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Abstract

We present in this paper the construction of a pseudodifferential calculus on smooth
non-compact manifolds associated to a globally defined and coordinate independant com-
plete symbol calculus, that generalizes the standard pseudodifferential calculus on Rn. We
consider the case of manifolds M with linearization in the sense of Bokobza-Haggiag [3],
such that the associated (abstract) exponential map provides global diffeomorphisms of M
with Rn at any point. Cartan–Hadamard manifolds are special cases of such manifolds. The
abstract exponential map encodes a notion of infinity on the manifold that allows, modulo
some hypothesis of Sσ-bounded geometry, to define the Schwartz space of rapidly decaying
functions, globally defined Fourier transformation and classes of symbols with uniform and
decaying control over the x variable. Given a linearization on the manifold with some prop-
erties of control at infinity, we construct symbol maps and λ-quantization, explicit Moyal
star-product on the cotangent bundle, and classes of pseudodifferential operators. We show
that these classes are stable under composition, and that the λ-quantization map gives an
algebra isomorphism (which depends on the linearization) between symbols and pseudod-
ifferential operators. We study, in our setting, L2-continuity and give some examples. We
show in particular that the hyperbolic 2-space H has a S1-bounded geometry, allowing the
construction of a global symbol calculus of pseudodifferential operators on S(H).
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1 Introduction

Classically, a pseudodifferential operator on a (smooth, finite dimensional) manifold is defined
through local charts and the notion of pseudodifferential operator on open subsets of R

n [41, 48].
In this setting, the full symbol of a pseudodifferential operator is a coordinate dependent notion.
However, the principal symbol can be globally defined as a function on the the cotangent bundle.
Naturally, the question of a full coordinate free definition of the symbol calculus of pseudod-
ifferential operators on a manifold has been considered. One approach, based on the ideas of
Bokobza-Haggiag [3], Widom [51, 52] and Drager [13] allows such a calculus if one provides the
manifold with a linear connection. Parallel transport along geodesics and the exponential map
to connect any two points sufficiently close on the manifold are then used for the definitions
and properties of local phase functions and oscillatory integrals. Safarov [37] has formulated
a version of a full coordinate free symbol calculus and λ-quantization (0 ≤ λ ≤ 1) using in-
variant oscillatory integral over the cotangent bundle and determined by the linear connection.
Pflaum [32, 33] developped a complete symbol calculus on any Riemannian manifold using nor-
mal coordinates and microlocal lift on the test functions on manifolds with arbitrary Hermitian
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bundles. Sharafutdinov [39, 40] constructed a similar global pseudodifferential calculus, based
on coordinate invariant geometric symbols. Further results in the same direction, connection
to Weyl quantization and application to physics has been considered in Fulling and Kennedy
[16], Fulling [15] and Güntürk [19]. Connection between complete symbol calculus, deformation
quantization and star-products on the cotangent bundle has also been made (see for instance
Gutt [20], Bordemann, Neumaier and Waldmann [4] and Voronov [49, 50]).

All these pseudodifferential calculi are based on symbol (functions of (x, θ) ∈ T ∗M)
estimates over the covariable θ while the dependance on the variable x is only controlled lo-
cally uniformally on compact sets. This is well suited for the case of a compact manifold. For
non-compact manifolds, we have to impose a uniform control over x in order to obtain L2(M)
continuity of operators of order 0 and compactness of the remainder operators if the control over
x is decaying. In other words, any global pseudodifferential calculus adapted to non-compact
manifolds and sensible to non-local effects need to encode the behaviour “at infinity” of sym-
bols. On the Euclidean space R

n, several types of pseudodifferential calculi have been defined:
standard pseudodifferential calculus with uniform control over x (see for instance Hörmander
[21], Beals [2], Shubin [43]), isotropic calculus with simultaneous decay of the x and θ variables
(Shubin [41, 42], Melrose [27]), and SG-pseudodifferential calculus with separated decay of the
x and θ variables (Shubin [42], Parenti [30], Cordes [9, 10], Schrohe [38]), which is invariant
under a special class of diffeomorphisms and can be extended to an adapted class of manifolds,
namely the SG-manifolds (Schrohe [38]). This class of manifolds contains the non-compact
manifolds “with exits” and adapted pseudodifferential calculus has been developped (see for
instance Cordes [9], Schulze [45], Maniccia and Panarese [26]). Another approach, based on Lie
structures at infinity, has been investigated to study the geometry of pseudodifferential oper-
ators on non-compact manifolds. Describing the geometry at infinity of the basis manifold by
a Lie algebra of vector fields, an adapted pseudodifferential calculus has been constructed (see
for instance Melrose [28], Ammann, Lauter and Nistor [1]). Let us also mention the groupoid
approach: by associating to any manifold with corners a smooth Lie groupoid and by building a
pseudodifferential calculus on Lie groupoids, the b-calculus of Melrose on manifolds with corners
can be generalized (see Monthubert [29]).

