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Résumé : Graphs have very interesting properties for ob-
ject representation in pattern recognition. However, graph
matching algorithms are usually computationally complex.
In addition, graphs are harder to manipulate and operate
than feature vectors. In the last years, some attempts have
been made to combine the best of the graph and the vector
domains in order to get the advantages of both worlds. In
this paper we review some of these works on graph kernels
and graph embedding and we show how graph embedding
can be used to obtain accurate and efficient approximations
of the median graph. The median graph can be seen as the
representative of a set of graphs but its application has been
very limited up to now due to computational reasons. With
this new approach, we can obtain an approximate median
graph using real databases containing large graphs.

Mots-clés : Graph Matching, Graph Embedding, Graph Ker-

nels, Vector Spaces, Median Graph

1 Introduction
Graphs have been shown as a useful tool for object re-

presentation in structural pattern recognition. The power of

graphs lies in the fact that they can represent objects in terms

of their parts (as nodes) and the relation between these parts

(as edges). In addition, we can potentially include any kind

of information both in the nodes and in the edges. This is a

clear advantage over pattern representations based on feature

vectors, which are restricted to the use of unary values. That

is, for each object, a set of relevant properties, or features, are

computed and arranged in a vector form without any expli-

cit relation between them. Furthermore, the dimensionality

of graphs, that is, the number of nodes and edges, can be

different for every object even for objects of the same class.

Thus, the more complex an object is, the larger the number

of nodes and edges can be. This is in contrast to feature vec-

tors where, regardless of the complexity of the object, they

have always the same length and structure (a simple list of

pre-determined components).

Nevertheless, there are a number of drawbacks with the

use of graphs in structural pattern representation. On the one

hand, the computational complexity of the algorithms rela-

ted to graphs is usually high. For instance, the simple task of

comparing two graphs, which is commonly referred as graph

matching, becomes exponential in the size of graphs, while

the computation of the Euclidean distance between two vec-

tors has linear dependence on the size of the involved vec-

tors. Secondly, the repository of algorithmic tools based on

graphs is quite limited when compared to the tools available

for patterns represented using feature vectors. This is mainly

due to the fact that vectors are simple structures with good

mathematical properties that can be readily manipulated al-

gebraically.

For this reason, new trends in structural pattern recog-

nition have been proposed merging both worlds in order

to extend the available statistical tools to the graph domain

[BUN 05]. In this way, graph kernels permit to compute the

dot product of the representation of a pair of graphs in a vec-

tor space without having to define the explicit transformation

between the graphs and the vector space. As a consequence

all classification algorithms based on the computation of a

dot product, such as Support Vector Machines (SVM) be-

come immediately available for graphs. On the other hand,

graph embedding aims to find an explicit transformation bet-

ween graphs and a vector space. In this way, we can give

a semantic interpretation to this transformation. In addition

we can also manipulate the vectors resulting from this trans-

formation with all the mathematical machinery that can be

applied to vectors. We are not restricted to the dot product.

In this paper, we firstly review the main techniques used

to define graph kernels and graph embedding in sections 2

and 3, respectively. Then, in section 4 we show the applica-

tion of graph embedding to a particular complex graph mat-

ching problem : the computation of the median graph. In this

section we introduce the concept of median graph as a re-

presentative of a set of graphs and then, we describe how it

can be efficiently computed using graph embedding. We also

show some results of its application to real pattern recogni-

tion problems. Finally, in section 5 we state some conclu-

sions and point out some challenges for the future.

2 Graph Kernels
In the last years, there has been an increasing in-

terest in the pattern recognition community for kernel

methods[SHA 04]. Kernel methods are based on the formu-

lation of the classification problem in terms of the dot product

between two patterns. There exist many pattern recognition

algorithms that can be expressed in this way, such as support

sector machines, principal component analysis, fisher discri-

minant analysis or the gaussian mixture modeling. In addi-

tion, it has been shown in [COV 65] that a non-linear classi-

fication problem is more likely to become linearly separable
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if we map it to a high dimensional space. A kernel function

permits to combine both ideas permitting to compute the dot

product in the high dimensional space without need to expli-

citly define the mapping between the two spaces. They have

been shown to outperform other types of classifiers.

