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Pseudodifferential operators on manifolds with

linearization.

Introduction

Classically, a pseudodifferential operator on a (smooth, finite dimensional) manifold is defined through local charts and the notion of pseudodifferential operator on open subsets of R n [START_REF] Shubin | Pseudodifferential operators and spectral theory[END_REF][START_REF] Treves | Introduction to pseudodifferential and Fourier integral operators[END_REF]. In this setting, the full symbol of a pseudodifferential operator is a coordinate dependent notion. However, the principal symbol can be globally defined as a function on the cotangent bundle. Naturally, the question of a full coordinate free definition of the symbol calculus of pseudodifferential operators on a manifold has been considered. One approach, based on the ideas of Bokobza-Haggiag [START_REF] Bokobza-Haggiag | Operateurs pseudodifférentiels sur une variété différentiable[END_REF], Widom [START_REF] Widom | Families of pseudodifferential operators[END_REF][START_REF] Widom | A complete symbolic calculus for pseudodifferential operators[END_REF] and Drager [START_REF] Drager | On the intrinsic symbol calculus for pseudodifferential operators on manifolds[END_REF] allows such a calculus if one provides the manifold with a linear connection. Parallel transport along geodesics and the exponential map to connect any two points sufficiently close on the manifold are then used for the definitions and properties of local phase functions and oscillatory integrals. Safarov [START_REF] Safarov | Pseudodifferential operators and linear connections[END_REF] has formulated a version of a full coordinate free symbol calculus and λ-quantization (0 ≤ λ ≤ 1) using invariant oscillatory integral over the cotangent bundle and determined by the linear connection. Pflaum [START_REF] Pflaum | A deformation theoretical approach to Weyl quantization on Riemannian manifolds[END_REF][START_REF] Pflaum | The normal symbol on Riemannian manifolds[END_REF] developped a complete symbol calculus on any Riemannian manifold using normal coordinates and microlocal lift on the test functions on manifolds with arbitrary Hermitian bundles. Sharafutdinov [START_REF] Sharafutdinov | Geometric symbol calculus for pseudodifferential operators. I[END_REF][START_REF] Sharafutdinov | Geometric symbol calculus for pseudodifferential operators. II[END_REF] constructed a similar global pseudodifferential calculus, based on coordinate invariant geometric symbols. Further results in the same direction, connection to Weyl quantization and application to physics has been considered in Fulling and Kennedy [START_REF] Fulling | The resolvent parametrix of the general elliptic linear differential operator: a closed form for the intrinsic symbol[END_REF], Fulling [START_REF] Fulling | Pseudodifferential operators, covariant quantization, the inescapable VanVleck-Morette determinant, and the R/6 controversy[END_REF] and Güntürk [START_REF] Güntürk | Covariant Weyl quantization, symbolic calculus and the product formula[END_REF]. Connection between complete symbol calculus, deformation quantization and star-products on the cotangent bundle has also been made (see for instance Gutt [START_REF] Gutt | An explicit * -product on the cotangent bundle of a Lie group[END_REF], Bordemann, Neumaier and Waldmann [START_REF] Bordemann | Homogeneous Fedosov star products on cotangent bundles. I. Weyl and standard ordering with differential operator representation[END_REF] and Voronov [START_REF] Voronov | Quantization on supermanifolds and the analytic proof of the Atiyah-Singer index theorem[END_REF][START_REF] Voronov | Quantization of forms on cotangent bundle[END_REF]). Getzler [START_REF] Getzler | Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem[END_REF] used a global pseudodifferential calculus in the context of the Atiyah-Singer index theorem on supermanifolds.

All these pseudodifferential calculi are based on symbol (functions of (x, θ) ∈ T * M ) estimates over the covariable θ while the dependence on the variable x is only controlled locally uniformly on compact sets. This is well suited for the case of a compact manifold. For non-compact manifolds, we have to impose a uniform control over x in order to obtain L 2 (M ) continuity of operators of order 0 and compactness of the remainder operators if the control over x is decaying. In other words, any global pseudodifferential calculus adapted to non-compact manifolds and sensitive to non-local effects needs to encode the behaviour "at infinity" of symbols. On the Euclidean space R n , several types of pseudodifferential calculi have been defined: standard pseudodifferential calculus with uniform control over x (see for instance Hörmander [START_REF] Hörmander | The analysis of linear partial differential operators III[END_REF], Beals [START_REF] Beals | A general calculus of pseudodifferential operators and applications[END_REF], Shubin [START_REF] Shubin | Pseudodifferential almost-periodic operators and von Neumann algebras[END_REF]), isotropic calculus with simultaneous decay of the x and θ variables (Shubin [START_REF] Shubin | Pseudodifferential operators and spectral theory[END_REF][START_REF] Shubin | Pseudodifferential operators in R n[END_REF], Melrose [START_REF] Melrose | Introduction to microlocal analysis[END_REF]), and SG-pseudodifferential calculus with separated decay of the x and θ variables (Shubin [START_REF] Shubin | Pseudodifferential operators in R n[END_REF], Parenti [START_REF] Parenti | Operatori pseudodifferenziali in R n e applicazioni[END_REF], Cordes [START_REF] Cordes | A global parametrix for pseudodifferential operators over R n , with applications[END_REF][START_REF] Cordes | The technique of pseudodifferential operators[END_REF], Schrohe [START_REF] Schrohe | Spaces of weighted symbols and weighted Sobolev spaces on manifolds[END_REF]), which is invariant under a special class of diffeomorphisms and can be extended to an adapted class of manifolds, namely the SG-manifolds (Schrohe [START_REF] Schrohe | Spaces of weighted symbols and weighted Sobolev spaces on manifolds[END_REF]). This class of manifolds contains the non-compact manifolds "with exits" and adapted pseudodifferential calculus has been developed (see for instance Cordes [START_REF] Cordes | A global parametrix for pseudodifferential operators over R n , with applications[END_REF], Schulze [START_REF] Schulze | Boundary value problems and singular pseudodifferential operators[END_REF], Maniccia and Panarese [START_REF] Maniccia | Eigenvalue asymptotics for a class of md-elliptic ψdo's on manifolds with cylindrical exits[END_REF]). Another approach, based on Lie structures at infinity, has been investigated to study the geometry of pseudodifferential operators on noncompact manifolds. Describing the geometry at infinity of the basis manifold by a Lie algebra of vector fields, an adapted pseudodifferential calculus has been constructed (see for instance Melrose [START_REF] Melrose | Pseudodifferential operators, corners and singular limits[END_REF], Mazzeo and Melrose [START_REF] Mazzeo | Pseudodifferential operators on manifolds with fibred boundary[END_REF], Ammann, Lauter and Nistor [START_REF] Ammann | Pseudodifferential operators on manifolds with a Lie structure at infinity[END_REF]). Let us also mention the groupoid approach: by associating to any manifold with corners a smooth Lie groupoid and by building a pseudodifferential calculus on Lie groupoids, the b-calculus of Melrose on manifolds with corners can be generalized (see Monthubert [START_REF] Monthubert | Groupoids and pseudodifferential calculus on manifolds with corners[END_REF]).

Our purpose in this paper is to construct a global pseudodifferential calculus that generalizes the standard and SG calculi on R n , on manifolds with linearization. These manifolds provide a natural geometric setting to deal simultaneously with the questions of a global isomorphism between symbols and pseudodifferential operators, and the non-local effects associated to non-compact manifolds.

The papers in organized as follows. We define in section 2 a manifold with linearization (or exponential manifold) as a pair (M, exp) where M is a smooth real finite-dimensional manifold and exp is an abstract exponential map, a smooth map from the tangent bundle onto M that satisfies, besides the usual properties of an exponential map associated to a connection ∇ on T M , the property that at each point x ∈ M , exp x is a diffeomorphism. Any Cartan-Hadamard manifold with its canonical exponential map is an exponential manifold. These diffeomorphisms are used to define topological vector spaces of functions on the manifold (or on T M , T * M , M × M ) that generalize, for instance, the notions of rapidly decaying function on R n or of tempered distribution, provided that we add a hypothesis of "O M -bounded geometry" on the exponential map. In section 3, we use linearizations in the spirit of Bokobza-Haggiag [START_REF] Bokobza-Haggiag | Operateurs pseudodifférentiels sur une variété différentiable[END_REF], to define symbol and quantization maps. This leads to topological isomorphisms between tempered distributional sections on T * M and M × M , if we consider polynomially controlled (at infinity) linearizations (O M -linearizations). In particular, we extend the usual (explicit) Moyal product (or λ-product, for the λ-quantization) on any exponential manifold with O M -bounded geometry on which we set a O M -linearization. We get the following λ-product formula, giving a Fréchet algebra structure to S(T * M ),

a • λ b (x, η) = Tx(M )×M dµ x (ξ)dµ(y) V λ
x,ξ,y dµ *

x,ξ,y (θ, θ ′ ) g λ x,ξ,y e 2πiω λ x,ξ,y (η,θ,θ ′ ) a(y λ x,ξ , θ) b(y 1-λ x,-ξ , θ ′ ) where a, b ∈ S(T * M ) and the other notations are detailed in Proposition 3.11.

In section 4, we define the symbol and amplitudes spaces for our pseudodifferential calculus. Symbol spaces can be defined in an intrinsic way on the exponential manifold with the help of "symbol-like" control (S σ -bounded geometry, see Definition 2.8) of the coordinate change diffeomorphisms ψ b,b ′ z,z ′ associated to the exponential map exp on M . For practical reasons the definition of amplitudes here is slightly different from the usual functions of the parameters x, y and θ. Instead, our amplitudes generalize functions of the form (x, ζ, ϑ) → a(x, x + ζ, ϑ), where a is a standard amplitude of the Euclidian pseudodifferential calculus. We establish continuity and regularity results for operators of the following form (which can be seen, for some forms of Γ, as special Fourier integral operators on R n ):

Op Γ (a), u := R 3n e 2πi ϑ,ζ Tr a(x, ζ, ϑ) Γ(u) * (x, ζ)) dζ dϑ dx
where Γ is a topological isomorphism on S(R 2n , L(E z )) (here E z is a fixed fiber of the Hermitian bundle E → M , so L(E z ) can be identified with M dim Ez (C)), a is in a O f,z space (see Definition 4.13) and u ∈ S(R n , E z ). In particular, results of Proposition 4.14 and 4.17 and Lemma 4.18 are believed to be new.

With the help of a hypothesis of a control of symbol type over the derivative of the linearization (S σ -linearizations), we obtain in section 4.4 an intrinsic definition (Theorem 4.30) of pseudodifferential operators Ψ l,m σ on M . We see in section 4.5 a condition (H V ) on the linearization that entails that any pseudodifferential operator on M , when transferred in a frame (z, b), is a standard pseudodifferential operator on R n . This condition yields a L 2 -continuity result in Proposition 4.36. The last part of section 4 is devoted to the derivation of a symbol product asympotic formula for the composition of two pseudodifferential operators. The main result is Theorem 4.47: under a special hypothesis (C σ ) on the linearization (see Definition 4.37), we have the following asymptotic formula for the normal symbol (transferred in a frame (z, b)) of the product of two pseudodifferential operators

σ 0 (AB) z,b ∼ β,γ∈N n c β c γ ∂ γ,γ ζ,ϑ a(x, ϑ)∂ β ζ ′ e 2πi ϑ,ϕ x,ζ (ζ ′ ) (∂ β ϑ ′ f b )(x, ζ, ζ ′ , L x,ζ (ϑ)) ζ ′ =0 τ -1 x,ζ ζ=0
where a := σ 0 (A) z,b , b := σ 0 (B) z,b , and other notations are defined in section 4.6. Finally, we give in section 5 two possible settings (besides the usual standard calculus on the Euclidian R n ) in which the previous calculus applies. The first is based on the Euclidian space R n , with a "deformed" (non-bilinear, non-flat) S σ -linearization. The second example is the hyperbolic plane (or Poincaré half-plane) H. We prove in particular that H has a S 1 -bounded geometry. This allows to define a global Fourier transform, Schwartz spaces S(H), S(T * H), S(T H), B(H) and the space of symbols S l,m 1 (T * H). Moreover we can then define in an intrinsic way a global complete pseudodifferential calculus on H, and Moyal product, for any specified S σ -linearization on H.

Manifolds with linearization and basic function spaces 2.1 Abstract exponential maps, definitions and notations

The notion of linearization on a manifold was first introduced by Bokobza-Haggiag in [START_REF] Bokobza-Haggiag | Operateurs pseudodifférentiels sur une variété différentiable[END_REF] and corresponds to a smooth map ν from M × M into T M such that π • ν = π 1 , ν(x, x) = 0 for any x ∈ M and (d y ν) y=x = Id TxM . In all the following, we shall work with "global" linearizations, in the following sense: Definition 2.1. A manifold with linearization (or exponential manifold) is a pair (M, exp) where M is a smooth manifold and exp a smooth map from T M into M such that: (i) for any x ∈ M , exp x : T x M → M defined as exp x (ξ) := exp(x, ξ), is a global diffeomorphism between T x M and M , (ii) for any x ∈ M , exp x (0) = x and (d exp x ) 0 = Id TxM . The map exp will be called the exponential map, and (x, y) → exp -1 x (y) the linearization, of the exponential manifold (M, exp). We shall sometimes use the shorthand e ξ x := exp x (ξ).

Note that the term "exponential manifold" used here is not to be confused with the notion of "exponential statistical manifold" used in stochastic analysis. Remark that if exp ∈ C ∞ (T M, M ) satisfies (i), then defining Exp := exp • T where T (x, ξ) := exp -1 x (x)+(d exp -1 x ) x ξ, we see that (M, Exp) is an exponential manifold.

We will say that (M, ∇) (resp. (M, g)) is exponential, where M is a smooth manifold with connection ∇ on T M (resp. with pseudo-Riemannian metric g), if (M, exp) where exp is the canonical exponential map associated to ∇ (resp. to g) is an exponential manifold, or in other words, if for any x ∈ M , exp x is a diffeomorphism from T x M onto M . Note that (M, ∇) (resp. (M, g)) is exponential if and only if

• M is geodesically complete • For any x, y ∈ M , there exists one and only one maximal geodesic γ such that γ(0) = x and γ(1) = y.

• For any x ∈ M , exp x is a local diffeomorphism.

Remark 2.2. R n (with its standard metric of signature (p, n-p)) is an exponential manifold and any n-dimensional real exponential manifold is diffeomorphic to R n . In particular, an exponential manifold cannot be compact. A Cartan-Hadamard manifold is a Riemannian, complete, simply connected manifold with nonpositive sectional curvature. It is a consequence of the Cartan-Hadamard theorem (see for instance [START_REF] Lang | Fundamentals of differential geometry[END_REF]Theorem 3.8]) that any Cartan-Hadamard manifold is exponential.

Remark 2.3. The exponential structure can be transported by diffeomorphism: if (M, exp M ) is an exponential manifold, N a smooth manifold and ϕ : M → N is a diffeomorphism, then (N, exp

N := ϕ • exp M • T ϕ -1
) is an exponential manifold.

Assumption 2.4. We suppose from now on that (M, exp) is an exponential n-dimensional real manifold.

For any x, y ∈ M , we define γ xy as the curve R → M , t → exp x (t exp -1 x y), and γ xy (t) := γ yx (1 -t). Note that γ xy (0) = x and γ xy (1) = y. If the exponential map is derived from a linear connection, we have for any t ∈ R, γ xy (t) = γ xy (t). In the general case, this is only true for t = 0 and t = 1.

The abstract exponential map exp provides the manifold M with a notion of "points at infinity" and "straight lines" (γ xy ). It can be seen as a generalization to manifolds of the useful properties of R n for the study of the behaviour of functions at infinity. The abstract exponential map exp formalizes the fact that our straight lines never stop and connect any two different points.

The diffeomorphism exp -1 z , for a given z ∈ M , is not stricto sensu a chart, since it maps M onto T z M , which is diffeormorphic but not equal to R n . In order to obtain a chart, one needs to choose a linear basis of x . The diffeomorphism from M × M onto R 2n defined by (x, y) → (n b z (x), n b z (y)) will be noted n b z,M 2 . We note (∂ i,z,b ) i∈N 2n the family of vector fields on T * M (resp. T M , M × M ) associated to the chart n b z, * (resp. n b z,T , n b z,M 2 ) onto R 2n . We suppose in all the following that E is an arbitrary normed finite dimensional complex vector space. If ν is a (2n)-multi-index, we define the following operator on

T z M . If z ∈ M
C ∞ (T * M, E) (resp. C ∞ (T M, E), C ∞ (M × M, E)): ∂ ν z,b := 2n k=1 ∂ ν k k,z,b .
If α and β are n-multi-indices, we note (α, β) the 2n-multi-index obtained by concatenation. If α is a n-multi-index, ∂ α z,b is a linear operator on C ∞ (M, E). We fix the shorcut x := (1+ x 2 ) 1/2 for any x ∈ R p , p ∈ N. We will use the convention x α := x α 1 1 • • • x αp p for x ∈ R p and α p-multiindex, with 0 0 := 1. If f is continuous function from R p to a normed vector space and g is a continuous function from R p to R, we note f = O(g) if and only if there exist r > 0, C > 0 such that for any x ∈ R p \B(0, r), f (x) ≤ C|g(x)|. In the case where g is strictly positive on R p , this is equivalent to: there exists C > 0 such that for any x ∈ R p , f (x) ≤ Cg(x). We also introduce the following shorthands, for given

(z, b), x, y ∈ M , θ ∈ T * x (M ), ξ ∈ T x (M ): x z,b := n b z (x) , θ z,b,x := M b z,x (θ) , ξ z,b,x := M b z,x (ξ) , x, y z,b := (n b z (x), n b z (y)) , x, θ z,b := (n b z (x), M b z,x (θ)) , x, ξ z,b := (n b z (x), M b z,x (ξ)) .
If f and g are in C 0 (R p , R p ′ ) we note f ≍ g the equivalence relation defined by: f = O( g ) and g = O( f ).

Parallel transport on an Hermitian bundle

Let E be an hermitian vector bundle (with typical fiber E as a finite dimensional complex vector space) on the exponential manifold (M, exp). E admits a (non-unique) connection ∇ E compatible with the hermitian metric [START_REF] Berline | Heat kernels and Dirac operators[END_REF]. It is a differential operator from C ∞ (M, E) (the space of smooth sections of E → M ) to C ∞ (M, T * M ⊗ E) such that for any smooth function f on M and smooth E-sections ψ, ψ ′ ,

∇ E (f ψ) = df ⊗ ψ + f ∇ E ψ , d(ψ|ψ ′ ) = (∇ E ψ|ψ ′ ) + (ψ|∇ E ψ ′ ) ,
where (ψ|ψ ′ ) is the hermitian pairing of ψ and ψ ′ . We will note |ψ| 2 := (ψ|ψ). The sesquilinear form (•|•) x of E x is antilinear in the second variable by convention. The operator ∇ E can be (uniquely) extended as an operator acting on E-valued differential forms on M . If γ is a curve on M defined on an interval J and γ * E the associated pullback bundle on J, there exists a natural connection (the pullback of ∇ E ) on γ * E, noted ∇ γ * E compatible with ∇ E . Let us fix x, y ∈ M and γ : J → M a curve such that γ(0) = x and γ(1) = y. For any v ∈ E x , there exists an unique smooth section β of γ * E → J such that β(0) = v and ∇ γ * E β = 0. Clearly, β(1) ∈ E y and we can define a linear isomorphism τ γ from E x to E y as τ γ (v) = β(1). The map τ γ is the parallel transport map associated to γ from E x to E y . The compatibility of ∇ E with the hermitian metric entails that the maps τ γ are in fact isometries for the hermitian structures on E x and E y .

The vector bundle L(E) → M , defined by L(E) x := L(E x ) (the space of endomorphisms on E x ), is lifted to T * M , T M and M × M by setting the fiber at (x, θ) to L(E x ) for T * M or T M , and the fiber at (x, y) to L(E y , E x ) for M × M . The canonical projection from T * M or T M to M is noted π.

We note τ xy := τ γxy . Remark that τ -1 xy = τ e γyx . We define τ z : x → τ zx and τ -1

z : x → τ -1 zx = τ * zx . If u ∈ C ∞ (M, E) and z ∈ M , we note u z (x) := (τ -1 z u)(x) for any x ∈ M . If a is section of L(E) → T * M or L(E) → T M , we note a z := (τ -1 z • π) a (τ z • π). If a is a section of L(E) → M × M , we note a z (x, y) := τ -1 z (x) a(x, y) τ z (y). We also define τ z := (x, y) → τ -1 z (y)τ (x, y)τ z (x) ∈ L(E z ). Noting π 1 (x, y) := x, π 2 (x, y) := y, we get a z = (τ -1 z • π 1 ) a (τ z • π 2 ) and τ z = (τ -1 z • π 2 ) a (τ z • π 1
). Parallel transport on E has the following smoothness property:

Lemma 2.5. (i) The map τ : (x, y) → τ xy (resp. τ -1 : (x, y) → τ -1 xy ) is a smooth section of the vector bundle L(E) ∨ → M × M where the fiber at (x, y) is L(E x , E y ) (resp. of the vector bundle L(E) → M × M ). (ii) τ z ∈ C ∞ (M, L(E z , E)) and τ -1 z ∈ C ∞ (M, L(E, E z )). (iii) τ z ∈ C ∞ (M × M, L(E z )). Proof. (i) The map G : T M → M × M defined by G(v) := (π(v), exp(v)) is a local diffeo- morphism since the Jacobian of G at v 0 = (x 0 , ξ 0 ) ∈ T M is equal to the Jacobian of exp x 0 at ξ 0 . Since it is also bijective (with inverse G -1 (x, y) := (x, exp -1 x (y))), it is a (global) diffeo- morphism T M → M × M . The map b(x, y, t) := (x, t exp -1
x (y)) is thus a smooth map from M × M × R to T M , and we get a smooth parametrization by M × M of the following family of curves: c(x, y) → γ xy : t → exp b(x, y, t)). This parametrization leads (see [14, p. 17]) to a smooth bundle homomorphism between c * (•)(0

)E → M × M and c * (•)(1)E → M × M , so a smooth section τ : (x, y) → τ xy of L(E x , E y ) → M × M . The case of τ -1 is similar, by taking b -1 (x, y, t) := b(x, y, 1 -t).
(ii, iii) are straightforward consequences of (i).

Corollary 2.6. If u is in the space C ∞ (M, E), then u z ∈ C ∞ (M, E z ). Similarly, if a ∈ C ∞ (T * M, L(E)) (resp. C ∞ (T M, L(E)), C ∞ (M ×M, L(E))), then a z ∈ C ∞ (T * M, L(E z )) (resp. C ∞ (T M, L(E z )), C ∞ (M × M, L(E z ))).
Remark 2.7. The vector bundle E on M is trivializable and the parallel transport provides a M -indexed family of trivializations, since for any z ∈ M , the pair

f z : E → M × E, (x, v) → (x, τ xz (v)), Id : M → M, x → x, is a vector bundle isomorphism from E → M onto M × E → M .
Note that if exp is derived from a connection, τ -1 xy = τ yx for any x, y ∈ M .

O M and S σ -bounded geometry

Classically, in Riemannian geometry, bounded geometry hypothesis gives boundedness on the covariant derivative of the Riemann curvature of the basis manifold. For the following pseudodifferential calculus, we shall need some hypothesis of that kind, formulated not with the curvature but with the exponential diffeomorphisms ("normal" coordinate transition maps).

The hypothesis that we will need for pseudodifferential symbol calculus is actually not simply the boundedness condition on the derivatives of the transition maps, which is a classical consequence of bounded geometry. For symbol calculus, we will require that the n th -derivatives are not only bounded, but decrease to zero at infinity as x -σ(n-1) where σ is a parameter in [0, 1]. Or, in other words, the normal coordinate change maps behave as "symbols" or order 1. Thus, we introduce the following 

∂ α ψ b,b ′ z,z ′ (x) = O( x -σ(|α|-1) ) ,
and a O M -bounded geometry if for any (z, b), (z ′ , b ′ ), and any n-multi-index α, there exist

p α ≥ 1 such that (O M 1) ∂ α ψ b,b ′ z,z ′ (x) = O( x pα ) .
We shall be working with O M -bounded geometry for the definition of function spaces and Fourier transform and with S σ -bounded geometry (for a σ ∈ [0, 1]) for pseudodifferential symbol calculus. Definition 2.9. The triple (M, exp, E) where (M, exp) is exponential and E is a hermitian vector bundle on M has a S σ -bounded geometry if (M, exp) has a S σ -bounded geometry and for any (z, b), z ′ , z ′′ , and any n-multi-index α,

(S σ 2) ∂ α z,b τ -1 z ′ τ z ′′ (x) = O( x -σ|α| z,b ) ,
and a O M -bounded geometry if (M, exp) has a O M -bounded geometry and for any (z, b), (z ′ , b ′ ), and any n-multi-index α, there exist p α ≥ 1 such that

(O M 2) ∂ α z,b τ -1 z ′ τ z ′′ (x) = O( x pα z,b ) . Clearly, if σ ≤ σ ′ , since (S σ ′ i) ⇒ (S σ i), we have S σ ′ -bounded ⇒ S σ -bounded ⇒ O M - bounded.
Note that S σ -bounded geometry on the vector bundle entails that the derivatives of the transport transition maps τ -1 z τ z ′ (smooth from M to L(E z ′ , E z )) are bounded (for S 0bounded geometry) or decrease to zero with an order equal to the order of the derivative (for S 1 -bounded geometry). Remark also that if E is a trivial bundle and ∇ E = d, then (S 1 2) is automatically satisfied since the maps τ z are all equal to the constant x → Id E .

Lemma 2.10. Let σ ∈ [0, 1] and (z, b), (z ′ , b ′ ) be given frames. (i) If (M, exp) has a S σ -bounded geometry, there exist K, C, C ′ > 0 such that for any x ∈ R n , x ∈ M , θ ∈ T * x (M ), ξ ∈ T x (M ), ψ b,b ′ z,z ′ ≍ Id R n and x z,b ≤ K x z ′ ,b ′ , (2.1) 
θ z,b,x ≤ C θ z ′ ,b ′ ,x and ξ z,b,x ≤ C ′ ξ z ′ ,b ′ ,x , (2.2) 
and if (M, exp) has a O M -bounded geometry, there exist K, K ′ , K ′′ , C, C ′ > 0 and q ≥ 1 such that for any

x ∈ R n , x ∈ M , θ ∈ T * x (M ), ξ ∈ T x (M ), K ′ x 1/q ≤ ψ b,b ′ z,z ′ (x) ≤ K ′′ x q and x z,b ≤ K x q z ′ ,b ′ , (2.3) 
θ z,b,x ≤ C x q z ′ ,b ′ θ z ′ ,b ′ ,x and ξ z,b,x ≤ C ′ x q z ′ ,b ′ ξ z ′ ,b ′ ,x , (2.4) 
(ii) For any given n-multi-indice α, we can write

∂ α z,b = 0≤|α ′ |≤|α| f α,α ′ ∂ α ′ z ′ ,b ′
where the (f α,α ′ ) are smooth real functions on M such that for each n-multi-indices α, α ′ , (a) if (M, exp) has a S σ -bounded geometry, there exists C α > 0 such that for any

x ∈ M , |f α,α ′ (x)| ≤ C α x -σ(|α|-|α ′ |) z,b , (b) if (M, exp) has a O M -bounded geometry, there exist C α > 0 and q α ≥ 1 such that for any x ∈ M , |f α,α ′ (x)| ≤ C α x qα z,b . Proof. (i) Suppose that (M, exp) has a S σ -bounded geometry. Taylor formula implies that ψ b,b ′ z,z ′ (x) ≤ ψ b,b ′ z,z ′ (0) + C 0 x for any x ∈ R n , where C 0 := sup x∈R n (dψ b,b ′ z,z ′ ) x . As a conse- quence ψ b,b ′ z,z ′ (x) = O( x )
and thus, there is

K ′′ > 0 such that ψ b,b ′ z,z ′ (x) ≤ K ′′ x . The same argument for ψ b ′ ,b z ′ ,z = (ψ b,b ′ z,z ′ ) -1 gives ψ b,b ′ z,z ′ ≍ Id R n and x z,b ≤ K x z ′ ,b ′ follows immediately. Since x → M b z,x ( M b ′ z ′ ,x ) -1 = (dψ b ′ ,b z ′ ,z ) n b z (x) and x → M b z,x (M b ′ z ′ ,x ) -1 = (dψ b,b ′ z,z ′ ) n b ′ z ′ (x)
are bounded functions, (2.2) follows. The case where (M, exp) has a O M -bounded geometry is similar.

(ii) We have for any

f ∈ C ∞ (M, E), ∂ α z,b (f ) = ∂ α (f • (n b z ) -1 ) • n b z = ∂ α (f • (n b ′ z ′ ) -1 • ψ b ′ ,b z ′ ,z ) • n b z .
We now apply the multivariate Faa di Bruno formula obtained by G.M. Constantine and T.H. Savits in [START_REF] Constantine | A multivariate Faa di Bruno formula with applications[END_REF], that we reformulated for convenience in Theorem 2.11. This formula entails that for any n-multi-index α = 0,

∂ α (f • (n b ′ z ′ ) -1 • ψ b ′ ,b z ′ ,z ) = 1≤|α ′ |≤|α| P α,α ′ (ψ b ′ ,b z ′ ,z ) (∂ α ′ f • (n b ′ z ′ ) -1 ) • ψ b ′ ,b z ′ ,z
and thus

∂ α z,b = 1≤|α ′ |≤|α| (P α,α ′ (ψ b ′ ,b z ′ ,z ) • n b z ) ∂ α ′ z ′ ,b ′ =: 1≤|α ′ |≤|α| f α,α ′ ∂ α ′ z ′ ,b ′
where P α,α ′ (g) is a linear combination of terms of the form s j=1 (∂ l j g) k j , where 1 ≤ s ≤ |α| and the k j and l j are n-multi-indices with |k j | > 0, |l j | > 0, s j=1 |k j | = |α ′ | and s j=1 |k j ||l j | = |α|. In the case where (M, exp) has a S σ -bounded geometry, for each s, (k j ), (l j ), there is K > 0 such that for any x ∈ R n ,

| s j=1 (∂ l j ψ b ′ ,b z ′ ,z ) k j (x)| ≤ K x -σ P s j=1 (|l j |-1)|k j | = K x -σ(|α|-|α ′ |)
which gives the result. The case where (M, exp) has a O M -bounded geometry is similar.

Theorem 2.11. [8] Let f ∈ C ∞ (R p , E) and g ∈ C ∞ (R n , R p ). Then for any n-multi-index ν = 0, ∂ ν (f • g) = 1≤|λ|≤|ν| (∂ λ f ) • g |ν| s=1 ps(ν,λ) ν! s j=1 1 k j !(l j !) |k j | (∂ l j g) k j
where p s (ν, λ) is the set of p-multi-indices k j and n-multi-indices l j (1

≤ j ≤ s) such that 0 ≺ l 1 ≺ • • • ≺ l s (l ≺ l ′ being defined as "|l| < |l ′ | or |l| = |l ′ | and l < L l ′ " where < L is the strict lexicographical order), |k j | > 0, s j=1 k j = λ and s j=1 |k j |l j = ν.
Note that by Lemma 2.10, if (M, exp) satisfies (S σ 1) (resp. (O M 1)), then (S σ 2) (resp. (O M 2)) is equivalent to: for any z ′ , z ′′ ∈ M , there exists a frame (z, b)

such that ∂ α z,b τ -1 z ′ τ z ′′ (x) = O( x -σ|α| z,b ) (resp. O( x pα z,b
) for a p α ≥ 1) for any n-multi-index α. As the following proposition shows, S σ or O M -bounded geometry properties can be transported by any diffeomorphism. Proposition 2.12. If (M, exp M ) has a S σ (resp. O M ) bounded geometry, N a smooth manifold and ϕ :

M → N is a diffeomorphism, then (N, exp N := ϕ • exp M • dϕ -1 ) has a S σ (resp. O M ) bounded geometry. Proof. Let us note ψ b,b ′ z,z ′ ,N := n b z,N • (n b ′ z ′ ,N ) -1 where n b z,N := L b • exp -1 N,z and (z, b), (z ′ , b ′ ) are two frames on N . Since exp z ′ ,N = ϕ • exp M,ϕ -1 (z ′ ) •(dϕ -1 ) z ′ and exp -1 N,z = (dϕ -1 ) -1 z • exp -1 M,ϕ -1 (z) • ϕ -1 , we obtain ψ b,b ′ z,z ′ ,N = ψ bz ,b ′ z ′ ϕ -1 (z),ϕ -1 (z ′ ),M where b z is the basis of T ϕ -1 (z) (M ) such that L bz = L b • (dϕ) ϕ -1 (z)
. The result follows.

The following technical lemma will be used for Fourier transform and the definition of rapidly decreasing section spaces over the tangent and cotangent bundle in section 3. It will also give the behaviour of symbols under coordinate change.