Our purpose in this paper is to construct a global pseudodifferential calculus that gen-
eralize the standard and SG calculi on R

n, on exponential manifolds. These manifolds provide
a natural geometric setting to deal simultaneously with the questions of a global isomorphism
between symbols and pseudodifferential operators, and the non-local effects associated to non-
compact manifolds.

The papers in organized as follows. We define in section 2 a manifold with linearization
(or exponential manifold) as a pair (M, exp) where M is a smooth real finite-dimensional man-
ifold and exp is an abstract exponential map, a smooth map from the tangent bundle onto M
that satisfies, besides the usual properties of an exponential map associated to a connection ∇ on
TM , the property that at each point x ∈M , expx is a diffeomorphism. Any Cartan–Hadamard
manifold with its canonical exponential map is an exponential manifold. These diffeomorphisms
are used to define topological vector spaces of functions on the manifold (or on TM , T ∗M ,
M × M) that generalizes, for instance, the notion of rapidly decaying function on R

n or of
tempered distribution, provided that we add an hypothesis of “OM -bounded geometry” on the
exponential map. In section 3, we use linearizations in the spirit of Bokobza-Haggiag [3], to de-
fine symbol and quantization maps. This leads to topological isomorphisms between tempered
distributional sections on T ∗M and M ×M , if we consider polynomially controled (at infinity)
linearizations (OM -linearizations). In particular, we extend the usual (explicit) Moyal product
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(or λ-product, for the λ-quantization) on any exponential manifold with OM -bounded geometry
on which we set a OM -linearization. We get the following λ-product formula, giving a Fréchet
algebra structure to S(T ∗M),

a ◦λ b (x, η) =

∫

Tx(M)×M
dµx(ξ)dµ(y)

∫

V λx,ξ,y

dµ∗x,ξ,y(θ, θ
′) gλx,ξ,y e

2πiωλx,ξ,y(η,θ,θ
′)a(yλx,ξ, θ) b(y

1−λ
x,−ξ, θ

′)

where a, b ∈ S(T ∗M) and the other notations are detailed in Proposition 3.11.
In section 4, we define the symbol and amplitudes spaces for our pseudodifferential

calculus. Symbol spaces can be defined in an intrinsic way on the exponential manifold with the
help of ”symbol-like” control (Sσ-bounded geometry, see Definition 2.8) of the coordinate change

diffeomorphisms ψb,b′

z,z′ associated to the exponential map exp on M . For practical reasons the
definition of amplitudes here is slighlty different from the usual functions of the parameters x, y
and θ. Instead, our amplitudes generalize functions of the form (x, ζ, ϑ) 7→ a(x, x+ ζ, ϑ), where
a is a standard amplitude of the euclidian pseudodifferential calculus. We establish continuity
and regularity results for operators of the following form (which can be seen, for some forms of
Γ, as special Fourier integral operators on R

n):

〈OpΓ(a), u〉 :=

∫

R3n

e2πi〈ϑ,ζ〉 Tr
(
a(x, ζ, ϑ) Γ(u)∗(x, ζ)) dζ dϑ dx

where Γ is a topological isomorphism on S(R2n, L(Ez)) (here Ez is a fixed fiber of the hermitian
bundle E →M , so L(Ez) can be identified with MdimEz(C)), a is in a Of,z space (see Definition
4.13) and u ∈ S(Rn, Ez). In particular, results of Proposition 4.14 and 4.17 and Lemma 4.18
are believed to be new.

With the help of a hypothesis of a control of symbol type over the derivative of the
linearization (Sσ-linearizations), we obtain in section 4.4 an intrinsic definition (Theorem 4.30)

of pseudodifferential operators Ψl,m
σ on M . We see in section 4.5 a condition (HV ) on the

linearization that entails that any pseudodifferential operator on M , when transfered in a frame
(z, b), is a standard pseudodifferential operator on R

n. This condition yields a L2-continuity
result in Proposition 4.36. The last part of section 4 is devoted to the establishment of a symbol
product asympotic formula for the composition of two pseudodifferential operators. The main
result is Theorem 4.47: under a special hypothesis (Cσ) on the linearization (see Definition 4.37),
we have the following asymptotic formula for the normal symbol (transfered in a frame (z, b))
of the product of two pseudodifferential operators

σ0(AB)z,b ∼
∑

β,γ∈Nn

cβcγ∂
γ,γ
ζ,ϑ

(
a(x, ϑ)∂βζ′

(
e2πi〈ϑ,ϕx,ζ(ζ

′)〉(∂βϑ′fb)(x, ζ, ζ
′, Lx,ζ(ϑ))