A kernel function is basically a similarity function defi-

ned in the original pattern space that satisfies the conditions

of symmetry and positive definiteness. Under these condi-

tions, it is shown that there exists a pattern space where the

kernel function can be interpreted as the dot product of the

mapping of the original patterns in the new space. Therefore,

we can operate with the dot product in the new space by sim-

ply applying the kernel function to the patterns in the original

space without need to explicitly find the mapping between

the two spaces.

This general procedure can also be applied to graphs. All

we need is the definition of a similarity function in the graph

domain satisfying the properties of symmetry and positive

definiteness. As a result we will be able to compute the dot

product in a new pattern space. Therefore, all the machine

learning algorithms based on the computation of a dot pro-

duct (originally developed to be used with feature vectors)

become immediately available in the graph domain.

In the literature several alternatives have been pro-

posed to define kernel functions on graphs. A common

approach is based on generating random walks on the

graphs[KAS 02, KAS 03]. The kernel measures the number

of random walks in both graphs that have all or some labels

in common. Another family of graph kernels are convolu-

tion kernels[HAU 99, BOR 05] where the kernel is obtained

as the composition of a set of kernels defined on subparts

of the graph, such as shortest paths or edit paths. Diffusion

kernels[KON 02] are exponential kernels defined in analogy

to the equation of diffusion of the heat of classical physics

and based on the Laplacian matrix of the graph. Finally,

another family of graph kernels is based on the graph edit

distance[NEU 06].

All these graph kernels have been used to extend graph

classification to classical classification algorithms, such as

SVM, showing a good performance in a number of applica-

tions, such as protein classification, shape recognition, fin-

gerprint verification, digit recognition, etc.

3 Graph Embedding
Graph kernels permit to compute the dot product of a pair

of graphs in a vector space without having to explicitly define

the transformation between the graphs and the vectors. Alter-

natively, graph embedding aims to explicitly find a mapping

between graphs and real vectors in order to be able to operate

in the associated space, making easier some typical graph-

based tasks, such as matching and clustering. In this way, we

can try to define embeddings with a semantic interpretation

appropriate to obtain a suitable representation for a particular

application. In addition, we can directly manipulate the vec-

tor representation of the graphs and we can expand the range

of operations that we can compute in the vector domain. We

are not restricted to the dot product any more. An example of

the usefulness of graph embedding is the computation of the

median graph that we will present in the next section. We will

show how the embedding permits to compute a median vec-

tor in the vector domain and then, using the weighted mean

of a pair of graphs we are able to recover the corresponding

graph in the graph domain.

Different graph embedding procedures have been propo-

sed in the literature so far. Some of them are based on the

spectral graph theory. Others take advantage of typical simi-

larity measures to perform the embedding tasks. In the follo-

wing, a brief review of some strategies for graph embedding

will be outlined.

Several embedding procedures are based on the spectral

graph theory. Spectral graph theory is based on the analy-

sis of the spectral decomposition into eigenvalues and eigen-

vectors of the adjacency matrix or the Laplacian matrix of a

graph. The Laplacian matrix is obtained by substracting the

adjacency matrix to a diagonal matrix containing the degree

of every node of the graph. The spectrum of these matrices

conveys interesting properties about the structure and the to-

pology of the graph. This is the reason of using it as the basis

to convert graphs into vectors.

A relatively early approach based on the adjacency ma-

trix of a graph is proposed in [LUO 03]. In this work, graphs

are converted into a vector representation using some spec-

tral features extracted form the adjacency matrix of a graph.

Then, these vectors are embedded into eigenspaces with the

use of the eigenvectors of the covariance matrix of the vec-

tors. This approach is then used to perform graph clustering

experiments. Another similar approach have been presented

in [WIL 05]. This work is similar to the previous one, but in

this case they use the coefficients of some symmetric polyno-

mials constructed from the spectral features of the Laplacian

matrix, to represent the graphs into a vectorial form. On a

recent approach [ROB 07], the idea is to embed the nodes

of a graph into a metric space and view the graph edge set

as geodesics between pairs of points in a Riemannian mani-

fold. This can be done using the Laplace-Beltrami operator

and the Laplacian matrix. Then, the problem of matching the

nodes of a pair of graphs is viewed as the alignment of the

embedded point sets. In another work[SHO 05] the goal is

to obtain a signature to describe shapes using the recursive

spectral decomposition of the shock graph representing the

skeleton of the shape.