Lemma 2.13. Let (z, b), (z ′ , b ′ ) be given frames. (i) We can express ∂ (α,β) z,b as an operator on C ∞ (T * M, E) (resp. C ∞ (T M, E))
, where (α, β) is a 2n-multi-index, with the following finite sum:

∂ (α,β) z,b = 0≤|(α ′ ,β ′ )|≤|(α,β)| |β ′ |≥|β| f α,β,α ′ ,β ′ ∂ (α ′ ,β ′ ) z ′ ,b ′
where the f α,β,α ′ ,β ′ are smooth functions on T * M (resp. T M ) such that (a) if (M, exp) has a S σ -bounded geometry for a given σ ∈ [0, 1], there exists C α,β > 0 such that for any (x, θ) ∈ T * M (resp. T M ),

|f α,β,α ′ ,β ′ (x, θ)| ≤ C α,β x σ(|α ′ |-|α|) z,b θ |β ′ |-|β| z,b,x .
(2.5)

(b) if (M, exp) has a O M -bounded geometry, there exist C α,β > 0 and q α,β ≥ 1 such that for any (x, θ) ∈ T * M (resp. T M ), |f α,β,α ′ ,β ′ (x, θ)| ≤ C α,β x q α,β z,b θ |β ′ |-|β| z,b,x .
(2.6)

(ii) We can express ∂ (α,β) z,b
as an operator on C ∞ (M × M, E), with the following finite sum:

∂ (α,β) z,b = 0≤|α ′ |≤|α| 0≤|β ′ |≤|β| f α,β,α ′ ,β ′ ∂ (α ′ ,β ′ ) z ′ ,b ′ where the f α,β,α ′ ,β ′ are smooth functions on M × M such that (a) if (M, exp) has a S σ -bounded geometry for a given σ ∈ [0, 1], there exists C α,β > 0 such that for any (x, y) ∈ M × M , |f α,β,α ′ ,β ′ (x, y)| ≤ C α,β x σ(|α ′ |-|α|) z,b y σ(|β ′ |-|β|) z,b
.

(2.7)

(b) if (M, exp) has a O M -bounded geometry, there exist C α,β > 0 and q α , q β ≥ 1 such that for any (x, y) ∈ M × M , |f α,β,α ′ ,β ′ (x, y)| ≤ C α,β x qα z,b y q β z,b . (2.8)
Proof. (i) Suppose that (M, exp) has a S σ -bounded geometry. Let us note

ψ * := n b ′ z ′ , * • (n b z, * ) -1 and ψ T := n b ′ z ′ ,T • (n b z,T ) -1 . We have ψ * = (ψ b ′ ,b z ′ ,z • π 1 , L)
where π 1 is the projection from R 2n onto the first copy of R n in R 2n and L is the smooth map from R 2n to R n defined as L(x, ϑ)

:= t (dψ b ′ ,b z ′ ,z ) -1 x (ϑ) = t (dψ b,b ′ z,z ′ ) ψ b ′ ,b z ′ ,z (x) (ϑ). Noting (L i ) 1≤i≤n the components of L, we have L i (x, ϑ) = 1≤p≤n L i,p (x) ϑ p , where L i,p := (∂ i ψ b,b ′ z,z ′ ) p • ψ b ′ ,b z ′ ,z . As a consequence, for 1 ≤ i ≤ n and α, β, n-multi-indices such that |(α, β)| > 0 (∂ (α,β) ψ * ) i = δ β,0 (∂ α ψ b ′ ,b z ′ ,z ) i • π 1 , (∂ (α,β) ψ * ) n+i = (∂ (α,β) L) i , (∂ (α,β) L) i (x, ϑ) = 1≤p≤n (∂ α L i,p )(x) F β,p (ϑ) , ∂ α L i,p = 1≤|α ′ |≤|α| P α,α ′ (ψ b ′ ,b z ′ ,z ) ((∂ α ′ +e i ψ b,b ′ z,z ′ ) p • ψ b ′ ,b z ′ ,z ) if |α| > 0 ,
where F β,p (ϑ) is equal to ϑ p if β = 0, to δ p,r if β = e r , and to 0 otherwise. We get from the proof of Lemma 2.10 that (for 1

≤ |α ′ | ≤ |α|) P α,α ′ (ψ b ′ ,b z ′ ,z )(x) = O( x -σ(|α|-|α ′ |)
). As a consequence, using (2.1), we see that

∂ α L i,p (x) = O( x -σ|α| ). Thus, if |β| > 1, ∂ (α,β) ψ * = 0 and if β = 0 , (∂ (α,β) ψ * ) i (x, ϑ) = O( x -σ(|α|-1) ) and (∂ (α,β) ψ * ) n+i (x, ϑ) = O( x -σ|α| ϑ ) , if |β| = 1 , (∂ (α,β) ψ * ) i = 0 and (∂ (α,β) ψ * ) n+i (x, ϑ) = O( x -σ|α| ) .
Similar results hold for ψ T , the only difference is that we just have to take

L := (dψ b ′ ,b z ′ ,z ) x (ϑ) instead of L. We have for any f ∈ C ∞ (T * M, E), ∂ ν z,b (f ) = ∂ ν (f • (n b z, * ) -1 ) • n b z, * = ∂ ν (f • (n b ′ z ′ , * ) -1 • ψ * ) • n b z, * .
Using again the Faa di Bruno formula in Theorem 2.11, we get

∂ ν z,b = 1≤|ν ′ |≤|ν| (P ν,ν ′ (ψ * ) • n b z, * ) ∂ ν ′ z ′ ,b ′ =: 1≤|ν ′ |≤|ν| f ν,ν ′ ∂ ν ′ z ′ ,b ′
where P ν,ν ′ (ψ * ) is a linear combination of terms of the form s j=1 (∂ l j ψ * ) k j , where 1 ≤ s ≤ |ν|, the k j and l j are 2n-multi-indices with |k j | > 0, |l j | > 0, s j=1 k j = ν ′ and s j=1 |k j |l j = ν. Let us note l j =: (l j,1 , l j,2 ), k j =: (k j,1 , k j,2 ) where l j,1 , l j,2 , k j,1 , k j,2 are n-multi-indices. Thus,

(∂ l j ψ * ) k j = n i=1 ((∂ l j ψ * ) i ) k j,1 i ((∂ l j ψ * ) n+i ) k j,2 i
and we get, for a given s, (l j ), (k j ) such that (∂ l j ψ * ) k j = 0 for all 1 ≤ j ≤ s,

if l j,2 = 0 , (∂ l j ψ * ) k j = O( x -σ(|l j |-1)|k j |-σ|k j,2 | ϑ |k j,2 | ) , if |l j,2 | = 1 , k j,1 = 0 and (∂ l j ψ * ) k j = O( x -σ(|l j |-1)|k j | ) .
Since k j = 0 and (∂ l j ψ * ) k j = 0, l j,2 always satisfies |l j,2 | ≤ 1. By permutation on the j indices, we can suppose that for 1 ≤ j ≤ j 1 -1, we have l j,2 = 0, for j 1 ≤ j ≤ s, we have |l j,2 | = 1, where 1 ≤ j 1 ≤ s + 1. Thus,

s j=1 (∂ l j ψ * ) k j = O( x -σ( P s j=1 (|l j |-1)|k j |+ P j 1 -1 j=1 |k j,2 |) ϑ P j 1 -1 j=1 |k j,2 | ) .
Since, with ν = (α, β), ν ′ = (α ′ , β ′ ),

j 1 -1 j=1 |k j,2 | = s j=1 |k j,2 | - s j=j 1 |k j,2 | = |β ′ | - s j=j 1 |k j ||l j,2 | = |β ′ | -|β| ,
(2.5) follows. If we set f 0,0,0,0 := 1 and f α,0,0,0 := 0 if α = 0, then for any 2n-multi-index (α, β),

∂ (α,β) z,b = 0≤|(α ′ ,β ′ )|≤|(α,β)| |β ′ |≥|β| f α,β,α ′ ,β ′ ∂ (α ′ ,β ′ ) z ′ ,b ′
and the estimate (2.5) holds for any f α,β,α ′ ,β ′ . In the case of O M -bounded geometry, the proof is similar, and we obtain for a r ν ≥ 1, s j=1 (∂

l j ψ * ) k j = O( x rν ϑ |β ′ |-|β| ), which gives the result. (ii) Replacing ψ * by ψ b ′ ,b z ′ ,z,M 2 := n b ′ z ′ ,M 2 • (n b z,M 2 ) -1 in (i)
, we obtain the result by similar arguments.

Basic function and distribution spaces

We suppose in this section that E is an hermitian vector bundle on the exponential manifold (M, exp). Recall that if u ∈ C ∞ (M ; E) (resp. C ∞ c (M ; E)) the Fréchet space of smooth sections (resp. the LF -space of compactly supported smooth sections) of E → M , we have for any

z ∈ M , u z := τ -1 z u ∈ C ∞ (M, E z ) (resp. C ∞ c (M, E z )). We define for any frame (z, b) on M , T z,b (u) := u z • (n b z ) -1 . Thus, T z,b sends sections of E → M to functions from R n to E z and is in fact a topological isomorphism from C ∞ (M ; E) (resp. C ∞ c (M ; E)) onto C ∞ (R n , E z ) (resp. C ∞ c (R n , E z )).
In the following, a density (resp. a codensity) is a smooth section of the complex line bundle over M defined by the disjoint union over x ∈ M of the complex lines formed by the 1-twisted forms on T x M (resp. T *

x (M )). Recall that a 1-twisted form on a n-dimensional vector space V is a function on F on Λ n V \{0} such that

F (cv) = |c|F (v) for all v ∈ Λ n V \{0} and c ∈ R * .
For a given frame (z, b), let us note |dx z,b | the density associated to the volume form on M :

dx z,b := dx 1,z,b ∧ • • • ∧ dx n,z,b and |∂ z,b | the codensity defined as |∂ 1,z,b ∧ • • • ∧ ∂ n,z,b |. Any density (resp. codensity) is of the form c|dx z,b | (resp. c|∂ z,b |)
where c is a smooth function on M , and by definition is strictly positive if c(x) > 0 for any x ∈ M . For a given strictly positive density dµ, we also note by dµ its associated (positive, Borel-Radon, σ-finite) measure on M . This allows to define the following Banach spaces of (equivalence classes of) functions on M : L p (M, dµ) (1 ≤ p ≤ ∞). Actually, L ∞ (M ) := L ∞ (M, dµ) does not depend on the chosen dµ, since the null sets for dµ are exactly the null sets for any other strictly positive density dµ ′ on M .

For a given z ∈ M , we note L p (M, E z , dµ) (1 ≤ p < ∞) and L ∞ (M, E z ) the Bochner spaces on M with values in E z . E z is a hermitian complex vector space, so we can identify E z with its antidual E ′ z . There is a natural anti-isomorphism between E ′ z and the dual of E z but there is in general no canonical way to identify E z with its dual with a linear isomorphism. Thus, we shall use antiduals rather than duals in the following. However, E z is anti-isomorphic with its dual by complex conjugaison on E ′ z . We shall note x the image under this anti-isomorphism of x ∈ E z and E z the dual of E z .

We note L p (M ; E, dµ) := { ψ section of E → M such that |ψ| p ∈ L 1 (M, dµ) }/ ∼ a.e. and L ∞ (M ; E) := { ψ section of E → M such that |ψ| ∈ L ∞ (M ) }/ ∼ a.e. where ∼ a.e. the standard "almost everywhere" equivalence relation. Since the τ xy maps are isometries, for any z ∈ M , the map ψ → τ -1 z ψ defines linear isometries: L p (M ; E, dµ) ≃ L p (M, E z , dµ), and L ∞ (M ; E) ≃ L ∞ (M, E z ). In particular, L p (M ; E, dµ) and L ∞ (M ; E) are Banach spaces and L 2 (M ; E, dµ) a Hilbert space. Moreover, we can define for any ψ ∈ L 1 (M ; E, dµ) and z ∈ M the following Bochner integral τ -1 z ψ ∈ E z . We can canonically identify L ∞ (M ; E) as the antidual of L 1 (M ; E, dµ) and L 2 (M ; E, dµ) as its own antidual. The (strong) antiduals of C ∞ c (M ; E) and C ∞ (M ; E) are noted respectively D ′ (M ; E) and E ′ (M ; E).

We define G σ (R p , E) (resp. S σ (R p )), where σ ∈ [0, 1], as the space of smooth functions g from R p into E (resp. R) such that for any p-multi-index ν = 0 (resp. any p-multi-index ν), there exists E) the space of smooth E-valued functions with polynomially bounded derivatives. We use the shorcuts

C ν > 0 such that ∂ ν g(v) ≤ C ν v -σ(|ν|-1) (resp. |∂ ν g(v)| ≤ C ν v -σ|ν| ) for any v ∈ R p . We note O M (R p ,
G σ (R p ) := G σ (R p , R p ) and O M (R p ) := O M (R p , R).
We have the following lemma which will give an equivalent formulation of S σ or O Mbounded geometry.

Lemma 2.14. (i) Let f ∈ G σ (R p , E) (resp. S σ (R p )) and g ∈ G σ (R n , R p ) such that, if σ > 0, there exists ε > 0 such that g(v) ≥ ε v for any v ∈ R n . Then f • g ∈ G σ (R n , E) (resp. S σ (R n )). (ii) The set G × σ (R p ) of diffeomorphisms g on R p such that g and g -1 are in G σ (R p ) is a subgroup of Diff(R p ) and contains GL p (R) as a subgroup. (iii) We have O M (R p , E) • O M (R n , R p ) ⊆ O M (R n , E).
In particular, the space O M (R p , R p ) is a monoid under the composition of functions. The set of inversible elements of the monoid

O M (R p , R p ), noted O × M (R p , R p )
, is a subgroup of Diff(R p ) and contains G × σ (R p ) as a subgroup. (iv) (M, exp) has a S σ (resp. O M )-bounded geometry if and only if there exists a frame (z 0 , b 0 ) such that for any frame (z, b),

ψ b 0 ,b z 0 ,z ∈ G × σ (R n ) (resp. O × M (R n , R n )). (v) The set, noted S × σ (R p ) (resp. O × M (R p )), of smooth functions f : R p → R * such that f and 1/f are in S σ (R p ) (resp. O M (R p )) is a commutative group under pointwise multiplication of functions. Moreover, S × σ (R p ) ≤ S × σ ′ (R p ) ≤ O × M (R p ) if 1 ≥ σ ≥ σ ′ ≥ 0. (vi) If g ∈ G × σ (R p ) (resp. O × M (R p , R p )) then its Jacobian determinant J(g) is in S × σ (R p ) (resp. O × M (R p )). Proof. (i)
The Faa di Bruno formula yields for any n-multi-index ν = 0,

∂ ν (f • g) = 1≤|λ|≤|ν| (∂ λ f ) • g P ν,λ (g) (2.9)
where P ν,λ (g) is a linear combination (with coefficients independant of f and g) of functions of the form s j=1 (∂ l j g) k j where s ∈ { 1, • • • , |ν| }. The k j are p-multi-indices and the l j are n-multi-indices (for 1 ≤ j ≤ s) such that |k j | > 0, |l j | > 0, s j=1 k j = λ and s j=1 |k j |l j = ν. As a consequence, since g ∈ G σ (R n , R p ), for each ν, λ with 1 ≤ |λ| ≤ |ν| there exists C ν,λ > 0 such that for any

v ∈ R n , |P ν,λ (g)(v)| ≤ C ν,λ v -σ(|ν|-|λ|) .
(2.10)

Moreover, if f ∈ G σ (R p , E) (resp. S σ (R p )), there is C ′ λ > 0 such that for any v ∈ R n , (∂ λ f ) • g(v) ≤ C ′ λ v -σ(|λ|-1) (resp. |(∂ λ f ) • g(v)| ≤ C ′ λ v -σ|λ|
). The result now follows from (2.9) and (2.10). (ii) Let f and g in G × σ (R p ). We have

∂ i g -1 = O(1) for any i ∈ { 1, • • • , p }.
Taylor-Lagrange inequality of order 1 entails that g -1 (v) = O( v ) and thus there is

ε > 0 such that g(v) ≥ ε v for any v ∈ R n . With (i), we get f • g ∈ G σ (R p ). The same argument shows that g -1 • f -1 ∈ G σ (R p ). (iii) Direct consequence of Theorem 2.11.
(iv) The only if part is obvious. Suppose then that for any frame (z, b),

ψ b 0 ,b z 0 ,z ∈ G × σ (R n ) (resp. O × M (R n , R n ). Let (z, b), (z ′ , b ′ ) be two frames. We have ψ b,b ′ z,z ′ = ψ b,b 0 z,z 0 • ψ b 0 ,b ′ z 0 ,z ′ . So, by (ii) (resp. (iii)), ψ b,b ′ z,z ′ ∈ G × σ (R n ) (resp. O × M (R n , R n ))
, which yields the result. (v) By Leibniz rule, the spaces S σ (R p ) and O M (R p ) are R-algebras under the pointwise product of functions. The result follows. (vi) Consequence of (ii), (iii), 1/J(g) = J(g -1 ) • g and the fact that S σ (R p ) (resp. O M (R p )) is stable under the pointwise product of functions.

Remark that for any g ∈ G × σ (R p ), we have g ≍ Id R p . The multiplication by a function in

O × M (R n ) is a topological isomorphism from the Fréchet space of rapidly decaying E z -valued functions S(R n , E z ) onto itself. If we note J b,b ′ z,z ′ the Jacobian of ψ b,b ′ z,z ′ , then 1/J b,b ′ z,z ′ = J b ′ ,b z ′ ,z • ψ b,b ′ z,z ′ and J b,b ′ z,z ′ • n b ′ z ′ (x) = dx z,b /dx z ′ ,b ′ (x) = det M b z,x (M b ′ z ′ ,x ) -1 = det(M b ′ z ′ ,x ) -1 M b z,x . We deduce from Lemma 2.14 (vi) that if (M, exp) has a S σ (resp. O M ) bounded geometry then J b,b ′ z,z ′ is in S × σ (R n ) (resp. O × M (R n )). Definition 2.15. Any smooth function f is in S σ (resp. O M ) if for any frame (z, b), f •(n b z ) -1 ∈ S σ (R n ) (resp. O M (R n )). Similarly, any smooth function f is in S × σ (resp. O × M ) if for any frame (z, b), f • (n b z ) -1 ∈ S × σ (R n ) (resp. O × M (R n )).
Lemma 2. [START_REF] Fulling | The resolvent parametrix of the general elliptic linear differential operator: a closed form for the intrinsic symbol[END_REF]. If (M, exp) has a S σ -bounded geometry then a smooth function

f on M is in S σ (resp. S × σ ) if there exists a frame (z, b) such that f • (n b z ) -1 ∈ S σ (R n ) (resp. S × σ (R n )). Similarly, If (M, exp) has a O M -bounded geometry then f is in O M (resp. O × M ) if there exists a frame (z, b) such that f • (n b z ) -1 ∈ O M (R n ) (resp. O × M (R n )). Proof. Let (z ′ , b ′ ) be a frame such that f • (n b ′ z ′ ) -1 ∈ S σ (R n )
, and let (z, b) be another frame. By Lemma 2.10 (ii), if (M, exp) has a S σ -bounded geometry then for any n-multi-index α,

∂ α (f • (n b z ) -1 ) = 0≤|α ′ |≤|α| f α,α ′ • (n b z ) -1 (∂ α ′ f • (n b ′ z ′ ) -1 ) • ψ b ′ ,b z ′ ,z where (f α,α ′ • (n b z ) -1 )(x) = O( x -σ(|α|-|α ′ |) ). As a consequence ∂ α (f • (n b z ) -1 )(x) = O( x -σ|α|
) and the result follows. The case of O M bounded geometry is similar. Definition 2.17. A smooth strictly positive density dµ is a S × σ -density (resp. O × M -density) if for any frame (z, b), the unique smooth strictly positive function

f z,b such that dµ = f z,b |dx z,b | is in S × σ (resp. O × M ).
In this case, we shall note µ z,b the smooth stricly positive function in

S × σ (R n ) (resp. O × M (R n )) such that dµ = (µ z,b • n b z ) |dx z,b |.
We 

(R n ) (resp. O M (R n )) and (z, b), (z ′ , b ′ ) are frames, is a S × σ -density (resp. O × M -density).
Proof. Let (z ′′ , b ′′ ) be an arbitrary frame. Noting dµ 

:= u•n b ′ z ′ |dx z,b |, we get dµ = (u•n b ′ z ′ )|J b,b ′′ z,z ′′ |• n b ′′ z ′′ |dx z ′′ ,b ′′ |. We already saw that the function J b,b ′′ z,z ′′ is in S × σ (R n ) (resp. O × M (R n )). By Lemma 2.16, (u • n b ′ z ′ )(|J b,b ′′ z,z ′′ | • n b ′′ z ′′ ) is in S × σ (resp. O × M ).
z (b i , b j ) = η i δ i,j where η i = 1 for 1 ≤ i ≤ m and η i = -1 for i > m, where g has signature (m, n -m)) of T z (M ) (|dx z | is then independant of b).
A priori, the Riemannian density does not belong to the canonical M -indexed family D g . We shall need integrations over tangent and cotangent fibers and manifolds. We thus define dµ

* := (µ -1 z,b • n b z ) |∂ z,b | the codensity associated to dµ, where µ -1 z,b := 1 µ z,b and (z, b) is a frame. Note that since |∂ z,b |/|∂ z ′ ,b ′ | = |dx z ′ ,b ′ |/|dx z,b | = (µ z,b • n b z )/(µ z ′ ,b ′ • n b ′ z ′ ), dµ * is independant of (z, b). For a given x ∈ M , the density on T x (M ) associated to dµ is dµ x := (µ z,b • n b z (x)) |dx z,b
x | and the associated density on

T * x (M ) is dµ * x := (µ -1 z,b • n b z (x)) |∂ z,b x |.
For a function f defined on T x (M ) or T *

x (M ), we have formally:

Tx(M ) f (ξ) dµ x (ξ) = µ z,b • n b z (x) R n f • (M b z,x ) -1 (ζ) dζ , T * x (M ) f (θ) dµ * x (θ) = µ -1 z,b • n b z (x) R n f • ( M b z,x ) -1 (ϑ) dϑ ,
and it is straightforward to check that these integrals are independant of the chosen frame (z, b).

Schwartz spaces and operators

Assumption 2.20. We suppose in this section and in section 2.6 that (M, exp, E, dµ), where E is an hermitian vector bundle on M , has a O M -bounded geometry.

The main consequence of the exponential structure is the possibility to define Schwartz functions on M . Definition 2.21. A section u ∈ C ∞ (M, E) is rapidly decaying at infinity if for any (z, b), any n-multi-index α and p ∈ N, there exists K α,p > 0 such that the following estimate

∂ α z,b u z (x) Ez < K α,p x -p z,b (2.11) 
holds uniformly in x ∈ M . We note S(M, E) the space of such sections.

With the hypothesis of O M -bounded geometry, we see that the requirement "any (z, b)" can be reduced to a simple existence: Proof. Suppose that (2.11) is valid for (z ′ , b ′ ) and let (z, b) be another frame. Thus, with Lemma 2.10 (ii) and Leibniz rule,

Lemma 2.22. A section u ∈ C ∞ (M, E) is in S(M, E) if
∂ α z,b u z (x) = 0≤|α ′ |≤|α| β≤α ′ f α,α ′ α ′ β ∂ α ′ -β z ′ ,b ′ (τ -1 z τ z ′ ) ∂ β z ′ ,b ′ u z ′ (x).
(2.12)

Moreover |f α,α ′ α ′ β ∂ α ′ -β z ′ ,b ′ (τ -1 z τ z ′ )| ≤ C α x qα z,b for a C α > 0 and a q α ≥ 1. Now (2.11) and (2.3) entail that for any p ∈ N, there is K > 0 such that ∂ α z,b u z (x) Ez ≤ K x -p z,b . The result follows. Remark 2.23. Let u ∈ C ∞ (M, E) and (z, b) a frame. Then u ∈ S(M, E) if and only if (τ -1 z u) • (n b z ) -1 ∈ S(R n , E z ). In other words, if v ∈ S(R n , E z ) then τ z (v • n b z ) ∈ S(M, E).
The following lemma shows that we can define canonical Fréchet topologies on S(M, E). Lemma 2.24. Let (z, b) a frame. Then (i) The following set of semi-norms:

q α,p (u) := sup x∈M x p z,b ∂ α z,b u z (x) Ez .
defines a locally convex metrizable topology T on S(M, E).

(ii) The application T z,b is a topological isomorphism from the space S(M, E) onto S(R n , E z ).

(iii) The topology T is Fréchet and independent of the chosen frame (z, b).

Proof. (i) and (ii) are obvious.

(iii) Since T z,b is a topological isomorphism, T is complete. Following the arguments of the proof of Lemma 2.22, we see that there is r ∈ N * such that for any n-multi-index α and p ∈ N, there exist C α,p > 0, r α,p ∈ N * , such for any u ∈ S(M, E),

q (z,b) α,p (u) ≤ C α,p |β|≤|α| q (z ′ ,b ′ ) β,rα,p (u) .
The independance on (z, b) follows.

Remark 2.25. If (M, exp, E, dµ) has a S 0 -bounded geometry, then it is possible to define the Fréchet space of smooth sections with bounded derivatives B(M, E) by following the same procedure of S(M, E), with Lemma 2.10.

Classical results of distribution theory [START_REF] Treves | Introduction to pseudodifferential and Fourier integral operators[END_REF] and the previous topological isomorphisms T z,b entail the following diagrams of continuous linear injections ((M ; E) ommitted and 1 ≤ p < ∞):

C ∞ c / / S / / C ∞ E ′ / / S ′ / / D ′ B / / L ∞ " " h h h h h h h h S / / @ @ Ð Ð Ð Ð Ð Ð Ð Ð L p (dµ) / / S ′ .
The injections S → B → L ∞ are valid in the case where M has a S 0 -bounded geometry. In the case of a general O M -bounded geometry, only the injection S → L ∞ holds a priori. The injection from functions into distribution spaces is given here by u → u, • where u, v := (u|v) dµ. Note that the following continuous injections S → S ′ and S → L p (dµ) → S ′ , (1 ≤ p < ∞) have a dense image.

Using the same principles of the definition of S together with the O M -bounded geometry hypothesis and Lemma 2.13 (ii), we define the Fréchet space S(M × M, L(E)) such that for any

(z, b) the applications T z,b,M 2 := K → K z •(n b z,M 2 ) -1 are topological isomorphisms from S(M × M, L(E)) onto S(R 2n , L(E z )). Noting j M 2 the continous dense injection from S(M × M, L(E)) into its antidual S ′ (M × M, L(E)) defined as j M 2 (K), K ′ = M ×M Tr(K(x, y)(K ′ (x, y)) * ) dµ ⊗ dµ(x,
y), we have the following commutative diagram, where j is the classical continuous dense inclusion from S(R 2n , L(E z )) into its antidual, and M µ⊗µ is the multiplication operator from

S(R 2n , L(E z )) onto itself by the O × M (R 2n ) function µ z,b ⊗ µ z,b : S(M × M, L(E)) j M 2 / / T z,b,M 2 / / S ′ (M × M, L(E)) S(R 2n , L(E z )) M µ⊗µ / / S(R 2n , L(E z )) j / / S ′ (R 2n , L(E z )) . T * z,b,M 2 O O Since S is nuclear, L(S, S ′ ) ≃ S ′ (M × M, L(E)) and S(M × M, L(E)) ≃ S ⊗ S where S := S(M, E). Thus, S ′ (M × M, L(E)) ≃ S ′ ⊗ S ′
, where S ′ is the dual of S which is also the antidual of S. Note that the isomorphism L(S, S ′ ) ≃ S ′ (M × M, L(E)) is given by

A K (v), u = K(u ⊗ v)
where A K is operator associated to the kernel K, u, v ∈ S, and v(y) := v(y). Formally,

A K (v), u = M ×M (K(x, y)v(y)|u(x))dµ ⊗ dµ(x, y) , (A K v)(x) = M K(x, y)v(y)dµ(y).
Thus any continuous linear operator A : S → S ′ is uniquely determined by its kernel

K A ∈ S ′ (M × M, L(E)). The transfert of A into the frame (z, b) is the operator A z,b from S(R n , E z ) into S ′ (R n , E z ) such that A z,b (v), u := A(T -1 z,b (v)), T -1 z,b (u) . Thus, if K A is the kernel of A, we have K A z,b := T z,b,M 2 (K A ) as the kernel of A z,b , where T z,b,M 2 here is the inverse of the adjoint of T z,b,M 2 . T z,b,M 2 is a topological isomorphism from S ′ (M × M, L(E)) onto S ′ (R 2n , L(E z )).
Definition 2.26. An operator A ∈ L(S, S ′ ) is regular if A and its adjoint A † send continously S into itself. An isotropic smoothing operator is an operator with kernel in S(M × M, L(E)). The space regular operators and the space of isotropic smoothing operators are respectively noted ℜ(S) and Ψ -∞ .

Note that this definition of isotropic smoothing operators differs from the standard smoothing operators one where only local effects are taken into account, since in this case, a smoothing operator is just an operator with smooth kernel. Clearly, A is regular if and only if for any frame (z, b), A z,b is regular as an operator from S(R n , E z ) into S ′ (R n , E z ). Remark that the space of regular operators forms a * -algebra under composition and the space of isotropic smoothing operators Ψ -∞ is a * -ideal of this algebra.

Let us record the following important fact:

Proposition 2.27. Any isotropic smoothing operator extends (uniquely) as a Hilbert-Schmidt operator on L 2 (dµ).

Proof. An isotropic smoothing operator A (with kernel K) extends as a continous linear operator from S ′ to S, and thus it also extends as a bounded operator on L 2 (dµ). Let (z, b) be a frame. If U is the unitary associated to the isomorphism

L 2 (dµ) onto H z,b := L 2 (R n , E z , µ z,b dx) we have A = U * A z,b U where A z,b is a bounded operator on H z,b given by the kernel K z • (n b z , n b z ) -1 . Since this kernel is in H z,b ⊗ H z,b = L 2 (R 2n , E z ⊗ E z , (µ z,b dx) ⊗2 ), it follows that A z,b is Hilbert- Schmidt on H z,b
, which gives the result.

Fourier transform

Fourier transform is the fundamental element that will allow the passage from operators to their symbols. In our setting, it is natural to extend the classical Fourier transform on R n to Schwartz spaces of rapidly decreasing sections on the tangent and cotangent bundles of M , and use the fibers T x (M ), T *

x (M ) as support of integration.

Definition 2.28.

A smooth section a ∈ C ∞ (T * M, L(E)) is in S(T * M, L(E)) if for any (z, b),
any 2n-multi-index ν and any p ∈ N, there exists K p,ν > 0 such that

∂ ν z,b a z (x, θ) L(Ez) ≤ K p,ν x, θ -p z,b (2.13) 
uniformly in (x, θ) ∈ T * M . A similar definition is set for S(T M, L(E)).

Following the same technique as for the space S(M, E), using the coordinate invariance given by Lemma 2.13 we obtain the Proposition 2.29.

(i) A section u ∈ C ∞ (T * M, L(E)) is in S(T * M, L(E)) if and only if there exists a frame (z, b) such that (2.

13) is valid. A similar property holds for S(T M, L(E)).

(ii) There is a Fréchet topology on S(T * M, L(E)) such that each

T z,b, * : a → a z • (n b z, * ) -1 is a topological isomorphism from S(T * M, L(E)) onto S(R 2n , L(E z )). A similar property holds for S(T M, L(E)) and the applications T z,b,T := a → a z • (n b z,T ) -1 . Proof. (i, ii) Suppose that (2.13) is valid for (z ′ , b ′ ) and a ∈ C ∞ (T * M, L(E)) and let (z, b) another frame. With Lemma 2.13 and Leibniz rule, noting ν = (α, β), ν ′ = (α ′ , β ′ ), λ = (λ 1 , λ 2 ) and ρ = (ρ 1 , ρ 2 ), we get ∂ ν z,b a z = 0≤|ν ′ |≤|ν| |β ′ |≥|β| ρ≤λ≤ν ′ f ν,ν ′ C ν ′ ,λ,ρ ∂ α ′ -λ 1 z ′ ,b ′ (τ -1 z τ z ′ ) ∂ (ρ 1 ,β ′ ) z ′ ,b ′ (a z ′ ) ∂ λ 1 -ρ 1 z ′ ,b ′ (τ -1 z ′ τ z ) (2.14)
where

C ν ′ ,λ,ρ = δ β ′ ,λ 2 δ β ′ ,ρ 2 ν ′ λ λ ρ .
Using now the fact that for any x, ϑ ∈ R n , x 1/2 ϑ 1/2 ≤ (x, ϑ) ≤ x ϑ , and (2.3), (2.4), we see that for any 2n-multi-index ν, and p ∈ N, there is

r ν,p ∈ N * and C ν,p > 0 such that q (z,b) ν,p (a) ≤ C ν,p |ρ|≤|ν| q (z ′ ,b ′ ) ρ,rν,p (a), where q (z,b) ν,p (a) := sup (x,θ)∈T * M x, θ p z,b ∂ ν z,b a z (x, θ) L(Ez) .
The results follow, as in the case of S(M, E), by taking the topology given by the seminorms q z,b ν,p for an arbitrary frame (z, b).