)
ζ′=0

τ−1
x,ζ

)
ζ=0

where a := σ0(A)z,b, b := σ0(B)z,b, and other notations are defined in section 4.6.
Finally, we give in section 5 two possible settings (besides the usual standard calculus

on the euclidian R
n) in which the previous calculus applies. The first is based on the Euclidian

space R
n, with a “deformed” (non-bilinear, non-flat) Sσ-linearization. The second example is the

hyperbolic plane (or Poincaré half-plane) H. We prove in particular that H has a S1-bounded
geometry. This allows to define a global Fourier transform, Schwartz spaces S(H), S(T ∗

H),

S(TH), B(H) and the space of symbols Sl,m1 (T ∗
H). Moreover we can then define in an intrinsic

way a global complete pseudodifferential calculus on H, and Moyal product, for any specified
Sσ-linearization on H.
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2 Manifolds with linearization and basic function spaces

2.1 Abstract exponential maps, definitions and notations

The notion of linearization on a manifold has been first introduced by Bokobza-Haggiag in [3]
and is defined as a smooth map ν from M×M into TM such that π◦ν = π1, ν(x, x) = 0 for any
x ∈ M and (dyν)y=x = IdTxM . In all the following, we shall work with “global” linearizations,
in the following sense:

Definition 2.1. A manifold with linearization (or exponential manifold) is a pair (M, exp)
where M is a smooth manifold and exp a smooth map from TM into M such that:
(i) for any x ∈M , expx : TxM →M defined as expx(ξ) := exp(x, ξ), is a global diffeomorphism
between TxM and M ,
(ii) for any x ∈M , expx(0) = x and (d expx)0 = IdTxM .
The map exp will be called the exponential map, and (x, y) 7→ exp−1

x (y) the linearization, of the

exponential manifold (M, exp). We shall sometimes use the shortcut eξx := expx(ξ).

Note that the term “exponential manifold” used here is not to be confused with the
notion of “exponential statistical manifold” used in stochastic analysis. Remark that if exp ∈
C∞(TM,M) satisfies (i), then defining Exp := exp ◦ T where T (x, ξ) := exp−1

x (x)+(d exp−1
x )xξ,

we see that (M,Exp) is an exponential manifold.
We will say that (M,∇) (resp. (M,g)) is exponential, where M is a smooth manifold

with connection ∇ on TM (resp. with pseudo-Riemannian metric g), if (M, exp) where exp is
the canonical exponential map associated to ∇ (resp. to g) is an exponential manifold, or in
other words, if for any x ∈ M , expx is a diffeomorphism from TxM onto M . Note that (M,∇)
(resp. (M,g)) is exponential if and only if

• M is geodesically complete

• For any x, y ∈ M , there exists one and only one maximal geodesic γ such that γ(0) = x
and γ(1) = y.

• For any x ∈M , expx is a local diffeomorphism.

Remark 2.2. R
n (with its standard metric of signature (p, n−p)) is an exponential manifold and

any n-dimensional real exponential manifold is diffeomorphic to R
n. In particular, an exponential

manifold cannot be compact. A Cartan–Hadamard manifold is a Riemannian, complete, simply
connected manifold with nonpositive sectional curvature. It is a consequence of the Cartan–
Hadamard theorem (see for instance [24, Theorem 3.8]) that any Cartan–Hadamard manifold is
exponential.

Remark 2.3. The exponential structure can be transported by diffeomorphism: if (M, expM )
is an exponential manifold, N a smooth manifold and ϕ : M → N is a diffeomorphism, then
(N, expN := ϕ ◦ expM ◦ Tϕ−1) is an exponential manifold.

Assumption 2.4. We suppose from now on that (M, exp) is an exponential n-dimensional real
manifold.

For any x, y ∈M , we define γxy as the curve R →M , t 7→ expx(t exp−1
x y), and γ̃xy(t) :=

γyx(1− t). Note that γxy(0) = x and γxy(1) = y. If the exponential map is derived from a linear
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connection, we have for any t ∈ R, γxy(t) = γ̃xy(t). In the general case, this is only true for
t = 0 and t = 1.

The abstract exponential map exp provides the manifold M with a notion of “points at
infinity” and “straight lines” (γxy). It can be seen as an generalization to manifolds of the useful
properties of R

n for the study of the behaviour of functions at infinity. The abstract exponential
map exp formalizes the fact that our straight lines never stop and connect any two different
points.

The diffeomorphism exp−1
z , for a given z ∈M , is not stricto sensu a chart, since it maps

M onto TzM , which is diffeormorphic but not equal to R
n. In order to obtain a chart, one needs

to choose a linear basis of TzM . If z ∈ M and b is a basis of TzM we will call the pair (z, b) a
(normal) frame. For any frame (z, b), we define nb

z := Lb◦exp−1
z with Lb the linear isomorphism

from TzM onto R
n associated to b. As a consequence, the pair (M,nb

z) is a chart which is a
global diffeomorphism from M onto R

n.