A different approach[BAI 04] is based on applying MDS

to a matrix of shortest geodesic distances between nodes of

the graph. The embedding is then used for graph matching.

For the special case of trees, an embedding has been defined

using the super-tree of a set of sample trees[TOR 07]. Then,

each tree is embedded in a vector where each component is

related to one of the nodes of the super-tree and it only has a

value different from zero if the node belongs to the specific

tree. The method is used in shape analysis using shock trees

extracted from the skeletons of 2D shapes. Random walks,

and particularly quantum walks have also been used to em-

bed the nodes of a graph in a vector space[EMM 07]. In this

case the embedding is based on the commute time, the ex-

pected time for the walk to travel between two nodes.

Another class of graph embedding procedures is based

on the selection of some prototypes and the computation of

the graph edit distance between the graph and the set of pro-
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totypes. This approach was first presented in [RIE 07], and

it relies on the work proposed in [PEK 06]. The basic intui-

tion of this work is that the description of the regularities in

observations of classes and objects is the basis to perform

pattern classification. Thus, from the selection of concrete

prototypes, each point is embedded into a vector space by

taking its distance to all these prototypes. Assuming these

prototypes have been appropriately chosen, each class will

form a compact zone in the vector space. An extension to

map string representations into vector spaces using a similar

approach was later proposed in [SPI 06].

4 Median Graph via Embedding
In this section we will show a particular application of

graph embedding using the embedding method introduced

in [RIE 07]. We will see how we can obtain good approxi-

mations of the median graph manipulating the representation

obtained in the vector domain and then, finding the corres-

ponding graph in the graph domain. First, we will briefly

introduce the concept of the median graph. Then, we will

explain the overall schema of the procedure and we will des-

cribe each of the three steps in which it can be decomposed.

4.1 Median Graph
Given a set of graphs, the concept of median graph has

been presented as a useful tool to compute a representative of

such a set. Let U be the set of graphs that can be constructed

using a given set of labels L. Given S = {g1, g2, ..., gn} ⊆
U , the generalized median graph of S is defined as the

graph ḡ ∈ U such that its sum of distances (SOD) to all the

graphs in S is minimum :

ḡ = arg min
g∈U

∑
gi∈S

d(g, gi) (1)

The computation of the median graph is not straightfor-

ward as all the possible combinations of graphs need to be

explored. This makes it exponential in the number and size

of graphs. The existing exact and approximate algorithms can

only be applied to small sets of graphs with a very few num-

ber of nodes.

4.2 General schema of the embedding proce-
dure

In the last section we have shown that the computation

of the generalized median graph is a rather complex task. In

this section we present the general overview of a novel ap-

proach for the approximate computation of the median graph

that is faster and more accurate than previous approximate

algorithms. It is based on graph embedding in a vector space

and it consists of three main steps.

Given a set S = {g1, g2, ..., gn} of n graphs, the first step

is to embed every graph in S into the n-dimensional space of

real numbers, i.e. each graph becomes a point in R
n. The se-

cond step consists of computing the median vector using the

points obtained in the previous step. Finally, to go from the

vector space back to the graph domain, converting the me-

dian vector into a graph. The resulting graph is taken as the

median graph of S. These three steps are depicted in Figure1.

In the following subsections, these three main steps will be

further explained.

FIG. 1 – Overview of the embedding approach.

4.3 Graph Embedding in a Vector Space
As we have shown in Section 3, several techniques for

embedding graphs into vector spaces have been proposed.

We have used a variation of the novel procedure proposed in

[RIE 07] to perform our particular graph embedding.

This procedure is based on computing the distance bet-

ween every graph and a set of prototypes. In our case, the set

of prototypes is exactly the same set of training graphs that

are used to compute the median graph. So, we must compute

the distance between every pair of graphs in the set S. These

distances are arranged in a distance matrix. Each row (co-

lumn) of the matrix can be seen as an n-dimensional vector.

Since each row (column) of the distance matrix is assigned

to one graph, such an n-dimensional vector is the vectorial

representation of the corresponding graph.

Figure 2 illustrates this procedure. In this example, it is

assumed that the first row in the matrix corresponds to the

distances of the blue graph in the set to all the graphs in S.

