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Abstract

Although considered as not safety critical (safety function being performed by
other sub-systems), railway supervision systems can contribute to hazardous sce-
narios. It is of primary importance to identify this type of scenarios and evaluate
the behaviour of human operators. A state of the art in human reliability is pre-
sented. This article presents an experimental protocol based on an automatic train
supervision system coupled to a traffic simulator. It allows to gather data for human
reliability evaluation and man-machine performance study.

Keywords: Automatic Train Supervision, Human Reliability, Simulated environ-
ment, Experiments.

1 Introduction

Train control systems have evolved over time to include tactical and strategic con-
trol over the traffic. These systems are based on technological barriers that have
reached high safety integrity level. The safety analysis of railway traffic system
implies the evaluation of technological barriers reliability, this could be achieved
thanks to basic dependability evaluations such as Failures Modes Effects and Crit-
ically Analysis or Fault Tree Analysis (FTA). But in all cases, railway operation



could never be seen as fully “man less” operation because the traffic must be
supervised. This is the field of Automatic Train Supervision (ATS) systems. ATS
monitors and controls the states of all railway network sub-systems and all trains
operations. ATS is located in a centralised control room called Operation Control
Centre (0CC).

ATS functions can contribute to safety in some scenarios where inappropri-
ate or mistaken decision can seriously affect safety see [1]. Even protected by
technological barriers, railway safety must take into account dispatcher reliability.
Today neither railway authority nor regulations impose Human Reliability Anal-
ysis (HRA) in safety cases. Currently safety cases only demonstrate that no single
failure or likely combination of failures of technical equipment can lead to seri-
ous consequences. When human beings are implied in demonstration (for example
by applying procedures) safety cases consider that humans are fully reliable. But
experience shows that many accidents involve human failures or bad dispatcher’s
decisions. In fact, it always exists situations covered only by procedures and thus
by dispatchers and railway safety analysis always considers that these procedures
are correctly applied.

Data remains one of the major difficulty in Human Reliability Analysis. Real
traffic supervision centre cannot be observed for a long period, because the distur-
bance generated by observers and the supplementary stress induced by the pres-
ence of external people on supervisors in case of critical situation.

The French state and the "Picardie" region have sustain a research project devel-
oped in collaboration with several and multi disciplinal partners.

A simulation platform was installed at the university of technology of Com-
piegne called SPICA-RAIL. This platform similar to a real one (ALSTOM Trans-
port’s ATS product) includes of course a traffic simulator making it possible to do
"as if" the experimental platform would be really connected to a railway network.
The main interest will be the possibility to re-create in laboratory real accidental
scenarios, and to be able to calibrate quantification phase of the HRA.

2 Human Reliability Analysis

HRA was developed in the sixties to estimate qualitatively and/or quantitatively
human errors in human interacting environments. The basic background relies on
the reliability theory for conventional equipment. HRA represents a specific scien-
tific discipline, that combines the knowledge and experience of psychology, human
factors and engineering. The definition of human reliability is given in [2] by the
probability that “a job or task will be completed successfully by personnel at any
required stage in the system operation within a required minimum of time if the
time requirement exists”. HRA can be defined as a method where human reliability



is estimated. To estimate this probability named Human Error Probability (HEP),
an HRA model should be developed first. This model relies on an accident model.
Today accidents are considered as a combination of events (systemic approach that
explains accident in terms of interactions and coincidences) more than a succession
of failures (historical model, linear approach). Finally, HRA could take into account
only the individual activities, the organisation system or the socio-economic sys-
tem. Given these properties, different methodologies were developed (historically
and by domain of activity) [3]. For example, the first methodologies was based
on linear approach and focused on individual aspects only such as Technique for
Human Error Rate Prediction (THERP) [4]. The more recent techniques use sys-
temic approach and take into account the socio-economic system such as MER-
MOS developed by Electricité De France, AMSMA method developed in air traffic
control EUROCONTROL or Cognitive Reliability and Error Analysis (CREAM) [5].
CREAM allows to highlight the dependence of human performance on the context
and provides an useful cognitive model for both retrospective and prospective acci-
dent analysis. The specificity of CREAM is that human errors are shaped more by
the context than by a stochastic process.
All these methods have the same underlying points given by three important
steps:
e analysis of the working environment;
e quantification of the possible human errors;
e cvaluation of the procedures and of the consequences of human error.
Current HRA practice implies sometimes arbitrary quantitative evaluation of
Human Error Probability due to data validation problem [6, 7]. Indeed, the quan-
tification lies on tables of human error probabilities or on probability distributions.
The quantification needs a calibration and a validation in each studied domain of
activity. These two phases are the most difficult and the most critical steps of the
methodology. Data is collected from feedback experience and/or simulations and is
essential for probability calibration and validation. For this reason, numerous HRA
quantifications are still subjective. Therefore, [8, 9] provide useful methodologies
for rescaling a subjective scale containing at least two empirical anchors into an
objective scale probabilities. Other approaches use uncertainty studies based on
fuzzy logic or belief function theory, see [10] for a complete review. Finally, a
recent enhancement of CREAM allows to estimate a mean failure rate directly with-
out invoking the notion of human error [11].
The role of ATS activities in safety systems stems from the detection of safety
critical event.
The Human Cognition Reliability HCR model (see [12, 13]) was elaborated
in order to calculate the probability that a control team answers correctly to a
safety critical event on time. HCR calculates this probability from the time avail-