We note ψb,b′

z,z′ := nb
z ◦ (nb′

z′)
−1 the normal coordinate change diffeomorphism from R

n

onto R
n and (∂i,z,b)i∈Nn and (dxi,z,b)i∈Nn (whith Nn := { 1, · · · , n }) the global frame vector

fields and 1-forms associated to the chart nb
z. We also note nb

z,∗ the diffeomorphism from T ∗M

onto R
2n defined by nb

z,∗(x, θ) = (nb
z(x), M̃

b
z,x(θ)) where (M̃b

z,x(θ)i)i∈Nn are the components of θ in

(dxi,z,bx )i∈Nn and nb
z,T : (x, ξ) → (nb

z(x),M
b
z,x(ξ)) the diffeomorphism from TM onto R

2n, where

(Mb
z,x(ξ)i)i∈Nn are the coordinates of ξ in the basis (∂i,z,bx)i∈Nn . We have Mb

z,x = (dnb
z)x and

M̃b
z,x = t(dnb

z)
−1
x . The diffeomorphism from M ×M onto R

2n defined by (x, y) 7→ (nb
z(x), n

b
z(y))

will be noted nb

z,M2.

We note (∂i,z,b)i∈N2n the family of vector fields on T ∗M (resp. TM , M ×M) associated
to the chart nb

z,∗ (resp. nb
z,T , nb

z,M2) onto R
2n. We suppose in all the following that E is an

arbitrary normed finite dimensional complex vector space. If ν is a (2n)-multi-index, we define
the following operator on C∞(T ∗M,E) (resp. C∞(TM,E), C∞(M ×M,E)):

∂νz,b :=

2n∏

k=1

∂νkk,z,b.

If α and β are n-multi-indices, we note (α, β) the 2n-multi-index obtained by concatenation. If α
is a n-multi-index, ∂αz,b is a linear operator on C∞(M,E). We fix the shorcut 〈x〉 := (1+‖x‖2)1/2

for any x ∈ R
p, p ∈ N. We will use the convention xα := xα1

1 · · · xαpp for x ∈ R
p and α p-multi-

index, with 00 := 1. If f is continuous function from R
p to a normed vector space and g is a

continuous function from R
p to R, we note f = O(g) if and only if there exist r > 0, C > 0

such that for any x ∈ R
p\B(0, r), ‖f(x)‖ ≤ C|g(x)|. In the case where g is strictly positive on

R
p, this is equivalent to: there exists C > 0 such that for any x ∈ R

p, ‖f(x)‖ ≤ Cg(x). We also
introduce the following shortcuts, for given (z, b), x, y ∈M , θ ∈ T ∗

x (M), ξ ∈ Tx(M):

〈x〉z,b := 〈nb
z(x)〉, 〈θ〉z,b,x := 〈M̃b

z,x(θ)〉, 〈ξ〉z,b,x := 〈Mb
z,x(ξ)〉,

〈x, y〉z,b := 〈(nb
z(x), n

b
z(y))〉, 〈x, θ〉z,b := 〈(nb

z(x), M̃
b
z,x(θ))〉, 〈x, ξ〉z,b := 〈(nb

z(x),M
b
z,x(ξ))〉 .

If f and g are in C0(Rp,Rp′) we note f ≍ g the equivalence relation defined by: 〈f〉 = O(〈g〉)
and 〈g〉 = O(〈f〉).
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2.2 Parallel transport on an Hermitian bundle

Let E be an hermitian vector bundle (with typical fiber E as a finite dimensional complex
vector space) on the exponential manifold (M, exp). E admits a (non-unique) connection ∇E

compatible with the hermitian metric. It is a differential operator from C∞(M,E) (the space
of smooth sections of E →M) to C∞(M,T ∗M ⊗E) such that for any smooth function f on M
and smooth E-sections ψ, ψ′,

∇E(fψ) = df ⊗ ψ + f∇Eψ ,

d(ψ|ψ′) = (∇Eψ|ψ′) + (ψ|∇Eψ′) ,

where (ψ|ψ′) is the hermitian pairing of ψ and ψ′. We will note |ψ|2 := (ψ|ψ). The sesquilinear
form (·|·)x of Ex is antilinear in the second variable by convention. The operator ∇E can be
(uniquely) extended as an operator acting on E-valued differential forms on M . If γ is a curve
on M defined on an interval J and γ∗E the associated pullback bundle on J , there exists a
natural connection (the pullback of ∇E) on γ∗E, noted ∇γ∗E compatible with ∇E.