Remark 2.30. If (M, exp, E) has a S 0 -bounded geometry, we saw in Remark 2.25 that a coordinate free (independant of the frame (z, b)) definition of a space of smooth E-sections on M with bounded derivatives is possible. However, a similar definition cannot be given in the same manner for L(E)-sections on T M or T * M with bounded derivatives, due to the fact that the change of coordinates of Lemma 2.13 impose an increasing power of θ (when

|β ′ | > |β|).
However, the independance over (z, b) would still hold for the space of smooth sections of L(E) → T * M (resp. T M ) with polynomially bounded derivatives.

We note S ′ (T * M, L(E)) and S ′ (T M, L(E)) the strong antiduals of S(T * M, L(E)) and S(T M, L(E)), respectively. We have the following continuous inclusion with dense image

j T * M : S(T * M, L(E)) → S ′ (T * M, L(E)) resp. j T M : S(T M, L(E)) → S ′ (T M, L(E))
defined by

j T * M (a), b := T M * Tr(ab * )dµ * resp. j T M (a), b := T M Tr(ab * )dµ T
where dµ * is the measure on T * M given by dµ * (x, θ) := dµ * x (θ)dµ(x) and dµ T is the measure on T M given by dµ T (x, ξ) := dµ x (ξ)dµ(x). Note that for any (z, b),

dµ * (x, θ) = |∂ z,b x |(θ)|dx z,b |(x) (this is the Liouville measure on T * M ) and dµ T (x, θ) = µ 2 z,b • n b z (x)|dx z,b x |(ξ)|dx z,b |(x).
We have the following commutative diagram, where M µ 2 is the multiplication operator by the

O × M (R 2n ) function (x, ζ) → µ 2 z,b (x), S(T M, L(E)) j T M / / T z,b,T / / S ′ (T M, L(E)) S(R 2n , L(E z )) M µ 2 / / S(R 2n , L(E z )) j / / S ′ (R 2n , L(E z )) T * z,b,T O O
and, in the case of S(T * M, L(E)) a similar diagram is valid if M µ 2 is replaced by the identity.

Definition 2.31. The Fourier transform of a ∈ S(T M, L(E)) is

F(a) : (x, θ) → Tx(M ) e -2πi θ,ξ a(x, ξ) dµ x (ξ) . Proposition 2.32. F is a topological isomorphism from S(T M, L(E)) onto S(T * M, L(E)) with inverse F (a) := (x, ξ) → T * x (M ) e 2πi θ,ξ a(x, θ) dµ * x (θ) .
The adjoint F * of F coincides with F on S(T M, L(E)), so we still note F * by F and F * by F .

Proof. Let (z, b) be a frame. It is straightforward to check that the following diagram commutes

S(T M, L(E)) F / / T z,b,T S(T * M, L(E)) S(R 2n , L(E z )) F z,b / / S(R 2n , L(E z )) T -1 z,b, * O O where F z,b = F P • M µ = M µ • F P , with M µ the multiplication operator on S(R 2n , L(E z )) defined by M µ (a) := (x, ζ) → µ z,b (x) a(x, ζ
) and F P the partial Fourier transform on the space S(R 2n , L(E z )) (only the variables in the second copy of R n in R 2n being Fourier transformed).

It is clear that F z,b is a topological isomorphism from S(R 2n , L(E z )) onto itself with inverse F -1 z,b = M 1/µ • F P . The fact that F * coincides with F on S(T M, L(E)) is a consequence of the following equality T M Tr(a(F (b)) * ) dµ T = T * M Tr(F(a)b * ) dµ * for any a ∈ S(T M, L(E)) and b ∈ S(T * M, L(E))
, that is a direct consequence of the Parseval formula for F P .

3 Linearization and symbol maps 3.1 Linearization and the Φ λ , Υ t diffeomorphisms

Recall that a linearization (Bokobza-Haggiag [START_REF] Bokobza-Haggiag | Operateurs pseudodifférentiels sur une variété différentiable[END_REF]) on a smooth manifold M is defined as a smooth map ν from M × M into T M such that π • ν = π 1 , ν(x, x) = 0 for any x ∈ M and (d y ν) y=x = Id TxM . Using this map, it is then possible by restricting ν on a small neighborhood of the diagonal of M × M , to obtain a diffeomorphism onto a neighborhood of the zero section of T M and obtain an isomorphism between symbols (with a local control of the x variables on compact) and pseudodifferential operators modulo smoothing ideals. These isomorphisms depend on the linearization, as shown in [START_REF] Bokobza-Haggiag | Operateurs pseudodifférentiels sur une variété différentiable[END_REF]Proposition V.3]. We follow here the same idea, with a global point of view, since we are interested in the behavior at infinity. We thus consider, on the exponential manifold (M, exp, E, dµ) a fixed linearization ψ that comes from an (abstract) exponential map ψ on M (also called linearization map in the following), so that ψ(x, y) = ψ -1 x y, and ψ x is a diffeomorphism from T x M onto M , with ψ x (0) = x, (dψ x ) 0 = Id TxM . For example, ψ may be the exponential map exp.

Let λ ∈ [0, 1] and Φ λ be the smooth map from T M onto M × M defined by

Φ λ : (x, ξ) → ψ x (λξ), ψ x (-(1 -λ)ξ) .
Assumption 3.1. We suppose from now on that whenever the parameters λ, λ ′ , are in ]0, 1[, it is implied that the linearization map ψ satisfies for any x, y ∈ M and t ∈ R,

ψ x (tψ -1 x (y)) = ψ y ((1 -t)ψ -1 y (x))
. This hypothesis, called (H ψ ) in the following, is automatically satisfied if the linearization is derived from a exponential map of a connection on the manifold.

A computation shows that Φ λ is a diffeomorphism with the following inverse Φ -1

λ : (x, y) → α ′ yx (1 -λ) for λ = 0 and Φ -1 0 (x, y) : → -α ′ xy (0), where α xy (t) := ψ x (tψ -1 x (y)). Noting Φ -1 λ (x, y) =: (m λ (x, y), ξ λ (x, y)), we see that m λ (x, y) = α xy (λ) and, if λ = 0, ξ λ (x, y) = 1 λ ψ -1 m λ (x,y) (x), while ξ 0 (x, y) = -ψ -1
x (y). In all the following, we shall use the symbol W (for Weyl) for the value λ = 1 2 , so that

m W := m 1 2 , Φ W := Φ 1 2
, and similar conventions for the other mathematical symbols containing λ. Note that m λ is a smooth function from M × M onto M , with m λ (x, x) = x for any x ∈ M . Moreover, for any x, y ∈ M , m λ (x, y) = m 1-λ (y, x), m W (x, y) = m W (y, x) (the "middle point" of x and y), ξ λ (x, y) = -ξ 1-λ (y, x), ξ W (x, y) = -ξ W (y, x) and x → Φ -1 λ (x, x) is the zero section of T M → M . Noting j the involution on M × M : (x, y) → (y, x), we have

Φ λ = j • Φ 1-λ • -Id T M .
For any t ∈ [-1, 1] (with the convention that if (H ψ ) is not satisfied, we are restricted to t ∈ { -1, 0, 1 }), we define,

Υ t : (x, ξ) → ψ x (tξ), -1 t ψ -1 ψx(tξ) (x)
with the convention -1 t ψ -1 ψx(tξ) (x) := ξ if t = 0, so that Υ 0 = Id T M . A computation shows that Υ -1 t = Υ -t . The Φ λ and Υ t diffeomorphisms are related by the following property: for any

λ, λ ′ ∈ [0, 1], Φ -1 λ • Φ λ ′ = Υ λ ′ -λ . We will use the shorthand Υ t,T (x, ξ) := -1 t ψ -1 ψx(tξ) (x), so that Υ t = (ψ • t Id T M , Υ t,T ). Remark 3.2. Note that (H ψ ) entails that (Υ t ) t∈R is a one parameter subgroup of Diff(T M ).
Remark 3.3. Suppose that ψ is the exponential map associated to a connection ∇ on T M , and α x,ξ the unique maximal geodesic such that α ′

x,ξ (0) = (x, ξ). It is a standard result of differential geometry (see for instance [START_REF] Lang | Fundamentals of differential geometry[END_REF]Theorem 3.3,p.206]) that for any v := (x, η) ∈ T M , and ξ ∈ T x (M ), there exists an unique curve

β ξ v : R → T M such that ∇ α ′ v β ξ v = 0, π•β ξ v = α v (in other words, β ξ v is α v -parallel lift of α v ) and β ξ v (0) = (x, ξ). By definition of geodesics, β η x,η = α ′ x,η . Moreover, β ξ x,η (1) ∈ T ψ η x (M )
, so we can define the following linear isomorphism of tangent fibers: -η) . The P x,ξ are the parallel transport maps along geodesics on the tangent bundle. These maps are related to the Υ t diffeomorphisms, since a computation shows that for any (x, η) ∈ T M and t ∈ R, P x,tη (η) = Υ t,T (x, η).

P x,η : T x (M ) → T ψ η x (M ), ξ → β ξ x,η (1) . Note that P -1 x,η = P ψ η x ,ψ -1 ψ η x (x) = P -Υ 1 (x,η) = P Υ -1 (x,
If (z, b) is a frame, we define Φ λ,z,b := n b z,M 2 •Φ λ •(n b z,T
) -1 and we note J λ,z,b its Jacobian. We also define Υ

t,z,b = n b z,T • Υ t • (n b z,T ) -1
and the smooth maps from R 2n to R n :

ψ b z : (x, ζ) → n b z • ψ • (n b z,T ) -1 (x, ζ) , ψ b z : (x, y) → M b z,(n b z ) -1 (x) • ψ -1 (n b z ) -1 (x) • (n b z ) -1 (y). Noting ψ b z,x (ζ) := ψ b z (x, ζ) and ψ b z,x (y) := ψ b z (x, y), we have (ψ b z,x ) -1 = ψ b z,x . A computation shows that for any (x, ζ, y) ∈ R 3n , Φ λ,z,b (x, ζ) = (ψ b z (x, λζ), ψ b z (x, -(1 -λ)ζ)) , Φ -1 λ,z,b (x, y) = (m λ,z,b (x, y), ξ λ,z,b (x, y)) (3.1)
where we defined the following functions:

m λ,z,b (x, y) := ψ b z (x, λ ψ b z (x, y)), ξ 0,z,b := -ψ b z and for λ = 0, ξ λ,z,b (x, y) := 1 λ ψ b z (m λ,z,b (x, y), x). We also obtain for t ∈ [-1, 1], (x, ζ) ∈ R 2n , Υ t,z,b (x, ζ) = ψ b z (x, tζ), -1 t ψ b z (ψ b z (x, tζ), x)) =: (ψ b z (x, tζ), Υ z,b t,T (x, ζ) , (3.2) 
and

Υ 0,z,b = Id R 2n . Note that Υ t,z,b (x, 0) = (x, 0) for any x ∈ R n and Υ z,b t,T = 1 t Υ z,b 1,T • I 1,t where I r,r ′ is the diagonal matrix with coefficients I ii = r for i ≤ n for 1 ≤ i ≤ n and I ii = r ′ for n + 1 ≤ i ≤ 2n.

O M -linearizations

We intent to use the linearization to define topological isomorphisms between rapidly decaying section on T M and M × M . We thus need a control at infinity over the derivatives of the linearization ψ.

We note

τ z,b = τ z • (n b z,M 2 ) -1 ∈ C ∞ (R 2n , L(E z )).
Remark that for any (x, y) ∈ R 2n , τ z,b (x, y) is an unitary operator on E z . We will also need the following functions parametrized by t ∈ R: τ t (x, η) := τ x (ψ x (tη)) for any (x, η) ∈ T M and τ 1 ) -1 are in O M (R 2n , L(E z )). We will say that (M, exp, E, dµ, ψ) has a O M -bounded geometry, if it the case of (M, exp, E, dµ) and ψ is a O M -linearization.

Lemma 3.5. Suppose that ψ is a O M -linearization. Then for any frame (z, b), λ ∈ [0, 1] and t ∈ [-1, 1], (i) Φ λ,z,b ∈ O × M (R 2n , R 2n ) and J λ,z,b ∈ O × M (R 2n ), (ii) Υ t,z,b ∈ O × M (R 2n , R 2n ) and J(Υ t,z,b ) ∈ O × M (R 2n ), (iii) τ z,b t and (τ z,b t ) -1 are in O M (R 2n , L(E z )). Proof. (i) By (3.1), we have Φ λ,z,b = (ψ b z • I 1,λ , ψ b z • I 1,λ-1 ) and Φ -1 λ,z,b = (m λ,z,b , ξ λ,z,b ) where m λ,z,b = ψ b z • I 1,λ • (π 1 , ψ b z ) and if λ = 0, ξ λ = 1 λ ψ b z • (m λ,z,b , π 1 ), while ξ 0,z,b = -ψ b z .
Thus, the result is a consequence Lemma 2.14 (iii) and (vi). (ii) By (3.2), we have for

t = 0, Υ t,z,b = (ψ b z • I 1,t , -1 t ψ b z • (ψ b z • I 1,t , π 1 )
). The result follows again from Lemma 2.14 (iii) and (vi).

(iii) We have τ z,b t = τ z,b 1 • I 1,t and (τ z,b t ) -1 = (τ z,b 1 ) -1
• I 1,t so the result follows from Lemma 2.14 (iii).

The following lemma shows that we can obtain topological isomorphisms on spaces of rapidly decaying functions from the functions τ t and Φ λ .

Lemma 3.6. Let p ∈ N * , τ ∈ O × M (R p , GL(E z )) and Φ ∈ O × M (R p , R p ). Then the maps L τ := u → τ u, R τ := u → uτ and C Φ := u → u • Φ are topological isomorphisms of S(R p , L(E z )). Proof. Since L -1 τ = L τ -1 , R -1 τ = R τ -1 and C -1 Φ = C Φ -1
, we only need to check the continuity of L τ , R τ and C Φ . The continuity of L τ and R τ is a direct application of Leibniz formula. Let ν be a p-multi-index and r ∈ N. Theorem 2.11 implies that for any u ∈ S(R p , L(E z )),

q ν,N (u • Φ) ≤ |λ|≤|ν| sup x∈R p x N |P ν,λ (Φ)(x)| (∂ λ u) • Φ(x) L(Ez)
where the functions

P ν,λ (Φ) are such that |P ν,λ (Φ)(x)| ≤ C ν x qν for a q ν ∈ N * and a C ν > 0. Since Φ -1 (x) ≤ C x r for a r ∈ N * and a C > 0, we see that there is C ′ ν > 0 such that q ν,N (u • Φ) ≤ C ′ ν |λ|≤|ν| q λ,
(qν +N )r (u), which gives the result. Lemma 3.7. If (M, exp, E, dµ) has a O M -bounded geometry and ψ is a linearization such that there exists (z 0 , b 0 ) such that the functions

ψ b 0 z 0 , ψ b 0 z 0 are in O M (R 2n , R n ) and τ z 0 ,b 0 1 , (τ z 0 ,b 0 1 ) -1 are in O M (R 2n , L(E z 0 )), then ψ is a O M -linearization. Proof. The result is a direct consequence of the formulas ψ b z = ψ b,b 0 z,z 0 • ψ b 0 z 0 • ψ b 0 ,b z 0 ,z,T , ψ b z,x (y) = (dψ b 0 ,b z 0 ,z ) -1 x ψ b 0 z 0 • ψ b 0 ,b z 0 ,z,M 2 (x, y) and τ z,b = (τ -1 z τ z 0 ) • π 2 • (n b z,M 2 ) -1 τ z 0 ,b 0 • ψ b 0 ,b z 0 ,z,M 2 (τ -1 z 0 τ z ) • π 1 • (n b z,M 2 ) -1 .

Symbol maps and λ-quantization

Assumption 3.8. We suppose in this section and in section 3.4 that (M, exp, E, dµ, ψ) has a O M -bounded geometry.

The operator F is a topological isomorphism from S ′ (T M, L(E)) onto S ′ (T * M, L(E)). We shall now introduce a topological isomorphism between S ′ (M ×M, L(E)) and S ′ (T M, L(E)).

We define the linear application

Γ λ from C ∞ (M × M, L(E)) into C ∞ (T M, L(E))): Γ λ (K) : v → K π(v) • Φ λ (v) . As a consequence, Γ λ (K) = τ -1 λ (K • Φ λ ) τ λ-1 and Γ -1 λ (a) = (τ λ a τ -1 λ-1 ) • Φ -1 λ . For a given frame (z, b), we note Γ λ,z,b := T z,b,T • Γ λ • T -1 z,b,M 2 . A computation shows that for any smooth function u ∈ C ∞ (R 2n , L(E z )), Γ λ,z,b (u) = (τ z,b λ ) -1 (u • Φ λ,z,b )τ z,b λ-1 .
Let us define the smooth strictly positive functions on R 2n and M × M respectively:

µ λ,z,b (x, y) := µ z,b (x)µ z,b (y) µ 2 z,b (m λ,z,b (x,y)) |J λ,z,b | • Φ -1 λ,z,b (x, y) µ λ := µ λ,z,b • (n b z , n b z ). (3.3) It is straithtforward to check that µ λ is indeed independent of (z, b). Note that µ 1-λ (x, y) = µ λ (y, x). Since µ λ,z,b ∈ O × M (R 2n ), the operator of multiplication M µ λ is a topological isomor- phism on S(M × M, L(E)). Note also that Γ λ • M µ λ = M µ λ •Φ λ • Γ λ . Proposition 3.9. Γ λ is a topological isomorphism from S(M × M, L(E)) onto S(T M, L(E)). Moreover, Γ λ • j M 2 = j T M • Γ λ • M µ λ , where Γ λ := Γ -1 λ * . Proof. Let (z, b) be a frame. It suffices to prove that Γ λ,z,b is a topological isomorphism from S(R 2n , L(E z )) onto itself. Since Γ λ,z,b = L (τ z,b λ ) -1 • R τ z,b λ-1 • C Φ λ,z,b
, the result follows from Lemma 3.6 and Lemma 3.5 (i) and (iii). Let u, v ∈ S(R 2n , L(E z )). We have (with j the canonical inclusion from

S(R 2n , L(E z )) into S ′ (R 2n , L(E z )): ( Γ λ,z,b • j(u))(v) = R 2n Tr u(x, y)(Γ -1 λ,z,b (v)(x, y)) * dx dy = R 2n Tr (τ z,b λ ) -1 • Φ -1 λ,z,b (x, y) u(x, y) τ z,b λ-1 • Φ -1 λ,z,b (x, y) v * • Φ -1 λ,z,b (x, y) dx dy = R 2n Tr(Γ λ,z,b (u)(m, ζ)v * (m, ζ))|J λ,z,b |(m, ζ) dm dζ = (j • M |J λ,z,b | • Γ λ,z,b (u))(v)
where we used the following change of variables (m, ζ)

:= Φ -1 λ,z,b (x, y). Thus, we have Γ λ,z,b • j = j • M |J λ,z,b | • Γ λ,z,b . The relation Γ λ • j M 2 = j T M • Γ λ • M µ λ now follows since M |J λ,z,b | • Γ λ,z,b = Γ λ,z,b •M |J λ,z,b |•Φ -1 λ,z,b , T * z,b,T •j•M µ 2 z,b = j T M •T -1 z,b,T and T * z,b,M 2 •j•M µ z,b ⊗µ z,b = j M 2 •T -1 z,b,M 2 .
As a consequence, Γ λ is a topological isomorphism from the space of tempered distributional L(E)-sections on M × M , S ′ (M × M, L(E)) onto S ′ (T M, L(E)) and when restricted (in the sense of the previous continous inclusions) to Thus, the data of a tempered distributional section on the cotangent bundle (i.e. an element of S ′ (T * M, L(E))) determines in an unique way (for a given λ), an operator continuous from S to S ′ , and vice versa. Remark that

S(M × M, L(E)), is equal to Γ λ • M -1 µ λ , so provides a topological isomorphism from S(M × M, L(E)) onto S(T M, L(E)).
σ λ • j M 2 = j T * M • F • Γ λ • M µ λ and Op λ •j T * M = j M 2 • M 1/µ λ • Γ -1 λ • F . If (z, b) is a frame then, noting Op λ,z,b := T z,b,M 2 • Op λ • T -1 z,b, * , we obtain Op λ,z,b = Γ * λ,z,b • M * µ z,b • F * P so that for any u ∈ S(R 2n , L(E z )) and b ∈ O M (R 2n , L(E z )), Op λ,z,b (b), u = R 3n e 2πi ζ,ϑ Tr µb(x, ϑ)(Γ λ,z,b (u)) * (x, ζ) dζ dϑ dx . (3.4)
where µb : (x, ϑ) → µ z,b (x) b(x, ϑ).

Moyal product

The applications Op 0 , Op 1 , Op W := Op 1 2 are respectively the normal, antinormal and Weyl quantization maps. Remark that for any

T ∈ S ′ (T * M, L(E)), Op λ (T * ) = (Op 1-λ (T )) † . In particular Op 0 (T * ) = (Op 1 (T )) † , Op W (T * ) = (Op W (T )) †
where † is the topological isomorphism of S ′ (M × M, L(E)) defined as K † , u := K, u * • j with j the diffeomorphism on M × M : (x, y) → (y, x) and u ∈ S(M × M, L(E)). The kernel of the adjoint A † of any operator A ∈ L(S, S ′ ) is (K A ) † . As a consequence, σ λ is a linear topological isomorphism (and a * -isomorphism in the case of the Weyl quantization) from the algebra ℜ(S) = L(S, S) ∩ L(S ′ , S ′ ) of regular operators onto its image M λ := σ λ (ℜ(S)). We can transport the operator composition in the world of functions, by defining the λ-product on M λ as

T • λ T ′ := σ λ (Op λ (T ) Op λ (T ′ ))
so that M λ forms an algebra, and M * λ = M 1-λ . In the case of λ = 1 2 , we recover the Moyal * -algebra M W and the Moyal product • W . The space Ψ -∞ (M ) ≃ S(M × M, L(E)) of isotropic smoothing operators being an * -ideal of ℜ(S), the space S(T * M, L(E)) = σ λ (Ψ -∞ (M )) forms an ideal of M λ . Since we will focus on the pseudodifferential calculus over M , we shall not investigate in this paper the full analysis of the Moyal product over T * M . Note however the following property on S(T * M ) := S(T * M, L(M × C)) ≃ S(T * M, C):

Proposition 3.11. (S(T * M ), • λ ) is a (noncommutative, nonunital) Fréchet algebra. Moreover, a • λ b (x, η) = Tx(M )×M dµ x (ξ)dµ(y) V λ x,ξ,y dµ * x,ξ,y (θ, θ ′ ) g λ x,ξ,y e 2πiω λ x,ξ,y (η,θ,θ ′ ) a(y λ x,ξ , θ) b(y 1-λ x,-ξ , θ ′ )
where y λ x,ξ := m λ (ψ λξ x , z), y λ x,ξ := ξ λ (ψ λξ x , z) and

V λ x,ξ,y := T * y λ x,ξ (M ) × T * y 1-λ x,-ξ (M ) , dµ * x,ξ,y (θ, θ ′ ) := dµ * y λ x,ξ (θ) dµ * y 1-λ x,-ξ (θ ′ ) , g λ x,ξ,y := µ λ (ψ λξ x ,ψ (λ-1)ξ x ) µ λ (ψ λξ x ,y) µ λ (y,ψ (λ-1)ξ x ) , ω λ x,ξ,y (η, θ, θ ′ ) := θ, y λ x,ξ -θ ′ , y 1-λ x,-ξ -η, ξ . Proof. The product a • λ b on S(T * M ) is obtained by computation of F • Γ λ • M µ λ • (M -1 µ λ • Γ -1 λ • F(a)) • V (M -1 µ λ • Γ -1 λ • F (b))
, where • V is the Volterra product of kernels. Since σ λ is a topological isomorphism between S(M 2 ) and S(T * M ), the continuity of the Moyal product is equivalent to the continuity of • V , which is equivalent to the continuity of the following product on S(R 2n ):

K • K ′ (x, y) := R n K(x, t)K(t, y)µ z,b (t)dt.
The continuity of this product is obtained by the following estimates The algebra ℜ(S) and Ψ -∞ are respectively too big and too small to develop a satisfactory pseudodifferential calculus that allows an efficient utilization of symbol maps. We shall in this section define some spaces of symbols that will be used to define later special algebras of pseudodifferential operators that lie between ℜ(S) and Ψ -∞ . Definition 4.2. A symbol of degree (l, m) ∈ R 2 of type σ, on M is a smooth section a ∈ C ∞ (T * M, L(E)) such that for any (z, b) and any n-multi-indices α, β, there exists K > 0 such that ∂

q p,(α,β) (K • K ′ ) ≤ C q 2(p+r),(α,0) (K) q p,(0,β) (K ′ ), q p,ν (K) := sup (x,y)∈R 2n (x, y) p |∂ ν K(x, y)| where |µ z,b (t)| ≤ C 1 t r-n-1 and C := C 1 R n t -(n+1) dt.
(α,β) z,b a z (x, θ) L(Ez) ≤ K x σ(l-|α|) z,b θ m-|β| z,b,x (4.1) 
is valid for all (x, θ) ∈ T * M . The space of symbols of degree (l, m) and type σ is noted S l,m σ .

Remark that S l,m 0 is independant of l, so we note this space S m 0 . We note S -∞ σ := ∩ l,m S l,m σ and in the case σ > 0, we define

S -∞ := S -∞ σ = S(T * M, L(E)) (it is independant of σ > 0). We set S ∞ σ := ∪ l,m S l,m σ .
We define similarly S l,m σ,z := S l,m σ (R 2n , L(E z )), without reference to a frame.

Since M has a S σ -bounded geometry, we get the following coordinate independance of the previous definition: 

∂ ν z,b a z (x, θ) L(Ez) ≤ K α ′ ,β ′ ρ≤λ≤ν ′ x σ(|α ′ |-|α|) z,b θ |β ′ |-|β| z,b,x x σ(|λ 1 |-|α ′ |) z ′ ,b ′ × x σ(l-|ρ 1 |) z ′ ,b ′ θ m-|β ′ | z ′ ,b ′ ,x x σ(|ρ 1 |-|λ 1 |) z ′ ,b ′ .
Using (2.1), (2.2) and the fact that |α| ≥ |ρ 1 |, we get the result.

Corollary 4.4. If a ∈ C ∞ (T * M, L(E)), then a ∈ S l,m σ if and only if for any (z, b), a z •(n b z, * ) -1 ∈ S l,m σ (R 2n , L(E z )), or equivalently, there exists (z, b) such that a z • (n b z, * ) -1 ∈ S l,m σ (R 2n , L(E z )).
We see that S l,m σ

• S l ′ ,m ′ σ ⊆ S l+l ′ ,m+m ′ σ
where • is the composition of sections induced by the matrix product on the fibers of L(E). Moreover, S l,m σ ⊆ S l ′ ,m ′ σ for m ≤ m ′ and l ≤ l ′ . Thus, S ∞ σ is a * -algebra, which is bigraduated for σ > 0 and graduated for σ = 0. Remark also that S -∞ • S m 0 and S m 0 • S -∞ are included in S -∞ . Note that if f ∈ S l,m σ (T * M ) (a symbol where M has its trivial bundle M × C), then a f (x, θ) := f (x, θ)I L(Ex) defines a symbol in S l,m σ . Such symbols will be called scalar symbols. Note also that if a ∈ S l,m σ , then

∂ (α,β) z,b a := (τ z • π)(∂ (α,β) z,b a z )(τ -1 z • π) ∈ S l-|α|,m-|β| σ . If f ∈ S σ (R n ) then (x, ϑ) → f (x) Id L(Ez) ∈ S 0,0 σ (R n , L(E z )). In particular (x, ϑ) → µ ±1 z,b (x) Id L(Ez) ∈ S 0,0 σ (R n , L(E z )) if dµ is a S × σ -density.
Remark 4.5. We note P S l,m σ (R 2n , L(E z )) the subspace of S l,m σ (R 2n , L(E z )) consisting of functions of the form 1≤i≤(dim Ez) 2 P i e i where (e i ) is a linear basis of L(E z ) and P i are of the form β c i,β (x)ϑ β (finite sum over the n-multi-indices β), where for any i, β, ∂ α c i,β (x) = O( x σ(l-|α|) ) for any n-multi-indices α, and m = max i deg ϑ P i . We check that this definition is independant of the chosen basis (e i ).

We call polynomial symbol of order l, m and type σ any section of the form (τ z • π)(P • n b z, * )(τ -1 z • π) where P ∈ P S l,m σ (R 2n , L(E z )) and (z, b) is a frame. This definition is independant of (z, b). We note P S l,m σ the subspace of S l,m σ consisting of polynomial symbols of order l, m and type σ. Remark that the section I : (x, θ) → I L(Ex) is in P S 0,0 1 .

We now topologize the symbol spaces:

Lemma 4.6. The following semi-norms on S l,m σ , for N ∈ N,

q (α,β) (a) := sup (x,θ)∈T * M x σ(|α|-l) z,b θ |β|-m z,b,x ∂ (α,β) z,b a z (x, θ) L(Ez)
determine a Fréchet topology on S l,m σ , which is independant of (z, b). The applications T z,b, * are topological isomorphisms from S l,m σ onto S l,m σ (R 2n , L(E z )). The following inclusions are continous for these topologies:

S l,m σ • S l ′ ,m ′ σ ⊆ S l+l ′ ,m+m ′ σ , S l,m σ ⊆ S l ′ ,m ′ σ (m ≤ m ′ and l ≤ l ′ ) and S -∞ σ ⊆ S l,m
σ . Moreover, the last inclusion is dense when S l,m σ has the topology of S l ′ ,m ′ σ for m < m ′ and l < l ′ .

Proof. The independance of the topology for (z, b) follows from the easily checked estimate for any (α, β), q

(z,b) (α,β) (a) ≤ K α,β 0≤|(α ′ ,β ′ )|≤|(α,β)| |β ′ |≥|β| ,γ≤α ′ q (z ′ ,b ′ ) (γ,β ′ ) (a).
where K α,β > 0. By construction the applications T z,b, * are clearly topological isomorphisms from S l,m

σ onto S l,m σ (R 2n , L(E z )). The continuity of S l,m σ • S l ′ ,m ′ σ ⊆ S l+l ′ ,m+m ′ σ , S l,m σ ⊆ S l ′ ,m ′ σ (m ≤ m ′ and l ≤ l ′ ) and S -∞ σ ⊆ S l,m
σ are straightforward. Following [START_REF] Melrose | Introduction to microlocal analysis[END_REF], to prove the density result, we shall prove the stronger property: for any a ∈ S l,m σ (R 2n , L(E z )) the sequence

a p (x, ϑ) := (ρ(x/p)) 1-δ σ,0 ρ(ϑ/p) a(x, ϑ)
converges to a for the topology of

S l ′ ,m ′ σ (R 2n , L(E z )) where m ′ > m and l ′ > l. Here ρ ∈ C ∞ c (R n , [0, 1]) with ρ = 1 on B(0, 1) and ρ = 0 on R n \B(0, 2). First, it is clear that a p ∈ S -∞ σ (R 2n , L(E z )). Noting R p (x, ϑ) := x σ(|α|-l ′ ) ϑ |β|-m ′ ∂ (α,β) (a -a p )(x, ϑ) L(Ez)
for a given 2n-multi-index ν := (α, β), we get with Leibniz rule, for a K > 0 (by convention ν ′ < ν if and only if ν ′ ≤ ν and ν ′ = ν):

1 K R p (x, ϑ) ≤ ∆ p (x, ϑ) x σ(l-l ′ ) ϑ m-m ′ + ν ′ <ν |∂ ν-ν ′ ∆ p (x, ϑ)| x σ(l-l ′ +|α|-|α ′ |) ϑ m-m ′ +|β|-|β ′ |
where ∆ p (x, ϑ) := 1 -(ρ(x/p)) 1-δ σ,0 ρ(ϑ/p). Suppose that σ = 0. In that case,

|∆ p (x, ϑ)| ≤ 1 [p,+∞[ (ϑ) and if ν ′ < ν, |∂ ν-ν ′ ∆ p (x, ϑ)| ≤ δ α,α ′ K β p -|β|+|β ′ | 1 [p,2p] (ϑ) (4.2)
where 1 [r,r ′ ] is the characteristic function of the annulus A r,r ′ := { ϑ ∈ R n : r ≤ ϑ ≤ r ′ } and

K β := sup β ′ <β ∂ β-β ′ ρ ∞ . As a consequence, for K ′ > 0, 1 K R p (x, ϑ) ≤ p m-m ′ + K β ν ′ <ν δ α,α ′ 1 [p,2p] (ϑ) p -|β|+|β ′ | ϑ m-m ′ +|β|-|β ′ | ≤ K ′ p m-m ′
and the result follows. Suppose now σ = 0. In that case |∆ p (x, ϑ)| ≤ 1 Fp (x, ϑ) where

F p := R 2n -B(0, p) 2 and if ν ′ < ν, for a constant K ν > 0 |∂ ν-ν ′ ∆ p (x, ϑ)| ≤ K ν 1 [sgn(α-α ′ )p,2p] (x) 1 [sgn(β-β ′ )p,2p] (ϑ) p -|ν|+|ν ′ | . (4.3)
As a consequence, for K ′ , K ′′ > 0, and with r := max{m -m ′ , σ(l -l ′ )} < 0,

1 K R p (x, ϑ) ≤ p r + K ′ ν ′ <ν 1 [sgn(α-α ′ )p,2p] (x) 1 [sgn(β-β ′ )p,2p] (ϑ) x σ(l-l ′ ) ϑ m-m ′ ≤ K ′′ p r
and the result follows.

