce a second family of weighted spaces:

W 1,p 0 (R n ) = v ∈ W 1,p 0 (R n ), ∂v ∂x 1 ∈ W -1,p 0 (R n )
and we can prove that

D(R n ) is dense in W 1,p 0 (R n ). Theorem 2.1. Let f ∈ L p (R 3 ). Then ∂ 2 O ∂xj ∂x k * f ∈ L p (R 3 ) (in the sense of principal value), ∂O ∂x1 * f ∈ L p (R 3
) and the following estimate holds

∂ 2 O ∂x j ∂x k * f L p (R 3 ) + ∂O ∂x 1 * f L p (R 3 ) ≤ C f L p (R 3 ) . (2.1)
Moreover,

1) if 1 < p < 2, then O * f ∈ L 2p 2-p (R 3 ) and satisfies O * f L 2p 2-p (R 3 ) ≤ C f L p (R 3 ) . (2.2) 2) If 1 < p < 4, then ∂O ∂xj * f ∈ L 4p 4-p (R 3
) and verifies the estimate

∂O ∂x j * f L 4p 4-p (R 3 ) ≤ C f L p (R 3 ) . (2.3) 
Proof . By Fourier's transform, from Equation (1.5) we obtain:

F( ∂ 2 O ∂x j ∂x k * f ) = -ξ j ξ k ξ 2 + iξ 1 F(f ). Now, the function ξ → m(ξ) = -ξj ξ k ξ 2 +iξ1 is of class C 2 in R 3 \ {0} and satisfies for every α = (α 1 , α 2 , α 3 ) ∈ N 3 | ∂ |α| m ∂ξ α (ξ)| ≤ C|ξ| -α ,
where, |α| = α 1 + α 2 + α 3 and C is a constant not depending on ξ. Then, the linear operator [START_REF] Stein | Singulars Integrals and Differentiability Properties of Functions[END_REF], Thm 3.2, p.96). Therefore,

A : f → ∂ 2 O ∂x j ∂x k * f (x) = R 3 e ixξ -ξ j ξ k ξ 2 + iξ 1 Ff (ξ) dξ is continuous from L p (R 3 ) into L p (R 3 ) (see E. Stein
∂ 2 O ∂xj ∂x k * f ∈ L p (R 3 ) and satisfies ∂ 2 O ∂x j ∂x k * f L p (R 3 ) ≤ C f L p (R 3 ) .
We also have

F( ∂O ∂x 1 * f ) = iξ 1 ξ 2 + iξ 1 F(f )
and since the function ξ → m 1 (ξ) = iξ1 ξ 2 +iξ1 have the same properties than m(ξ), it follows that ∂O ∂x1 * f ∈ L p (R 3 ) and satisfies the estimate

∂O ∂x 1 * f L p (R 3 ) ≤ C f L p (R 3 ) ,
which proves the first part of the proposition and Estimate (2.1). Next, to prove inequalities (2.2) and (2.3), we adapt the technique used by Stein in [START_REF] Stein | Singulars Integrals and Differentiability Properties of Functions[END_REF] who studied the convolution of f ∈ L p (R n ) with the kernel |x| α-n . Let us decompose the function K as K 1 + K ∞ where,

K 1 (x) = K(x) if |x| ≤ µ and K 1 (x) = 0 if |x| > µ, K ∞ (x) = 0 if |x| ≤ µ and K ∞ (x) = K(x) if |x| > µ.
(2.4)

The function K will denote successively O and ∂O ∂xj and µ is a fixed positive constant which need not be specified at this instance. Next, we shall show that the mapping f → K * f is of weak-type (p, q), with q = 2p 2-p when K = O and q = 4p 4-p when K = ∂O ∂xj , in the sense that:

for all λ > 0, mes {x ; |(K * f )(x)| > λ} ≤ C p,q f L p (R 3 ) λ q .
(2.5)

Since K * f = K 1 * f + K ∞ * f , we have now: mes {x ; |K * f | > 2λ} ≤ mes {x ; |K 1 * f | > λ} + mes {x ; |K ∞ * f | > λ}. (2.6)
Note that it is enough to prove inequality (2.5) with f L p (R 3 ) = 1. We have also:

mes {x ; |(K 1 * f )(x)| > λ} ≤ K 1 * f p L p (R 3 ) λ p ≤ K 1 p L 1 (R 3 ) λ p , (2.7) 
and

K ∞ * f L ∞ (R 3 ) ≤ K ∞ L p (R 3 ) . (2.8) 1) Estimate (2.2). Observe that O 1 ∈ L 1 (R 3 ) and O ∞ ∈ L p (R 3 ) for 1 ≤ p < 2.
Then, the integral O 1 * f converges almost everywhere and O ∞ * f converges everywhere. Thus, O * f converges almost everywhere. But

∀µ > 0, O 1 L 1 (R 3 ) ≤ Cµ.
(2.9)

Next, by using (1.7), we have for any p > 2: 

∀µ > 0, O ∞ L p (R 3 ) ≤ Cµ 2-p p . ( 2 
mes {x ∈ R 3 ; |(O * f )(x)| > λ} ≤ C p 1 λ 2p 2-p . (2.11) Therefore, for 1 ≤ p < 2, the operator R : f → O * f is of weak-type (p, 2p 2-p ). 2) Estimate (2.
3). Here we take K = ∂O ∂xj . First, according to (2.1), ∂O ∂x1 * f ∈ W 1,p (R 3 ) then, by the Sobolev embedding results, we have in particular, ∂O ∂x1 * f ∈ L 4p 4-p (R 3 ). It remains to prove Estimate (2.3) for j = 2, 3. First we have:

∂O ∂x j L 1 (R 3 ) ≤ cµ, if µ ≤ 1 and ∂O ∂x j L 1 (R 3 ) ≤ cµ 1 2 , if µ > 1.
Furthermore, we have for p > 4 3 :

|x|>µ ∂O ∂x j (x) p dx ≤ Cµ 4-3p , if µ ≤ 1, |x|>µ ∂O ∂x j (x) p dx ≤ Cµ 4-3p 2 , if µ > 1.
Summarising we obtain:

a) If 0 < µ < 1, |x|<µ | ∂O ∂x j (x)| dx ≤ cµ and |x|>µ | ∂O ∂x j (x)| p dx ≤ Cµ 4-3p , b) if µ ≥ 1, |x|<µ | ∂O ∂x j (x)| dx ≤ cµ 1 2 and |x|>µ | ∂O ∂x j (x)| p dx ≤ Cµ 4-3p 2 
.

