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On the Calderón-Zygmund lemma for Sobolev

functions

Pascal Auscher ∗

october 16, 2008

Abstract

We correct an inaccuracy in the proof of a result in [Aus1].

2000 MSC: 42B20, 46E35
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We recall the lemma.

Lemma 0.1. Let n ≥ 1, 1 ≤ p ≤ ∞ and f ∈ D′(Rn) be such that ‖∇f‖p <

∞. Let α > 0. Then, one can find a collection of cubes (Qi), functions g

and bi such that

(0.1) f = g +
∑

i

bi

and the following properties hold:

(0.2) ‖∇g‖∞ ≤ Cα,

(0.3) bi ∈ W
1,p
0

(Qi) and

∫

Qi

|∇bi|
p ≤ Cαp|Qi|,

(0.4)
∑

i

|Qi| ≤ Cα−p

∫

Rn

|∇f |p,
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(0.5)
∑

i

1Qi
≤ N,

where C and N depend only on dimension and p.

This lemma was first stated in [Aus1] in R
n. Then it appears in various

forms and extensions in [Aus2] (same proof), [AC] (same proof on manifolds),
[AM] (on R

n but with a doubling weight), B. Ben Ali’s PhD thesis [Be] and
[AB] (The Sobolev space is modified to adapt to Schrödinger operators), N.
Badr’s PhD thesis [Ba] and [Ba1, Ba2] (used toward interpolation of Sobolev
spaces on manifolds and measured metric spaces) and in [BR] (Sobolev spaces
on graphs). The same inaccuracy can be corrected everywhere as below. The
proof of the generalisation to higher order Sobolev spaces in [Aus1] can also
be corrected with similar ideas.

The second equation tells that g is in fact Lipschitz continuous. There
is a direct proof of this fact in N. Badr’s thesis [Ba]. The proof proposed in
[Aus1] is as follows:

Define bi = (f − ci)Xi where ci are appropriate numbers and (Xi) forms
a smooth partition of unity of Ω = ∪Qi subordinated to the cubes (1

2
Qi)

with support of Xi contained in Qi. For example, the choice ci = f(xi) for
some well chosen xi or ci = mQi

f , the mean of f over the cube Qi, ensures
that

∑

i |bi|ℓ
−1

i is locally integrable (ℓi is the length of Qi) and that
∑

i bi is
a distribution on R

n. Then g defined as g = f −
∑

i bi is a distribution on
R

n. Its gradient ∇g can be calculated as ∇g = (∇f)1F + h in the sense of
distributions (on R

n) with h =
∑

i ci∇Xi. It is then a consequence of the
construction of the set F = Ωc that |∇f | is bounded on F by α and then it
is shown that |h| is bounded by Cα , which implies the boundedness of |∇g|.

Everything is correct in the argument above BUT the representation of
h. The series

∑

i ci∇Xi, viewed as the distributional derivative on R
n of

∑

i ciXi, may not be a measurable function (section) on R
n. For example, if

ci = 1 for all i, then
∑

i ∇Xi = ∇1Ω is a non-zero distribution supported on
the boundary of Ω (a measure if Ω has locally finite perimeter). One needs
to renormalize the series to make it converge in the distribution sense.

Here we give correct renormalizations of h. A first one is obtained right
away from differentiation of g:

h = −
∑

i

(f − ci)∇Xi.
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The convergence in the distributional sense in R
n is in fact hidden of [Aus1].

A second one is

h = −
∑

m

(

∑

i

(cm − ci)∇Xi

)

Xm.

This representation converges in the distributional sense in R
n and can be

shown to be a bounded function.
Let us show how to obtain the second representation in the sense of

distributions. Then the proof of boundedness is as in [Aus1]. Take a test
function φ in R

n. Then by definition the distribution
∑

i ∇bi tested against
φ is given by

∑

i

∫

∇bi φ.

To compute this, we take a finite subset J of the set I of indices i and we
have to pass to the limit in the sum restricted to J as J ↑ I. Because now the
sum is finite, and all functions have support in the set Ω, we can introduce
∑

m
Xm = 1Ω. We have

∑

i∈J

∫

∇bi φ =
∑

m

∑

i∈J

∫

∇bi Xm φ.

Now recall that bi = (f − ci)Xi . Call Im the set of indices such that the
support of Xi meets the support of Xm. By property of the Whitney cubes,
Im is a finite set with bounded cardinal. Hence we can write

∑

m

∑

i∈J

∫

∇bi Xm φ =
∑

m

∑

i∈J∩Im

∫

∇f Xi Xm φ+
∑

m

∑

i∈J∩Im

∫

(f−ci)∇Xi Xm φ.

It is clear that the first sum in the RHS converges to
∫

Ω
∇f φ as J ↑ I. As

for the second it is equal to

∑

m

∑

i∈J∩Im

∫

(cm − ci)∇Xi Xm φ +
∑

m

∑

i∈J∩Im

∫

(f − cm)∇Xi Xm φ

As one can show (with the argument in [Aus1]) that

∑

m

∑

i

|cm − ci||∇Xi||Xm| ≤ Cα
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one has

lim
J↑I

∑

m

∑

i∈J∩Im

∫

(cm − ci)∇Xi Xm φ = −

∫

h φ

where h is defined above.
Finally, write

∑

m

∑

i∈J∩Im

∫

(f − cm)∇Xi Xm φ =
∑

m

∫

bmRm,J φ

with
Rm,J =

∑

i∈J∩Im

∇Xi.

By construction of the Xi and properties of Whitney cubes,
∑

i∈Im

|∇Xi| ≤ Cℓ−1

m

where ℓm is the length of Qm, and on the support of Xm

∑

i∈Im

∇Xi =
∑

i∈I

∇Xi = 0.

As
∑

i |bm|ℓ
−1

m has been shown to be locally integrable, one can conclude by
the Lebesgue dominated convergence theorem that

lim
J↑I

∑

m

∫

bmRm,J φ = 0.
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