able before the accident and the type of human behaviour required to recover the
situation. The basic assumption of this model provides that this probability mainly
depends on the time available before accident and the nature of cognitive activity
required by operators. In HCR the cognitive model stem on the Rasmussen SRK lad-
der (see [14]). Results are given by curves for each nature of cognitive behaviour
were probability of success is function of the time available before the accident.
This model could integrate some performance shaping factors that influence the
reaction time.

This paper presents an experimental protocol elaborated in order to evaluate the
train traffic supervisor time detection of three types of incident. The situation of
the ATS operator of Ladbroke Grove (UK) in 1999 reveals the importance of the
time detection of critical incidents. At eight o’clock in the morning a train passes
through an absolute stop signal and then facing a high speed train coming from the
opposite side. In spite of the fact that the ATS operator was not responsible of this
accident (the origin coming from the signal passed at danger), the inquiry [15, 16]
shows that the ATS operator saw the accident coming on the ATS interface, but the
delay to react was too short. He realised what happened 20 second after the signal
passed at danger and put a signal to red just in front of the high speed train which
engaged emergency break. This action came too late to prevent the collision since
high speed train requires long distance to stop.

The objective of experimentation presented below was to evaluate the efficiency
of the joint system composed of ATS—Man Machine Interface (MMI) and human
operator to detect equipment failures. This allows to deeper study the cognitive
behaviour of human operator.

3 Experiments
3.1 Platform SPICA-RAIL

SPICA-RAIL is a real Automatic Train Supervision (ATS) product developed by
ALSTOM Transport. The ATS system is connected to the interlocking system and
the Automatic Train Control (ATC) system (that includes Automatic Train Opera-
tion and Automatic Train Protection, see [17] for descriptions of these systems).
The ATS supervises all the traffic from staff and rolling stocks management to
signalling and route setting monitoring and control. These two last functionality,
intensively automated in this last decade, remain safety critical operations when
degraded circumstances occur [1]. The interlocking and the ATC are simulated in
SPICA-RAIL by the traffic simulator system developed by ALSTOM Transport in
order to validate and test ATS projects. Traffic simulator allows to simulate trains
traffic operations by a scripting informatics language.



The ATS delivered by ALSTOM is the clone of a recent project. The line super-
vised is twenty one kilometres long, two side lines and suburban traffic type. It
includes a bifurcation, commercial stations and several interline switch points.
This track plan is a typical suburban railway line operating homogeneous trains
(same speed, same size, same weight). This kind of traffic is generally regulated
by the frequency interval between trains (named "constant headway"). In order to
generalise our experiments to main railway lines, we introduced a new equipment
allowing to regulate the traffic in time and in space, indeed several kinds of trains
(different speed, size and weight) could be regulated. This equipment includes two
supplementary tracks that allow low speed trains to be overtaken by fast trains. We
developed in collaboration with ALSTOM the necessary engineering tasks in the
ATS and the traffic simulator to obtain this equipment. The simplified view of the
track plan is presented in figure 1.
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Figure 1: SPICA-RAIL track plan

The Man Machine Interface is composed of two elements. There is a general
mimics display called Schematic Control Display SCP that can be seen from every
operator in OCC. The second element corresponds to the operator’s computer that
presents several views of the railway track plan. Figure 2 shows the SPICA-RAIL
platform and the general MMI of the track plan.

3.2 Experimental protocol
Three voluntary novices assimilated to ATS operator in formation participated to

the experiments. Each of them was formed and trained to the detection of three
types of incidents :
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Figure 2: SPICA-RAIL platform
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e Switch point uncontrolled. This problem comes from the position sensor that
cannot indicate the real position of the point. Thus, the signal protecting this
point goes to absolute stop. This incident is not safety critical but, implies
serious disturbances on the traffic and stresses the activity ;

e Signal failed to open. This incident is not safety critical but, as the precedent
stresses seriously the traffic ;

e Signal failed to close. This incident is safety critical, it has the same con-
sequences that a signal passed at danger. It is thus of prime importance to
detect this default in order to insure safety.

Four variables have been introduced in the protocol, in order to evaluate the
monitoring performance in different traffic supervision configurations.

The type of incident is the first variable, because there are more indices on the
MMI for an uncontrolled switch point, we assume that the time detection would be
lower for this type of incident than the case of signal failure.

The time of the incident occurrence is the second variable. In order to simplify
the sessions, each scenarios was 30 minutes long. We assume that the detection
would be faster at the beginning of the session.

The third variable concerns the presence of a train around the incident. We
assume that human operator focus his attention periodically on dynamic elements
of the MMI. Consequently, the detection should be lower when trains circulate near
the incident.