Note that S -∞ := ∩ l,m S -∞ σ>0 = S(T * M, L(E)) and the equality is also valid for the topologies. The following lemma shows that the symbols of S l,m σ are tempered distributional sections on T * M . Proof. Since we have the following commutative diagram

S l,m σ j T * M / / T z,b, * S ′ (T * M, L(E)) S l,m σ (R 2n , L(E z )) i / / O M (R 2n , L(E z )) j / / S ′ (R 2n , L(E z )) T * z,b, * O O
where T * z,b, * is the adjoint of T z,b, * on S(T * M, L(E)) and O M (R 2n , L(E z )) is the locally convex complete Hausdorff space of L(E z )-valued functions on R 2n with polynomially bounded derivatives, it is sufficient to check that the natural injection i is continuous from

S l,m σ (R 2n , L(E z )) into O M (R 2n , L(E z ))
. This is obtained by the following estimate, for any ϕ ∈ S(R 2n ) and ν = (α, β) 2n-multi-index, sup

(x,ϑ)∈R 2n ϕ ∂ ν a(x, ϑ) L(Ez) ≤ K ϕ,ν q ν (a)
where

K ϕ,ν := sup (x,ϑ)∈R 2n |ϕ(x, ϑ) x σ(l-|α|) ϑ m-|β| |.
Definition 4.8. Let (a j ) j∈N * be a sequence in S l j ,m j σ

where (l j ) and (m j ) are real strictly decreasing sequences such that lim j→∞ l j = lim j→∞ m j = -∞. We say that a is an asymptotic expansion of (a j ) j∈N * and we note

a ∼ ∞ j=1 a j if a ∈ C ∞ (T * M, L(E)) is such that a-k-1 j=1 a j ∈ S l k ,m k σ for any k ∈ N with k ≥ 2.
In particular, we have a ∈ S l 1 ,m 1 σ .

We need asymptotic summation of symbols modulo S -∞ σ . The following result of asymptotic completeness is based on a classical method [START_REF] Shubin | Pseudodifferential operators and spectral theory[END_REF] of approximation of series by weightening summands a j (x, θ) with functions which "cut" a neighborhood of zero in the domain of x (if σ = 0) and θ. The idea is that the part we cut is bigger and bigger when j → ∞ so that convergence occurs. Lemma 4.9. Let (a j ) j∈N * be a sequence in S l j ,m j σ where (l j ) and (m j ) are real strictly decreasing sequences such that lim j→∞ l j = lim j→∞ m j = -∞. Then (i) There exists a

∈ S l 1 ,m 1 σ such that a ∼ ∞ j=1 a j . (ii) If another a ′ satisfies a ′ ∼ ∞ j=1 a j , then a -a ′ ∈ S -∞ σ .
Proof. (ii) is obvious. Let us prove (i) for a sequence (a j ) j∈N * in S 

l j ,m j σ (R 2n , L(E z )) and with a ∼ ∞ j=1 a j ∈ S l 1 ,m 1 σ (R 2n , L(E z )).
a ′ j (x, ϑ) := ∆ p j (x, ϑ) a j (x, ϑ)
where ∆ p j is defined in the proof of Lemma 4.6 and (p j ) is a real sequence in [1, +∞[. For any

j ∈ N, a ′ j -a j ∈ S -∞ σ (R 2n , L(E z ))
. Thus, the result will follow if we prove that for a specified sequence (p j ) and for any N ≥ 0, there exists k 0 (N ) ≥ 2 such that for any k ≥ k 0 (N ),

∞ j=k+1 q N,l k ,m k (a ′ j ) < ∞ (4.4) 
where q N,l k ,m k := sup |ν|≤N q ν,l k ,m k , and q ν,l k ,m k are the semi-norms of

S l k ,m k σ (R 2n , L(E z )). In- deed, with ∂ ν a ′ j ∞ ≤ q |ν|,l k ,m k (a ′ j ) for k ≥ k 1 (ν), a ′ := ∞ j=1 a ′
j is a well defined smooth function and we have then a ′ -k-1 j=1 a j ∈ S l k ,m k σ (R 2n , L(E z )). Using Leibniz rule, we see that for any 2n-multi-index ν := (α, β), and any j ∈ N * , there is K ν,j > 0 such that

1 K ν,j ∂ ν a ′ j (x, ϑ) L(Ez) ≤ ∆ p (x, ϑ) x σ(l j -|α|) ϑ m j -|β| + ν ′ <ν |∂ ν-ν ′ ∆ p (x, ϑ)| x σ(l j -|α ′ |) ϑ m j -|β ′ | .
Let us suppose that σ = 0. The estimate (4.2) yields for any

N ≥ 0, k ≥ 2, j ≥ k + 1, q N,l k ,m k (a ′ j ) ≤ K N,j p j m j -m j-1
for a constant K N,j > 0. If we now fix p j as p j = (2 j sup N ≤j { K N,j , 1 }) 1/(m j-1 -m j ) , then we see that for any N ≥ 0, k ≥ N + 2, j ≥ k + 1, we have q N,l k ,m k (a ′ j ) ≤ 2 -j and (4.4) is satisfied. Suppose now σ = 0. The estimate (4.3) yields for any

N ≥ 0, k ≥ 2, j ≥ k + 1, q N,l k ,m k (a ′ j ) ≤ K ′ N,j p j r j
for a constant K ′ N,j > 0 and with r j := max{m j -m ′ j-1 , σ(l j -l ′ j-1 )} < 0. If we now fix p j as p j = (2 j sup N ≤j { K ′ N,j , 1 }) -r -1 j , then we see that for any N ≥ 0, k ≥ N + 2, (4.4) is satisfied as for the case σ = 0.

Amplitudes and associated operators on S(R n , E z )

We shall see in this section amplitudes as generalizations of symbols of the type S l,m σ,z := S l,m σ (R 2n , L(E z )) where z ∈ M is fixed. For each amplitude, a continuous operator from S(R n , E z ) into itself will be defined. Here the spaces L(E z ) and E z can simply be considered as M n (C) and C n . The results in this section will be important for pseudodifferential operators on M in the next section. Definition 4.10. An amplitude of order l, w, m and type σ ∈

[0, 1], κ ≥ 0, is a smooth function a ∈ C ∞ (R 3n , L(E z )) such that for any 3n-multi-index ν = (α, β, γ), there exists C ν > 0 such that ∂ (α,β,γ) a(x, ζ, ϑ) L(Ez) ≤ C ν x σ(l-|α+β|) ζ w+κ|α+β| ϑ m-|γ| (4.5)
for any (x, ζ, ϑ) ∈ R 3n . We note Π l,w,m σ,κ,z := Π l,w,m σ,κ (R 3n , L(E z )) the space of amplitudes of order l, w, m and type σ, κ.

Remark that Π l,w,m 0,κ,z is independant of l, we note this space Π 0,w,m 0,κ,z . We note Π -∞,w σ,κ,z

:= ∩ l,m Π l,w,m σ,κ,z . We set Π ∞ σ,κ,z := ∪ l,w,m Π l,w,m σ,κ,z and Π -∞ σ,z := ∩ l,m ∪ w,κ Π l,w,m σ,κ,z . We see that Π l,w,m σ,κ,z • Π l ′ ,w ′ ,m ′ σ,κ,z ⊆ Π l+l ′ ,w+w ′ ,m+m ′ σ,κ,z and Π l,w,m σ,κ,z ⊆ Π l ′ ,w ′ ,m ′ σ,κ,z for m ≤ m ′ , w ≤ w ′ , and l ≤ l ′ . Thus, Π ∞ σ,κ,z
is a * -algebra, which is trigraduated for σ > 0 and bigraduated for σ = 0. Note also that if

a ∈ Π l,w,m σ,κ,z , then ∂ (α,β,γ) a ∈ Π l-|α+β|,w+κ|α+β|,m-|γ| σ,κ,z
. Amplitudes and symbols in S l,m σ,z are related by the following lemma:

Lemma 4.11. (i) For any a ∈ Π l,w,m σ,κ,z we have a ζ=0 := (x, ϑ) → a(x, 0, ϑ) in S l,m σ,z . (ii) For any s ∈ S l,m σ,z , the function

(x, ζ, ϑ) → s(x, ϑ) is in Π l,0,m σ,0,z . (iii) For any f ∈ S σ (R n ), the function (x, ζ, ϑ) → f (x) Id L(Ez) is in Π 0,0,0 σ,0,z .
Proof. (i) follows from the fact that ∂ ν (a • P ) = (∂ P (ν) a) • P where P (x, ϑ) := (x, 0, ϑ).

(ii) Noting Q(x, ζ, ϑ) := (x, ϑ), the result follows from ∂ α,β,γ (s

• Q) = δ β,0 (∂ α,γ s) • Q.
(iii) follows from (ii) and the fact that (x, ϑ) → f (x) Id L(Ez) ∈ S 0,0 σ,z .

As the spaces of symbols, the Π l,w,m σ,κ,z are naturally Fréchet spaces:

Lemma 4.12. The following semi-norms on Π l,w,m σ,κ,z :

q l,w,m (α,β,γ) (a) := sup (x,ζ,ϑ)∈R 3n x σ(|α+β|-l) ζ -w-κ|α+β| ϑ |γ|-m ∂ (α,β,γ) a(x, ζ, ϑ) L(Ez)
determine a Fréchet topology on Π l,w,m σ,κ,z . The following inclusions are continous for these topologies:

Π l,w,m σ,κ,z • Π l ′ ,w ′ ,m ′ σ,κ,z ⊆ Π l+l ′ ,w+w ′ ,m+m ′ σ,κ,z , Π l,w,m σ,κ,z ⊆ Π l ′ ,w ′ ,m ′ σ,κ,z (m ≤ m ′ , w ≤ w ′ and l ≤ l ′ ) and Π -∞,w
σ,κ,z ⊆ Π l,w,m σ,κ,z . Moreover, the last inclusion is dense when Π l,w,m σ,κ,z has the topology of Π l ′ ,w,m ′ σ,κ,z for m < m ′ and l < l ′ .

Proof. The continuity results are straightforward. For the density result, we prove as in Lemma 4.6, that for any a ∈ Π l,w,m σ,κ,z the sequence

a p (x, ζ, ϑ) := (ρ(x/p)) 1-δ σ,0 ρ(ϑ/p) a(x, ζ, ϑ) =: (1 -∆ p (x, ϑ)) a(x, ζ, ϑ)
converges to a for the topology of Π l ′ ,w,m ′ σ,κ (R 2n , L(E z )) where m ′ > m and l ′ > l. First note that the application (x, ζ, ϑ) → (ρ(x/p)) 1-δ σ,0 ρ(ϑ/p) Id L(Ez) is an amplitude in Π -∞,0 σ,0,z . Thus, (a p ) p∈N * is a sequence in Π -∞,w σ,κ,z . We define the function R p such that q l ′ ,w,m ′ (α,β,γ) (a -a p ) = sup (x,ζ,ϑ)∈R 3n R p (x, ζ, ϑ), where m ′ > m and l ′ > l. For a given 3n-multi-index ν := (α, β, γ), we get with Leibniz rule, for a K > 0,

1 K R p (x, ζ, ϑ) ≤ ∆ p (x, ϑ) x σ(l-l ′ ) ϑ m-m ′ + ν ′ <ν |∂ ν-ν ′ ∆ p (x, ϑ)| × x σ(l-l ′ +|α+β|-|α ′ +β ′ |) ζ κ(|α ′ +β ′ |-|α+β|) ϑ m-m ′ +|γ|-|γ ′ | . Suppose that σ = 0. In that case, |∆ p (x, ϑ)| ≤ 1 [p,+∞[ (ϑ) and if ν ′ < ν, |∂ ν-ν ′ ∆ p (x, ϑ)| ≤ δ α,α ′ δ β,β ′ K γ p -|γ|+|γ ′ | 1 [p,2p] (ϑ) .
As a consequence we find R p (x, ζ, ϑ) = O p→∞ ( p m-m ′ ), as in Lemma 4.6. Suppose now σ = 0. In that case |∆ p (x, ϑ)| ≤ 1 Fp (x, ϑ) where

F p := R 2n -B n (0, p) × B n (0, p) and if ν ′ < ν, for a constant K ν > 0 |∂ ν-ν ′ ∆ p (x, ϑ)| ≤ δ β-β ′ ,0 K ν 1 [sgn(α-α ′ )p,2p] (x) 1 [sgn(γ-γ ′ )p,2p] (ϑ) p -|ν|+|ν ′ | .
As a consequence, we find R p (x, ζ, ϑ) = O p→∞ ( p r ) where r := max{m -m ′ , σ(l -l ′ )} < 0 and the result follows.

We shall note ∆ ζ the differential operator n i=1 ∂ 2 ζ i . The following formula is valid for any ϑ, ζ ∈ R n and p ∈ N,

ϑ 2p e 2πi ϑ,ζ = (1 -(2π) -2 ∆ ζ ) p e 2πi ϑ,ζ =: L p ζ e 2πi ϑ,ζ (4.6) 
A computation shows that (1

-(2π) -2 ∆ ζ ) p = 0≤|β|≤p c p,β ∂ 2β ζ
, where the summation is on nmulti-indices β and c p,β := p |β| (-1) |β| (2π) -2|β| β!. We shall also use the following useful formula valid for any ϑ ∈ R n , ζ ∈ R n \{ 0 } and p ∈ N,

e 2πi ϑ,ζ = |β|=p λ β ζ β ζ 2p ∂ β ϑ e 2πi ϑ,ζ =: M p,ζ ϑ e 2πi ϑ,ζ (4.7) 
where

λ β := β!(2π) -|β| i |β| . We define t M p,ζ ϑ := |β|=p λ β (-1) p ζ β ζ 2p ∂ β ϑ .
Definition 4.13. We note O f,z , where f 1 , f 2 , f 3 : N 3n → R, and f := (f 1 , f 2 , f 3 ), the space of smooth functions in C ∞ (R 3n , L(E z )) such that for any 3n-multi-index ν = (α, β, γ), there is

C ν > 0 such that ∂ ν a(x, ζ, ϑ) L(Ez) ≤ C ν x f 1 (ν) ζ f 2 (ν) ϑ f 3 (ν)
uniformly in (x, ζ, ϑ) ∈ R 3n .

The vector space O f,z has a natural family of seminorms q f ν given by the best constants C ν in the previous estimate. With this family, O f,z is a Fréchet space. Obviously, amplitudes in Π l,w,m σ,κ,z form an O f,z space where f 1 (ν) := σ(l-|α+β|), f 2 (ν) := w+κ|α+β| and f 3 (ν) := m-|γ|. For a given triple f := (f 1 , f 2 , f 3 ) and ρ ∈ R, we will note f 3,ρ,α,γ := sup β f 3 (α, β, γ) -ρ|β|, f 2,ρ,α,β := sup γ f 2 (α, β, γ) -ρ|γ| and f 1,ρ,α,β := sup γ f 1 (α, β, γ) -ρ|γ|. Proposition 4.14. Let Γ a continuous linear operator on the space S(R 2n , L(E z )), and f := (f 1 , f 2 , f 3 ) a triple such that there exists ρ < 1 such that f 3,ρ,0,0 < ∞. (i) For any function a ∈ O f,z the following antilinear form on S(R 2n , L(E z ))

Op Γ (a), u := R 3n e 2πi ϑ,ζ Tr(a(x, ζ, ϑ) Γ(u) * (x, ζ)) dζ dϑ dx is in S ′ (R 2n , L(E z )).
(ii) For any given u ∈ S(R 2n , L(E z )), the linear form L u,Γ := a → Op Γ (a), u is continuous on O f,z . In particular L u,Γ is continuous on any amplitude space Π l,w,m σ,κ,z .

Proof. We shall prove that I(a) ∈ S ′ (R 2n , L(E z )), which will give the result. Let u ∈ S(R 2n , L(E z )) and let us fix for now x and ϑ ∈ R n . We can check that the map

ζ → a(x, ζ, ϑ) u * (x, ζ) is in S(R n , L(E z )).
As a consequence, with (4.6) and integration by parts, we get with R(x, ϑ) :=

R n e 2πi ϑ,ζ a(x, ζ, ϑ) u * (x, ζ) dζ, R(x, ϑ) = R n e 2πi ϑ,ζ ϑ -2p (1 -(2π) -2 ∆ ζ ) p a(x, ζ, ϑ) u * (x, ζ) dζ = 0≤|β|≤p β ′ ≤2β c p,β 2β 
β ′ ϑ -2p R n e 2πi ϑ,ζ (∂ (0,β ′ ,0) a(x, ζ, ϑ)) (∂ (0,2β-β ′ ) u * (x, ζ)) dζ .
Thus, for any x, ϑ ∈ R n , we get by fixing p such that 2(ρ -1)p + f 3,ρ,0,0 ≤ -2n (this is possible since ρ < 1) that for any N ∈ N,

R(x, ϑ) L(Ez) ≤ C p ϑ -2n R n x, ζ -N +rp dζ 0≤|β|≤p β ′ ≤2β q f 0,β ′ ,0 (a) q N,(0,2β-β ′ ) (u)
for a C p > 0, where r p := max

|β ′ |≤2p |f 1 (0, β ′ , 0)| + |f 2 (0, β ′ , 0)|. If we now fix N such that -N + r p ≤ -4n, we see, using the inequality x, ζ -2 ≤ x -1 ζ -1 , that there is C ρ,f > 0 such that | I(a), u | ≤ C ρ,f 0≤|β|≤p β ′ ≤2β q f 0,β ′ ,0 (a) q N,(0,2β-β ′ ) (u) (4.8)
which yields the result.

(ii) The continuity of L u,Γ on O f,z follows directly from (4.8) since L u,Γ (a) = I(a), Γ(u) . Since Π l,w,m σ,κ,z = O f,z for a triple f = (f 1 , f 2 , f 3 ) such that f 3,0,0,0 < ∞, L u,Γ is continous on any amplitude space.

For any amplitude a, we will also note Op Γ (a) the continous linear map from S(R n , E z ) into S ′ (R n , E z ), associated to the tempered distribution u → Op Γ (a), u . We now establish a sufficient condition on Γ and a in order to have Op Γ (a) stable (and continuous) on S(R n , E z ). The result will be used to establish regularity of pseudodifferential operators.

Lemma 4.17. Let Γ be a continuous linear operator on S(R 2n , L(E z )) of the form

Γ = L τ 1 • R τ 2 • C Φ , where τ i ∈ O M (R 2n , L(E z )) (for 1 ≤ i ≤ 2), and Φ := (π 1 , ψ) ∈ C ∞ (R 2n , R 2n ) is such that ψ ∈ O M (R 2n , R n ) and there exist c, ε, r > 0, such that for any (x, ζ) ∈ R 2n , ψ(x, ζ) ≥ c x ε ζ -r and for any x ∈ R n , there is c x > 0 such that ψ(x, ζ) ≥ c x ζ ε uniformly in ζ ∈ R n . Suppose that f = (f 1 , f 2 , f 3 ) is such that there exist (ρ 1 , ρ 2 , ρ 3 ) ∈ R 3 such that ρ 3 < 1, (r/ε)ρ 1 + ρ 2 < 1 and for any 2n-multi-index µ, f 1,ρ 1 ,µ < ∞, f 2,ρ 2 ,µ < ∞, f 3,ρ 3 ,µ < ∞ and for any n-multi-index α f 3,ρ 3 ,α := sup γ f 3,ρ 3 ,α,γ < ∞. Then for any function a ∈ O f,z , the operator Op Γ (a) is continuous from S(R n , E z ) into itself.
In particular, this is the case for any amplitude a ∈ Π l,w,m σ,κ,z .

Proof. Let u, v ∈ S(R n , E z ). By definition, Op Γ (a)(v), u = Op Γ (a)(u ⊗ v) and Γ(K) = τ 1 (K • Φ) τ 2 . Noting a ′ (x, ζ, ϑ) := τ * 1 (x, ζ) a(x, ζ, ϑ) τ * 2 (x, ζ), we obtain Op Γ (a)(v), u := R 3n e 2πi ϑ,ζ a ′ (x, ζ, ϑ) v(ψ(x, ζ)) u(x) dζ dϑ dx = R n g(x) u(x) dx where g(x) := R 2n e 2πi ϑ,ζ a ′ (x, ζ, ϑ) v • ψ(x, ζ) dζ dϑ.
A computation with the Faa di Bruno formula shows that for any 2n-multi-index ν, any N ∈ N and any x ∈ R n there is

C x,N,ν > 0 such that ∂ ν (v • ψ)(x, ζ) Ez ≤ C x,N,ν ζ -N uniformly in ζ ∈ R n . As a consequence, the map ζ → ∂ α ′ ,0 a ′ (x, ζ, ϑ) ∂ α-α ′ (v • ψ)(x, ζ) is in S(R n , E z ).
We can thus successively integrate by parts in g(x) so that for any p ∈ N * ,

g(x) = R 2n e 2πi ϑ,ζ ϑ -2p L p ζ (a ′ (v • ψ))(x, ζ, ϑ) dζ dϑ .
By taking p such that (ρ 3 -1)2p+c 0 ≤ -2n where c α := sup α ′ ≤α f 3,ρ 3 ,α ′ , we see that the previous integrand is absolutely integrable, and we can permute the order of integrations dζdϑ → dϑdζ. Since all the successive ϑ-derivatives of ϑ -2p L p ζ (a ′ (v • ψ))(x, ζ, ϑ) converges to 0 when ϑ goes to infinity, we can then integrate by parts in ϑ so that for any q ∈ N and p ≥ p 0

g(x) = R 2n e 2πi ϑ,ζ ζ -2q L q ϑ ( ϑ -2p L p ζ (a ′ (v • ψ)))(x, ζ, ϑ) dζ dϑ .
Noting h p,q the previous integrand, we see that for any n-multi-index α, ∂ α h p,q is a linear combination of terms of the form

e 2πi ϑ,ζ ζ -2q ϑ -2p-|γ-γ ′ | ∂ α ′ ,β ′ ,γ ′ a ′ ∂ α-α ′ ,β-β ′ v • ψ
where |γ| ≤ 2p, γ ′ ≤ γ, |β| ≤ 2q, β ′ ≤ β and α ′ ≤ α. A computation with the Faa di Bruno formula shows that for any 2n-multi-index ν there is r ν ∈ N * such that for any N > 0, there is C ν,N > 0 such that for any w ∈ S(R n , E z ) and any (

x, ζ) ∈ R 2n , ∂ ν (w • ψ)(x, ζ) Ez ≤ C ν,N x, ζ rν -N ζ rν +(r/ε)N |ν ′ |≤|ν| q [N/ε]+1,ν ′ (w)
. Moreover, we check that there is K α,p > 0 such that

∂ (α ′ ,β ′ ,γ ′ ) a ′ (x, ζ, ϑ) L(Ez) ≤ C α,p,q x Kα,p+ρ 1 2q ζ Kα,p+ρ 2 2q ϑ cα+ρ 3 2p .
As a consequence, we get the estimate

∂ α h p,q ≤ C α,p,q,N x K ′ α,p +ρ 1 2q-N ζ K ′ α,p +(ρ 2 -1)2q+(r/ε)N ϑ cα+(ρ 3 -1)2p |ν ′ |≤|ν| q [N/ε]+1,ν ′ (v) .
or equivalently, replacing

K ′ α,p + ρ 1 2q -N by -N , ∂ α h p,q ≤ C α,p,q,N x -N ζ K ′′ α,p +(ρ 2 -1+(r/ε)ρ 1 )2q+(r/ε)N ϑ cα+(ρ 3 -1)2p |ν ′ |≤|ν| q [N +K ′ α,p +ρ 1 2q/ε]+1,ν ′ (v) .
Fixing now, for a given N , p such that (ρ 3 -1)2p + c α ≤ -2n and q such that K ′′ α,p + (ρ 2 -1 + (r/ε)ρ 1 )2q + (r/ε)N ≤ -2n, we obtain the result.

The following lemma gives a characterization of smoothing kernels in the cases σ = 0 and σ = 0. If s is in a space of symbols and Γ is a continuous linear map on S(R 2n , L(E z )), we will note Op Γ (s) := Op Γ ((x, ζ, ϑ) → s(x, ϑ)). We shall use the Fréchet space O l,m σ,f,z of smooth functions a in C ∞ (R 3n , L(E z )) such that for any ν := (µ, γ)

∈ N 2n × N n ∂ ν a(x, ζ, ϑ) L(Ez) ≤ C ν x σ(l+f 1 (µ)) ζ f 2 (ν) ϑ m+f 3 (µ) .
We will note O l,m 0,f,z =: O m f 2 ,f 3 ,z . Clearly, Op Γ (a) (see Lemma 4.14) is defined as an antilinear form on S(R 2n , L(E z )) whenever a ∈ O l,m f,z with m + f 3 (0) < -n. We note F the set of functions f 2 : N 3n → R such that there is ρ < 1 such that for any (α, β)

∈ N 2n f 2,ρ,α,β := sup γ f 2 (α, β, γ) -ρ|γ| < ∞. Lemma 4.18. Let K ∈ S ′ (R 2n , L(E z )), and Γ a topological isomorphim on S(R 2n , L(E z )) of the form Γ = L τ 1 • R τ 2 • C Φ with τ 1 , τ 2 ∈ O × M (R 2n , GL(E z )), Φ ∈ O × M (R 2n , R 2n
). Then (i) Case σ = 0. The following are equivalent:

(i-1) There is

f 3 : N 2n → R such that for any m ≤ -f 3 (0) -2n, there exist f 2,m ∈ F , a m ∈ O m f 2,m ,f 3 ,z such that K = Op Γ (a m ). (i-2) K ∈ C ∞ (R 2n , L(E z )) and for any 2n-multi-index ν, N ∈ N, there is C ν,N > 0 such that for any (x, ζ) ∈ R 2n , ∂ ν K Γ (x, ζ) L(Ez) ≤ C ν,N ζ -N , where K Γ := K • Γ = τ 1 K • Φ τ 2 |J(Φ)|.
(i-3) There is s ∈ S -∞ 0,z such that K = Op Γ (s). (ii) Case σ > 0. The following are equivalent:

(ii-1) There is f 1 , f 3 :

N 2n → R such that for any m ≤ -f 3 (0) -2n, there exist f 2,m ∈ F and a m ∈ O m,m σ,f 1 ,f 2,m ,f 3 ,z such that K = Op Γ (a m ). (ii-2) K ∈ S(R 2n , L(E z )). (ii-3) There is s ∈ S -∞ z such that K = Op Γ (s).
Proof. (i) The implication (i-3) ⇒ (i-1) is trivial. We will prove (i-1) ⇒ (i-2) ⇒ (i-3). Suppose (i-1). Thus, for any m ≤ -2n -f 3 (0), there is

f 2,m ∈ F , a m ∈ O m f 2,m ,f 3 ,z such that for any u ∈ S(R 2n , L(E z )), K • Γ -1 , u = R 3n e 2πi ϑ,ζ Tr a m (x, ζ, ϑ) u * (x, ζ) dζ dϑ dx .
Since m ≤ -2n -f 3 (0), the preceding integral is absolutely convergent and we can permute the order of integration. As a consequence, we get

K • Γ -1 , u = R 2n Tr U m (x, ζ) u * (x, ζ) dζ dx where U m (x, ζ) := R n e 2πi ϑ,ζ a m (x, ζ, ϑ) dϑ, we check easily that U m is a continous function on R 2n , so we deduce that U m =: U is independant of m and K • Γ -1 is a distribution which is continous function equal to U . Noting b m := e 2πi ϑ,ζ a m (x, ζ, ϑ) we see that for any 2n- multi-index µ := (α, β), ∂ µ x,ζ b m = e 2πi ϑ,ζ β ′ ≤β β β ′ (2πiϑ) β-β ′ ∂ α,β ′ ,0
a m and we have then the estimates

∂ µ b m ≤ C µ,m ζ sup β ′ ≤β f 2,m (α,β ′ ,0) ϑ m+cµ where c µ = sup β ′ ≤β f 3 (α, β ′ ) + |β|. Defining m µ := -sup |µ ′ |≤|µ| c µ ′ ,
we see that U is smooth and

∂ µ U = R 2n ∂ µ b mµ dϑ = β ′ ≤β β β ′ (2πi) |β-β ′ | R n e 2πi ϑ,ζ ϑ β-β ′ ∂ α,β ′ ,0 a mµ (x, ζ, ϑ) dϑ .
All the ϑ-derivatives of ϑ → ϑ β-β ′ ∂ α,β ′ ,0 a mµ (x, ζ, ϑ) converge to zero when ϑ → ∞ so we can we integrate by parts in ϑ so that for any p ∈ N:

∂ µ U = β ′ ≤β β β ′ (2πi) |β-β ′ | R n e 2πi ϑ,ζ ζ -2p L p ϑ ϑ β-β ′ ∂ α,β ′ ,0 a mµ (x, ζ, ϑ) dϑ .
Since a mµ ∈ O mµ f 2,mµ ,f 3 ,z and f 2,mµ,ρµ,λ < ∞ for a ρ µ < 1, we see that the integrand h p of the previous integral satisfies the estimate

h p (x, ζ, ϑ) ≤ C p,µ ζ -2p+sup β ′ ≤β f 2,mµ,ρµ,α,β ′ +2pρµ ϑ -2n .
Given N > 0 and fixing p such that (ρ µ -1)2p + sup β ′ ≤β f 2,mµ,ρµ,α,β ′ ≤ -N , we finally obtain that K • Γ -1 = U is smooth and satisfies for any µ ∈ N 2n and N > 0,

∂ µ K • Γ -1 (x, ζ) L(Ez) ≤ C µ,N ζ -N . We also have for any u ∈ S(R 2n , L(E z )), K, u = U, Γ(u) = R 2n Tr(U ′ (x, ζ)u * • Φ(x, ζ))dx dζ where U ′ (x, ζ) := τ * 1 (x, ζ)U (x, ζ)τ * 2 (x, ζ).
Using the change of variables provided by the diffeomorphism Φ, we get K, u = R 2n Tr(K(x, y) u * (x, y)) dx dy where K(x, y) := (|J(Φ -1 )|(x, y))U ′ • Φ -1 (x, y). The result follows. Suppose now (i-2). It is not difficult to see that F P sends S -∞ 0,z (seen as a subspace of S ′ (R 2n , L(E z ))) into S -∞ 0,z . In particular, we have s := F P (K Γ ) ∈ S -∞ 0,z . A computation shows that K, u = Op Γ (s), u for any u ∈ S(R 2n , L(E z )). (ii) Suppose (i-1). Following the proof of (i), we see that it is sufficient to prove that U is in S(R 2n , L(E z )), where

U (x, ζ) := R n e 2πi ϑ,ζ a m (x, ζ, ϑ) dϑ (independant of m). Let us fix N > 0. For any 2n-multi-index µ := (α, β), ∂ µ x,ζ b m = e 2πi ϑ,ζ β ′ ≤β β β ′ (2πiϑ) β-β ′ ∂ α,β ′ ,
0 a m and we have the estimates

∂ µ b m ≤ C µ,m x σm+σdµ ζ sup β ′ ≤β f 2,m (α,β ′ ,0) ϑ m+cµ where c µ = sup β ′ ≤β f 3 (α, β ′ ) + |β| and d µ := sup β ′ ≤β f 1 (α, β ′ ). Defining m µ,N := min{-2n -sup |µ ′ |≤|µ| c µ ′ , -N/σ -sup |µ ′ |≤|µ| d µ ′ }
we see that U is smooth and

∂ µ U = R 2n ∂ µ b m µ,N dϑ = β ′ ≤β β β ′ (2πi) |β-β ′ | R n e 2πi ϑ,ζ ϑ β-β ′ ∂ α,β ′ ,0 a m µ,N (x, ζ, ϑ) dϑ .
All the ϑ-derivatives of ϑ → ϑ β-β ′ ∂ α,β ′ ,0 a m µ,N (x, ζ, ϑ) converge to zero when ϑ → ∞ so we can we integrate by parts in ϑ so that for any p ∈ N:

∂ µ U = β ′ ≤β β β ′ (2πi) |β-β ′ | R n e 2πi ϑ,ζ ζ -2p L p ϑ ϑ β-β ′ ∂ α,β ′ ,0 a m µ,N (x, ζ, ϑ) dϑ . Since a m µ,N ∈ O m µ,N ,m µ,N σ,f 1 ,f 2,m µ,N ,f 3 ,z and f 2,m µ,N ,ρ µ,N ,λ < ∞ for a ρ µ,N < 1,
we see that the integrand h p of the previous integral satisfies the estimate

h p (x, ζ, ϑ) ≤ C p,µ,N x -N ζ -2p+sup β ′ ≤β f 2,m µ,N ,ρ µ,N ,α,β ′ +2pρ µ,N ϑ -2n . Fixing p such that (ρ µ,N -1)2p + sup β ′ ≤β f 2,m µ,N ,ρ µ,N ,α,β ′ ≤ -N , we finally obtain the follow- ing estimate ∂ µ U L(Ez) ≤ C µ,N x -N ζ -N , which yields (i-2)
. The other implications are straightforward.