Let us fix x, y ∈ M and γ : J → M a curve such that γ(0) = x and γ(1) = y. For any
v ∈ Ex, there exists an unique smooth section β of γ∗E → J such that β(0) = v and ∇γ∗Eβ = 0.
Clearly, β(1) ∈ Ey and we can define a linear isomorphism τγ from Ex to Ey as τγ(v) = β(1).
The map τγ is the parallel transport map associated to γ from Ex to Ey. The compatibility of
∇E with the hermitian metric entails that the maps τγ are in fact isometries for the hermitian
structures on Ex and Ey.

The vector bundle L(E) →M , defined by L(E)x := L(Ex) (the space of endomorphisms
on Ex), is lifted to T ∗M , TM and M ×M by setting the fiber at (x, θ) to L(Ex) for T ∗M or
TM , and the fiber at (x, y) to L(Ey, Ex) for M ×M . The canonical projection from T ∗M or
TM to M is noted π.

We note τxy := τγxy . Remark that τ−1
xy = τγ̃yx. We define τz : x 7→ τzx and τ−1

z : x 7→
τ−1
zx = τ∗zx.

If u ∈ C∞(M,E) and z ∈ M , we note uz(x) := (τ−1
z u)(x) for any x ∈ M . If a is

section of L(E) → T ∗M or L(E) → TM , we note az := (τ−1
z ◦ π) a (τz ◦ π). If a is a section

of L(E) → M × M , we note az(x, y) := τ−1
z (x) a(x, y) τz(y). We also define τ z := (x, y) 7→

τ−1
z (y)τ(x, y)τz(x) ∈ L(Ez). Noting π1(x, y) := x, π2(x, y) := y, we get az = (τ−1

z ◦π1) a (τz ◦π2)
and τ z = (τ−1

z ◦ π2) a (τz ◦ π1).
Parallel transport on E has the following smoothness property:

Lemma 2.5. (i) The map τ : (x, y) 7→ τxy (resp. τ−1 : (x, y) 7→ τ−1
xy ) is a smooth section of the

vector bundle L(E)∨ →M ×M where the fiber at (x, y) is L(Ex, Ey) (resp. of the vector bundle
L(E) →M ×M).
(ii) τz ∈ C∞(M,L(Ez , E)) and τ−1

z ∈ C∞(M,L(E,Ez)).
(iii) τ z ∈ C∞(M ×M,L(Ez)).

Proof. (i) The map G : TM → M × M defined by G(v) := (π(v), exp(v)) is a local diffeo-
morphism since the Jacobian of G at v0 = (x0, ξ0) ∈ TM is equal to the Jacobian of expx0

at
ξ0. Since it is also bijective (with inverse G−1(x, y) := (x, exp−1

x (y))), it is a (global) diffeo-
morphism TM → M ×M . The map b(x, y, t) := (x, t exp−1

x (y)) is thus a smooth map from
M ×M × R to TM , and we get a smooth parametrization by M ×M of the following family
of curves: c(x, y) 7→

(
γxy : t 7→ exp b(x, y, t)). This parametrization leads (see [14, p. 17]) to

a smooth bundle homomorphism between c∗(·)(0)E → M ×M and c∗(·)(1)E → M ×M , so a
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smooth section τ : (x, y) 7→ τxy of L(Ex, Ey) → M ×M . The case of τ−1 is similar, by taking
b−1(x, y, t) := b(x, y, 1 − t).
(ii, iii) are straightforward consequences of (i).

Corollary 2.6. If u is in the space C∞(M,E), then uz ∈ C∞(M,Ez). Similarly, if a ∈
C∞(T ∗M,L(E)) (resp. C∞(TM,L(E)), C∞(M×M,L(E))), then az ∈ C∞(T ∗M,L(Ez)) (resp.
C∞(TM,L(Ez)), C

∞(M ×M,L(Ez))).

Remark 2.7. The vector bundle E on M is trivializable and the parallel transport provides a
M -indexed family of trivializations, since for any z ∈ M , the pair fz : E 7→ M × E, (x, v) 7→
(x, τxz(v)), Id : M 7→M,x 7→ x, is a vector bundle isomorphism from E →M onto M×E →M .
Note that if exp is derived from a connection, τ−1

xy = τyx for any x, y ∈M .