This first row is interpreted as an n-dimensional point in a

vector space (this n-dimensional space is represented here as

a 3D space for obvious reasons).

DM =

⎛
⎜⎜⎜⎜⎜⎝

0 d1,2 d1,3 . . . d1,n

d2,1 0 d2,3 . . . d2,n

d3,1 d3,2 0 . . . d3,n

...
...

...
...

...
dn,1 dn,2 dn,3 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

n-dimensional Vector SpaceSet of graphs S

GRAPH DOMAIN

........

VECTOR DOMAIN

FIG. 2 – Detail of the first step (Graph embedding).

At the end, each graph in S has a corresponding point (n-

dimensional vector) in the vector space. What is important to
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remark here is the meaning of each position in this vector. If

a vector −→v i corresponds to the graph gi ∈ S, then the j − th
coordinate (with j = 1 . . . n) of this vector is the distance

from the graph gi to the graph gj , that is d(gi, gj).

4.4 Median Vector Computation
Once all the graphs have been embedded in the vector

space, the median vector is computed. To this end we use the

concept of Euclidean Median. Given a set X , the Euclidean
Median is a point y ∈ R

n that minimizes the sum of the

Euclidean distances to all the points in the set. The Euclidean

median has been chosen as the representative in the vector

domain for two reasons. The first reason is that the median

of a set of objects is one of the most promising ways to obtain

the representative of such a set. The second is that, since the

median graph is defined in a very close way to the median

vector we expect the median vector to represent accurately

the vectorial representation of the median graph, and then,

from the median vector to obtain good median graphs.

The Euclidean median cannot be calculated in a straight-

forward way. The exact location of the Euclidean median can

not be found when the number of elements in X is greater

than 5 [BAJ 88]. No algorithm in polynomial time is known,

nor has the problem been shown to be NP-hard [HAK 00].

In this work we have used the most common approximate

algorithm for the computation of the Euclidean median, that

is, the Weiszfeld’s algorithm [WEI 37]. It is an iterative pro-

cedure that converges to the Euclidean median. To this end,

the algorithm first selects an initial estimate solution y (this

initial solution is often chosen randomly). Then, the algo-

rithm defines a set of weights that are inversely proportio-

nal to the distances from the current estimate to the samples,

and creates a new estimate that is the weighted average of

the samples according to these weights. The algorithm may

finish when a predefined number of iterations is reached, or

under some other criteria, such as that the difference between

the current estimate and the previous one is less than a esta-

blished threshold.

4.5 Back to the Graph Domain
In order to obtain the median graph, the last step is to

transform the Euclidean median into a graph. Such a graph

will be considered as an approximation of the median graph

of the set S. To this end we will use two different procedures

based on the weighted mean of a pair of graphs [BUN 01]

and the edit path between two given graphs. For the sake of

completeness the definition of the weighted mean of a pair of

graphs is included here.

Definition (Weighted Mean of a Pair of Graphs) Let g
and g′ be graphs. The weighed mean of g and g′ is a graph

g′′ such that,

d(g, g′′) = a (2)

d(g, g′) = a + d(g′′, g′) (3)

where a, with 0 ≤ a ≤ d(g, g′), is a constant.

That is, the graph g′′ is a graph in between the graphs g
and g′ along the edit path between them. Furthermore, if the

distance between g and g′′ is a and the distance between g′′

and g′ is b, then the distance between g and g′ is a+b. Figure

3 illustrates this idea.

g g′

g′′

a b

FIG. 3 – Example of the weighted mean of a pair of graphs

We have proposed two different strategies to obtain the

median graph from the median vector based on the weigh-

ted mean of a pair of graphs. The first approach (called Li-
near Interpolation Procedure or AELI) uses two points in the

vector space to recover the median graph. It is illustrated in

Figure 4. The idea is the following : once the median vector

vm is computed, we choose only its two closest (v1 and v2 in

Figure 4(a)) points. Then, we compute the median vector of

these two points obtaining v′m (Figure 4(b)). This point v′m is

used to obtain the approximate median graph. To this end, we

first compute the distance of each point to v′m (Figure 4(c)),

and then, with these distances we apply the weighted mean of

a pair of graphs to obtain g′m, the approximate median graph

(Figure 4(d)).