Corollary 4.19. Same hypothesis. We have (for σ = 0 or σ > 0),

Op Γ (S -∞ σ,z ) = ∩ l,m ∪ w,κ Op Γ (Π l,w,m σ,κ,z ) = Op Γ (Π -∞ σ,z ).
Lemma 4.20. Let u ∈ S(R 2n , L(E z )) and β a n-multi-index.

(i) For any triple f := (f 1 , f 2 , f 3 ) such that there exists ρ < 1 such that for any 2n-multi-index (α, γ), f 3,ρ,α,γ < ∞, the following linear forms are continuous on

O f,z R β,u : a → R 3n ζ β e 2πi ϑ,ζ Tr(a(x, ζ, ϑ) u(x, ζ)) dζ dϑ dx , S β,u : a → (i/2π) |β| R 3n e 2πi ϑ,ζ Tr(∂ β ϑ a(x, ζ, ϑ) u(x, ζ)) dζ dϑ dx . (ii) R β,u = S β,u on any Π l,w,m σ,κ,z space. Proof. (i) The continuity of R β,u is a direct consequence of Proposition 4.14 since R β,u = L u β ,Id where u β (x, ζ) := ζ β u(x, ζ). Suppose that ν 0 is a 3n-multi-index, we note f ν 0 := ν → f (ν + ν 0 ).
A computation shows for any ρ, and n-multi-indices α, γ, f ν 0 3,ρ,α,γ ≤ f 3,ρ,α+α 0 ,γ+γ 0 +ρ|β 0 |. Thus if there is ρ < 1 such that for any 2n-multi-index (α, γ), f 3,ρ,α,γ < ∞, then for any 2n-multi-index (α, γ), (ii) The equality is easily obtained on Π -∞,w σ,κ,z by an integration by parts in ϑ and permutations of the order of integration dζdϑ → dϑdζ in R β,u (a) (authorized for a ∈ Π -∞,w σ,κ,z ). The result now follows from (i) and the density result of Lemma 4.12.

f ν 0 3,ρ,α,γ < ∞. If a ∈ O f,z then ∂ ν 0 a ∈ O f ν 0 ,
If N ≥ 1 and β, γ, n-multi-indices, we note for any amplitude a ∈ Π l,w,m σ,κ,z , the smooth function a β,γ,N as a β,γ,N (x, ζ, ϑ) := 1 0 (1 -t) N (∂ (0,β,γ) a)(x, tζ, ϑ) dt. It is straightforward to check that the linear map a → a β,γ,N is continuous from Π l,w,m σ,κ,z into Π l-|β|,|w|+κ|β|,m-|γ| σ,κ,z . The following lemma shows that λ-quantization of amplitudes and symbols yields the same operators. This result of "reduction" of amplitudes to symbols will be important for Theorem 4.30 and thus, for a λ-invariant definition of pseudodifferential operators. 

(i/2π) |β| β! µ -1 (∂ 0,β,β a) ζ=0 .
Proof. (i) is a direct consequence of Lemma 4.11 (i).

(ii) Using a Taylor expansion of a at ζ = 0, we find that for any

u ∈ S(R 2n , L(E z )), N ∈ N * , Op Γ (a), u = 0≤|β|≤N I β + |β|=N +1 N +1 β! R β,N where 
I β := R 3n ζ β e 2πi ϑ,ζ Tr 1 β! (∂ (0,β,0) a) ζ=0 (x, ϑ)Γ(u) * (x, ζ) dζ dϑ dx , R β,N := R 3n
ζ β e 2πi ϑ,ζ Tr a β,0,N (x, ζ, ϑ) Γ(u) * (x, ζ) dζ dϑ dx .

We get from Lemma 4.20 (ii),

I β = R 3n e 2πi ϑ,ζ Tr (i/2π) |β| β! (∂ (0,β,β) a) ζ=0 (x, ϑ)Γ(u) * (x, ζ) dζ dϑ dx .
Let s ∈ S l,m σ,z be a symbol such that s ∼

β (i/2π) |β| β! (∂ 0,β,β a) ζ=0 . Then noting s N := s - |β|≤N (i/2π) |β| β! (∂ 0,β,β a) ζ=0 ∈ S l-(N +1),m-(N +1) σ,z
, we find with Lemma 4.20 (ii) that Op Γ (a-s) = Op Γ (r N ) where

r N := |β|=N +1 (N +1)(i/2π) N+1 β! a β,β,N -s N . We check that r N ∈ Π l-(N +1),w N ,m-(N +1) σ,κ,z
where w N = |w| + κ(N + 1). Corollary 4.19 applied to Op Γ (a-s) now implies that there is r ∈ S -∞ σ,z such that Op Γ (a) = Op Γ (s+r). As a consequence, there exists s(a) ∈ S l,m σ,z such that Op Γ (a) = (Op Γ (s(a)). The unicity is a direct consequence of the fact that Op Γ = Γ * • F * P on S ′ (R 2n , L(E z )). (iii) Direct consequence of (ii) and that fact that (Op

λ (s)) z,b = Op Γ λ,z,b (µ z,b s z,b ).

S σ -linearizations

In order to have a full symbol-operator isomorphism, a polynomial control at infinity on the linearization is not enough. As we shall see, a stronger, "amplitude-like" control on the ψ b maps and a local equivalent of the P x,ξ parallel transport linear isomorphisms (see Remark 3.3) appears to be crucial for pseudodifferential calculus on (M, exp, E) and the λ-invariance (see Theorem 4.30).

We define H w σ,κ (E) (resp. E w σ,κ (E)), where w ∈ R, σ ∈ [0, 1] and κ ≥ 0, as the space of smooth functions g from R 2n into E such that for any 2n-multi-index ν, there exists C ν > 0 such that for any (

x, ζ) ∈ R 2n , ∂ ν g(x, ζ) ≤ C ν x -σ(|ν|-1) ζ w+κ(|ν|-1) (if ν = 0) (resp. ∂ ν g(x, ζ) ≤ C ν x -σ|ν| ζ w+κ|ν| ). We note H σ,κ (E) := ∪ w∈R H w σ,κ (E), H σ (E) := ∪ κ≥0 H σ,κ (E), E σ,κ (E) = ∪ w∈R E w σ,κ (E) and E σ (E) = ∪ κ≥0 E σ,κ (E).
Remark that by Leibniz rule, E σ,κ (R) and E σ,κ (M p (R)) are R-algebras (graduated by the parameter w) while E σ,κ,z := E σ,κ (L(E z )) is a Calgebra (under pointwise matricial product). Thus, if

P ∈ E σ,κ (M p (R)), then det P ∈ E σ,κ (R). Note also that f ∈ H σ,κ (E) if and only if for any i ∈ { 1, • • • , 2n }, ∂ i f ∈ E σ,κ (E). In particular, f ∈ H σ,κ (R p ) if and only if df := (x, ζ) → (df ) x,ζ is in E σ,κ (M p,2n (R)). As a consequence, if f ∈ H σ,κ (R 2n ), its Jacobian determinant J(g) is in E σ,κ (R). Note that any function in E 0 σ,κ (E) is bounded and if f ∈ H 0 σ,κ (E) then there is C > 0 such that f (x, ζ) E ≤ C x, ζ for any (x, ζ) ∈ R 2n .
The following lemma will give us the behaviour of the E σ,κ and H σ,κ spaces under composition.

Lemma 4.22. (i) Let f ∈ H w ′ σ,κ (E) (resp. E w ′ σ,κ (E)) and g ∈ H w σ,κ (R 2n ) such that there exists C, c > 0, r ≥ 0, such that g 1 (x, ζ) ≥ c x ζ -r (if σ = 0) and g 2 (x, ζ) ≤ C ζ for any (x, ζ) ∈ R 2n , where g =: (g 1 , g 2 ). Then f • g ∈ H |w|+|w ′ | σ,κ+|w|+rσ (E) (resp. E |w ′ | σ,κ+|w|+rσ (E)). (ii) If P ∈ E w σ,κ (M n (R)), then (x, ζ) → P x,ζ (ζ) ∈ H w+κ+1 σ,κ (R n ). (iii) Let f ∈ G σ (R n , E) and g ∈ H w σ,κ (R n ) such that there exists c > 0, r ≥ 0, such that, if σ = 0, g(x, ζ) ≥ c x ζ -r for any (x, ζ) ∈ R 2n . Then f • g ∈ H |w| σ,max{ rσ,κ }+|w| (E). Moreover, if f ∈ G σ (R n , R p ), then df • g ∈ E 0 σ,max{ rσ,κ }+|w| (M p,n (R)).
Proof. (i) The Faa di Bruno formula yields for any 2n-multi-index ν = 0,

∂ ν (f • g) = 1≤|λ|≤|ν| (∂ λ f ) • g P ν,λ (g) (4.9)
where P ν,λ (g) is a linear combination (with coefficients independant of f and g) of functions of the form s j=1 (∂ l j g) k j where s ∈ { 1, • • • , |ν| }. The k j and l j are 2n-multi-indices (for 1 ≤ j ≤ s) such that |k j | > 0, |l j | > 0, s j=1 k j = λ and s j=1 |k j |l j = ν. As a consequence, since g ∈ H w σ,κ (R 2n ), we see that for each ν, λ with 1 ≤ |λ| ≤ |ν| there exists C ν,λ > 0 such that for any (

x, ζ) ∈ R n , |P ν,λ (g)(x, ζ)| ≤ C ν,λ x -σ(|ν|-|λ|) ζ w|λ|+κ(|ν|-|λ|) . (4.10) Moreover, since f ∈ H w ′ σ,κ (R 2n ) (resp. E w ′ σ,κ (R 2n )), there is C ′ λ > 0 such that for any (x, ζ) ∈ R 2n , the estimate (∂ λ f ) • g(x, ζ) ≤ C ′ λ x -σ(|λ|-1) ζ |w ′ |+(κ+rσ)(|λ|-1) (resp. (∂ λ f ) • g(x, ζ) ≤ C ′ λ x -σ|λ| ζ |w ′ |+(κ+rσ)|λ|
) is valid. We deduce then from (4.9) and (4.10) that f • g belongs to

H w+|w ′ | σ,κ+|w|+rσ (E) (resp. E |w ′ | σ,κ+|w|+rσ (E)). (ii) We note P i,j
x,ζ the matrix entries of P (1-|ν|) ). The result now follows from an application of the Leibniz rule.

x,ζ . Each component (f i ) 1≤i≤n of the map f := (x, ζ) → P x,ζ (ζ) is of the form f i = n j=1 P i,j ζ j . It is straightforward to check that the applications (x, ζ) → ζ j satify for any ν ∈ N 2n , ∂ ν ζ j = O( ζ 1-|ν| x σ
(iii) Following the proof of (i), (4.10) is still valid, this time with λ as n-multi-indices and ν as 2n-multi-indices with 1 ≤ |λ| ≤ |ν|. Using the fact that g(x, ζ) ≥ c x ζ -r for any (x, ζ) ∈ R 2n , we obtain the following estimate

(∂ λ f ) • g(x, ζ) ≤ C ′ λ x -σ(|λ|-1) ζ rσ(|λ|-1) ≤ C ′ λ x -σ(|λ|-1) ζ max{ rσ,κ }(|λ|-1)
which, with (4.10) and (4.9), yields f • g belongs to

H |w| σ,max{ rσ,κ }+|w| (E). The fact that df • g is in E 0 σ,max{ rσ,κ }+|w| (M p,n (R)) when f ∈ G σ (R n , R p ) is based on the same argument.
The H σ,κ and E σ,κ spaces are related to the symbol and amplitude spaces by the following lemma.

Lemma 4.23. (i) If f ∈ E w σ,κ,z , then (x, ζ, ϑ) → f (x, ζ) is in Π 0,w,0 σ,κ,z . (ii) Let s ∈ S l,m σ,z , m ∈ H w σ,κ (R n ) such that there exist C, c, r > 0 such that, if σ = 0, for any (x, ζ) ∈ R 2n , c x ζ -r ≤ m(x, ζ) ≤ C x ζ r , and P ∈ E 0 σ,κ (M n (R)) such that such that for any (x, ζ, ϑ) ∈ R 3n , P x,ζ (ϑ) ≥ c ϑ . Then (x, ζ, ϑ) → s(m(x, ζ), P x,ζ (ϑ)) is in Π l,σr|l|,m σ,κ+|σr-κ+w|,z . (iii) If s ∈ S σ (R n ), m ∈ H w σ,κ (R n ) such that, if σ = 0, there exists c, r > 0 such that for any (x, ζ) ∈ R 2n m(x, ζ) ≥ c x ζ -r , then (x, ζ, ϑ) → s(m(x, ζ)) Id L(Ez) is in Π 0,0,0 σ,κ+|σr-κ+w|,z . (iv) If a ∈ Π l,w,m σ,κ,z and P ∈ E 0 σ,κ (M n (R))
is such that such that there is c > 0 such that for any

(x, ζ, ϑ) ∈ R 3n , P x,ζ (ϑ) ≥ c ϑ , then a P : (x, ζ, ϑ) → a(x, ζ, P x,ζ (ϑ)) ∈ Π l,w,m σ,κ,z . Proof. (i) is straightforward. (ii) Let us note g(x, ζ, ϑ) := (m(x, ζ), P x,ζ (ϑ)). For any i, j ∈ { 1, • • • , n }, we note P i,j x,ζ the (i, j) matrix entry of P x,ζ . Since P ∈ E 0 σ,κ (M n (R)), we have P i,j •,• ∈ E 0 σ,κ (R).
Faa di Bruno formula in Theorem 2.11 yields for any ν = 0

∂ ν (s • g) = 1≤|λ|≤|ν| (P ν,λ (g)) (∂ λ s) • g (4.11)
where P ν,λ (g) is a linear combination of terms of the form s j=1 (∂ l j g) k j , where 1 ≤ s ≤ |ν|, the k j (resp. l j ) are 2n-multi-indices (resp. 3n-multi-indices) with |k j | > 0, |l j | > 0, s j=1 k j = λ and s j=1 |k j |l j = ν. Let us note l j =: (l j,1 , l j,2 , l j,3 ), k j =: (k j,1 , k j,2 ) where l j,1 , l j,2 , l j,3 , k j,1 , k j,2 are n-multi-indices. We have, noting Q(x, ζ, ϑ) := (x, ζ),

(∂ l j g) k j = n i=1 (δ l j,3 ,0 (∂ (l j,1 ,l j,2 ) m) i • Q) k j,1 i n i=1 n k=1 ∂ (l j,1 ,l j,2 ) P i,k •,• ∂ l j,3 ϑ k k j,2 i
and we get, for a given s, (l j ), (k j ) such that (∂ l j g)

k j = 0 for all 1 ≤ j ≤ s, if l j,3 = 0 , (∂ l j g) k j = O( x -σ|l j ||k j |+σ|k j,1 | ζ κ|l j ||k j |-κ|k j,1 |+w|k j,1 | ϑ |k j,2 | ) , if |l j,3 | = 1 , k j,1 = 0 and (∂ l j g) k j = O( x -σ|l j ||k j |+σ|k j | ζ κ|l j ||k j |-κ|k j | ) .
The case is |l j,3 | > 1 is excluded since k j = 0 and (∂ l j g) k j = 0. By permutation on the j indices, we can suppose as in the proof of Lemma 2.13 that for 1 ≤ j ≤ j 1 -1, we have l j,3 = 0 and for j 1 ≤ j ≤ s, we have |l j,3 | = 1, where 1 ≤ j 1 ≤ s + 1. Thus, we get

s j=1 (∂ l j g) k j = O( x -σ( P s j=1 (|l j |-1)|k j |+ P j 1 -1 j=1 |k j,2 |) × ζ w P s j=1 |k j,1 |+κ( P s j=1 (|l j |-1)|k j |+ P j 1 -1 j=1 |k j,2 |) ϑ P j 1 -1 j=1 |k j,2 | ) .
We check that j 1 -1 j=1 |k j,2 | = |λ 2 | -|γ| and s j=1 (|l j | -1)|k j | = |ν| -|λ| where λ = (λ 1 , λ 2 ) and ν = (α, β, γ). As a consequence, 

P ν,λ (g) = O( x -σ(|α+β|-|λ 1 |) ζ w|λ 1 |+κ(|α+β|-|λ 1 |) ϑ |λ 2 |-|γ| ) .
∈ R 2n , m(x, ζ) σ(l-|λ 1 |) ≤ K ν x σ(l-|λ 1 |) ζ σr|l|+σr|λ 1 | .
As a consequence, we see that there is C ν > 0 such that for any 1 ≤ |λ| ≤ |ν| and any (x,

ζ, ϑ) ∈ R 3n , (∂ λ s) • g(x, ζ, ϑ) L(Ez) ≤ C ν x σ(l-|λ 1 |) ζ σr|l|+σr|λ 1 | ϑ m-|λ 2 | .
so, since we can reduce the sum in 

s j=1 k j = ν ′ , noting k j = (k j,1 , k j,2
), l j = (l j,1 , l j,2 ), where k j,1 and l j,1 are 2n-multi-indices, we get, following the proof of (ii),

P ν,ν ′ (g) = O( x -σ(|α+β|-|α ′ +β ′ |) ζ κ(|α+β|-|α ′ +β ′ |) ϑ |γ ′ |-|γ| ) .
Since P x,ζ = O(1) and P x,ζ (ϑ) ≥ ε ϑ we get the result. Definition 4.24. Let σ ∈ [0, 1] and ψ a linearization on (M, exp, E, dµ). We say that ψ is a S σ -linearization if for any frame (z, b), there is κ z,b ≥ 0 such that (i)

ψ b z ∈ H σ,κ z,b (R n ) with ψ b z (x, ζ) = O( x ζ r ) for a r ≥ 1 and ψ b z ∈ O M (R 2n , R n ) , (ii) there is P z,b ∈ C ∞ (R 2n , GL n (R)) such that P z,b and (P z,b ) -1 are in E 0 σ,κ z,b (M n (R)), and for any (x, ζ) ∈ R 2n , P z,b x,ζ (ζ) = Υ z,b 1,T (x, ζ) and P z,b x,0 = Id R n . (iii) τ z,b 1 and (τ z,b 1 ) -1 are in E 0 σ,κ z,b (L(E z )
). We shall say that the combo (M, exp, E, dµ, ψ) has a S σ -bounded geometry if this is the case of (M, exp, E, dµ) and ψ is a S σ -linearization.

It is clear that a S σ -linearization is also a O M -linearization. Moreover, we can check, in case of S σ bounded geometry, we check the properties (i), (ii) and (iii) in just one frame: Lemma 4.25. If (M, exp, E, dµ) has a S σ -bounded geometry and ψ is a linearization such that there exists

(z 0 , b 0 ), κ z 0 ,b 0 ≥ 0, such that the functions ψ b 0 z 0 , ψ b 0 z 0 satisfy (i), (ii) and (iii), then ψ is a S σ -linearization.
Proof. This follows from applications of Lemma 4.22.

Remark 4.26. The condition (ii) in Definition 4.24 encodes an abstract parallel transport isomorphisms in normal coordinates. Indeed, in the case where the linearization ψ is derived from a connection on M , the GL n (R)-valued smooth functions on R 2n :

P z,b := (x, ζ) → M b z,exp •(n b z,T ) -1 (x,ζ) P (n b z,T ) -1 (x,ζ) (M b z,(n b z ) -1 (x) ) -1
where the applications P x,ξ are the parallel transport isomorphisms on the tangent bundle (see Remark 3.3), satisfy for any (x, ζ) ∈ R 2n ,

Pseudodifferential operators

Assumption 4.28. We suppose in this section and until section 5 that (M, exp, E, dµ, ψ) has a S σ -bounded geometry. By Lemma 4.7, S l,m σ can be seen as included in S ′ (T * M, L(E)), so Op λ (S l,m σ ) is well defined. The following theorem shows that it does not depend on λ, and thus justify the notation Ψ l,m σ . We note

τ λ,λ ′ R := (τ z,b λ ) -1 • Υ λ ′ -λ,z,b τ z,b λ ′ and τ λ,λ ′ L := (τ z,b λ ′ -1 ) -1 τ z,b λ-1 • Υ z,b λ ′ -λ . If ψ = exp, we have τ λ,λ ′ R = τ R,λ ′ -λ and τ λ,λ ′ L = (τ L,λ ′ -λ ) -1 where τ L,t := τ z,b t if t = 1 and τ L,t := (τ z,b -1 ) -1 • Υ 1,z,b if t = 1, and τ R,t := τ z,b t if t = -1 and τ R,t := (τ z,b 1 ) -1 • Υ -1,z,b if t = -1.
Theorem 4.30. Let λ, λ ′ ∈ [0, 1] and K = Op λ (a), with a ∈ S l,m σ . Then there exists (an unique)

a ′ ∈ S l,m σ such that K = Op λ ′ (a ′ ). Moreover, for any frame (z, b), a ′ z,b ∼ β (i/2π) |β| β! ∂ (0,β,β) τ λ,λ ′ L a z,b λ ′ -λ τ λ,λ ′ R ζ=0
where 

a z,b := T z,b, * (a), a ′ z,b := T z,b, * (a ′ ), and a z,b t is the amplitude defined for any t ∈ [-1, 1] as a z,b t (x, ζ, ϑ) := µ z,b (m z,b t (x,ζ)) µ z,b (x) |JΞ t,z,b (x, ζ)| (a z,b • Ξ t,z,b (x, ζ, ϑ)) .
= T z,b,M 2 (u) ∈ S(R 2n , L(E z )), K, u = R 3n e 2πi ϑ,ζ Tr µa z,b (x, ϑ) (Γ λ,z,b (u z,b )(x, ζ)) * dζ dϑ dx .
Suppose that m ≤ -2n so that the integral is absolutely convergent. We now proceed to the global change of variables provided by the diffeomorphism Ξ

z,b λ ′ -λ of R 3n (Ξ t,z,b is defined at (4.13)). We get K, u = Op λ ′ ,z,b (µτ λ,λ ′ L a z,b λ ′ -λ τ λ,λ ′ R ), u z,b .
We check with Lemmas 4.27 and 4.23

that τ λ,λ ′ L a z,b λ ′ -λ τ λ,λ ′ R
is an amplitude in Π l,w,m σ,κ,z for a κ ≥ 0 and a w ∈ R. We also see that the

linear map a z,b → µτ λ,λ ′ L a z,b λ ′ -λ τ λ,λ ′ R
is continuous on S l,m σ,z , which yields, using Proposition 4.14 (ii) and the density result of Lemma 4.6, the equality

K, u = Op λ ′ ,z,b (µτ λ,λ ′ L a z,b λ ′ -λ τ λ,λ ′ R ), u z,b
, for any order m of the symbol a. The result now follows from Lemma 4.21 (iii). Proposition 4.31. For each λ ∈ [0, 1] and l, m ∈ R, σ λ is a linear isomophism from Ψ l,m σ onto S l,m σ and σ λ (A † ) = (σ 1-λ (A)) * for any A ∈ Ψ l,m σ . In particular a pseudodifferential A operator is formally selfadjoint (i.e A = A † as operators on S) if and only if its Weyl symbol σ W (A) is selfadjoint (as a L(E) → T * M section).

Proof. The fact that σ λ is a linear isomophism from Ψ l,m σ onto S l,m σ is a consequence Theorem 4.30 and the fact that σ λ is a topological isomorphism from S ′ (M × M, L(E)) onto S ′ (T * M, L(E)). We check that for any T ∈ S ′ (T * M, L(E)), Op λ (T ) † = Op 1-λ (T * ) which is a direct consequence of the fact that Φ λ (x, -ξ) = j • Φ 1-λ (x, ξ) where j(x, y) = (y, x). 

A(v) : x → T * x (M ) dµ * x (θ) Tx(M ) dµ x (ξ) e 2πi θ,ξ σ 0 (A)(x, θ) τ -1 -1 (x, ξ) v(ψ -ξ x ) . Proof. Let A ∈ Ψ l,m
σ and a := σ 0 (A). Thus, for any frame (z, b), A z,b = Op Γ 0,z,b (µa z,b ) so by Lemmas 4.17, 4.27 (ii) and (iii), A z,b is continuous from S(R n , E z ) into itself. By Proposition 4.31, A † is a pseudodifferential operator in Ψ l,m σ , so we also obtain (A † ) z,b continuous from S(R n , E z ) into itself. The result follows.

Link with standard pseudodifferential calculus on R n and L 2 -continuity

We suppose in this section that E is the scalar bundle. If A ∈ Ψ σ , then A z,b belongs to the space, noted Ψ σ,ψ , of regular operators B on S(R n ), of the form

B(v)(x) = R 2n e 2πi ϑ,ζ a(x, ϑ)v(ψ b z (x, -ζ))dζdϑ
where a ∈ S ∞ σ (R 2n ). We study in this section a sufficient condition on ψ, such that this space Ψ σ,ψ is in fact equal to the usual algebra Ψ σ,std pseudodifferential operators on R n with the standard linearization ψ(x, ζ) = x + ζ. Here Ψ 0,std corresponds to the Hormander calculus [START_REF] Hörmander | The analysis of linear partial differential operators III[END_REF] on R n and Ψ 1,std is the SG-calculus on R n .

We will note

ψ := ψ b z , V x (ζ) := -ψ(x, -ζ) + x, M x,ζ := [ 1 0 ∂ j (V -1 x ) i (tζ)dt] i,j and N x,ζ := [ 1 0 ∂ j V i
x (tζ)dt] i,j . We consider the following hypothesis, noted (H V ): (i) there is ε, δ, η > 0 such that for any (x, ζ) ∈ R 2n with ζ ≤ ε x ση , we have det M x,ζ ≥ δ and det N x,ζ ≥ δ, (ii) the functions (dV x ) x,ζ and (dV -1

x ) x,ζ are in E 0 σ (M n (R)).

Proposition 4.33. If the hypothesis (H V ) holds, we have Ψ σ,ψ = Ψ σ,std .

We set χ ε,η (x, ζ) := b( ζ 2 ε 2 x 2ση ) where b ∈ C ∞ c (R, [0, 1]) is such that b = 0 on R\] -1, 1[ and b = 1 on [-1/4, 1/4]. Lemma 4.34. Suppose (H V ). If a ∈ S l,m σ (R 2n ), then the application a χ,M : (x, ζ, ϑ) → χ ε,η (x, ζ)a(x, M x,ζ ϑ)|J(V -1 x |(ζ) (det M x,ζ ) -1 is an amplitude in ∪ k,w Π l,w,m σ,κ,z (R 3n ). Similarly, a χ,N : (x, ζ, ϑ) → χ ε,η (x, ζ)a(x, N x,ζ ϑ)|J(V x )|(ζ) (det N x,ζ ) -1 is in k,w Π l,w,m σ,κ,z (R 3n ).
Proof. The result follows from Lemma 4.23 (ii) and applications of Proposition 5.4.

Proof of Proposition 4.33. Suppose that a ∈ S l,m σ (R 2n ) and define A as the operator in Ψ σ,ψ with normal symbol a. We obtain for any v ∈ S(R 2n )

A(v)(x) := R 2n e 2πi ϑ,ζ a(x, ϑ)v(ψ(x, -ζ))dζdϑ .
We suppose first that a ∈ S -∞ σ (R 2n ). We have after a change of variable, and cutting the integral in two parts

A(v)(x) = A 1 (v)(x) + A 2 (v)(x) where A 1 (v)(x) = R 2n e 2πi ϑ,M x,ζ (ζ) χ ε,η (x, ζ)a(x, ϑ)|J(V -1 x )|(ζ)v(x -ζ)dζdϑ , A 2 (v)(x) = R 2n e 2πi ϑ,V -1 x (ζ) (1 -χ ε,η )(x, ζ)a(x, ϑ)|J(V -1 x )|(ζ)v(x -ζ)dζdϑ .
In A 1 , we permute the integrations dζ and dϑ and proceed to a change of the variable ϑ, while in A 2 we integrate by parts in ϑ using formula (4.7) so that for any p ∈ N,

A 1 (v)(x) = R 2n e 2πi ϑ,ζ a χ,M (x, ζ, ϑ)v(x -ζ)dζdϑ , A 2 (v)(x) = R 2n e 2πi ϑ,V -1 x (ζ) (1 -χ ε,η )(x, ζ) t M p,V -1 x (ζ) ϑ (a)|J(V -1 x )|(ζ)v(x -ζ)dζdϑ .
As a consequence with Lemma 4.34, and with the density of S -∞ σ (R 2n ) in S l,m σ (R 2n ), we see that A is the sum of two pseudodifferential operators in Ψ σ,std :

A = A χ + R where R ∈ Ψ -∞ σ,std
and A χ has a χ,M as (standard) amplitude. The implication in the other sense is similar. Remark 4.35. In the case of pseudodifferential operator with local compact control over the x variable and with ψ coming from a connection, by cutting-off in the ζ-variable or in other words taking y := ψ(x, -ζ) and x sufficiently close to each other, we have in fact Ψ σ,ψ equal to Ψ σ,std modulo smoothing elements (see [START_REF] Sharafutdinov | Geometric symbol calculus for pseudodifferential operators. I[END_REF]).

As a consequence, we see that if the hypothesis (H V ) is satisfied for a frame (z, b), then Ψ σ,ψ (= Ψ σ,std ) is stable under composition of operators and the symbol composition formula is then given by a quadruple asympotic summation modulo smoothing symbols.

We will show in the next section that we can also obtain stability under composition directly, without using a reduction to the standard calculus on R n . We shall obtain with this method a simpler symbol composition formula on Ψ σ,ψ , analog to the usual one on Ψ σ,std .

As a direct consequence of the previous proposition, we have the following L 2 -continuity result for pseudodifferential operators on M .

Proposition 4.36. If (H V ) is satisfied for the function V -1
x in a frame (z, b), then any pseudodifferential operators on M of order (0, 0) extends as a bounded operator on L 2 (M, dµ).

Proof. Since (H V ) are satisfied for V -1

x , the proof of the previous proposition entails that Ψ 0,0 σ,ψ ⊆ Ψ 0,0 σ,std , so the result follows from the L 2 -continuity of standard pseudodifferential operators [START_REF] Hörmander | The analysis of linear partial differential operators III[END_REF].

Composition of pseudodifferential operators

The goal of this section is to prove that pseudodifferential operators of Ψ ∞ σ are stable under composition without using the hypothesis of the previous section, and to obtain an adapated symbol composition formula. We shall adapt to our situation a technique used for Fourier integral operators in Coriasco [START_REF] Coriasco | Fourier integral operators in SG classes I Composition theorems and action on SG Sobolev spaces[END_REF], Ruzhansky and Sugimoto [START_REF] Ruzhansky | Global calculus of Fourier integral operators, weighted estimates, and applications to global analysis of hyperbolic equations[END_REF][START_REF] Ruzhansky | Weighted Sobolev L 2 estimates for a class of Fourier integral operators[END_REF].