2.3 OM and Sσ-bounded geometry

Classically, in Riemannian geometry, bounded geometry hypothesis gives boundedness on the
covariant derivative of the Riemann curvature of the basis manifold. For the following pseu-
dodifferential calculus, we shall need some hypothesis of that kind, formulated not with the
curvature but with the exponential diffeomorphisms (“normal” coordinate transition maps).
The hypothesis that we will need for pseudodifferential symbol calculus is actually not simply
the boundedness condition on the derivatives of the transition maps, which is a classical conse-
quence of bounded geometry. For symbol calculus, we will require that the nth-derivatives are
not only bounded, but decrease to zero at infinity as ‖x‖−σ(n−1) where σ is a parameter in [0, 1].
Or, in other words, the normal coordinate change maps behave as “symbols” or order 1. Thus,
we introduce the following

Definition 2.8. Let σ ∈ [0, 1]. The exponential manifold (M, exp) is said to have a Sσ-bounded
geometry if for any (z, b), (z′, b′), and any n-multi-index α 6= 0,

(Sσ1) ∂αψb,b′

z,z′(x) = O(〈x〉−σ(|α|−1)) ,

and a OM -bounded geometry if for any (z, b), (z′, b′), and any n-multi-index α, there exist
pα ≥ 1 such that

(OM1) ∂αψb,b′

z,z′(x) = O(〈x〉pα) .

We shall be working with OM -bounded geometry for the definition of function spaces
and Fourier transform and with Sσ-bounded geometry (for a σ ∈ [0, 1]) for pseudodifferential
symbol calculus.

Definition 2.9. The triple (M, exp, E) where (M, exp) is exponential and E is a hermitian
vector bundle on M has a Sσ-bounded geometry if (M, exp) has a Sσ-bounded geometry and
for any (z, b), z′, z′′, and any n-multi-index α,

(Sσ2) ∂αz,bτ
−1
z′ τz′′(x) = O(〈x〉−σ|α|z,b ) ,

and a OM -bounded geometry if (M, exp) has a OM -bounded geometry and for any (z, b), (z′, b′),
and any n-multi-index α, there exist pα ≥ 1 such that

(OM2) ∂αz,bτ
−1
z′ τz′′(x) = O(〈x〉pαz,b) .
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Clearly, if σ ≤ σ′, since (Sσ′i) ⇒ (Sσi), we have Sσ′-bounded ⇒ Sσ-bounded ⇒ OM -
bounded. Note that Sσ-bounded geometry on the vector bundle entails that the derivatives
of the transport transition maps τ−1

z τz′ (smooth from M to L(Ez′ , Ez)) are bounded (for S0-
bounded geometry) or decrease to zero with an order equal to the order of the derivative (for
S1-bounded geometry). Remark also that if E is a trivial bundle and ∇E = d, then (S12) is
automatically satisfied since the maps τz are all equal to the constant x 7→ IdE.

Lemma 2.10. Let σ ∈ [0, 1] and (z, b), (z′, b′) be given frames.
(i) If (M, exp) has a Sσ-bounded geometry, there exist K,C,C ′ > 0 such that for any x ∈ R

n,
x ∈M , θ ∈ T ∗

x (M), ξ ∈ Tx(M),

ψb,b′

z,z′ ≍ IdRn and 〈x〉z,b ≤ K〈x〉z′,b′ , (2.1)

〈θ〉z,b,x ≤ C〈θ〉z′,b′,x and 〈ξ〉z,b,x ≤ C ′〈ξ〉z′,b′,x , (2.2)

and if (M, exp) has a OM -bounded geometry, there exist K,K ′,K ′′, C,C ′ > 0 and q ≥ 1 such
that for any x ∈ R

n, x ∈M , θ ∈ T ∗
x (M), ξ ∈ Tx(M),

K ′〈x〉1/q ≤ 〈ψb,b′

z,z′ (x)〉 ≤ K ′′〈x〉q and 〈x〉z,b ≤ K〈x〉qz′,b′ , (2.3)

〈θ〉z,b,x ≤ C〈x〉qz′,b′〈θ〉z′,b′,x and 〈ξ〉z,b,x ≤ C ′〈x〉qz′,b′〈ξ〉z′,b′,x , (2.4)

(ii) For any given n-multi-indice α, we can write

∂αz,b =
∑

0≤|α′|≤|α|

fα,α′ ∂α
′

z′,b′

where the (fα,α′) are smooth real functions on M such that for each n-multi-indices α,α′,
(a) if (M, exp) has a Sσ-bounded geometry, there exists Cα > 0 such that for any x ∈M ,

|fα,α′(x)| ≤ Cα〈x〉−σ(|α|−|α′|)
z,b ,

(b) if (M, exp) has a OM -bounded geometry, there exist Cα > 0 and qα ≥ 1 such that for
any x ∈M , |fα,α′(x)| ≤ Cα〈x〉qαz,b.