Setting λ = Cµ 4-3p p in the case a) or λ = Cµ

4-3p 2p

in the case b), we get in both cases:

mes {x ∈ R 3 ; |K * f (x)| > λ} ≤ C p 1 λ 4p 4-p .
(2.12)

Thus, for 1 ≤ p < 4, the operator R j : f → ∂O ∂xj * f is of weak-type (p, 4p 4-p ). Applying now the Marcinkiewicz interpolation's theorem, we deduce that, for 1 < p < 2, the linear operator R is continuous from

L p (R 3 ) into L 2p 2-p (R 3 ) and for 1 < p < 4, R j is continuous from L p (R 3 ) into L 4p 4-p (R 3 ).
Remark 2.2. Another proof of Theorem 2.1 consists in using Fourier's approach. Let (f j ) j∈N ⊂ D(R 3 ) be a sequence which converges to f ∈ L p (R 3 ). Then the sequence (u j ) j∈N given by:

u j = F -1 (m 0 (ξ)Ff j ), m 0 (ξ) = (|ξ| 2 + iξ 1 ) -1 , (2.13) 
satisfies the equation -∆u j + ∂uj ∂x1 = f j . Let us recall now the: Lizorkin Theorem. Let D = {ξ ∈ R 3 ; |ξ| > 0} and m : D -→ C, a continuous function such that its derivatives

∂ k m ∂ξ k 1 1 ∂ξ k 2 2 ∂ξ k 3 3
are continuous and verify

|ξ 1 | k1+β |ξ 2 | k2+β |ξ 3 | k3+β ∂ k m ∂ξ k1 1 ∂ξ k2 2 ∂ξ k3 3 ≤ M, (2.14) 
where

k 1 , k 2 , k 3 ∈ {0, 1}, k = k 1 + k 2 + k 3 and 0 ≤ β < 1.
Then, the operator

A : g -→ F -1 (m 0 Fg), is continuous from L p (R 3 ) into L r (R 3 ) with 1 r = 1 p -β. Applying this continuity property with f j ∈ L p (R 3 ) and β = 1 2 , we show that (u j ) is bounded in L 2p 2-p (R 3 ) if 1 < p < 2.
Thus, this sequence has a subsequence still denoted by (u j ) which converges weakly to u and which satisfies T u = f . For the derivative of u j with respect to x 1 , the corresponding multiplier is of the form m(ξ) = iξ 1 (|ξ| 2 + iξ 1 ) -1 . It follows that (2.14) is satisfied for β = 0 and ∂u ∂x1 ∈ L p (R 3 ). The same property takes place for the derivatives of second order with m(ξ) = ξ k ξ l (|ξ| 2 + iξ 1 ) -1 . Finally, we verify with β = 1 4 , that the derivative of (u j ) with respect to

x k is bounded in L 4p 4-p (R 3 ), which implies ∂u ∂x k ∈ L 4p 4-p (R 3 ). Theorem 2.1 states that ∂ 2 O ∂xj ∂x k * f ∈ L p (R 3
) and under some conditions on p,

∂O ∂xj * f ∈ L 4p 4-p (R 3 ) and O * f ∈ L 2p 2-p (R 3
). Now, using these results and the classical Sobolev embedding results, we have the following:

Theorem 2.3. Let f ∈ L p (R 3 ). 1) Assume that 1 < p < 4. Then ∇O * f ∈ L 4p 4-p (R 3 ) with the estimate (2.3). Moreover, i) if 1 < p < 3, then ∇O * f ∈ L 3p 3-p (R 3 ) with the estimate ∇O * f L 3p 3-p (R 3 ) ≤ C f L p (R 3 ) .
(2.15)

ii) If p = 3, then ∇O * f ∈ L r (R 3 ) for any r ≥ 12 and satisfies

∇O * f L r (R 3 ) ≤ C f L p (R 3 ) . (2.16) iii) If 3 < p < 4, then ∇O * f ∈ L ∞ (R 3
) and verifies the estimate

∇O * f L ∞ (R 3 ) ≤ C f L p (R 3 ) .
(2.17)

2) Assume that 1 < p < 2. Then O * f ∈ L 2p 2-p (R 3 ) with the estimate (2.2). Moreover, i) if 1 < p < 3 2 , then O * f ∈ L 3p 3-2p (R 3 ) and satisfies O * f L 3p 3-2p (R 3 ) ≤ C f L p (R 3 ) . (2.18) ii) If p = 3 2 , then O * f ∈ L r (R 3 ) for any r ≥ 6 and O * f L r (R 3 ) ≤ C f L p (R 3 ) . (2.19) iii) If 3 2 < p < 2, then O * f ∈ L ∞ (R 3 ) and the following estimate holds O * f L ∞ (R 3 ) ≤ C f L p (R 3 ) . (2.20) Proof . 1) If 1 < p < 4, the previous theorem asserts that ∂O ∂xj * f ∈ L 4p 4-p (R 3 ) and ∂ 2 O ∂xj ∂x k * f ∈ L p (R 3 ). If 1 < p < 3, there exists a unique constant k(f ) ∈ R such that v = ∂O ∂xj * f +k(f ) ∈ W 1,p 0 (R 3 ). Then k(f ) = v-∂O ∂xj * f ∈ W 1,p 0 (R 3 )+L 4p 4-p (R 3
). As none of both spaces contains constants then k(f ) = 0, which implies that

∂O ∂xj * f ∈ W 1,p 0 (R 3 ). Now, the Sobolev embedding results yield ∂O ∂xj * f ∈ L 3p 3-p (R 3
) and Estimate (2.15). If p ≥ 3, again by the previous theorem, we have

∂O ∂xj * f ∈ W 1,p 0 (R 3 ). Then ∂O ∂xj * f ∈ BM O(R 3 ) if p = 3.
Applying now the interpolation theorem between BM O(R 3 ) and L p (R 3 ), we get ∂O ∂xj * f ∈ L r (R 3 ) for any r ≥ 12. By Sobolev embedding results, if 3 < p < 4, we have ∂O ∂xj * f ∈ L ∞ (R 3 ), ) and the case 1) is proved.