Let us note for (x, ξ) ∈ T M and

ξ ′ ∈ T ψ -ξ x (M ), ψ x,ξ,ξ ′ := ψ -ξ ′ ψ -ξ x , r x (ξ, ξ ′ ) := ψ -1 x (ψ x,ξ,ξ ′ ) and q x (ξ, ξ ′ ) := ψ -1 ψ x,ξ,ξ ′ (ψ -ξ x )
. We define V x the 2n dimensional smooth manifold as

V x := Lemma 4.38. (i) Let f ∈ H w σ,κ (E) (resp. E w σ,κ (E)) and g ∈ R w 0 ,w 1 σ,κ,ε 1 (R 2n ) such that g 2 (x, ζ, ζ ′ ) = O( ζ k 2 ζ ′ k ′ 2 ) for a (k 2 , k ′ 2 ) ∈ R 2 + and, if σ = 0, g 1 (x, ζ, ζ ′ ) ≥ c x ζ -k 1 ζ ′ -k ′ 1 , for a (k 1 , k ′ 1 ) ∈ R 2 + and c > 0. Then, f • g ∈ R w 0 +k 2 w,w 1 +k ′ 2 w σ,κ H ,ε 1 (E) (resp. O 0,k 2 w,k ′ 2 w σ,κ E ,κ E ,ε 1 ,0 (E)) where κ H := κ + max{ |w 0 + k 1 σ + k 2 κ|, |w 1 + k ′ 1 σ + k ′ 2 κ| } and κ E := κ + max{ |w 0 + k 1 σ + (k 2 -1)κ|, |w 1 + k ′ 1 σ + (k ′ 2 -1)κ| }. (ii) (x, ζ, ζ ′ ) → (ψ(x, ζ), ζ ′ ) ∈ R w ψ ,0 σ,κ ψ ,1 (R 2n ) and (x, ζ, ζ ′ ) → x ζ,ζ ′ ∈ R σ,κ ψ ,1 for a (κ ψ , w ψ ) ∈ R 2 + . (iii) The functions q, (x, ζ, ζ ′ ) → (P z,b -1,ψ(x,ζ),ζ ′ ) -1 and (x, ζ, ζ ′ ) → det(P z,b -1,ψ(x,ζ),ζ ′ ) -1 are respec- tively in R σ,κq,1 (R n ), O 0,0,0 σ,κq,κq,1,0 (M n (R))
, and O 0,0,0 σ,κq,κq,1,0 (R), for a κ q ≥ 0. Moreover, there exists C > 0 such that for any

(x, ζ, ζ ′ ) ∈ R 3n , q x (ζ, ζ ′ ) ≤ C ζ ′ . (iv) (x, ζ, ζ ′ ) → τ (x ζ,ζ ′ , q x (ζ, ζ ′ )) is in O 0,0,0 σ,κτ ,κτ ,1,0,z for a κ τ ≥ 0. Proof. (i) If ν = (α, β, γ) = 0 is a 3n-multi-index, we have ∂ ν f • g = 1≤|ν ′ |≤|ν| P ν,ν ′ (g)(∂ ν ′ f ) • g, with P ν,ν ′ (g) a linear combination of terms of the form s j=1 (∂ l j g) k j , with 1 ≤ s ≤ |ν|, s 1 l j |k j | = ν, s 1 k j = ν ′ .
As a consequence, we get the following estimate for any 1

≤ |ν| ≤ |ν ′ |, P ν,ν ′ (g) = O( x σ(|ν ′ |-|µ|-ε 1 |γ|) ζ w 0 |ν ′ |+κ(|ν|-|ν ′ |) ζ ′ w 1 |ν ′ |+κ(|ν|-|ν ′ |) ). Moreover, for any 1 ≤ |ν ′ | ≤ |ν|, there is C ν > 0 such that for any (x, ζ, ζ ′ ) ∈ R 3n , the following estimate is valid (∂ ν ′ f ) • g(x, ζ, ζ ′ ) ≤ C ν x -σ(|ν ′ |-1) ζ (k 1 σ+k 2 κ)(|ν ′ |-1)+k 2 w ζ ′ (k ′ 1 σ+k ′ 2 κ)(|ν ′ |-1)+k ′ 2 w (resp. (∂ ν ′ f ) • g(x, ζ, ζ ′ ) ≤ C ν x -σ|ν ′ | ζ (k 1 σ+k 2 κ)|ν ′ |+k 2 w ζ ′ (k ′ 1 σ+k ′ 2 κ)|ν ′ |+k ′ 2 w
). The result follows.

(ii) By hypothesis, ψ ∈ H

w ψ σ,κ ψ . We deduce that (x, ζ, ζ ′ ) → ψ(x, ζ) ∈ R w ψ ,0 σ,κ ψ ,1 and the first statement now follows from (x, ζ, ζ ′ ) → ζ ′ ∈ R 0,0 σ,κ ψ ,1 . The second statement follows from (i). (iii) Since q x (ζ, ζ ′ ) = -P z,b -1,ψ(x,ζ),ζ ′ (ζ ′
), the fact that q x ∈ R σ,κq,1 (R n ) for a κ q ≥ 0 is a consequence of (i), (ii) and Lemma 4.22 (iii). We also have by (i) and (ii), (P z,b -1,ψ(x,ζ),ζ ′ ) -1 ∈ O 0,0,0 σ,κq,κq,1,0 (M n (R)). (iv) Since τ ∈ E 0 σ,κ (L(E z )) for a κ ≥ 0, the result follows (i), (ii), (iii) and the estimate

x ζ,ζ ′ ≥ c x ζ -k ζ ′ -k for c, k > 0.
Lemma 4.39. Suppose (C σ ). Then (i) s, ϕ ∈ O 0,0,ws σ,κv,εv,εv,1 (R n ) and ϕ ∈ O -εv,εv,wϕ σ,κv ,εv,εv,2 (R n ) where w s := w v + 1 and

w ϕ := 2 + w v + κ v . (ii) V = (dr x,ζ ) ζ ′ and (dr x,ζ ) -1 ζ ′ are bounded on R 3n . (iii) The function J(R) : (x, ζ, ζ ′ ) → J(R x )(ζ, ζ ′ ) is in ∪ κ,w 0 ,w 1 ,ε 0 ,ε 1 O 0,w 0 ,w 1 σ,κ,ε 0 ,ε 1 ,0 (R) and (x, ζ, ζ ′ ) → τ (x, r x (ζ, ζ ′ )) is in O 0,0,0 σ,κτ ,κτ ,εv/2,0,z for κ τ ≥ 0. Proof. (i) We have s x,ζ (ζ ′ ) = n i=1 ζ ′ i 1 0 ∂ ζ ′ i r x,ζ (tζ ′ ) dt. Since V ∈ O 0,0,wv σ,κv ,εv,0 (M n (R)) each func- tion (x, ζ, ζ ′ ) → 1 0 ∂ ζ ′ i r x,ζ (tζ ′ ) dt is in O 0,0,wv σ,κv,εv,0 (R n ) and thus, since (x, ζ, ζ ′ ) → ζ ′ i ∈ O 0,0,1 σ,κv ,εv,1 (R), we see that s ∈ O 0,0,ws σ,κv,εv,1 (R n ). We have also ϕ x,ζ (ζ ′ ) = |β|=2 2 β! (ζ ′ ) β 1 0 (1 -t) ∂ β ζ ′ r x,ζ (tζ ′ ) dt and each function (x, ζ, ζ ′ ) → 1 0 (1 -t) ∂ β ζ ′ r x,ζ (tζ ′ ) dt is in O -εv,εv,wv+κv σ,κv ,εv,0 (R n ). With (x, ζ, ζ ′ ) → (ζ ′ ) β ∈ O 0,0,2 σ,κv,εv,2 (R), we get ϕ ∈ O -εv,εv,wϕ σ,κv ,εv,2 (R n ). (ii) Direct consequence of (C σ ) and the following equalities for any (x, ζ, ζ ′ ) ∈ R 3n , (dr x,ζ ) ζ ′ = (dψ x ) x ζ,ζ ′ (dψ ψx(ζ) ) ζ ′ and (dr x,ζ ) -1 ζ ′ = (dψ ψx(ζ) ) x ζ,ζ ′ (dψ x ) r x,ζ (ζ ′ ) . (iii)
The first statement follows from Lemma 4.38 (ii). The second statement follows from Lemma 4.38 (i) and the estimate r

x (ζ, ζ ′ ) = O( ζ ζ ′ wv ).
We shall use a generalization to four variables of the Π l,w,m σ,κ,z spaces of amplitude. We define Π l,w 0 ,w 1 ,m σ,κ,ε 1 ,z (0 < ε 1 ≤ 1) as the space of smooth functions a ∈ C ∞ (R 4n , L(E z )) such that for any 4n-multi-index (ν, δ)

∈ N 3n × N n , (with ν = (µ, γ) ∈ N 2n × N n ) there is C ν,δ > 0 such that for any (x, ζ, ζ ′ , ϑ) ∈ R 4n , ∂ (ν,δ) a(x, ζ, ζ ′ , ϑ) L(Ez) ≤ C ν,δ x σ(l-|µ|-ε 1 |γ|) ζ w 0 +κ|ν| ζ ′ w 1 +κ|ν| ϑ m-|δ| .
These spaces have natural Fréchet topologies and form a graded topological algebra under pointwise composition.

Lemma 4.40. (i) If a ∈ Π l,w 0 ,w 1 ,m σ,κ,ε 1 ,z , then a ζ ′ =0 : (x, ζ, ϑ) → a(x, ζ, 0, ϑ) is in Π l,w 0 ,m σ,κ,z . (ii) If h ∈ O l,w 0 ,w 1 σ,κ,ε 0 ,ε 1 ,0,z , then (x, ζ, ζ ′ , ϑ) → h(x, ζ, ζ ′ ) is in Π l,w 0 ,w 1 ,0 σ,max{ κ,ε 0 },ε 1 ,z . (iii) There is κ Ξ , k 1 ≥ 0 such that for any b ∈ S l,m σ,z , the application b • Ξ, where Ξ(x, ζ, ζ ′ , ϑ) := (x ζ,ζ ′ , -P z,b -1,ψ(x,ζ),ζ ′ (ϑ)), is in Π l,σk 1 |l|,σk 1 |l|,m σ,κ Ξ ,1,z . Proof. (i) and (ii) are direct. (iii) If µ = (ν, δ) = 0 is a 4n-multi-index, we have ∂ µ (b • Ξ) = 1≤|µ ′ |≤|µ| P µ,µ ′ ( Ξ) (∂ µ ′ b) • Ξ with P µ,µ ′ ( Ξ) a linear combination of terms of the form s j=1 (∂ l j Ξ) k j , with 1 ≤ s ≤ |µ|, l j = (l j,1 , l j,2 ) ∈ N 3n × N n , k j = (k j,1 , k j,2 ) ∈ N n × N n ,
such that l j,2 = 0 for 1 ≤ j ≤ j 1 ≤ s, and

s 1 l j |k j | = µ, s 1 k j = µ ′ . We have (∂ l j Ξ) k j = n i=1 (δ l j,2 ,0 (∂ l j,1 x ζ,ζ ′ ) i ) k j,1 i n i=1 n k=1 ∂ l j,1 P i,k ∂ l j,2 ϑ k k j,2 i
where P i,k are the matrix entries of -P z,b -1,ψ(x,ζ),ζ ′ . By Lemma 4.38 (ii) and (iii), x ζ,ζ ′ ∈ R w 0 ,w 1 σ,κ ψ ,1 (R n ) and the P i,k are in O 0,0,0 σ,κ ψ ,κ ψ ,1,0 (R) for a (κ ψ , w 0 , w 1 ) ∈ R 3 + . We obtain thus the following estimate

|P µ,µ ′ ( Ξ)(x, ζ, ζ ′ , ϑ)| ≤ C µ x -σ(|ν|-|α ′ |) ζ w 0 |α ′ |+κ ψ (|ν|-|α ′ |) ζ ′ w 1 |α ′ |+κ ψ (|ν|-|α ′ |) ϑ |β ′ |-|δ| with µ ′ =: (α ′ , β ′ ). Since b ∈ S l,m
σ,z we also have the estimate

(∂ µ ′ b) • Ξ(x, ζ, ζ ′ ) ≤ C ′ µ x ζ,ζ ′ σ(l-|α ′ |) ϑ m-|β ′ | so the result follows now from the estimate x ζ,ζ ′ σ(l-|α ′ |) = O( x σ(l-|α ′ |) ( ζ ζ ′ ) σk 1 |l|+σk 1 |α ′ | ), with κ Ξ := κ ψ + max{ |w 0 + σk 1 -κ ψ |, |w 1 + σk 1 -κ ψ | }. Lemma 4.41. Let s ∈ C ∞ (R p , R n ).
Then for any p + n-multi-index ν = (α, β) = 0, we have ∂ ν

x,ϑ e i ϑ,s(x) = P ν (x, ϑ) e i ϑ,s(x)

where P ν is of the form |γ|≤|α| ϑ γ T ν,γ (x), and T ν,γ is a linear combination of terms of the form m j=1 (∂ l j s) Proof. We note g(x, ϑ) := ϑ, s(x) . By Theorem 2.11, we get the following equality for any ν = 0, ∂ ν

x,ϑ e i ϑ,s(x) = P ν (x, ϑ)e i ϑ,s(x) where P ν (x, ϑ) = 1≤k≤|ν| P ν,k (g) and P ν,k is a linear combination of terms of the form m j=1 (∂ l j g) k j such that |l j | > 0, k j > 0, m 1 k j = k and m 1 k j l j = ν. If we suppose that the term m j=1 (∂ l j g) k j is non-zero, then |l j | ≤ 1 and if we define j 1 such that for any 1 ≤ j ≤ j 1 , l j,2 = 0, we obtain, noting l j = (l j,1 , l j,2 ),

m j=1 (∂ l j g) k j = j 1 j=1 ϑ, ∂ l j,1 s k j m j=j 1 +1 (∂ l j,1 s q j ) k j = |γ j |=k j , 1≤j≤j 1 γ 1 ! • • • γ j ! ϑ P j 1 1 γ j j 1 j=1 (∂ l j,1 s) γ j m j=j 1 +1
(∂ l j,1 s q j ) k j .

Thus, we have P ν,k = |γ|=k-|β| ϑ γ T ν,γ,k (x) where T ν,γ,k is a linear combination of terms of the form j 1 j=1 (∂ l j,1 s) µ j m j=j 1 +1 (∂ l j,1 s q j ) k j , where 1 

≤ q j ≤ n, 1 ≤ j ≤ m ≤ |ν|, 1 ≤ j 1 ≤ m, l j,1 ∈ N p , k j ∈ N * , λ j ∈ N n are such that m 1 k j = k, j 1 1 |λ j ||l j,1 | + m j 1 +1 k j |l j,1 + 1| = |ν| and
t ω,λ (x, ζ, ζ ′ ) = O( x -σεv |β|/2 ζ 2εv|β| ζ ′ w ′ s |β| ) where w ′ s := w s + 2κ v . Moreover, (x, ζ, ϑ) → P β,ϕ (x, ζ, 0, ϑ) 1 L(Ez ) ∈ Π -εv|β|/2,εv|β|,|β|/2 σ,κv ,z . (iii) If β ∈ N n and f ∈ Π l,w 0 ,w 1 ,m σ,κ,ε 1 ,z then the function f β,ϕ : (x, ζ, ϑ) → ∂ β ζ ′ e 2πi ϑ,ϕ x,ζ (ζ ′ ) ∂ 0,0,0,β f (x, ζ, ζ ′ , L x,ζ (ϑ)) ζ ′ =0 belongs to Π l-ε ′ 1 |β|,w 0 +κ 2 |β|,m-|β|/2 σ,κ 1 ,z , where ε ′ 1 := min{ ε 1 /2, ε v /2 } > 0, κ 1 := max{ κ v , κ }, κ 2 := κ + |ε v -κ|,
j ≥ j 1 + 1, |l j | > 1, where j 1 ∈ { 0, • • • m }. Thus m j=1 (∂ l j ϕ x,ζ ) µ j = j 1 j=1 (∂ l j ϕ x,ζ ) µ j j≥j 1 +1 (∂ l j ϕ x,ζ
) µ j and with a Taylor expansion at order 1 of

∂ l j ϕ x,ζ in ζ ′ around 0 when 1 ≤ j ≤ j 1 , we get ∂ l j ϕ x,ζ = 1≤i≤n ζ ′ i t k i,j where t k i,j = 1 0 ∂ e i +l j ζ ′ ϕ x,ζ (tζ ′ )dt.
Thus, using the fact that ϕ ∈ O 0,0,ws σ,κv,εv,εv,1 (R n ), we see that j 1 j=1 (∂ l j ϕ x,ζ ) µ j is a linear combination of terms of the form ζ ′λ V λ where |λ| = j 1 j=1 |µ j | and

V λ = O( x -σεv P j 1 1 |l j ||µ j | ζ εv|λ|+εv P j 1 1 |µ j ||l j | ζ ′ (kv +ws)|λ|+κv P j 1 1 |l j ||µ j | ).
As a consequence, we see that m j=1 (∂ l j ϕ x,ζ ) µ j is a linear combination of terms of the form ζ ′λ W λ where |λ| = j 1 j=1 |µ j | and

W λ = O( x -σεv (|β|-v) ζ 2εv|β| ζ ′ w ′ s |β| )
where v := 

f β,ϕ (x, ζ, ϑ) = β ′ ≤β β β ′ ∂ β ′ ζ ′ (e 2πi ϑ,ϕ x,ζ (ζ ′ ) ) ζ ′ =0 ∂ 0,0,β-β ′ ,β f (x, ζ, 0, L x,ζ (ϑ)) = β ′ ≤β β β ′ P β ′ ,ϕ (x, ζ, 0, ϑ) ∂ 0,0,β-β ′ ,β f (x, ζ, 0, L x,ζ (ϑ)) . Since (x, ζ) → L x,ζ ∈ E 0 σ,κv (M n (R
χ ε (ϑ, ϑ ′ ) := b( ϑ ′ 2 ε 2 ϑ 2 ) , χ δ,η (x, ζ, ζ ′ ) := b( ζ ′ 2 δ 2 x 2ση 1 ζ -2η 2 ).
Lemma 4.43. The cut-off functions χ ε and χ δ,η are repectively in the spaces C ∞ (R 2n , [0, 1]) and C ∞ (R 3n , [0, 1]) and satisfy:

(i) For any (x, ζ, ζ ′ ) ∈ R 3n , if ζ ′ ≤ 1 2 δ x ση 1 ζ -η 2 , then χ δ,η (x, ζ, ζ ′ ) = 1, and if ζ ′ ≥ δ x ση 1 ζ -η 2 , then χ δ,η (x, ζ, ζ ′ ) = 0. In particular, for any (x, ζ) ∈ R 2n , χ δ,η (x, ζ, 0) = 1 and for any 3n-multi-index ν = 0, (∂ ν χ δ,η )(x, ζ, 0) = 0. (ii) For any (ϑ, ϑ ′ ) ∈ R 2n , if ϑ ′ ≤ 1 2 ε ϑ , then χ ε (ϑ, ϑ ′ ) = 1, and if ϑ ′ ≥ ε ϑ , then χ ε (ϑ, ϑ ′ ) = 0.
In particular, for any ϑ ∈ R n , χ ε (ϑ, 0) = 1 and for any 2n-multi-index ν = 0, (∂ ν χ ε )(ϑ, 0) = 0. (iii) For any 3n-muti-index ν = (α, β, γ), we have

∂ ν χ δ,η (x, ζ, ζ ′ ) = O( x -|α| ζ -β ζ ′ -|γ| ), and ∂ ν χ δ,η (x, ζ, ζ ′ ) = O( x -σ|ν| ζ (-1+η 2 /η 1 )|β|+(η 2 /η 1 )|γ| ζ ′ (η -1 1 -1)|γ|+η -1 1 |β| ). In particular, the function χ δ,η is in O 0,0,0 σ,κ ′ η ,κ ′ η ,1,0 (R) for a κ ′ η > 0. (iv) For any 2n-muti-index ν, ∂ ν χ ε (ϑ, ϑ ′ ) = O( ϑ -|ν| ) and ∂ ν χ ε (ϑ, ϑ ′ ) = O( ϑ ′ -|ν| ).
Proof. (i) and (ii) are straightforward. For any ν = 0,

∂ ν χ δ,η = 1≤ν ′ ≤|ν| P ν,ν ′ (g) (∂ ν ′ b) • g where g(x, ζ, ζ ′ ) := ζ 2 δ 2 x 2ση 1 ζ -2η 2 .
We obtain from a direct computation the estimate

P ν,ν ′ (g) = O( x -2ση 1 ν ′ -|α| ζ 2η 2 ν ′ -|β| ζ ′ 2ν ′ -|γ| ). Since for any ν ∈ N, we have ∂ ν ′ b = O(1) we obtain ∂ ν χ δ,η = O( x -|α| ζ -β ζ ′ -|γ| 1 D δ ) where D δ is the set of triples (x, ζ, ζ ′ ) satifying the inequal- ities δ/2 ≤ ζ ′ x -ση 1 ζ η 2 ≤ √ 2.
The estimates of (iii) follow. The proof of (iv) is similar.

We will use in the following lemma the space O t 0 ,t 1 ,j κ (κ ≥ 0, j ∈ N, (t 0 , t 1 ) ∈ R 2 + ) of functions f ∈ C ∞ (R 4n , C) such that for any α ∈ N n , there is C α > 0 such that for any 

(x, ζ, ζ ′ , ϑ) ∈ R 4n , |∂ α ζ ′ f (x, ζ, ζ ′ , ϑ)| ≤ C α ζ t 0 +κ|α| ζ ′ t 1 +κ|α| ϑ -2j . Clearly, O t 0 ,t 1 ,j κ O t ′ 0 ,t ′ 1 ,j ′ κ ⊆ O t 0 +t ′ 0 ,t 1 +t ′ 1 ,j+j ′ κ and ∂ α ζ ′ O t 0 ,t
, ϑ) ∈ R 4n , p ∈ N, e 2πi ϑ,s x,ζ (ζ ′ ) = (h(x, ζ, ζ ′ , ϑ) L ζ ′ ) p e 2πi ϑ,s x,ζ (ζ ′ )
where

L ζ ′ := 1 -(2π) -2 ∆ ζ ′ . Moreover, if (C σ ) holds, there is κ L ≥ 0 such that for any p ∈ N, there is N p ∈ N * , (h p k ) 1≤k≤Np functions in O 2pκ L ,2pκ L ,p κ L , (β k,p ) 1≤k≤Np n-multi-indices satisfying |β k,p | ≤ 2p, such that (L ζ ′ h) p = Np k=1 h p k ∂ β k,p ζ ′ .
Proof. We obtain 

L ζ ′ e 2πi ϑ,s x,ζ (ζ ′ ) = (1/h)e 2πi ϑ,
′ v = max{ 2w v , w v + κ v }.
With a reccurence or using Proposition 5.4, we check that h ∈ O 0,0,1 κ L where κ L := max{ 2ε v , w ′ v + κ v }. The property is obviously true for p = 0. Suppose now that the property is true for p ≥ 0, so that

(L ζ ′ h) p = Np k=1 h p k ∂ β k,p ζ ′ with N p ∈ N * , (h p k ) 1≤k≤Np functions in O 2pκ L ,2pκ L ,p κ L and (β k,p ) 1≤k≤Np
n-multi-indices satisfying |β k,p | ≤ 2p. We also have

(L ζ ′ h) p+1 = (L ζ ′ h) Np k=1 h p k ∂ β k,p ζ ′ = Np k=1 hh p k ∂ β k,p ζ ′ -(2π) -2 ∆ ζ ′ (hh p k )∂ β k,p ζ ′ + 2 n i=1 ∂ ζ ′ i (hh p k )∂ β k,p +e i ζ ′ + hh p k ∆ ζ ′ ∂ β k,p
ζ ′ so the property holds for p + 1.

We note S σ,c (R 3n , L(E z )) the space of smooth functions f such that for any N ∈ N * and ν

= (µ, γ) ∈ N 2n × N n , ∂ ν f (x, ζ, ϑ) = O( x -σN ζ c 0 +c 1 N +c 2 |µ| ϑ -N ). It follows from Lemma 4.18 that if f ∈ S σ,c (R 3n , L(E z )), then Op Γ (f ) ∈ Op Γ (S -∞ σ,z ).
Here and thereafter Γ satisfies the hypothesis of Lemma 4.18.

Lemma 4.45. Assume that (C σ ) holds. (i) For any l, w 0 , w 1 , m, κ, S m,w 1 ( Π l,w 0 ,w 1 ,,m σ,κ,ε 1 ,z ) ⊆ S σ,c (R 3n , L(E z )) for a triple c := (c 0 , c 1 , c 2 ) and the linear map S m,w 1 : f → S m,w 1 (f ) is continuous, where

S m,w 1 (f ) : (x, ζ, ϑ) → R 2n e 2πi( ϑ ′ ,ζ ′ + ϑ,s x,ζ (ζ ′ ) ) t M pm,w 1 ,ζ ′ ϑ ′ (f )(x, ζ, ζ ′ , ϑ ′ )(1-χ δ,η )(x, ζ, ζ ′ ) dϑ ′ dζ ′ and p m,w 1 := max{ m + 2n, [|w 1 |] + 1 + 2n }. (ii) For any u ∈ S(R 2n , L(E z )), the linear application f → Op Γ S m,w 1 (f ), u is continuous. Proof. We fix N ∈ N * . First note that S m,w 1 (f ) is well-defined since for any (x, ζ) ∈ R 2n , there is C x,ζ > 0 such that t M pm,w 1 ,ζ ′ ϑ ′ (f )(x, ζ, ζ ′ , ϑ ′ )(1 -χ δ,η )(x, ζ, ζ ′ ) ≤ C x,ζ ϑ ′ -2n ζ ′ -2n . Since for any n-multi-index δ, ∂ δ ϑ ′ t M pm,w 1 ,ζ ′ ϑ ′
(f ) decrease to zero with ϑ ′ , we can successively integrate by parts with (4.7), which is valid since 1 -χ δ,η assures that ζ ′ ≥ 1 2 δ on the domain of integration. We obtain thus for any q ∈ N * ,

S m,w 1 (f ) : (x, ζ, ϑ) → R 2n e 2πi( ϑ ′ ,ζ ′ + ϑ,s x,ζ (ζ ′ ) ) t M pm,w 1 +q,ζ ′ ϑ ′ (f )(1 -χ δ,η ) dϑ ′ dζ ′ .
We note f q the integrand of the previous integral. If ν = (α, β, γ) = (µ, γ) is a 3n-multi-index, we see with Lemma 4.41 that 

∂ ν x,ζ,ϑ f q = e 2πi ϑ ′ ,ζ ′ µ ′ ≤µ µ µ ′ e 2πi ϑ,s x,ζ (ζ ′ ) |ω|≤|µ ′ | ϑ ω T ν ′ ,ω,s (x, ζ, ζ ′ ) | e δ|=pm,w+q λ δ (-1) | e δ| ζ ′ e δ ζ ′ 2(pm,w 1 +q) ∂ µ-µ ′ x,ζ ∂ e δ ϑ ′ (f (1 -χ δ,η )) . By Lemma 4.43 (iii), (x, ζ, ζ ′ , ϑ ′ ) → χ δ,η (x, ζ, ζ ′ ) 1 L(Ez) is in Π 0,0,0,0 σ,κ ′ η ,1,z , so the multiplication operator f → f (1 -χ δ,η ) is continuous from Π l,w 0 ,w 1 ,m σ,κ,ε 1 ,z into Π l,w 0 ,w 1 ,m σ,κη,ε 1 ,z , where κ η = max{ κ, κ ′ η }. Since ζ ′ ≥ δ/2 in the support of f (1 -χ δ,η ),
:= κ v + w s + κ η , ∂ ν x,ζ,ϑ f q (x, ζ, ϑ, ζ ′ , ϑ ′ ) ≤ C ν,q ϑ |µ| ϑ ′ m-pm,w 1 -q µ ′ ≤µ ζ κv|µ ′ |+w 0 +κη|µ| × ζ ′ w 1 +(κv+ws)|µ ′ |+κη|µ|-(pm,w 1 +q)+ws|γ| x σ|l| ≤ C ′ ν,q x σ|l| ζ w 0 +κ ′′ η |µ| ϑ |µ| ϑ ′ m-pm,w 1 -q ζ ′ w 1 +κ ′′ η |ν|-pm,w 1 -q .
If k ∈ N * , and if we set q := q k such that w 1 + κ ′′ η k -p m,w 1 -q k ≤ -2n, we see by applying the theorem of derivation under the integral sign that S m,w (f ) is smooth and for any 3n-multi-index ν = (α, β, γ) and q ∈ N * , after integrations by parts in ϑ ′ , with ν ′ := (µ ′ , γ),

∂ ν S m,w 1 (f )(x, ζ, ϑ) = µ ′ ≤µ |ω|≤|µ ′ | µ µ ′ ϑ ω R 2n e 2πi( ϑ ′ ,ζ ′ + ϑ,s x,ζ (ζ ′ ) ) T ν ′ ,ω,s (x, ζ, ζ ′ ) t M pm,w 1 +q |ν| +q,ζ ′ ϑ ′ ∂ µ-µ ′ x,ζ (f (1 -χ δ,η )) dϑ ′ dζ ′ . We note g q (x, ζ, ζ ′ , ϑ ′ ) := e 2πi ϑ ′ ,ζ ′ T ν ′ ,ω,s (x, ζ, ζ ′ ) t M pm,w 1 +q |ν| +q,ζ ′ ϑ ′ ∂ µ-µ ′ x,ζ (f (1 -χ δ,η ))
. Using now Lemma 4.44, we get the estimates for any p ∈ N,

(L ζ ′ h) p g q (x, ζ, ζ ′ , ϑ ′ ) ≤ C p ζ ′ 2pκ L ζ 2pκ L ϑ -2p Np k=1 ∂ β k,p ζ ′ g q (x, ζ, ζ ′ , ϑ ′ ) .
Thus, with Lemma 4.42 (i), we obtain with

k 1 := w s + κ v + κ η + κ L , (L ζ ′ h) p g q (x, ζ, ζ ′ , ϑ ′ ) ≤ C ′ p x σ|l| ζ ′ w 1 +(2p+|ν|)k 1 -pm,w 1 -q |ν| -q ϑ -2p ϑ ′ 2p+m-pm,w 1 -q |ν| -q ζ (2p+|µ|)k 1 +w 0 | e β|≤2p µ ′ ≤µ | e δ|=pm,w 1 +q |ν| +q q µ ′ , e β, e δ (f (1 -χ δ,η )) 1 D (x, ζ, ζ ′ )
where

D := { (x, ζ, ζ ′ ) ∈ R 2n | ζ ′ ≥ 1 2 δ x ση 1 ζ -η 2 }.
If we now fix p such that -N -2 ≤ -2p + |µ| ≤ -N , we see that by taking q such that A q ≤ -N/η 1 -|l|/η 1 where A q := w 1 + (2p + |ν|)k 1 -p m,w 1 -q |ν| -q + 2n, and 2p + m -p m,w 1 -q |ν| -q ≤ -2n, we can successively integrate by parts in ζ ′ (p times) using the formula of Lemma 4.44. We obtain then the estimate for given constants c 0 , c 1 , c 2 > 0,

∂ ν S m,w 1 (f )(x, ζ, ϑ) ≤ C ν,N x -σN ζ c 0 +c 1 N +c 2 |µ| ϑ -N | e β|≤2p µ ′ ≤µ | e δ|=pm,w 1 +q |ν| +q q µ ′ , e β, e δ (f (1 -χ δ,η ))
which yields the result.

(ii) This statement follows from (i) and Lemma 4.14 (ii).

Lemma 4.46. Suppose (C σ ).