Proof. (i) Suppose that (M, exp) has a Sσ-bounded geometry. Taylor formula implies that∥∥∥ψb,b′

z,z′(x)
∥∥∥ ≤

∥∥∥ψb,b′

z,z′(0)
∥∥∥ + C0 ‖x‖ for any x ∈ R

n, where C0 := supx∈Rn

∥∥∥(dψb,b′

z,z′ )x

∥∥∥. As a conse-

quence ψb,b′

z,z′ (x) = O(‖x‖) and thus, there is K ′′ > 0 such that 〈ψb,b′

z,z′ (x)〉 ≤ K ′′〈x〉. The same

argument for ψb′,b
z′,z = (ψb,b′

z,z′)
−1 gives ψb,b′

z,z′ ≍ IdRn and 〈x〉z,b ≤ K〈x〉z′,b′ follows immediately.

Since x 7→
∥∥∥M̃b

z,x(M̃
b′

z′,x)
−1

∥∥∥ =
∥∥∥(dψb′,b

z′,z)nb
z (x)

∥∥∥ and x 7→
∥∥∥Mb

z,x(M
b′

z′,x)
−1

∥∥∥ =
∥∥∥(dψb,b′

z,z′ )nb′

z′
(x)

∥∥∥
are bounded functions, (2.2) follows. The case where (M, exp) has a OM -bounded geometry is
similar.
(ii) We have for any f ∈ C∞(M,E),

∂αz,b(f) = ∂α(f ◦ (nb
z)

−1) ◦ nb
z = ∂α(f ◦ (nb′

z′)
−1 ◦ ψb′,b

z′,z) ◦ nb
z .

We now apply the multivariate Faa di Bruno formula obtained by G.M. Constantine and T.H.
Savits in [8], that we reformulated for convenience in Theorem 2.11. This formula entails that
for any n-multi-index α 6= 0,

∂α(f ◦ (nb′

z′)
−1 ◦ ψb′,b

z′,z) =
∑

1≤|α′|≤|α|

Pα,α′(ψb′,b
z′,z) (∂α

′
f ◦ (nb′

z′)
−1) ◦ ψb′,b

z′,z
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and thus
∂αz,b =

∑

1≤|α′|≤|α|

(Pα,α′(ψb′,b
z′,z) ◦ nb

z) ∂
α′

z′,b′ =:
∑

1≤|α′|≤|α|

fα,α′ ∂α
′

z′,b′

where Pα,α′(g) is a linear combination of terms of the form
∏s
j=1(∂

ljg)k
j
, where 1 ≤ s ≤ |α| and

the kj and lj are n-multi-indices with |kj| > 0, |lj | > 0,
∑s

j=1 |kj | = |α′| and
∑s

j=1 |kj ||lj | = |α|.
In the case where (M, exp) has a Sσ-bounded geometry, for each s, (kj), (lj), there is K > 0 such
that for any x ∈ R

n,

|
s∏

j=1

(∂l
j
ψb′,b
z′,z)

kj (x)| ≤ K〈x〉−σ
∑s
j=1(|l

j |−1)|kj | = K〈x〉−σ(|α|−|α′|)

which gives the result. The case where (M, exp) has a OM -bounded geometry is similar.

Theorem 2.11. [8] Let f ∈ C∞(Rp,E) and g ∈ C∞(Rn,Rp). Then for any n-multi-index
ν 6= 0,

∂ν(f ◦ g) =
∑

1≤|λ|≤|ν|

(∂λf) ◦ g
|ν|∑

s=1

∑

ps(ν,λ)

ν!

s∏

j=1

1

kj !(lj !)|k
j |

(∂l
j
g)k

j

where ps(ν, λ) is the set of p-multi-indices kj and n-multi-indices lj (1 ≤ j ≤ s) such that
0 ≺ l1 ≺ · · · ≺ ls (l ≺ l′ being defined as “|l| < |l′| or |l| = |l′| and l <L l

′” where <L is the strict
lexicographical order), |kj | > 0,

∑s
j=1 k

j = λ and
∑s

j=1 |kj|lj = ν.

Note that by Lemma 2.10, if (M, exp) satisfies (Sσ1) (resp. (OM1)), then (Sσ2) (resp.
(OM2)) is equivalent to: for any z′, z′′ ∈M , there exists a frame (z, b) such that ∂αz,bτ

−1
z′ τz′′(x) =

O(〈x〉−σ|α|z,b ) (resp. O(〈x〉pαz,b) for a pα ≥ 1) for any n-multi-index α.
As the following proposition shows, Sσ or OM -bounded geometry properties can be

transported by any diffeomorphism.

Proposition 2.12. If (M, expM ) has a Sσ (resp. OM ) bounded geometry, N a smooth manifold
and ϕ : M → N is a diffeomorphism, then (N, expN := ϕ ◦ expM ◦ dϕ−1) has a Sσ (resp. OM )
bounded geometry.