2) By the previous theorem, if 1 < p < 2, we have O * f ∈ L 2p 2-p (R 3 ) and ∇O * f ∈ L 3p 3-p (R 3 ). Now by Sobolev embedding results, O * f ∈ L p * (R 3 ), where 1 p * = 3-p 3p -1 3 = 1 p -2 3 if 1 < p < 3 2
, which yields (2.15). For the remainder of the proof, we use the same arguments that in the previous case with [START_REF] Amrouche | The Stationary Oseen Equations in R 3 . An approach in Weighted Sobolev Spaces[END_REF]. In Farwig and Sohr [START_REF] Farwig | Weighted estimates for the Oseen equations and the Navier-Stokes equations in exterior domains[END_REF], Theorem 2.3 proves existence of solutions to the Oseen equations with forces in L p , thanks to the Lizorkin theorem's. These solutions, which are not explicit, belong to homogeneous Sobolev spaces. Here, in Theorem 2.1, we prove some continuity properties for the Oseen potential, without using Lizorkin theorem's, and in Theorem 2.3, we complete thoses properties, thanks to Sobolev embeddings and we find the same results as the ones given in [START_REF] Farwig | Weighted estimates for the Oseen equations and the Navier-Stokes equations in exterior domains[END_REF]. Remark 2.5. i) We can also have the result given by Theorem 2.3 2), by showing that O ∈ L 2,∞ (R 3 ), i.e.

O * f instead of ∂O ∂xj * f and ∂O ∂xj * f instead of ∂ 2 O ∂xj ∂x k * f . Remark 2.
sup µ>0 µ 2 mes {x ∈ R 3 ; O(x) > µ} < +∞.
(2.21) So that, for any 1 < q < 2, according to weak Young inequality (cf. [START_REF] Reed | Fourier Analysis Self-Adjointness[END_REF], chap. IX.4), we obtain:

O * f L 2q 2-q ,∞ (R 3 ) ≤ C O L 2,∞ (R 3 ) f L q (R 3 ) . (2.22)
Let now p ∈ ]1, 2[. There exist p 0 and p 1 such that 1 < p 0 < p < p 1 < 2 and such that the operator R :

f -→ O * f is continuous from L p0 (R 3 ) into L 2p 0 2-p 0 ,∞ (R 3 ) and from L p1 (R 3 ) into L 2p 1 2-p 1
,∞ (R 3 ). The Marcinkiewicz theorem allows again to conclude that the operator R is continuous from

L p (R 3 ) into L 2p 2-p (R 3 ) ii) The same remark remains valid for ∇ O that belongs to L 4 3 ,∞ (R 3 ).
Using the Young inequality with the relations (1.10) and (1.11), we get the following result:

Proposition 2.6. Let f ∈ L 1 (R 3 ). Then 1) O * f ∈ L p (R 3 ) for any p ∈ ]2, 3[ and satisfies the estimate O * f L p (R 3 ) ≤ C f L 1 (R 3 ) , (2.23) 2) ∇O * f ∈ L p (R 3 ) for any p ∈ ] 4 3 , 3 2 [ and the following estimate holds ∇O * f L p (R 3 ) ≤ C f L 1 (R 3 ) .
(2.24)

Remark 2.7. Taking "formally" p = 1 in Theorem 2.3, we find that O * f ∈ L q (R 3 ) for any q ∈ ]2, 3[ and ∇O * f ∈ L q (R 3 ) for any q ∈ ] 4 3 , 3 2 [. We notice that they are the same results obtained in Theorem 2.6 by using the Young inequality. Now, we are going to study the Oseen potential O * f when f belongs to W -1,p 0 (R 3 ). For that purpose, we give the following definition of the convolution of f with the fundamental solution O:

∀ϕ ∈ D(R 3 ), O * f, ϕ =: f, Ȏ * ϕ W -1,p 0 (R 3 )×W 1,p 0 (R 3 ) , (2.25) 
where Ȏ(x) = O(-x). With the L ∞ weighted estimates obtained in [START_REF] Kračmar | Estimates of Oseen kernels in weighted L p spaces[END_REF] (Thms 3.1 and 3.2), we get an estimate on the convolution of Ȏ with a function ϕ ∈ D(R 3 ) which we shall use afterward as follow Lemma 2.8. For any ϕ ∈ D(R 3 ) we have the estimates

| Ȏ * ϕ(x)| ≤ C ϕ 1 |x|(1 + |x| + x 1 ) , (2.26) |∇ Ȏ * ϕ(x)| ≤ C ϕ 1 |x| 3 2 (1 + |x| + x 1 ) 3 2 

, (2.27)

where C ϕ depends on the support of ϕ.

Remark 2.9. 1) The behaviour on |x| of Ȏ * ϕ and its first derivatives is the same that of Ȏ, but the behaviour on 1 + s is slightly different (see (1.7).

2) From estimates (2.26), (2.27) we find that

∀q > 4 3 , Ȏ * ϕ ∈ W 1,q 0 (R 3 ).
(2.28)

3) In (2.26) and (2.27), when ϕ tends to zero in D(R 3 ), then C ϕ tends to zero in R.