The second approach (called Triangulation Procedure or

AET) uses the three closest points to the median vector. In

this case the procedure to recover the median graph is very si-

milar to that explained before. The only difference is that the

median is obtained by triangulation among the three points.

4.6 Experiments
In this section we provide some results of the experimen-

tal evaluation of the proposed algorithm. We will show that

the median graph obtained with this approach is a good ap-

proximation of the real median graph and that the median

graph can then be used to extend the classification methods

used in the graph domain.

To this end we have a database containing 2340 graph-

based representations of web-pages of 6 different classes ac-

cording to their contents (Business, Health, Politics, Sports,

Technology, Entertainment). Nodes of the graph correspond

to the most frequently occurring form of the most significant

words that appear in the web-page, attributed with their fre-

quency of appearance. Edges represent that two words are

adjacent in the document. It has to be noted the large number

of graphs in the database and that the size of the graphs is

also large, with around 180 nodes in average. The existing

methods to compute the median graph could only be applied

to much smaller sets of graphs.

In the first experiment (Figure 5) we have computed the
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v1, g1

v2, g2

v
′

m

vm

(a)

v1, g1

v2, g2

v
′

m

(b)

v1, g1

v2, g2

v
′

m

(c)

v1, g1

v2, g2

v
′

m
, g

′

m

(d)

FIG. 4 – Illustration of the linear interpolation procedure.

median graph with an increasing number of graphs in the trai-

ning set and we have compared the sum of distances (SOD)

to all the graphs in the set with the SOD of the set median

graph (SM). The set median graph is the graph in the set with

minimum SOD and it is usually a good reference to evaluate

the accuracy of the median graph. We can see that the SOD of

the approximate generalized median is lower than the SOD

of the set median for any number of graphs in S. Intuitively,

this result could mean that the obtained median is "located"

more accurately in the center of the class than the set me-

dian. So, we can conclude that our method achieves, in ge-

neral, good approximations of the generalized median graph,

independently of the size of the training set. That means that

the generalized median adapts well to the increasing variabi-

lity and distortion as the number of graphs in the training set

increases.

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

5 10 15 20 25 30

SM AELI AET

SOD Comparison

Number of graphs in ‘S’

SO
D

FIG. 5 – SOD evolution on the Webpage dataset

In the second experiment we have applied the median

graph to improve the classification of the webpages in the fra-

mework of a Nearest-Neighbor classifier. The median graph

FIG. 6 – SOD evolution on the GREC dataset

is used to obtain a representative of each class. Then, these

representatives are used as a filter to reduce the number of

classes considered in the Nearest-Neighbor classifier. First,

we compare every unknown pattern with the median graph

of all the classes. Then, we consider the best K classes ac-

cording to the distance to the median graph and we perform a

Nearest-Neighbor classification using only the elements that

belong to the selected K classes. In Figure 6 we show the

results with an increasing value of K compared to the refe-

rence Nearest-Neighbor classifier. Obviously, for K = 6, the

results are the same as we are using the elements of all the

classes. However, we can see how for smaller values of K we

still obtain better results than the Nearest-Neighbor classifier,

but requiring a much smaller number of graph comparisons

(approximately one third for K = 2). This is an important

issue when working with graphs as the distance between two

graphs is computationally demanding.

5 Conclusions
In this paper we have reviewed several alternatives to

combine the graph and the vector domain that have been pro-

posed in the last years in order to keep the advantages of both

worlds : the power of representation of graphs and the easi-

ness of manipulation and computation of vector spaces.

In this sense we have briefly analyze the main methods

developed in the areas of graph kernels and graph embed-

ding. Both techniques show a promising potential to improve

and extend the use of graph-based representations to a large

number of classical classification and clustering algorithms

in pattern recognition.

As an example we have presented an application of one

of the graph embedding approaches to the computation of

the median graph. The median graph is useful as a repre-

sentative of a set of graphs, but its computation is very com-

plex. With the new method we have been able to compute the

median graph using a large database of graphs representing

webpages with a large number of nodes in each graph. Then,

the median has been used to improve the performance of the

classical Nearest-Neighbor classifier.

With the use of graph kernels and graph embedding the

door to the application of a large number of machine learning

algorithms to the graph domain is open. The challenge is how
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we can take full advantage of it, investigating the relation

between these methods and existing classification algorithms

in order to find the best kernels and embedding approaches.
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