(i) Defining for any f ∈ Π l,w 0 ,w 1 ,m σ,κ,ε 1 ,z ,

Π(f ) : (x, ζ, ϑ) → R 2n e 2πi( ϑ ′ ,ζ ′ + ϑ,ϕ x,ζ (ζ ′ ) ) f (x, ζ, ζ ′ , ϑ ′ + L x,ζ (ϑ)) χ δ,η (x, ζ, ζ ′ ) dζ ′ dϑ ′ ,
there is δ, η, such that for any N ≥ |m|, we have

Π(f ) = Π N (f ) + Π R,N (f ) where Π N (f ) = 0≤|β|≤N (i/2π) |β| β!
f β,ϕ and there is such that Π R,N (f ) satisfies the estimates for any 3n-multi-

index ν = (µ, γ) ∈ N 2n × N n , ∂ ν Π R,N (f ) = O( x σ(l-ε ′ 1 (N +1)) ζ k 0 +k 1 (N +1+|µ|)+εv|γ| ϑ m+|µ|-(N +1)/2+n ) where ε ′ 1 , k 0 , k 1 > 0. (ii) We have for any 3n-multi-index ν = (µ, γ) ∈ N 2n × N n , ∂ ν Π(f ) = O( x σl ζ k ′ 0 +k ′ 1 |µ|+εv|γ| ϑ m ) where k ′ 0 , k ′ 1 > 0. In particular, for any u ∈ S(R 2n , L(E z )), the linear application f → Op Γ Π(f ), u is continuous. Proof. (i) We proceed to a Taylor expansion of f (x, ζ, ζ ′ , ϑ ′ , ϑ) := f (x, ζ, ζ ′ , ϑ ′ + L x,ζ (ϑ)) in ϑ ′ around zero at order N ∈ N * , so that Π(f ) = 0≤|β|≤N 1 β! I β (f ) + |β|=N +1 N +1 β! R β,N (f ) =: Π N (f ) + Π R,N (f )
where

I β (f ) = R 2n ϑ ′β e 2πi( ϑ ′ ,ζ ′ + ϑ,ϕ x,ζ (ζ ′ ) ) ∂ 0,0,0,β f (x, ζ, ζ ′ , L x,ζ (ϑ)) χ δ,η (x, ζ, ζ ′ ) dζ ′ dϑ ′ , R β,N (f ) = R 2n ϑ ′β e 2πi( ϑ ′ ,ζ ′ + ϑ,ϕ x,ζ (ζ ′ ) ) r β,N,f (x, ζ, ζ ′ , ϑ ′ , ϑ) dζ ′ dϑ ′ , and r β,N,f := 1 0 (1 -t) N ∂ 0,0,0,β f χ (x, ζ, ζ ′ , tϑ ′ + L x,ζ (ϑ)) dt, f χ := f χ δ,η ∈ Π l,w 0 ,w 1 ,m σ,κη,z
. By integration by parts in ζ ′ in the integrals I β (f ), we get

Π N (f ) = 0≤|β|≤N (i/2π) |β| β! ∂ β ζ ′ e 2πi ϑ,ϕ x,ζ (ζ ′ ) ∂ 0,0,0,β f (x, ζ, ζ ′ , L x,ζ (ϑ)) ζ ′ =0 = 0≤|β|≤N (i/2π) |β| β! f β,ϕ .
Using integration by parts in ζ ′ , we obtain R β,N,f = (i/2π) |β| I f , where for any p ∈ N,

I f (x, ζ, ϑ) := R 2n e 2πi ϑ ′ ,ζ ′ ∂ β ζ ′ G(x, ζ, ζ ′ , ϑ ′ , ϑ) dζ ′ dϑ ′ , G(x, ζ, ζ ′ , ϑ ′ , ϑ) := e 2πi ϑ,ϕ x,ζ (ζ ′ ) r β,N,f (x, ζ, ζ ′ , ϑ ′ , ϑ) .
Using integration by parts in ζ ′ and e 2πi ϑ ′ ,ζ ′ = ϑ ′ -2p L p ζ ′ e 2πi ϑ ′ ,ζ ′ , we check that I f is smooth on R 3n and if ν is a 3n-multi-index, we see that ∂ ν I f is a linear combination of terms of the form

J f := ϑ e ω R 2n e 2πi( ϑ ′ ,ζ ′ + ϑ,ϕ x,ζ (ζ ′ ) ) ∂ β 1 ζ ′ T ν ′ ,e ω,ϕ P β 2 ,ϕ ∂ ν-ν ′ x,ζ,ϑ ∂ β 3 ζ ′ r β,N,f dζ ′ dϑ ′ where | ω| ≤ |µ ′ |, ν ′ ≤ ν, β i = β, |β| = N + 1.
We now cut the integral J f in two parts J χ + J 1-χ , where the cut-off function χ ε (ϑ, ϑ ′ ) appears in J χ .

Analysis of J χ

Using Lemma 4.42 (ii) and integration by parts in ζ ′ , we see that J χ is a linear combination of terms of the form

J χ,ω = ϑ e ω ϑ ω R 2n e 2πi( ϑ ′ ,ζ ′ + ϑ,ϕ x,ζ (ζ ′ ) ) ζ ′ -2p t ω,λ ∂ ′β 1 ζ T ν ′ ,e ω,ϕ ∂ λ ′ ϑ ′ ∂ ν-ν ′ x,ζ,ϑ ∂ β 3 r β,N,f ∂ λ+ρ-λ ′ χ ε dζ ′ dϑ ′ where p ∈ N, |ρ| ≤ 2p, |ω| ≤ |β 2 |, (2|ω| -|β 2 |) + ≤ |λ| ≤ |ω|, λ ′ ≤ λ + ρ. We now fix ε such that ε < c/2 where c is a constant such that c ϑ ≤ L x,ζ ( 
ϑ) . Thus, in the domain of integration of J χ,ω , we have for any t ∈ [0, 1], tϑ ′ + L x,ζ (ϑ) ≥ c 1 ϑ for a c 1 > 0. As a consequence, we obtain the following estimate:

∂ λ ′ ϑ ′ ∂ ν-ν ′ x,ζ,ϑ ∂ β 3 ζ ′ r β,N,f ≤ C x σ(l-ε 1 |β 3 |) ζ (κv+κη)|µ-µ ′ |+w 0 +κη|β 3 | ζ ′ w 1 +κη(|µ-µ ′ |+|β 3 |) ϑ |µ-µ ′ |+m-|β|-|λ ′ | .
We also deduce from Lemma 4.42 the estimate

|t ω,λ ∂ ′β 1 ζ T ν ′ ,e ω,ϕ | ≤ C ′ x -σ(|µ ′ |+(ε/2)|β 1 +β 2 |) ζ 2εv|β 1 +β 2 |+(κv+εv)|µ|+εv|γ| ζ ′ c 1 (N +1)+c 2 |ν| .
As a consequence, by taking p sufficiently big, the integrand j(x, ζ, ζ ′ , ϑ, ϑ ′ ) of J χ,ω satisfies the estimate, for a ε ′ 1 > 0 and a k 1 > 0,

j ≤ C ′′ x σ(l-ε ′ 1 (N +1)) ζ w 0 +k 1 (N +1+|µ|)+εv|γ| ζ ′ -2n ϑ m+|µ|-(N +1)/2 1 Dε (ϑ, ϑ ′ )
where D ε is the set of (ϑ, ϑ ′ ) in R 2n such that ϑ ′ ≤ ε ϑ . We deduce finally that for any

ν ∈ N 3n , J χ = O( x σ(l-ε ′ 1 (N +1)) ζ w 0 +k 1 (N +1+|µ|)+εv |γ| ϑ m+|µ|-(N +1)/2+n ) . Analysis of J 1-χ We set ω := ζ ′ , ϑ ′ + ϑ, ϕ x,ζ (ζ ′ ) . By Lemma 4.39 (i), we have i ∂ ζ ′ i ϕ x,ζ (ζ ′ ) ≤ C x -σεv ζ c 1 ζ ′ c 2 ) for C, c 1 , c 2 > 0. The presence of χ δ,η in the integrand of J 1-χ allows to use the estimate ζ ′ ≤ √ 2δ x ση 1 ζ -η 2 , so that i ∂ ζ ′ i ϕ x,ζ (ζ ′ ) ≤ C 2 c 2 /2 δ c 2 by taking η 1 ≤ ε v /c 2 and η 2 ≥ c 1 /c 2 .
As a consequence, we obtain the following estimate in the domain of integration of J

1-χ , |∇ ζ ′ ω| 2 ≥ ϑ ′ 2 (1 -4 ε C 2 c 2 /2 δ c 2 ) . We now fix δ such that 4 ε C 2 c 2 /2 δ c 2 < 1 so that there is k > 0 such that |∇ ζ ′ ω| ≥ k ϑ ′ . Noting U ζ ′ := (2πi|∇ ζ ′ ω| 2 ) -1 i (∂ ζ ′ i ω)∂ ζ ′ i we have (see for instance [38]) U ζ ′ e 2πiω = e 2πiω and ( t U ζ ′ ) r = 1 |∇ ζ ′ ω| 4r |ρ|≤r P ω ρ,r ∂ ρ ζ ′
where P ω ρ,r is a linear combination of terms of the form (∇

ζ ′ ω) π ∂ δ 1 ζ ′ ω • • • ∂ δ r ζ ′ ω, with |π| = 2r, |δ i | > 0 and r j=1 |δ j | + |ρ| = 2r.
We thus obtain after integration by parts in ζ ′ , for any r ∈ N * , that J 1-χ is a linear combination of integrals of the form

ϑ e ω+b ω R 2n e 2πiω ( t U ζ ′ ) r ∂ β 1 ζ ′ T ν ′ ,e ω,ϕ P b ω,β 2 ,ϕ ∂ ν-ν ′ x,ζ,ϑ ∂ β 3 ζ ′ r β,N,f (1 -χ ε )dζ ′ dϑ ′
where | ω| ≤ |β 2 |. We noted P β 2 ,ϕ =: (R) for a constant c 0 > 0. With our choice of the parameters η 1 and η 2 , we also have the following estimate, valid in the domain of integration of J

1-χ , ∂ λ ϑ ′ ∂ γ+e i ζ ′ ω = O ζ εv|γ| ζ ′ κv|γ| ϑ ′ 1-|λ| .
In particular, noting O l,m κv the space of smooth functions f such that for any n-multi-indices λ, γ,

∂ λ ϑ ′ ∂ γ ζ ′ f = O ( ζ ζ ′ ) l+κv|γ| ϑ ′ m , we see that |∇ ζ ′ ω| 2 ∈ O 0,2 κv , and for any λ ∈ N n , ∂ λ ϑ ′ |∇ ζ ′ ω| -4r = O( ϑ ′ -4r ). Moreover, each term P ω ρ,r is in O κvr,3r κv so that finally, for any λ ∈ N n ∂ λ ϑ ′ P ω ρ,r |∇ ζ ′ ω| 4r = O ( ζ ζ ′ ) κvr ϑ ′ -r .
We easily check that if r ≥ 2n, then h :=

( t U ζ ′ ) r ∂ β 1 ζ ′ T ∂ ν-ν ′ x,ζ,ϑ ∂ β 3 ζ ′ r β,N,f (1 -χ ε ) satisfies the estimates for any q ∈ N, L q ϑ ′ h ≤ C x,ζ,ζ ′ ,ϑ,q ϑ ′ -2n
. As a consequence, we can permute the integration dζ ′ dϑ ′ → dϑ ′ dζ ′ and successively integrate by parts in ϑ ′ , so that finally J 1-χ is a linear combination of terms of the form

ϑ e ω+b ω R 2n e 2πiω ζ ′ -2q ∂ λ 1 ϑ ′ P ω ρ,r |∇ ζ ′ ω| 4r ∂ ρ 1 ζ ′ T ∂ λ 2 ϑ ′ ∂ ν-ν ′ x,ζ,ϑ ∂ β 3 +ρ 2 ζ ′ r β,N,f ∂ λ 3 ϑ ′ (1 -χ ε )dϑ ′ dζ ′
where i λ i = λ, |λ| ≤ 2q, i ρ i = ρ, |ρ| ≤ r. We also have the following estimate for c ′ 0 , c ′ 1 > 0,

∂ λ 2 ϑ ′ ∂ ν-ν ′ x,ζ,ϑ ∂ β 3 +ρ 2 ζ ′ r β,N,f = O x σ(l-|β 3 |) ( ζ ζ ) c ′ 0 +c ′ 1 (|µ-µ ′ |+|β 3 |+|ρ 2 |) .
With Lemma 4.43 (iv) we now see that the integrand j ′ of the previous integral is estimated by

j ′ ≤ C ϑ ′ -r+|µ|+N +1 x σ(l-ε ′ 1 (N +1)) ζ k 0 +k 1 N +k 2 r+k 3 |µ|+εv|γ| ζ ′ -2q+k 0 +k 1 N +k 2 r+k 3 |ν| for constants k 0 , k 1 , k 2 , k 3 > 0. If we now fix r ≥ 2n such that -r + |µ| + N + 1 + 2n = m + |µ| -(N + 1) + n, and q such that -2q + k 0 + k 1 N + k 2 r + k 3 |ν| ≤ -2n we finally obtain the estimate ν ∈ N 3n , J 1-χ = O( x σ(l-ε ′ 1 (N +1)) ζ k ′ 0 +k ′ 1 (N +1+|µ|)+εv|γ| ϑ m+|µ|-(N +1)+n ) .
The result follows now from this estimate and the one obtained for J χ .

(ii) The estimate is obtained by applying (i) and N + 1 = max{ 2(n + |µ|), |m| }. The second statement is then a consequence of Lemma 4.14 (ii).

Theorem 4.47.

If (C σ ) holds, Ψ ∞ σ is a * -subalgebra of ℜ(S). Moreover, if A ∈ Ψ l ′ ,m ′ σ and B ∈ Ψ l,m σ , then AB ∈ Ψ l+l ′ ,m+m ′ σ
with the following asymptotic expansion of the normal symbol of AB, in a frame (z, b):

σ 0 (AB) z,b ∼ β,γ∈N n c β c γ ∂ γ,γ ζ,ϑ a(x, ϑ)∂ β ζ ′ e 2πi ϑ,ϕ x,ζ (ζ ′ ) (∂ β ϑ ′ f b )(x, ζ, ζ ′ , L x,ζ (ϑ)) ζ ′ =0 τ -1 x,ζ ζ=0
where a :

= σ 0 (A) z,b , b := σ 0 (B) z,b , c β := (i/2π) |β| /β! and f b (x, ζ, ζ ′ , ϑ ′ ) := τ x,r x,ζ (ζ ′ ) b • Ξ(x, ζ, ζ ′ , ϑ ′ ) τ x ζ,ζ ′ ,q x,ζ (ζ ′ ) |J(R)|(x, ζ, ζ ′ ) | det(P z,b -1,ψ(x,ζ),ζ ′ ) -1 | .
Proof. We fix a frame (z, b). We note K AB the kernel of the operator AB. As a consequence of Proposition 4.32 we have for any

u, v ∈ S(R n , E z ), (K AB ) z,b , u ⊗ v = A z,b (µ -1 B z,b (v))|u . We shall note g := A z,b (µ -1 B z,b (v)). A computation shows that for any x ∈ R n , g(x) = R n µa(x, ϑ) b(x, ϑ) dϑ, and b(x, ϑ) := R 3n e 2πi( ϑ,ζ + ϑ ′ ,ζ ′ ) τ x,ζ b(ψ(x, ζ), ϑ ′ )τ ψ(x,ζ),ζ ′ v(x ζ,ζ ′ ) dζ ′ dϑ ′ dζ .
We suppose at first that b ∈ S l,-2n σ,z . Since

ζ ′ → v(x ζ,ζ ′ ) ∈ S(R n , E z )
, we can permute the order integration dζ ′ dϑ ′ → dϑ ′ dζ ′ in b(x, ϑ). Thus, after integrations by parts in ϑ ′ , we get for any p 

∈ N * , b(x, ϑ) = R 2n e 2πi ϑ,ζ τ x,ζ R n e 2πi ϑ ′ ,ζ ′ ζ ′ -2p (L p ϑ ′ b)(ψ(x, ζ), ϑ ′ ) dϑ ′ τ ψ(x,ζ),ζ ′ v(x ζ,ζ ′ ) dζ ′ dζ . With the estimate x ζ,ζ ′ ≥ c ζ x -1 ζ ′ -1 for a c > 0, we see that for any N ∈ N, v(x ζ,ζ ′ ) ≤ c N q 0,N (v) x N ζ ′ N ζ -N .
′ = -P z,b -1,ψ(x,ζ),ζ ′ (ϑ ′′ ), we get b(x, ϑ) = R 3n e 2πi( ϑ,r x,ζ (ζ ′ ) + ϑ ′ ,ζ ′ ) f b (x, ζ, ζ ′ , ϑ ′ ) v(ψ(x, ζ)) dϑ ′ dζ ′ dζ .
By Lemma 4.40 (ii) and (iii), Lemma 4.38 (iii) and (iv) and Lemma 4.39 (iii), we see that f b ∈ Π l,w l ,w l ,m σ,κ,ε 1 ,z for a (w l , κ) ∈ R 2 + and ε 1 > 0, and the linear application b → f b is continuous on any symbol space S l,m σ,z into Π l,w l ,w l ,m σ,κ,ε 1 ,z . We have g

(x) = R n e 2πi ζ,ϑ µa(x, ϑ) c b (x, ζ, ϑ)v(ψ(x, ζ) dζ dϑ and (K AB ) z,b , u ⊗ v = Op Γ 0,z,b (d b ), u ⊗ v where d b (x, ζ, ϑ) := µa(x, ϑ) c b (x, ζ, ϑ) τ -1 (x, ζ) and c b (x, ζ, ϑ) := R 2n e 2πi( ϑ,s x,ζ (ζ ′ ) + ϑ ′ ,ζ ′ ) f b (x, ζ, ζ ′ , ϑ ′ ) dϑ ′ dζ ′ . Using now the cut-off function (x, ζ, ζ ′ ) → χ δ,η (x, ζ, ζ ′ ) we see that c b (x, ζ, ϑ) = Π(f b )(x, ζ, ϑ) + S m,w l (f b )(x, ζ, ϑ) .
For this equality, we used the formula of Lemma 4.7 and integration by parts and in ϑ 

′ in the integral R 2n e 2πi( ϑ,s x,ζ (ζ ′ ) + ϑ ′ ,ζ ′ ) f b (x, ζ, ζ ′ , ϑ ′ )(1 -χ δ,η (x, ζ, ζ ′ )) dϑ ′ dζ ′ , which are authorized since b ∈ S l,-2n σ,z by hypothesis. In R 2n e 2πi( ϑ,s x,ζ (ζ ′ ) + ϑ ′ ,ζ ′ ) f b (x, ζ, ζ ′ , ϑ ′ )χ δ,η (x, ζ, ζ ′ ) dϑ ′ dζ ′ ,
= Γ 0,z,b ) which is such that Op Γ 0,z,b (f ) = Op Γ 0 ,z,b (s(f )) for any f ∈ Π l,w,m σ,κ,z . We define f a,b,β := µa(f b ) β,ϕ τ -1 , r N := µaΠ R,N (f b )τ -1 , s 0 := µaS m,w l (f b )τ -1 . We now consider a symbol s a,b such that s a,b ∼ β∈N n (i/2π) |β| β! s f a,b,β .
Such a symbol exists since by Lemma 4.42

(iii), s(f a,b,β ) ∈ S l+l ′ -ε ′ 1 |β|,m+m ′ -|β|/2 σ,z
. By Lemma 4.46 (i), we have for any 

N ≥ |m|, u N := s(µaΠ N (f b )τ -1 ) -s a,b ∈ S l+l ′ -ε ′ 1 (N +1),m+m ′ -(N +1)/2 σ,z . Thus, noting S 0 := Op Γ 0,z,b (s 0 ), which is in Op Γ 0,z,b (S -∞ σ,z ) by Lemma 4.45, R N := Op Γ 0,z,b (r N ) and U N := Op Γ 0,z,b (u N ) we have (K AB ) z,b = Op Γ 0,z,b (d b ) = Op Γ 0,z,b (s(µaΠ N (f b )τ -1 )) + R N + S 0 = Op Γ 0,z,b (s a,b ) + U N + R N + S 0 .

Examples

In order to be able to apply the previous results about the pseudodifferential and symbolic calculi on some concrete cases, we shall see in this section examples of exponential manifolds and associated linearizations that satisfy the hypothesis S σ -bounded geometry. The Euclidean space R n seen as exponential manifold, has its own exponential map ψ := exp(x, ξ) → x + ξ as a S 1 -linearization, leading to the usual pseudodifferential SG calculus (if σ = 1) or standard (if σ = 0) pseudodifferential calulus on R n . However, we can define other kinds of linearization, leading to new kind of pseudodifferential and symbol calculi, with a non-bilinear linearization map. We will see in particular that we can construct on the flat R n , a family of S σ -linearizations that generalize the case of the flat euclidian geometry, and we obtain a extension of the normal (λ = 0) and antinormal (λ = 1) quantization on R n .

We will also prove that the 2-dimensional hyperbolic space, which is a Cartan-Hadamard manifold (and thus an exponential Riemannian manifold) has S 1 -bounded geometry. This allows to define a global Fourier transform, Schwartz spaces S(H), S(T * H), S(T H), B(H) and the space of symbols S l,m 1 (T * H). As a consequence, we can define in an intrinsic way a global complete pseudodifferential calculus on H, if one chose a fixed S σ -linearization ψ on T H. There are many possible linearizations, for instance one can take ψ such that in a frame (z, b) ψ b z is the standard linearization x + ξ of R n .

A family of S σ -linearizations on the euclidean space

Recall that G × σ (R n ) (0 ≤ σ ≤ 1) is defined as the subgroup of diffeomorphisms s on R n such that for any n-multi-index α = 0, there are C α , C ′ α > 0, such that for any x ∈ R n , ∂ α s(x) ≤ C α x σ(1-|α|) and ∂ α s -1 (x) ≤ C ′ α x σ (1-|α|) . G × σ (R n ) contains GL n (R) and the translations T v := w → v + w.

We fix η ∈]0, 1[ such that for any matrix A ∈ M n (R) such that A 1 ≤ η, we have det(I n + A) ≥ 1 2 , where A 1 := max i,j |A i,j |. Taking now h ∈ G 0 (R n , R n ) such that for any 1 ≤ i, j ≤ n, |∂ j h i | ≤ η/16, and g(x) := h(x) -h(0) -dh 0 (x) we see that s := Id +g is a diffeomorphism on R n which belongs to G × 0 (R n ), satisfying s(0) = 0 and ds 0 = Id. We set, for σ ∈ [0, 1], ψ(x, ξ) := x + ξ + x σ g( ξ x σ ) = x + x σ s( ξ x σ ).

We obtain the following Proof. A computation shows that ψ ∈ H σ (R n ) and ψ(x, ζ) = O( x ξ ). We have ψ(x, y) = x σ s -1 ( y-x x σ ), and thus ψ ∈ O M (R 2n , R n ). Noting g := g • (g + Id) -1 • -Id ∈ G 0 (R n ), we also have Υ 1,T (x, ξ) = ξ + x σ g( ξ x σ ) + ψ(x, ξ) σ g ψ(x, ξ) -σ x σ s( ξ x σ ) = (Id +V x,ξ + W x,ξ )(ξ) where V x,ξ := [ x . and thus, after computations we check that V x,ξ and W x,ξ are in E 0 σ . Moreover, we have V x,ξ 1 ≤ η/2 and W x,ξ 1 ≤ η/2, which proves that P x,ξ := Id +V x,ξ + W x,ξ is invertible with det P x,ξ ≥ 1 2 . As a consequence its inverse P -1

x,ξ = (det P x,ξ ) -1 t cof(P x,ξ ) is also in E 0 σ . We deduce then that (R n , +, dλ, ψ) has a S σ -bounded geometry. With r(x, ξ, ξ ′ ) = -ψ(x, ψ(ψ(x, -ξ), -ξ ′ )), we get r(x, ξ, ξ ′ ) = -x σ s -1 s( -ξ

x σ ) + ψ(x,-ξ) σ

x σ s( -ξ ′ ψ(x,-ξ) σ ) .

so that (dr x,ξ ) ξ ′ = (ds -1 • w) (ds • u) where w(x, ξ, ξ ′ ) := s( -ξ x σ ) + v(x, ξ, ξ ′ ), v(x, ξ, ξ) := ψ(x,-ξ) σ x σ s( -ξ ′ ψ(x,-ξ) σ ), u(x, ξ, ξ ′ ) := -ξ ′ ψ(x,-ξ) σ . We check that v satisfies

∂ (µ,γ) v = O ψ(x, -ξ) -σ|γ| x -σ(|µ|+1) ζ κ 1 |µ| ζ ′ |µ|+1 .
It follows from Peetre's inequality that for any ε ∈ [0, 1] and x, y ∈ R n , x + y ≥ 2 -ε/2 x ε y ε , which implies that ψ(x, -ξ) σ = O x -σε ξ σε . As a consequence we get the estimates

∂ (µ,γ) w = O x -σ(1+|µ|+ε|γ|) ζ κ 1 |µ|+ε|γ|+δ γ,0 ζ ′ |µ|+1 , ∂ (µ,γ) u = O x -σ(|µ|+ε|γ|) ζ κ 1 |µ|+ε|γ| ζ ′ 1-|γ| .
We deduce from this that (C σ ) is satisfied.

We also check that the hypothesis (H V ) of section 4.5 is satisfied so that the previous pseudodifferential calculus (for λ ∈ { 0, 1 }) is then valid on (R n , +, dλ, ψ), and proves in particular the space of operators of the form

A(v)(x) = R 2n
e 2πi θ,ξ a(x, θ)v(ψ(x, -ξ)) dξ dθ = R 2n e -2πi θ,ψ x (y) a(x, θ)v(y)|J(ψ x )|(y) dy dθ where a ∈ S ∞ σ (R 2n ), is equal to the standard algebra of algebra of pseudodifferential operators R n . However, since (C σ ) is satisfied, we have now at our disposal a new symbol composition formula given by Theorem 4.47, adapted to the new linearization ψ.

S 1 -geometry of the Hyperbolic plane

The (hyperboloid model of the) 2-dimensional hyperbolic space is defined as the submanifold H := { x = (x 1 , x 2 , x 3 ) ∈ R 3 : x 2 1 + x 2 2 -x 2 3 = -1 and x 3 > 0 } of the (2, 1)-Minkowski space R 2,1 with the bilinear symmetric form v, w 2,1 = v 1 w 1 + v 2 w 2 -v 3 w 3 . The induced metric on H: ds 2 = (dx 1 ) 2 + (dx 2 ) 2 -(dx 3 ) 2 is Riemannian and it is known that H is a symmetric Cartan-Hadamard manifold with constant negative sectional curvature (equal to -1). The map ϕ : R 2 → H given by ϕ(x, y) := (sinh x, cosh x sinh y, cosh x cosh y) is a diffeomorphism with inverse ϕ -1 (x 1 , x 2 , x 3 ) = (argsh x 1 , argsh( x 2 cosh(argsh x 1 ) )). As a consequence we can construct another model of the hyperbolic space, noted R 2 with domain R 2 and metric obtained by pulling back the metric on H onto R 2 . A computation shows that this metric is ds 2 := (dx) 2 + cosh 2 x (dy) 2 . We will note • p the norm on T p R 2 ≃ R 2 given by this metric, Lemma 5.3. Let x ∈ R and f ∈ C ∞ (R 2 , R) such that f • χ -1

x ∈ C ∞ (R 2 P , R) satisfies for any (α, β) ∈ N 2 \{ (0, 0) }, and (r, θ) ∈ R 2 P , |∂ α,β f • χ -1 x (r, θ)| ≤ C α,β r 1-α where C α,β > 0. Then f ∈ G 1 (R 2 , R).

Proof. By Theorem 2.11, for any (α, β) ∈ N 2 \{ (0, 0) }, ∂ α,β f = 1≤|(α ′ ,β ′ )|≤|(α,β)| (∂ α ′ ,β ′ f • χ -1

x ) • χ x P α,β,α ′ ,β ′ (χ x ) on R 2 C , where P α,β,α ′ ,β ′ (χ x ) is a linear combination of functions of the form s j=1 (∂ l j χ x ) k j where s ∈ { 1, • • • , α + β }. The k j and l j are 2-multi-indices (for 1 ≤ j ≤ s) such that |k j | > 0, Moreover, by hypothesis, there is

C α ′ ,β ′ > 0 such that for any v ∈ R 2 C , |(∂ α ′ ,β ′ f • χ -1 x ) • χ x (v)| ≤ C α ′ ,β ′ v 1-α ′ . This gives f ∈ G 1 (R 2
C , R). The extension to G 1 (R 2 , R) is a direct consequence of the smoothness of f on R 2 and the fact that R 2 C is dense in R 2 .

We shall use the following proposition, which gives a formal expression of the successive derivatives of the inverse (and its real powers) of a smooth function.

Proposition 5.4. Let s > 0 be given. For any nonzero n-multi-index (n ∈ N * ) α, there exist a finite nonempty set J α , nonzero real numbers (λ s,α,p ) p∈Jα and n-multi-indices β α,p,j (with p ∈ J α , 1 ≤ j ≤ |α|) such that -for any p ∈ J α , 1≤j≤|α| β α,p,j = α, -for any smooth function f ∈ C ∞ (R n , R * + ), 

∂ α 1 f s = 1
(α ′ 1 , • • • , α ′ i-1 , α ′ i -1, α ′ i+1 , • • • , α ′ n ). Thus for any f ∈ C ∞ (R n , R * + ), ∂ α ′ 1 f s = ∂ i ∂ α 1 f s . Since |α| = k,
there is exist a finite nonempty set J α , nonzero real numbers (λ s,α,p ) p∈Jα and n-multiindices β α,p,j (with p ∈ J α , 1 ≤ j ≤ |α|) such that for any p ∈ J α , 1≤j≤|α| β α,p,j = α, and such that for any f ∈ C ∞ (R n , R * + ), ∂ α 1 f s = 1 ∂ δ q,j e i +β α,p,j f )f .

Thus, if we take J α ′ = J α (J α × N |α| ), λ s,α ′ ,e p := -(s + |α|)λ s,α,p if p = p ∈ J α , λ s,α ′ ,e p := λ s,α,p if p = (p, q) ∈ J α × N |α| , β α ′ ,e p,j := β α,p,j if p = p ∈ J α and 1 ≤ j ≤ |α|, β α ′ ,e p,j := e i if p = p ∈ J α and j = |α| + 1 = |α ′ |, β α ′ ,e p,j := δ q,j e i + β α,p,j if p = (p, q) ∈ J α × N |α| and 1 ≤ j ≤ |α| and β α ′ ,e p,j := 0 if p = (p, q) ∈ J α × N |α| and j = |α| + 1 = |α ′ |, the result now holds for α ′ .

In the following we set the convention J 0 := { 1 }, λ s,0,1 := 1 and 0 j=1 := 1, so that the formula giving ∂ α 1 f s in the previous lemma is still valid when α = 0. When s ∈ N * , the result is also valid for complex valued nowhere zero smooth functions.

We note H P the space of C ∞ (R 2 P , R) functions of the form (r, θ) → a(θ) cosh r+b(θ) sinh r where a, b ∈ B(R), and A P,k the space of functions f ∈ C ∞ (R 2 P , R) such that for any 2-multiindex (α, β) with α ≤ k ∈ N, there is C α,β > 0 such that for any (r, θ) ∈ R 2 P , |∂ α,β f (r, θ)| ≤ C α,β r k-α , and also such that for any 2-multi-index (α, β) with α ≥ k + 1, there is C ′ α,β > 0 such that for any (r, θ) ∈ R 2 P , |∂ α,β f (r, θ)| ≤ C ′ α,β e -2r . Clearly, A P,k ⊂ S P,k where S P,k is the space of functions f ∈ C ∞ (R 2 P , R) such that for any 2-multi-index (α, β), there is C α,β > 0 such that for any (r, θ) ∈ R 2 P , |∂ α,β f (r, θ)| ≤ C α,β r k-α . By Leibniz rule, S P,k S P,k ′ ⊆ S P,k+k ′ . We note N P the space of functions f ∈ C ∞ (R 2 P , R) such that for any 2-multi-index (α, β) there is C α,β > 0 such that for any (r, θ) ∈ R 2 P , |∂ α,β f (r, θ)| ≤ C α,β e -2r . If r 0 > 0 we define the spaces H P,r 0 , A P,k,r 0 , S P,k,r 0 and N P,r 0 exactly as before, except that we now replace the domain R 2 P by R 2 P,r 0 :=]r 0 , +∞[×] -π, π[. Lemma 5.5. Let f, g, h, w ∈ H P,r 0 where r 0 > 0, such that there is ε > 0, C > 1 such that for any (r, θ) ∈ R 2 P,r 0 , f ≥ C, f ≥ ε e r and h 2 + g 2 ≥ ε e 2r . (i) The functions 

, ∂ r argch f = ∂rf √ f 2 -1 , ∂ θ argch 1 + h 2 + g 2 = (∂ θ h)h+(∂ θ g)g √ (h 2 +g 2 )(1+h 2 +g 2 )
and

∂ θ argch f = ∂ θ f √ f 2 -1
, the result follows from an application of Proposition = O(1). This is a direct consequence of Proposition 5.4.