The next theorem studies the continuity of the operators R and R j when f belongs to W -1,p 0 (R 3 ).

Theorem 2.10. Assume that 1 < p < 4 and let f ∈ W -1,p 0 (R 3 ) satisfying the compatibility condition

f, 1 W -1,p 0 (R 3 )×W 1,p 0 (R 3 ) = 0, when 1 < p ≤ 3 2
.

(2.29)

Then O * f ∈ L 4p 4-p (R 3 ) and ∇O * f ∈ L p (R 3 ) with the following estimate O * f L 4p 4-p (R 3 ) + ∇O * f L p (R 3 ) ≤ C f W -1,p 0 (R 3 ) .
(2.30)

Moreover, i) if 1 < p < 3, then O * f ∈ L 3p 3-p (R 3
) and the following estimate holds

O * f L 3p 3-p (R 3 ) ≤ C f W -1,p 0 (R 3 ) . (2.31) ii) If p = 3, then O * f ∈ L r (R 3
) for any r ≥ 12 and satisfies

O * f L r (R 3 ) ≤ C f W -1,p 0 (R 3 ) . (2.32) iii) If 3 < p < 4, then O * f ∈ L ∞ (R 3
) and we have the estimate

O * f L ∞ (R 3 ) ≤ C f W -1,p 0 (R 3 ) .
(2.33)

Proof . Let 1 < p < 4. By Lemma 2.8 and Remark 2.9 point 3), if ϕ → 0 in D(R 3 ), then C ϕ → 0 where C ϕ is defined by (2.26). Thus,

Ȏ * ϕ → 0 in W 1,p 0 (R 3 ) for all p ∈ ]1, 4[, which implies that O * f ∈ D (R 3 ). Next, there exists F ∈ L p (R 3 ) such that f = div F and F L p (R 3 ) ≤ C f W -1,p 0 (R 3 ) . (2.34)
According to (2.1), we have for any ϕ ∈ D(R 3 ),

| ∂O ∂x j * f, ϕ D (R 3 )×D(R 3 ) | = | F, ∇ ∂ ∂x j Ȏ * ϕ L p (R 3 )×L p (R 3 ) | ≤ C f W -1,p 0 (R 3 ) ϕ L p (R 3 ) .
Then we deduce the second part of (2.30). We also have for all ϕ ∈ D(R 3 ):

O * f, ϕ D (R 3 )×D(R 3 ) = -F, ∇ Ȏ * ϕ L p (R 3 )×L p (R 3 ) ,
and by (2.3):

| O * f, ϕ D (R 3 )×D(R 3 ) | ≤ C f W -1,p 0 (R 3 ) ϕ L 4p 5p-4 (R 3 )
.

Note that 1 < p < 4 ⇐⇒ 1 < 4p 5p-4 < 4. Consequently, we have the first part of (2.30). Moreover, by Sobolev embeddings,

O * f ∈ L 3p 3-p (R 3 ) if 1 < p < 3, O * f belongs to L r (R 3 ) for all r ≥ 12 if p = 3 and belongs to L ∞ (R 3 ) if 3 < p < 4.
Thus, we showed that if 1 < p < 4, the operators R and R j are continuous.

Corollary 2.11. Assume that 1 < p < 4. If u is a distribution such that ∇ u ∈ L p (R 3 ) and ∂u ∂x1 ∈ W -1,p 0 (R 3 )
, then there exists a unique constant k(u) such that

u + k(u) ∈ L 4p 4-p (R 3 ) and u + k(u) L 4p 4-p (R 3 ) ≤ C( ∇ u L p (R 3 ) + ∂u ∂x 1 W -1,p 0 (R 3 ) ). (2.35) Moreover, if 1 < p < 3, then u + k(u) ∈ L 3p 3-p (R 3 ),
where k(u) is defined by:

k(u) = -lim |x|→∞ 1 ω 3 S2 u(σ|x|) dσ, (2.36) 
where, ω 3 denotes the area of the sphere S 2 and u tends to the constant -k(u) as x tends to infinity in the following sense:

lim |x|→∞ S2 |u(σ|x|) + k(u)| dσ = 0. ( 2 

.37)

If p = 3, then u + k(u) belongs to L r (R 3 ) for any r ≥ 12. If 3 < p < 4, then u belongs to L ∞ (R 3 ), is continuous in R 3 and tends to -k(u) pointwise.

Proof . We set g = -∆u + ∂u ∂x1 ∈ W -1,p 0 (R 3 ). Since P [1-3 p ] contains at most constants and according to the density of D(R 3 ) in W 1,p 0 (R 3 ), then g satisfies the compatibility Condition (2.29). By the previous theorem, there exists a unique

v = O * g ∈ L 4p 4-p (R 3 ) such that ∇ v ∈ L p (R 3 ) and ∂v ∂x1 ∈ L p (R 3
), satisfying T (u -v) = 0, where T is the Oseen operator, with the estimate:

v L 4p 4-p (R 3 ) ≤ C( ∇ u L p (R 3 ) + ∂u ∂x 1 W -1,p 0 (R 3 ) ). ( 2 

.38)

Setting w = u-v, we have for all i = 1, 2, 3, ∂w ∂xi ∈ L p (R 3 ) and satisfies T ( ∂w ∂xi ) = 0. Then by an uniqueness argument, we deduce that ∇ u = ∇ v and consequently there exists a unique constant k(u), defined by (2.36), such that u + k(u) = v. The last properties are consequences of Sobolev embeddings. Remark 2.12. Let u ∈ D (R 3 ) such that ∇ u ∈ L p (R 3 ). i) If 1 < p < 3, we know that there exists a unique constant k(u) such that u + k(u) ∈ L 3p 3-p (R 3 ). Here, the fact that in addition ∂u ∂x1 ∈ W -1,p 0 (R 3 ) we also

have u + k(u) ∈ L 4p 4-p (R 3
), with 4p 4-p < 3p 3-p . ii) If 3 ≤ p < 4, for any constant k, u + k belongs only to W 1,p 0 (R 3 ) but not to the space L r (R 3 ). But, if moreover ∂u ∂x1 ∈ W -1,p 0 (R 3 ) then, u + k(u) ∈ L 4p 4-p (R 3 ) for some unique constant k(u). Moreover u + k(u) ∈ L r (R 3 ) for any r ≥ 4p 4-p and u ∈ L ∞ (R 3 ) if p > 3.