Routes are pieces of track where trains are authorised to circulate. There is two
way to trace a route from ATS. The permanent way traces the route only once, and
trains do not clear the route after crossing. The automatic destruction way trace the



route for only one train, the route is cleared after crossing. Because their are more
graphical indices in case of equipment failure on permanent routes, we assume that
the time detection should be lower in this case.

Twenty scenarios were developed in order to vary the modalities of these vari-
able. Ten distractors scenarios have been introduced in order to prevent subject to
make inference on their evaluation.

Each session has been performed individually. Subjects have been asked to
detect equipment failures and to diagnose the failures. Data collected are time
detection and the number of correct and false detections.

4 Results

Ten hours of recorded video per subject have been collected. In general, the major-
ity of equipment failures have been detected. Non detection rate and false detection
rate are 1/30 for each subject. This result indicates that the formation of the sub-
jects was efficient.

Because of high variability inter and intra subject and the presence of extreme
values, means and variances could not be used. In consequence, statistical analyses
are performed with medians and ranges. The median detection time (7'p) is of
11,96 with a range of 299. Analyses of detection times on the basis of scenarios
tests reveal a high variability between subjects. Medians and ranges of the three
subjects are presented in table 1.

Subject | Tp median (sec.) | Range
1 5,48 299
2 22,42 160,9
3 11,57 298,96

Table 1: Detection times: Medians and ranges

This primer analyses implies that detection times are relatively high considering
the favourable environment of the experiment :
e Subjects knows that there is one failure to detect in each scenario (this is not
the case in real situations);
e There are only three kinds of failure to detect. In real situations events could
be more varied;



e Duration of scenarios was very short (30 mn) in comparison to 6 hours in
real ATS;

e Detection was the only task to perform, in ATS several activities could be
perform in parallel;

e The track plan was simplified to a short zone with a single bifurcation.

The subject number two seems to be less effective than the two others. His result
indicates that 60% of his detection times are greater than 20 sec. This rate fall to
20% for the subject 1 and 3. It put forward that detection time depends on the
strategy used by operators to explore the MMI. Moreover, the failure information
given by MMI are not sufficiently striking to be perceived in the same manner by
all subjects.

Data collected does not fulfil the normality and homogeneity conditions, as a
result of which statistical significance for every comparisons between subject and
variable modalities have been realised with non-parametric test for paired obser-
vations. Significance threshold was fixed at o = 0, 05 for every comparisons.

The Mann and Witney statistic have been performed to compare subject together.
This statistic makes the sum of the number of observations of the first subject that
are greater than those of the second. Table 2 shows the p-values, that represent
the probabilities of false reject for the null hypothesis that the two samples are the
same.

Subjects p Hy: Th =T3
Subject 1 - Subject 2 | 0,00041 Rejected
Subject 1 - Subject 3 0,21 Accepted
Subject 2 - Subject 3 0,03 Rejected

Table 2: Comparison between subjects. Mann and Witney, o = 0.05

This result confirms the primer descriptive statistic. Detection times of the sub-
ject number 2 are significantly different from the two others.

In order to evaluate the impact of the traffic configuration variables on the detec-
tion times, the Wilcoxon signed-rank test was employed. This test is usually used
for two related samples or repeated measurements on a single sample. It involves
comparisons of differences between measurements.

Unfortunately, these tests are not as much significant as required to involve con-
clusions on the impact of the modalities of the four variables on the detection time.
Sample size seems to be responsible of this lack of significance. Nevertheless, a



non parametric paired rank test such as Wilcoxon test is applicable for these data.
In each case, the number of pair is greater than 8, furthermore this kind of test
could give results for few pair [18].

However, the effect of the variable "presence of train around incident" give sig-
nificant result. It was assumed that the detection time should be lower when a train
circulates around the incident. The Wilcoxon statistic reveals the opposite effect
with significance. This result is quite surprising. Indeed, it was reasonable to sup-
pose that the strategy used by the human operator consists of following periodi-
cally the evolution of trains. Complementary investigations should be performed
to understand this effect.

5 Conclusion

In order to perform human reliability analysis, a real automatic train supervision
product was integrated and coupled to a traffic simulator. This environment called
SPICA-RAIL allows to recreate safety critical scenarios that could not be observed
directly from real OCC because the low frequency of these scenarios and the dis-
turbance generated by observers on the activities of operators. First experiments
realised in collaboration with specialists of psychology have been performed with
SPICA-RAIL platform. The efficiency of the joint system formed by the ATS-MMI
and the operator was evaluated by the measure of time detection of three kinds of
incidents.

The statistical result involves that it will be useful to extend this experiment with
the study of the strategy used by human operator to monitor the traffic. A mean-
ingful difference was recorded within one subject. Thus this difference could be
provided by the monitoring strategy. However, more subjects should be evaluated
in order to confirm this difference. Moreover, the contradiction with the hypothesis
put forward relative to the presence of trains around the incident is a supplemen-
tary clue to extend the study in this way. If it will be possible to compare different
monitoring strategies and classify them by their performance, several enhancement
of ATS MMI would be specified.
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