Proof of Theorem 5.2. By Lemma 2.14 (iii) and Proposition 2.12, it is sufficient to prove that for any p := (x, y) ∈ R 2 \{ 0 }, exp -1 p • exp 0 and exp -1 0 • exp p are in G 1 (R 2 ). A computation here is a generalization of the standard and SG symbol calculi over the Euclidean space R n and can be applied to the hyperbolic 2-space since, as proven in section 5.2, it has a S 1 -bounded geometry. L 2 -continuity of pseudodifferential operators of order (0, 0) has been established in section 4.5 under the hypothesis (H V ). We do not know however if this result still holds without this hypothesis. The full analysis of the obtained Moyal product on S(T * M ) and spectral properties of pseudodifferential operators in Ψ l,m σ remain to be studied. Extension and connection of the symbol calculus presented here could be made with, for instance, noncommutative geometry (Gayral, Gracia-Bondía, Iochum, Schücker and Várilly [START_REF] Gayral | Moyal planes are spectral triples[END_REF]), the magnetic Moyal calculus (Iftimie, Mantoiu and Purice [START_REF] Iftimie | Magnetic pseudodifferential operators[END_REF]), spectral asymptotics (Shubin [START_REF] Shubin | Spectral theory of the Schrödinger operators on non-compact manifolds: qualitative results[END_REF]), essential self-adjointness (Braverman, Milatovich and Shubin [START_REF] Braverman | Essential selfadjointness of Schrödinger-type operators on manifolds[END_REF]), Fourier integral operators (Coriasco [11], Ruzhansky and Sugimoto [START_REF] Ruzhansky | Global calculus of Fourier integral operators, weighted estimates, and applications to global analysis of hyperbolic equations[END_REF][START_REF] Ruzhansky | Global L 2 -boundedness theorems for a class of Fourier integral operators[END_REF]), Wiener type calculus (Sjöstrand [48,[START_REF] Sjöstrand | Wiener type algebras of pseudodifferential operators[END_REF]), generalized operators (Garetto [START_REF] Garetto | Pseudodifferential operators in algebras of generalized functions and global hypoellipticity[END_REF]), Gelfand-Shilov spaces (Cappiello, Gramchev and Rodino [START_REF] Cappiello | Gelfand-Shilov spaces, pseudodifferential operators and localization operators[END_REF]), regularized traces (Paycha [33]), and white noise analysis for an infinite dimensional Moyal product (Léandre [START_REF] Léandre | Deformation Quantization in White Noise Analysis[END_REF] and Dito and Léandre [START_REF] Dito | A stochastic Moyal product on the Wiener space[END_REF]).

  and b is a basis of T z M we will call the pair (z, b) a (normal) frame. For any frame (z, b), we define n bz := L b • exp -1 z with L b the linear isomorphism from T z M onto R n associated to b. As a consequence, the pair (M, n b z ) is a chart which is a global diffeomorphism from M onto R n . We note ψ b,b ′ z,z ′ := n b z • (n b ′ z ′ ) -1 the normal coordinate change diffeomorphism from R n onto R n and (∂ i,z,b ) i∈Nn and (dx i,z,b ) i∈Nn (whith N n := { 1, • • • , n })the global frame vector fields and 1-forms associated to the chart n b z . We also note n b z, * the diffeomorphism from T * M onto R 2n defined by n b z, * (x, θ) = (n b z (x), M b z,x (θ)) where ( M b z,x (θ) i ) i∈Nn are the components of θ in (dx i,z,b x ) i∈Nn and n b z,T : (x, ξ) → (n b z (x), M b z,x (ξ)) the diffeomorphism from T M onto R 2n , where (M b z,x (ξ) i ) i∈Nn are the coordinates of ξ in the basis (∂ i,z,b x ) i∈Nn . We have M b z,x = (dn b z ) x and M b z,x = t (dn b z ) -1

Definition 2 . 8 .

 28 Let σ ∈ [0, 1]. The exponential manifold (M, exp) is said to have a S σ -bounded geometry if for any (z, b), (z ′ , b ′ ), and any n-multi-index α = 0, (S σ 1)

Remark 2 . 19 .

 219 By taking u := x → 1 in the previous lemma, we see that for any exponential manifold (M, exp) with S σ (resp. O M ) bounded geometry, we can define a canonical family of S × σ -densities (resp. O × M -densities) on M : D := (|dx z,b |) (z,b)∈I where I is the set of frames on M . If the map exp is the exponential map associated to a pseudo-Riemannian metric g on M , we can also define a canonical subfamily of D by D g := (|dx z |) z∈M where |dx z | := |dx z,b | with b any orthonormal basis (in the sense g

  z,b t (x, ζ) := τ z,b (x, ψ b z (x, tζ)). Definition 3.4. A linearization ψ on the exponential manifold (M, exp, E, dµ) is said to be a O M -linearization if for any frame (z, b) the functions ψ b z and ψ b z are in in O M (R 2n , R n ) and the functions τ z,b 1 and (τ z,b

  Fourier transform coupled with Γ λ lead us to the following natural isomorphism from S ′ (M × M, L(E)) onto S ′ (T * M, L(E)). Definition 3.10. Let λ ∈ [0, 1]. The λ-symbol map is the topological isomorphism from S ′ (M × M, L(E)) onto S ′ (T * M, L(E)): σ λ := F • Γ λ . The λ-quantization map is the inverse of σ λ , noted Op λ .

Remark 3 .

 3 12. (S(T * M ), • W ) is a * -algebra since (a • W b) * = b * • W a * for any a, b ∈ S(T * M ). We can also construct another * -algebra on S(T * M ) with the product a ⋆ b := 1 2 (a • 0 b + a • 1 b). This proves that when (H ψ ) (see Assumption 3.1) is not satisfied (so that no middle point exist in the classical world) we can still have a canonical star-product on S(T * M ) which satisfies (a ⋆ b) * = b * ⋆ a * . 4 Symbol calculus of pseudodifferential operators 4.1 Symbols Assumption 4.1. Let σ ∈ [0, 1]. We suppose in this section that (M, exp, E) has a S σ -bounded geometry.

Proposition 4 . 3 .

 43 Let a ∈ C ∞ (T * M, L(E)). Then a ∈ S l,m σ if and only if there exists a frame (z, b) such that a satisfies (4.1). Proof. Suppose that (4.1) is satisfied for (z ′ , b ′ ) and let (z, b) be another frame. For (x, θ) ∈ T * M and α, β two n-multi-indices with ν = (α, β) = 0, we get from Equation (2.14) and Lemma 2.13,

Lemma 4 . 7 .

 47 The application j T * M is injective and continuous from S l,m σ into S ′ (T * M, L(E)).

  The result will then follows for a sequence (b j ) in S l,m σ by taking b := T -1 z,b, * (a) where a j := T z,b, * (b j ). Define

  (i) We have Op Γ (a) = I(a) • Γ, where I(a) is the antilinear form on S(R 2n , L(E z )): I(a), u := R 3n e 2πi ϑ,ζ Tr(a(x, ζ, ϑ) u * (x, ζ)) dζ dϑ dx .

Remark 4 . 15 .

 415 If (M, exp, E, dµ, ψ) has a O M -bounded geometry, we saw that for any frame (z, b) and λ ∈ [0, 1], the Γ λ,z,b maps are topological isomorphisms on S ′ (R 2n , L(E z )). Thus, Lemma 4.14 implies that for a given a ∈ Π l,w,m σ,κ,z , we can define a family indexed by λ ∈ [0, 1] of operators Op Γ λ,z,b (a) which are continous from S(R n , E z ) into S ′ (R n , E z ).

Remark 4 . 16 .

 416 Suppose that (M, exp, E, dµ) has a S σ bounded geometry and that ψ is a O Mlinearization. We deduce from (3.4) that if s is a symbol in S l,m σ and λ ∈ [0, 1], we have (Op λ (s)) z,b = Op Γ λ,z,b (µs z,b ) where (z, b) is a frame, s z,b := T z,b, * (s) and µs z,b := (x, ζ, ϑ) → µ z,b (x) s z,b (x, ϑ) ∈ Π l,0,m σ,0,z . We will also note µ -1 s z,b (x, ζ, ϑ) := µ -1 z,b (x)s z,b (x, ϑ) ∈ Π l,0,m σ,0,z .

  z and the linear map a → ∂ ν 0 a is continuous. As a consequence, since S β,u = L u,Id • D β , where D β := (i/2π) β ∂ β ϑ , the continuity of S β,u on O f,z follows from Proposition 4.14.

Lemma 4 .

 4 [START_REF] Gutt | An explicit * -product on the cotangent bundle of a Lie group[END_REF]. (i) For any a ∈ Π l,w,m σ,κ,z , (∂ 0,β,β a) ζ=0 ∈ S l-|β|,m-|β| σ,z for any n-multi-index β.(ii) Let Γ be as inLemma 4.18 and let a ∈ Π l,w,m σ,κ,z . Then for any symbol s ∈ S l,m σ,z such that s ∼ β(i/2π) |β| β! (∂ 0,β,β a) ζ=0 , there is r ∈ S -∞ σ,z such that Op Γ (a) = Op Γ (s + r).In particular there exists an unique symbol s(a) ∈ S l,m σ,z such that Op Γ (a) = Op Γ (s(a)). Moreover, we have s(a) ∼ β (i/2π) |β| β! (∂ 0,β,β a) ζ=0 . (iii) Suppose that (M, exp, E, dµ) has a S σ -bounded geometry and ψ is a O M -linearization. Let a ∈ Π l,w,m σ,κ,z , λ ∈ [0, 1] and (z, b) be given a frame. Then there exists an unique symbol s λ (a) ∈ S l,m σ such that Op Γ λ,z,b (a) = (Op λ (s λ (a)) z,b . Moreover, we have T z,b, * (s λ (a)) ∼ β

(4. 12 )

 12 Since there exist C, c > 0 such that for any (x, ζ) ∈ R 2n m(x, ζ) ≤ C x ζ r and m(x, ζ) ≥ c x ζ -r , we see that there is K ν > 0 such that for any 1 ≤ |λ| ≤ |ν| and any (x, ζ)

  (4.11) to 2n-multi-indices λ such that |λ 2 | ≥ |γ| (and thus |λ 1 | ≤ |α + β|), we obtain the result from (4.12) and a straightforward verification of the case ν = 0. (iii) is obtain exactly as (ii) (with P x,ζ = Id), since (x, ζ) → µ z,b (x) Id L(Ez) ∈ S 0,0 σ,z . The hypothesis m(x, ζ) = O( x ζ r ) is not necessary since l = 0 here. (iv) We have, noting g(x, ζ, ϑ) := (x, ζ, P x,ζ (ϑ)), for any 3n-multi-indices ν = 0, 1 ≤ |ν ′ | ≤ |ν|, P ν,ν ′ (g) as a linear combination of terms of the form s j=1 (∂ l j g) k j , with s j=1 |k j |l j = ν and

Definition 4 .

 4 [START_REF] Melrose | Introduction to microlocal analysis[END_REF]. A pseudodifferential operator of order l, m and type σ is an element of Ψ l,m σ := Op λ (S l,m σ ), where λ ∈ [0, 1].

Proof.

  Let us fix a frame (z, b) and note a z,b := T z,b, * (a). We saw in Remark 4.16 that Op λ (a) z,b = Op Γ λ,z,b (µa z,b )). Thus, for any u ∈ S(M × M, L(E)), we have with u z,b :

Proposition 4 . 32 .

 432 Any operator in Ψ l,m σ is regular. Moreover, for any A ∈ Ψ l,m σ and v ∈ S, we have

µ j where 1 ≤

 1 m ≤ |ν|, (l j ) are p-multi-indices and (µ j ) are n-multi-indices. Moreover, they satisfy |µ j | > 0, m j=1 |µ j | = |γ| + |β|, m j=1 |µ j ||l j | = |α| and if |β| = 0, then |l j | > 0 and |γ| > 0.

m j 1 Lemma 4 . 42 .

 1442 +1 k j = |β|. The result follows. Suppose that (C σ ) is satisfied. Then (i) Representing by u the letter s or ϕ, for any 3n-multi-index ν = (µ, γ) ∈ N 2n × N n , we have the equality ∂ ν x,ζ,ϑ e 2πi ϑ,u x,ζ (ζ ′ ) = ( |ω|≤|µ| ϑ ω T ν,ω,u (x, ζ, ζ ′ )) e 2πi ϑ,u x,ζ (ζ ′ ) where each term T ν,ω,s ∈ O -|µ|,κv|µ|,ws|ω+γ|+κv|µ| σ,κv,εv,εv,|ω+γ| (R) and T ν,ω,ϕ ∈ O -|µ|-εv|ω+γ|,εv|ω+γ|+κv|µ|,wϕ|ω+γ|+κv|µ| σ,κv,εv,εv,2|ω+γ| (R).In particular, it satisfies the following estimate valid for any (x, ζ, ζ ′ ) ∈ R 3n , and any n-multi-index ρ,|∂ ρ ζ ′ T ν,ω,s (x, ζ, ζ ′ )| ≤ C ν,ω,ρ x -σ(|µ|+εv |ρ| |ω+γ| ) ζ κv|µ|+εv|ρ| ζ ′ ws|ω+γ|+κv(|µ|+|ρ|) , |∂ ρ ζ ′ T ν,ω,ϕ (x, ζ, ζ ′ )| ≤ C ν,ω,ρ x -σ(|µ|+(εv /2)|ρ|) ζ εv|ω+γ|+κv|µ|+εv|ρ| ζ ′ wϕ|ω+γ|+κv(|µ|+|ρ|) .(ii) For any n-multi-index β, we have∂ β ζ ′ e 2πi ϑ,ϕ x,ζ (ζ ′ ) = P β,ϕ (x, ζ, ζ ′ , ϑ)e 2πi ϑ,ϕ x,ζ (ζ ′ ) where P β,ϕ (x, ζ, ζ ′ , ϑ)is a linear combination of terms of the form ϑ ω ζ ′λ t ω,λ (x, ζ, ζ ′ ) where ω and λ are n-multi-indices satifying |ω| ≤ |β|, (2|ω| -|β|) + ≤ |λ| ≤ |ω|, and t ω,λ are functions in O -εv|β|/2,2εv,w ′ s |β| σ,κv ,εv,εv,|β| (R). In particular they are estimated by

  and the application f → f β,ϕ is continuous.Proof. (i) By Lemma 4.41, if ν = 0, we have the following equality, valid for any (x, ζ, ζ ′ , ϑ) ∈ R 4n , ∂ ν x,ζ,ϑ e 2πi ϑ,u x,ζ (ζ ′ ) = ( |ω|≤|µ| ϑ ω T ν,ω,u (x, ζ, ζ ′ )) e 2πi ϑ,u x,ζ (ζ ′ )where T ν,ω,u is a linear combination of terms of the form m j=1 (∂l j x,ζ u) µ j with 1 ≤ m ≤ |ν|, µ j = 0, m j=1 |µ j | = |ω+ γ| and m j=1 |µ j ||l j | = |µ|. Since by Lemma 4.39 (i), s ∈ O 0,0,ws σ,κv,εv,εv,1 (R n ), it is straightforward to check that T ν,ω,s ∈ O -|µ|,κv|µ|,ws|ω+γ|+κv|µ| σ,κv,εv,εv,|ω+γ| (R). Moreover, since ϕ ∈ O -εv,εv,wϕ σ,κv,εv,εv,2 (R n ), we get T ν,ω,ϕ ∈ O -|µ|-εv|ω+γ|,εv|ω+γ|+κv|µ|,wϕ|ω+γ|+κv|µ| σ,κv,εv,εv,2|ω+γ| (R). The first estimate is direct and the second estimate follows from the inequality |ω + γ| + |ρ| 2|ω+γ| ≥ |ρ|/2. (ii) By Lemma 4.41, if β = 0, we have for any (x, ζ, ζ ′, ϑ) ∈ R 4n , the following relation ∂ β ζ ′ e 2πi ϑ,ϕ x,ζ (ζ ′ ) = ( 1≤|ω|≤|β| ϑ ω T β,ω,ϕ (x, ζ, ζ ′ ))e 2πi ϑ,ϕ x,ζ (ζ ′ )where T β,ω,ϕ is a linear combination of terms of the form m j=1 (∂ l j ϕ x,ζ ) µ j with 1 ≤ m ≤ |β|, µ j = 0, l j = 0, m j=1 |µ j | = |ω| and m j=1 |µ j ||l j | = |β|. Let us reorder the l j indices so that for any 1 ≤ j ≤ j 1 , |l j | = 1 and for any

m j=j 1

 1 +1 |µ j | = |ω| -|λ|. The first statement now follows from the inequality 2v ≤ |β| -|λ|. Since ϕ x,ζ (0) = 0 and (dϕ x,ζ ) 0 = 0, P β,ϕ (x, ζ, 0, ϑ) is a linear combination of terms of the form ϑ ω m j=1 (∂ 0,0,l j ϕ(x, ζ, 0)) µ j with 1 ≤ |ω| ≤ |β|/2, 1 ≤ m ≤ |β|, µ j = 0, |l j | ≥ 2, m j=1 |µ j | = |ω| and m j=1 |µ j ||l j | = |β|. We check with Lemma 4.39 (i) that any function of the form m j=1 (∂ 0,0,l j ϕ(x, ζ, ζ ′ )) µ j is in O -εv|β|/2,εv|β|,(ws/2+κv)|β| σ,κv ,εv,|β|/2 (R), and thus, (x, ζ, ϑ) → m j=1 (∂ 0,0,l j ϕ(x, ζ, 0)) µ j 1 L(Ez) ∈ Π -εv|β|/2,εv|β|,0 σ,κv,z . Since (x, ζ, ϑ) → ϑ ω 1 L(Ez ) ∈ Π 0,0,|β|/2 σ,κv ,z we obtain (x, ζ, ϑ) → P β,ϕ (x, ζ, 0, ϑ) 1 L(Ez ) ∈ Π -ε|β|/2,εv|β|,|β|/2 σ,κv,z . (iii) We have

  )) and L -1 x,ζ = O(1), we deduce from Lemma 4.40 (i) andLemma 4.23 (iv) that (x, ζ, ϑ) → ∂ 0,0,β-β ′ ,β f (x, ζ, 0, L x,ζ (ϑ)) belongs to the amplitude space Π l-ε 1 |β-β ′ |,w 0 +κ|β-β ′ |,m-|β| σ,max{ κ,κv },z. The result now follows from (ii).We now introduce two parametrized cut-off functions that will be used later. Let b ∈ C ∞ c (R, [0, 1]) such that b = 1 on [-1/4, 1/4] and b = 0 on R\]-1, 1[. We define for ε, δ, η 1 , η 2 > 0 with ε, δ < 1,

  2 ,ϕ ϑ b ω . By Lemma 4.42 (ii), we see thatP b ω,β 2 ,ϕ ∈ O -εv|β 2 |/2,2εv|β 2 |,(w ′ s +1)|β 2 | σ,κv ,εv,εv,2|β 2 | . Let us note T := ∂ β 1 ζ ′ T ν ′ ,e ω,ϕ P b ω,β 2 ,ϕ . Lemma 4.42 (i) yields T ∈ O -(εv/2)|β 1 +β 2 |,c 0 (|µ|+N )+εv|γ|,c 0 (|ν|+N ) σ,κv,εv,εv,2(|ν|+N )

  As a consequence, we get the following estimates for the integrands b p of b(x, ϑ): for any x, ζ, ζ ′ , ϑ, ϑ ′ , any p ∈ N * and anyN ∈ N * , b p (x, ζ, ζ ′ , ϑ, ϑ ′ ) ≤ C p,N ζ ′ N -2p x σ|l|+N ζ σ|l|-N ϑ ′ -2n. Taking N such that σ|l| -N ≤ -2n and then taking p such that N -2p ≤ -2n, we see that (ϑ′ , ζ ′ , ζ) → b p (x, ζ, ζ ′ , ϑ ′ , ϑ) is absolutely integrable and we can thus apply the following change of variable (ζ, ζ ′ , ϑ ′ ) → (R x (ζ, ζ ′ ), ϑ ′ ) to b(x, ϑ). After reversing the integration by parts in ϑ ′ and applying the change of variable ϑ

  we translated the ϑ ′ variable by -L x,ζ (ϑ) and permuted the order of integration dϑ ′ dζ ′ → dζ ′ dϑ ′ , which is legal since b ∈ S l,-2n σ,z and ζ ′ → χ(x, ζ, ζ ′ ) is of compact support. We deduce from Lemma 4.45 (ii) and Lemma 4.46 (ii) that b → Op Γ 0,z,b (d b ), u ⊗ v is continuous on S l,m σ,z , and thus, by the density result of Lemma 4.6, we have the equality (K AB ) z,b , u ⊗ v = Op Γ 0,z,b (d b ), u ⊗ v even when the hypothesis b ∈ S l,-2n σ,z does not hold. Let us recall the linear map s : a → s(a) given in Lemma 4.21 (ii) (for Γ

Lemma 4 .

 4 [START_REF] Gayral | Moyal planes are spectral triples[END_REF] and Lemma 4.46 (i) now implies that the kernelU N + R N (which independant of N ) is in Op Γ 0,z,b (S -∞ σ,z ). As a consequence, (K AB ) z,b = Op Γ 0,z,b (s a,b + r)where r ∈ S -∞ σ,z and the symbol product asymptotic formula is entailed by Lemma 4.21 (ii).

Proposition 5 . 1 .

 51 (R n , +, dλ, ψ) has a S σ -bounded geometry and satisfies (C σ ) (seeDefinition 4.37).

1 0 1 0

 11 ∂ j v i x (tξ)dt] i,j , W x,ξ := [ ∂ j w ix,ξ (tξ)dt] i,j , andv x := M x • g • M -1 x , w x,ξ := M ψ(x,ξ) • g • M -1 ψ(x,ξ) • M x • s • M -1x , M x being the multiplication by x σ . We getdv x = dg • M -1 x and dw x,ξ = d g • (M -1 ψ(x,ξ) • M x • s • M -1 x ) ds • M -1

s

  j=1 k j = (α ′ , β ′ ) ands j=1 |k j |l j = (α, β). By definition, χ x (v) = (χ 1 x (v), χ 2 x (v)) = ( v x , arctan(v 1 , v 2 )). It is straightforward to check that for any 2-multiindex ν, |∂ ν χ 1 x (v)| ≤ C ν v 1-|ν| and |∂ ν χ 2 x (v)| ≤ C ′ ν v -|ν| on R 2 C . As a consequence, for each α, β, α ′ , β ′ with 1 ≤ α ′ + β ′ ≤ α + β there exists C α,β,α ′ ,β ′ > 0 such that for any v ∈ R 2 C , |P α,β,α ′ ,β ′ (χ x )(v)| ≤ C α,β,α ′ ,β ′ v α ′ -(α+β) .

∂

  β α,p,j f .Proof. The result is true for the case |α| = 1. Suppose then that the result holds for any n-multi-index α such that |α| = k, where k ∈ N * and let α ′ be a n-multi-index such that|α ′ | = k + 1. Let i be the smallest element of { 1, • • • , n } such that α ′i ≥ 1, and set α :=

∂ α ′ 1 f s = 1 f

 1 f |α|+s p∈Jα λ s,α,p |α| j=1 ∂ β α,p,j f . As a consequence, with the formula ∂ i |α| j=1 g j = |α| q=1 |α| j=1 ∂ δ q,j e i g j , we obtain for any f ∈ C ∞ (R n , R * + ), |α ′ |+s p∈Jα -(|α| + s)λ s,α,p ( |α| j=1 ∂ β α,p,j f )∂ i f + (p,q)∈Jα×N |α| λ s,α,p ( |α| j=1

w (h 2 √ h 2 +g 2 and w √ f 2 - 1 (h 2 +g 2 ) 3 / 2 .(f 2 - 1 ) 3 / 2

 2212322132 +g 2 ) 3/2 , w (f 2 -1) 3/2 and any function of the form (r, θ) → P 4 k=-4 b k (θ)e kr ((h 2 +g 2 )(1+h 2 +g 2 )) 3/2 , where b k ∈ B(R), are in N P,r 0 . (ii) The functions argch 1 + h 2 + g 2 and argch f are in A P,1,r 0 . (iii) The functions w are in A P,0,r 0 . Proof. (i) We give a proof for w The other cases are similar. By Proposition 5.4 and Leibniz rule, we have for any 2-multi-index ν, ∂ ν w(h 2 +g 2 ) 3/2 = ν ′ ≤ν ν ν ′ ∂ ν-ν ′ w (h 2 +g 2 ) 3/2+|ν ′ | p∈J ν ′ λ 3/2,ν ′ ,p |ν ′ | j=1 ∂ β ν ′ ,p,j (h 2 + g 2 ) .Note that we have for any 2-multi-index ν, ∂ ν (h 2 + g 2 ) = O(e 2r ) and ∂ ν w = O(e r ). The result follows.(ii) By (i), since ∂ 2 r argch 1 + h 2 + g 2 is of the form (r, θ) →P 4 k=-4 b k (θ)e kr ((h 2 +g 2 )(1+h 2 +g 2 )) 3/2where b k ∈ B(R), and ∂ 2 r argch f is of the form w where w ∈ H P,r 0 , we only need to check that for 0 ≤ α ≤ 1, andβ ∈ N, ∂ α,β argch 1 + h 2 + g 2 = O( r 1-α ) and ∂ α,β argch f = O( r 1-α ). Since ∂ r argch 1 + h 2 + g 2 = (∂r h)h+(∂rg)g √ (h 2 +g 2 )(1+h 2 +g 2 )

5. 4 .√ h 2 +g 2 is of the form w 1 (h 2 +g 2 ) 3 / 2 √ f 2 - 1 is of the form w 2 (f 2 - 1 ) 3 / 2

 412322122132 (iii) By (i), since ∂ r w where w 1 ∈ H P,r 0 , and ∂ r w where w 2 ∈ H P,r 0 , we only need to check that forβ ∈ N, ∂ 0,β w √ h 2 +g 2 = O(1) and ∂ 0,β w √ f 2 -1

  s x,ζ (ζ ′ ) through a direct computation. Let us show the remaining statement by induction on p. Note that by Lemma 4.39 (ii), we have |1/h| ≥ c ϑ 2 for a c > 0 and we check that 1/h ∈ Π

	0,εv,w ′ v ,2 σ,κv,εv,z where w

  we get from Lemma 4.42 (i) the following estimates, where κ ′′ η
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We also define the R 2n -valued function Ξ t,z,b : (x, ζ, ϑ) → (ψ b z (x, tζ), P z,b t,x,ζ (ϑ)). We check that J(Ξ t,z,b ) = J(Υ t,z,b ) (det(P z,b t ) -1 ) and J(Ξ -1 t,z,b ) = J(Υ -t,z,b ) (det(P z,b t • Υ -t,z,b )). Note also that for any (x, y) ∈ R 2n , ψ b z (y, x) = -P z,b

x,ψ b z (x,y)

(ψ b z (x, y)).

Lemma 4.27. Let (z, b) be a given frame, λ, λ ′ ∈ [0, 1] and t ∈ [-1 , 1]. Suppose also that (M, exp, E, dµ, ψ) has a S σ -bounded geometry. Then (i)

Proof. t . In the case t = 0, m 0 = π 1 , so we obtain the result. Suppose t = 0. In that case Lemma 4.22 (i) 

. This yields the result. (iv) Direct consequence of (ii) and the fact that Φ λ,z,b = (m λ , m λ-1 ). (v) follows from a straithforward application of (ii), Lemma 4.22 (ii) and the fact that for any

). (vi) By (i), (v) and and Lemma 4.22 (i)

. Thus the result follows from (i), (v), and the formulas

, and has a canonical involutive diffeomorphism R x defined as

In all the following we fix a frame (z, b), and note also ψ the function

) -1 is a diffeomorphism on R 2n , and we define

) . We will use the shorthand

and κ ≥ 0, as the space of smooth functions g from R 3n into E such that for any 3n-multi-index ν = (µ, γ) ∈ N 2n × N n , there exists C ν > 0 such that for any (

σ,κ,ε,c (E). We check that for any multiindices γ, γ ′ and c, c

) are algebras (graduated by the parameters c, l, w 0 and w 1 ) and

In the definition of S ′ σ bounded geometry, we only require a polynomial control over the ψ b z functions. It appears that for the theorem of composition, a stronger control over these functions is important. We thus introduce the following: In particular (C σ ) entails that (dr x,ζ ) 0 and thus L are in E 0 σ,κv (M n (R)). We note R w 0 ,w 1 σ,κ,ε 1 (E) (ε 1 > 0) as the space of smooth functions g such that for any nonzero

The following lemma will give us the link between the the O, R, H, E spaces and the behaviour under composition.

where p is a point in R 2 , and • is the Euclidian norm. The geodesic equation on R 2 leads to the following system of ordinary differential equations:

x ′′cosh x sinh x (y ′ ) 2 = 0 , y ′′ + 2 tanh x x ′ y ′ = 0 .

(5.1)

For each p = (x, y) ∈ R 2 and v ∈ R 2 such that v p = 1 there exists an unique solution on R γ p,v = (x(t), y(t)) of (5.1) such that γ p,v (0) = p and γ ′ p,v (0) = v. At each point p = (x, y) ∈ R 2 , we can define the ellipse of unit vectors centered at 0 in T p R 2 ≃ R 2 with equation X 2 + (cosh 2 x) Y 2 = 1. The polar equation of this ellipse is e p (θ) where e p (θ) :

. Thus, any tangent vector v ∈ T p R 2 with decompostion v = v (cos θ, sin θ) also admits the following polar decomposition v = v p (cos p θ, sin p θ) where cos p θ := e p (θ) cos θ and sin p θ := e p (θ) sin θ. Remark that e p , cos p , sin p and • p are in fact independant of the second coordinate y of p. We shall therefore also use the notations e x := e (x,y) and similarly for cos x , sin x and • x . Note that for any vector v := v (cos θ, sin θ), we have v x = v /e x (θ).

If p ∈ H and v ∈ R 2,1 are such that p, v 2,1 = 0 and v, v 2,1 = 1, then the unique geodesic α p,v on H such that α p,v (0) = p and α ′ p,v (0) = v is α p,v (t) = cosh t p + sinh t v (see for instance [24, p.195]). As a consequence, the geodesics γ p,v on the R 2 hyperbolic space can be obtained by pushing forward the α p,v geodesics with the diffeomorphic isometry ϕ. We check after tedious calculations that for any given p = (x, y) ∈ R 2 and θ ∈ R, the following curve γ 1 p,θ (t) = argsh cosh t sinh x + sinh t cosh x cos x θ , γ 2 p,θ (t) = argsh cosh t cosh x sinh y+sinh t (sinh x sinh y cosx θ+cosh x cosh y sinx θ) cosh argsh(cosh t sinh x+sinh t cosh x cosx θ) ,

where t ∈ R, is the unique maximal solution of the geodesic system (5.1) satisfying the initial conditions: γ p,θ (0) = p and γ ′ p,θ (0) = (cos x (θ), sin x (θ)). An explicit formula for the exponential map at any point can therefore be obtained, since we have exp p (v) = γ p,θ ( v x ) where v ∈ T p R 2 -{ 0 } and θ ∈ R such that v = v (cos θ, sin θ). The main interest of this hyperbolic model with domain equal to R 2 is that it is possible to find explicitely the logarithmic map (the inverse of the exponential map) at any point. We find, after an elementary but long computation, the following inverse, for any p = (x, y) and p

We have exp -1 p (p ′ ) p = argch f p (p ′ ) which is the geodesic distance between two arbitrary points p, p ′ in the R 2 hyperbolic model. The goal of this section is to prove the following result. Theorem 5.2. H has a S 1 -bounded geometry.

x (r, θ) = (r cos x θ, r sin x θ).

based on (5.2) and ( 5.3) shows that on

where f (r, θ) := cosh r cosh y cosh xsinh r(sinh x cos θ + sinh y cosh x sin θ) , w 1 (r, θ) :=cosh r cosh y sinh x + sinh r(cosh x cos θ + sinh y sinh x sin θ) , w 2 (r, θ) :=cosh r sinh y sech x + sinh r sin θ cosh y sech x , h(r, θ) := cosh r sinh x + sinh r cosh x cos x θ , g(r, θ) := cosh r cosh x sinh y + sinh r(sinh x sinh y cos x θ + cosh x cosh y sin x θ) .

All these functions belong to

0 is well defined as a smooth function on the whole R 2 P . The same argument holds for exp -1 0 • exp p •χ -1

x . We check that 1 2 (cosh x cosh ycosh 2 x cosh 2 y -1)e r ≤ f (r, θ) ≤ cosh r e argch(cosh x cosh y) so that by defining r 0 := log 2/ε where 0 < ε < min{ 1, 1 2 (cosh x cosh ycosh 2 x cosh 2 y -1) } we have for any (r, θ) ∈ R 2 P,r 0 , f (r, θ) ≥ εe r ≥ 2. Note also that for any

The first equality entails (since exp -1 p • exp 0 (R 2 C ) is a dense open subset of R 2 ) that for any v in R 2 , cosh v p ≤ cosh exp -1 0 • exp p (v) 0 e argch(cosh x cosh y) . We then obtain for any (r, θ) ∈ R 2 P , 1 + h 2 + g 2 ≥ cosh r e -argch(cosh x cosh y) . In particular, defining r ′ 0 := argch( √ 2 exp(argch(cosh x cosh y))),

we get for any r ≥ r ′ 0 , the following estimate h 2 + g 2 ≥ 1 8 e -2 argch(cosh x cosh y) e 2r . If we now apply Lemma 5.5 for the space H P,r ′′ 0 where r ′′ 0 := max{ r 0 , r ′ 0 }, we see that exp -1 p • exp 0 •χ -1 0 and exp -1 0 • exp p •χ -1

x are in S P,1 . The result then follows from Lemma 5.3.

Conclusion

We have seen in this paper certain hypothesis on the geometry (S σ or O M -bounded geometry) of a manifold with linearization that allows a coordinate free definition of most of the topological vector spaces that are needed for Fourier analysis and global complete symbol calculus with uniform and decaying control over the x variable. Given a linearization on the manifold with some properties of control at infinity, we constructed symbol maps and λ-quantization, explicit Moyal star-products on the cotangent bundle, and classes of pseudodifferential operators. We proved a stability under composition result, and an associated symbol product asymptotic formula under a hypothesis (C σ ) of control at infinity of the linearization. The calculus presented