Weighted Hardy inequalities

In this section, our aim is to give some weighted anisotropic Hardy inequalities in R n with n ≥ 2. For α, β ∈ R, we consider the anisotropic weight functions

η α β = (1 + r) α (1 + s) β , with s = s(x) = r -x 1 .
We define the weighted space

L p α,β (R n ) = {v ∈ D (R n ), η α β v ∈ L p (R n )}
, which is a Banach space for its natural norm given by

v L p α,β (R n ) = η α β v L p (R n ) .
We introduce the first family of weighted Sobolev spaces,

W 1,p α,β (R 3 ) = v ∈ L p α-1 2 ,β (R n ), ∇v ∈ L p α,β (R n ) , X 1,p α,β (R 3 ) = v ∈ L p α-1 2 ,β-1 2 (R n ), ∇v ∈ L p α,β (R n ) , Y 1,p α,β (R 3 ) = v ∈ L p α-1,β (R n ), ∇v ∈ L p α,β (R n
) . These are Banach spaces for their natural norms. Observe that

W 1,p α,β (R 3 ) ⊂ X 1,p α,β (R 3 ) ⊂ Y 1,p α,β (R 3
). All the local properties of the spaces W 1,p α,β (R 3 ), X 1,p α,β (R 3 ) and Y 1,p α,β (R 3 ) coincide with those of classical Sobolev spaces W 1,p (R n ). Moreover, we have the following properties:

Proposition 3.1. The space D(R n ) is dense in W 1,p α,β (R 3 ) resp. in X 1,p α,β (R 3 ) and in Y 1,p α,β (R 3 ) . Proof. It relies on a truncation procedure. Let u ∈ W 1,p α,β (R 3 ), ϕ ∈ D(R n ), with 0 ≤ ϕ(x) ≤ 1, ϕ(x) = 1 if r ≤ 1, ϕ(x) = 0 if r ≥ 2, and set ϕ k (x) = ϕ(x/k), u k = uϕ k . We have u k -u p W 1,p α,β (R 3 ) = u k -u p L p α-1 2 ,β (R n ) + ∇(u k -u) p L p α,β (R n ) ≤ (ϕ k -1)u p L p α-1 2 ,β (R n ) + C (ϕ k -1)∇u p L p α,β (R n ) + C u∇ϕ k p L p α,β (R n ) , (3.1) 
where C is a positive real. Since u ∈ W 1,p α,β (R 3 ), it is clear that the first two terms of the right hand side of (3.1) tend to zero, when k tends to ∞. Now, the last term of (3.1) can be written,

u∇ϕ k p L p α,β (R n ) = {k≤r≤2k} η αp βp |u∇ϕ k | p dx and, since |∇ϕ k (x)| ≤ 1 k |∇ϕ(x/k)|, we arrive at u∇ϕ k p L p α,β (R n ) ≤ C {k≤r≤2k} η (α-1)p βp |u| p dx.
Recalling that u ∈ W 1,p α,β (R 3 ), this last quantity tends to zero as k tends to ∞. Then, since each u k has a compact support and the topologies of W 1,p α,β (R 3 ) and W 1,p (R n ) coincide on this support, the statement of the proposition follows from the density of D(R n ) in W 1,p (R n ). The proof is the same for the two other spaces.

The previous proposition implies that the dual spaces respectively denoted

W -1,p -α,-β (R n ), X -1,p -α,-β (R n ), Y -1,p -α,-β (R n ) are subspaces of D (R n ).
Let ρ be the weight function ρ = 1 + r = η 1 0 and lg r = ln (1 + ρ). For α ∈ R, we recall the following weighted Sobolev spaces

W 0,p α (R n ) = {u ∈ D (R n ), ρ α u ∈ L p (R n )} = L p α,0 (R n ), (3.2) W 1,p α (R n ) = {u ∈ W 0,p α-1 (R n ), ∇u ∈ W 0,p α (R n )}, if n p + α = 1, (3.3) W 1,p α (R n ) = {(lg r) -1 u ∈ W 0,p α-1 (R n ), ∇u ∈ W 0,p α (R n )}, if n p + α = 1. (3.4)
We have the following identity:

W 1,p α (R n ) = Y 1,p α,0 (R n ) if n p + α = 1.
We will now prove some one-dimensional inequalities.

Lemma 3.2. Let γ ∈ R satisfy γ + n -1 2 > 0 and θ * ∈ ]0, π/2[. Then for any positive measurable function f defined on ]0, θ * [, such that We now set

θ * 0 (1 -cos θ) γ+ p 2 (sin θ) n-2 [f (θ)] p dθ < +∞, one has θ * 0 (1 -cos θ) γ (sin θ) n-2 [F (θ)] p dθ ≤ C θ * 0 (1 -cos θ) γ+ p 2 (sin θ) n-2 [f (θ)] p dθ, (3.5) with F (θ) = θ * θ f (t)dt. ( 3 
J = θ * 0 (1 -cos θ) γ (sin θ) n-2 (F (θ)) p dθ.
In view of Inequality (3.7), we find

J = θ * 0 (1 -cos θ) γ (sin θ) n-3 sin θ(F (θ)) p dθ ≤ 2 (n-3)/2 θ * 0 (1 -cos θ) γ+ n-3 2 sin θ(F (θ)) p dθ.
From (3.6) and since γ + n-1 2 > 0, an integration by parts yields

J ≤ C θ * 0 (1 -cos θ) γ+ n-1 2 f (θ)(F (θ)) p-1 dθ.
Using the Hölder inequality, we obtain

J ≤ C θ * 0 (1 -cos θ) γ+ n-1 2 p (sin θ) -(n-2)(p-1) (f (θ)) p dθ
and from (3.7), we prove (3.5).

Remark 3.3. By the same way, we can prove that, if γ ∈ R, satisfy γ + 1 2 > 0 and θ * ∈ ]0, π/2[, then for any positive measurable function

f defined on ] -θ * , 0[, such that 0 -θ * (1 -cos θ) γ+ p 2 [f (θ)] p dθ < +∞, one has 0 -θ * (1 -cos θ) γ [F (θ)] p dθ ≤ C 0 -θ * (1 -cos θ) γ+ p 2 [f (θ)] p dθ, (3.8) 
with 

F (θ) = θ -θ * f (t)dt.
θ * -θ * (1 -cos θ) γ |w(θ)| p dθ ≤ C θ * -θ * (1 -cos θ) γ+ p 2 |w (θ)| p dθ. (3.9) 
(ii) Inequality (3.5) also implies that for any w ∈ D([0, θ * [), γ + n-1 2 > 0, one has

θ * 0 (1 -cos θ) γ (sin θ) n-2 |w(θ)| p dθ ≤ C θ * 0 (1 -cos θ) γ+ p 2 (sin θ) n-2 |w (θ)| p dθ. (3.10) 
We now consider the sector

S = S R,λ = {x ∈ R n , r > R, 0 < s < λr}, with R > 0 and 0 < λ < 1. (3.11) 
We start to prove a Hardy-type inequality in the sector S.

Lemma 3.5. Let α, β ∈ R such that β > max(0, (1 -n + p)/2p). Then we have ∀u ∈ D(S), u L p α-1 2 ,β-1 2 (S) ≤ C ∇u L p α,β (S) . (3.12) 
Proof. Let u be in D(S). Since β > 0, it is enough to prove

I = S (1 + r) (α-1 2 )p s (β-1 2 )p |u| p dx ≤ C S (1 + r) αp s βp |∇u| p dx. (3.13) 
Indeed, let us assume that Inequality (3.13) holds. Then, if 0 < β < 1 2 , thanks to (3.13), we have

S (1 + r) (α-1 2 )p (1 + s) (β-1 2 )p |u| p dx ≤ S (1 + r) (α-1 2 )p s (β-1 2 )p |u| p dx ≤ C S (1 + r) αp s βp |∇u| p dx ≤ C S (1 + r) αp (1 + s) βp |∇u| p dx. Now, if β ≥ 1 2 , S (1 + r) (α-1 2 )p (1 + s) (β-1 2 )p |u| p dx ≤ C S (1 + r) (α-1 2 )p (1 + s (β-1 2 )p )|u| p dx ≤ C S (1 + r) αp (s p/2 + s βp )|∇u| p dx
and we obtain (3.12). First, we prove Inequality (3.13) for the case n ≥ 3. Let

θ = (θ 1 , θ 2 , ..., θ n-1 ) ∈]0, π[ n-2 ×]0, 2π[, R > 0, θ * ∈]0, π 2 [ fixed and consider ∆ = {(r, θ) ∈ R + ×]0, π[ n-2 ×]0, 2π[, r > R, θ 1 ∈]0, θ * [}. ( 3.14) 
To establish (3.13), we introduce the generalized spherical coordinates

x 1 = r cos θ 1 , x 2 = r sin θ 1 cos θ 2 , ..., x n-1 = r sin θ 1 ... sin θ n-2 cos θ n-1 , x n = r sin θ 1 ... sin θ n-2 sin θ n-1 , (3.15) 
where (r, θ) ∈ ∆. Now taking u(x) = v(r, θ) and observing that

∂v ∂θ 1 ≤ r|∇u|,
it is sufficient to prove that

I = ∆ (1 + r) (α-1 2 )p (r -r cos θ 1 ) (β-1 2 )p r n-1 (sin θ 1 ) n-2 |v| p drdθ ≤ C ∆ (1 + r) αp (r -r cos θ 1 ) βp r n-1 (sin θ 1 ) n-2 r -p ∂v ∂θ 1 p drdθ. (3.16) 
We immediately have

I ≤ ∆ (1 + r) αp r βp (1 -cos θ 1 ) (β-1 2 )p r n-1 (sin θ 1 ) n-2 r -p |v| p drdθ. (3.17) 
We now set

J = θ * 0 (1 -cos θ 1 ) (β-1 2 )p (sin θ 1 ) n-2 |v| p dθ 1 .
Since β > (1 -n + p)/2p, we have (β -1 2 )p + n-1 2 > 0. Moreover u ∈ D(S) implies that, for (r, θ) ∈ ∆, the function θ 1 → v(r, θ) belongs to D([0, θ * [). Therefore from (3.10), we get

J ≤ C θ * 0 (1 -cos θ 1 ) βp (sin θ 1 ) n-2 ∂v ∂θ 1 p dθ 1 . (3.18) 
In view of inequalities (3.17) and (3.18), we obtain (3.16).

We now continue the proof of (3.13) for the case n = 2. We define

∆ = {(r, θ) ∈ R + ×] -π, π[, r > R, θ ∈] -θ * , θ * [} (3.19)
and we introduce the polar coordinates

x 1 = r cos θ , x 2 = r sin θ, (3.20) 
where (r, θ) ∈ ∆. Taking u(x) = v(r, θ), it is sufficient to prove

I = θ * -θ * ∞ R (1 + r) (α-1 2 )p (r -r cos θ) (β-1 2 )p r 2 |v| p drdθ ≤ C θ * -θ * ∞ R
(1 + r) αp (r -r cos θ) βp r 2-p ∂v ∂θ p drdθ.

(3.21)

Proceeding as for the case n ≥ 3 and the use of Inequality (3.9) give us Inequality (3.21).

Let R be a positive real number fixed large enough. In the sequel, we will need the following Hardy-type inequality (cf. Hardy-Littlewood-Polya [START_REF] Hardy | Inequalities[END_REF] : we have 

∀f ∈ D(]R, ∞[), +∞ R |f (r)| p r γ dr ≤ C +∞ R |f ( 
∀u ∈ D(B R ), u L p α-1 2 ,β-1 2 (B R ) ≤ C ∇u L p α,β (B R ) . (3.23) 
Proof. Let u be in D(B R ). We introduce the open set

D R,λ = {x ∈ R n , r > R, λr < s}
and the following partition of unity

ϕ 1 , ϕ 2 ∈ C ∞ (B R ), 0 ≤ ϕ 1 , ϕ 2 ≤ 1, ϕ 1 + ϕ 2 = 1 in B R , with ϕ 1 = 1 in S R,λ/2 , supp ϕ 1 ⊂ S R,λ and |∇ϕ 1 (x)| ≤ C |x| , x ∈ S R,λ ∩ D R,λ/2 . (3.24)
We have

u L p α-1 2 ,β-1 2 (B R ) ≤ uϕ 1 L p α-1 2 ,β-1 2 (B R ) + uϕ 2 L p α-1 2 ,β-1 2 (B R ) .
Let us prove that

uϕ 1 L p α-1 2 ,β-1 2 (B R ) ≤ C ∇u L p α,β (B R ) . (3.25) 
Since uϕ 1 ∈ D(S R,λ ) and β > max(0, (1 -n + p)/2p), Lemma 3.5 yields 

uϕ 1 L p α-1 2 ,β-1 2 (S R,λ ) ≤ C ∇(uϕ 1 ) L p α,β (S R,λ ) . ( 3 
(1 + r) αp (1 + s) βp |u∇ϕ 1 | p dx ≤ C S R,λ ∩D R,λ/2 (1 + r) (α+β-1)p |u| p dx ≤ C S R,λ ∩D R,λ/2
r (α+β-1)p |u| p dx.

(3.28)

Now, we introduce the generalized spherical coordinates defined by (3.15), where (r, θ) ∈ R + ×]0, π[ n-2 ×]0, 2π[, for the case n ≥ 3, or the polar coordinates defined by (3.20), where (r, θ) ∈ R + ×] -π, π[, for the case n = 2. We take u(x) = v(r, θ) and, recalling that α + β + n/p -1 = 0, we apply (3.22) to the function r → v(r, θ). Thus, it comes

+∞ R |v| p r (α+β-1)p+n-1 dr ≤ C +∞ R ∂v ∂r p r (α+β)p+n-1 dr, which immediately yields S R,λ ∩D R,λ/2 r (α+β-1)p |u| p dx ≤ C S R,λ ∩D R,λ/2 r (α+β)p |∇u| p dx ≤ C S R,λ ∩D R,λ/2
(1 + r) 

(B R ) ≤ C ∇u L p α,β (B R ) . (3.30)
Since the support of ϕ 2 is included in D R,λ/2 and ϕ 2 ≤ 1, we have (1 + r) αp (1 + s) βp |∇u| p dx.

uϕ 2 p L p α-1 2 ,β-1 2 (B R ) = D R,λ/2 (1 + r) (α-1 2 )p (1 + s) (β-1 2 )p |uϕ 2 | p dx ≤ D R,λ/2 (1 + r) (α-1 2 )p (1 + s) (β-1 2 )p |u| p dx. Moreover, recalling that s ∼ r in D R,λ/2 , we get D R,λ/2 (1 + r) (α-1 2 )p (1 + s) (β-1 2 )p |u| p dx ≤ C D R,λ/2 r (α+β-1)p |u| p dx.
The previous inequalities yield (3.30) and that concludes the proof.

We are now in a position to give the following Hardy-type inequality.

Theorem 3.7. Let α, β ∈ R satisfy β > max(0, (1-n+p)/2p) and α+β +n/p-1 = 0. Let j = min (j, 0), where j is the highest degree of the polynomials contained in X 1,p α,β (R 3 ). Then, we have ∀u ∈ X 1,p α,β (R 3 ), inf

λ∈P j u + λ L p α-1 2 ,β-1 2 (R n ) ≤ C ∇u L p α,β (R n ) . ( 3 

.31)

In other words, the semi-norm | . | X 1,p α,β (R 3 ) defines on X 1,p α,β (R 3 )/P j a norm which is equivalent to the quotient norm.

Proof. The proof of this theorem is similar to that given in Amrouche-Girault-Giroire [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF] (Theorem 8.3p 598).

Remark 3.8. Note that the particular case n = 3, p = 2, β > 0 and α + β + 1 2 > 0 of previous theorem for was proved by Farwig (see [START_REF] Farwig | A variational approach in weighted Sobolev spaces to the operator -∆ + ∂/∂x1 in exterior domains of R 3[END_REF]). Next, observe that the previous theorem also improves the inequalities proved in [START_REF] Kračmar | Anisotropic L 2 -estimates of weak solutions to the stationary Oseen type equations in R 3 for rotating body[END_REF] (Lemma 2.3) for the case n = 3, p = 2, β > 0, α ≥ 0 and α + β < 3 2 . Lemma 3.9. Let α, β be two reals such that β ≤ 0 and α + n/p -1 < 0 or α + β + n/p -1 > 0. Then, for any large enough positive real number R, we have

∀u ∈ D(B R ), u L p α-1,β (B R ) ≤ C ∇u L p α,β (B R ) . ( 3 

.32)

Proof. Let u ∈ D(B R ). We first prove (3.32) for n ≥ 3. Let θ = (θ 1 , ..., θ n-1 ) and consider the following set

D = {(r, θ) ∈ R + ×]0, π[ n-2 ×]0, 2π[, r > R}.
We introduce the generalized spherical coordinates (3.15) with (r, θ) ∈ D. Taking u(x) = v(r, θ), Inequality (3.32) is equivalent to

I = D r (α-1)p+n-1 (1 + r -r cos θ 1 ) βp (sin θ 1 ) n-2 |v| p drdθ ≤ C D r αp+n-1 (1 + r -r cos θ 1 ) βp (sin θ 1 ) n-2 ∂v ∂r p
drdθ.

(3.33)

We define r(θ 1 ) = 1 1 -cos θ 1 and θ ∈]0, π[ such that R = 1 1 -cos θ . We divide D into three subdomains: We then proceed as for the proof of the case n ≥ 3. Now proceeding as for the case β > 0, we obtain the Hardy-type inequality.

D 1 = {(r, θ) ∈ D, R < r < r(θ 1 ), 0 < θ 1 < θ} where 1 + r -r cos θ 1 ∼ 1,
Theorem 3.10. Let α, β be two real satisfying β ≤ 0 and α + n p -1 < 0 or α + β + n p -1 > 0. Let j = min (j, 0), where j is the highest degree of the polynomials contained in Y 1,p α,β (R 3 ). Then we have ∀u ∈ Y 1,p α,β (R 3 ), inf

λ∈P j u + λ L p α-1,β (R n ) ≤ C ∇u L p α,β (R n ) . ( 3 

.37)

In other words, the semi-norm | . | Y 1,p α,β (R 3 ) defines on Y 1,p α,β (R 3 )/P j a norm which is equivalent to the quotient norm. Remark 3.11. For the case β = 0, we get the result proved by Amrouche-Girault-Giroire [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF] for the space W 1,p α (R n ) when α + n p -1 = 0.

Remark 3 . 4 .

 34 (i) As a consequence of Inequality (3.5) for n = 2 and Inequality (3.8), for any w ∈ D(] -θ * , θ * [) with γ + 1 2 > 0, one has

  r)| p r γ+p dr, with γ + 1 = 0. (3.22) Let now B R denotes the open ball centered at the origin and with radius R and B R = R n \ B R . We are going to prove Inequality (3.12) for a function u ∈ D(B R ). Lemma 3.6. Let α, β ∈ R satisfy β > max(0, (1 -n + p)/2p) and α + β + n/p -1 = 0.Then, for any large enough positive real number R, we have

Next, we use 2 r

 2 generalized spherical coordinates for n ≥ 3 or polar coordinates for n = 2, with u(x) = v(r, θ). Since α + β + n/p -1 = 0, Inequality (3.22) yields +∞ R r (α+β-1)p+n-1 |v| p dr ≤ C (α+β-1)p |u| p dx ≤ C D R,λ/2 r (α+β)p |∇u| p dx ≤ C D R,λ/2

D 2 =

 2 {(r, θ) ∈ D, r > r(θ 1 ), 0 < θ 1 < θ} where 1 + r -r cos θ 1 ∼ r -r cos θ 1 ,D 3 = {(r, θ) ∈ D, r > R, θ < θ 1 < π} where 1 + r -r cos θ 1 ∼ r -r cos θ 1 .Thus, we obtainI ∼ I 1 + I 2 + I 3 , with I 1 = D1 r (α-1)p+n-1 (sin θ 1 ) n-2 |v| p drdθ, I 2 = D2 r (α+β-1)p+n-1 (1 -cos θ 1 ) βp (sin θ 1 ) n-2 |v| p drdθ, I 3 = D3 r (α+β-1)p+n-1 (1 -cos θ 1 ) βp (sin θ 1 ) n-2 |v| p drdθ.Let us now estimate the three integrals. Since α + n p -1 = 0, an integration by parts and the Hölder's inequality yieldr(θ1) R r (α-1)p+n-1 |v| p dr ≤ 1 (α -1)p + n (r(θ 1 )) (α-1)p+n |v(r(θ 1 ), θ))| p + p |αp -p + n|r(θ1) R r (α-1)p+n-1 |v| p dr

2 + C D2 r

 2D2 θ 1 )) (α-1)p+n (sin θ 1 ) n-2 |v(r(θ 1 ), θ)| p dθ 1 ...dθ n-1+ C D1 r αp+n-1 (sin θ 1 ) n-2 ∂v ∂r α + β + n p-1 = 0, we get for the two other integralsI 2 ≤ -1 (α + β -1)p + n I (α+β)p+n-1 (1 -cos θ 1 ) βp (sin θ 1 ) n-2 ∂v ∂r

  θ 1 )) (α+β-1)p+n (1-cos θ 1 ) βp (sin θ 1 ) n-2 |v(r(θ 1 ), θ)| p dθ 1 ...dθ n-1 , I 3 ≤ C D3 r (α+β)p+n-1 (1 -cos θ 1 ) βp (sin θ 1 ) n-2 ∂v ∂r p drdθ. (3.36) Summarizing (3.34), (3.35), (3.36), we obtain I ≤ C D r αp+n-1 (1 + r -r cos θ 1 ) βp (sin θ 1 ) n-2 ∂v ∂r

2 .

 2 θ 1 )) (α-1)p+n (sin θ 1 ) n-2 |v(r(θ 1 ), θ)| p dθ 1 ...dθ n-1-1 (α + β -1)p + n IRecalling that (r(θ 1 )(1 -cos θ 1 )) βp = 1, and sinceβ ≤ 0 with α + n p -1 < 0 or α + β + n p -1 > 0, we have 1 (α -1)p + n -1 (α + β -1)p + n ≤ 0.Thus, we deduce Inequality (3.33).For the case n = 2, we use polar coordinates (3.20), with (r, θ) ∈ D, whereD = {(r, θ) ∈ R + ×] -π, π[, r > R}.We set r(θ) = 1 1 -cos θ and θ such that R = 1 1 -cos θ . We devide D as followD 1 = {(r, θ) ∈ D, R < r < r(θ), -θ < θ < θ} D 2 = {(r, θ) ∈ D, r > r(θ), -θ < θ 1 < θ}D 3 = {(r, θ) ∈ D, r > R, θ ∈] -π, -θ[∪] θ, π[}.