Proof. Let us note ψb,b′

z,z′,N := nb
z,N ◦ (nb′

z′,N )−1 where nb
z,N := Lb ◦ exp−1

N,z and (z, b), (z′, b′)

are two frames on N . Since expz′,N = ϕ ◦ expM,ϕ−1(z′) ◦(dϕ−1)z′ and exp−1
N,z = (dϕ−1)−1

z ◦
exp−1

M,ϕ−1(z)
◦ ϕ−1, we obtain ψb,b′

z,z′,N = ψ
bz ,b′z′
ϕ−1(z),ϕ−1(z′),M

where bz is the basis of Tϕ−1(z)(M) such

that Lbz = Lb ◦ (dϕ)ϕ−1(z). The result follows.

The following technical lemma will be used for Fourier transform and the definition of
rapidly decreasing section spaces over the tangent and cotangent bundle in section 3. It will
also give the behaviour of symbols under coordinate change.

Lemma 2.13. Let (z, b), (z′, b′) be given frames.

(i) We can express ∂
(α,β)
z,b as an operator on C∞(T ∗M,E) (resp. C∞(TM,E)) , where (α, β) is

a 2n-multi-index, with the following finite sum:

∂
(α,β)
z,b =

∑

0≤|(α′,β′)|≤|(α,β)|

|β′|≥|β|

fα,β,α′,β′ ∂
(α′,β′)
z′,b′

10



where the fα,β,α′,β′ are smooth functions on T ∗M (resp. TM) such that
(a) if (M, exp) has a Sσ-bounded geometry for a given σ ∈ [0, 1], there exists Cα,β > 0

such that for any (x, θ) ∈ T ∗M (resp. TM),

|fα,β,α′,β′(x, θ)| ≤ Cα,β〈x〉σ(|α′|−|α|)
z,b 〈θ〉|β

′|−|β|
z,b,x . (2.5)

(b) if (M, exp) has a OM -bounded geometry, there exist Cα,β > 0 and qα,β ≥ 1 such that
for any (x, θ) ∈ T ∗M (resp. TM),

|fα,β,α′,β′(x, θ)| ≤ Cα,β〈x〉qα,βz,b 〈θ〉|β
′|−|β|

z,b,x . (2.6)

(ii) We can express ∂
(α,β)
z,b as an operator on C∞(M ×M,E), with the following finite sum:

∂
(α,β)
z,b =

∑

0≤|α′|≤|α|

0≤|β′|≤|β|

fα,β,α′,β′ ∂
(α′,β′)
z′,b′

where the fα,β,α′,β′ are smooth functions on M ×M such that
(a) if (M, exp) has a Sσ-bounded geometry for a given σ ∈ [0, 1], there exists Cα,β > 0

such that for any (x, y) ∈M ×M ,

|fα,β,α′,β′(x, y)| ≤ Cα,β 〈x〉σ(|α′|−|α|)
z,b 〈y〉σ(|β′|−|β|)

z,b . (2.7)

(b) if (M, exp) has a OM -bounded geometry, there exist Cα,β > 0 and qα, qβ ≥ 1 such
that for any (x, y) ∈M ×M ,

|fα,β,α′,β′(x, y)| ≤ Cα,β 〈x〉qαz,b 〈y〉
qβ
z,b. (2.8)

Proof. (i) Suppose that (M, exp) has a Sσ-bounded geometry. Let us note ψ∗ := nb′

z′,∗ ◦ (nb
z,∗)

−1

and ψT := nb′

z′,T ◦ (nb
z,T )−1. We have ψ∗ = (ψb′,b

z′,z ◦ π1, L) where π1 is the projection from

R
2n onto the first copy of R

n in R
2n and L is the smooth map from R

2n to R
n defined as

L(x, ϑ) := t(dψb′,b
z′,z)

−1
x (ϑ) = t(dψb,b′

z,z′ )ψb′,b

z′,z
(x)

(ϑ). Noting (Li)1≤i≤n the components of L, we have

Li(x, ϑ) =
∑

1≤p≤nLi,p(x)ϑp, where Li,p := (∂iψ
b,b′

z,z′)p ◦ ψ
b′,b
z′,z . As a consequence, for 1 ≤ i ≤ n

and α, β, n-multi-indices such that |(α, β)| > 0

(∂(α,β)ψ∗)i = δβ,0(∂
αψb′,b

z′,z)i ◦ π1 , (∂(α,β)ψ∗)n+i = (∂(α,β)L)i ,

(∂(α,β)L)i(x, ϑ) =
∑

1≤p≤n

(∂αLi,p)(x) Fβ,p(ϑ) ,

∂αLi,p =
∑

1≤|α′|≤|α|

Pα,α′(ψb′,b
z′,z) ((∂α

′+eiψb,b′

z,z′)p ◦ ψ
b′,b
z′,z) if |α| > 0 ,

where Fβ,p(ϑ) is equal to ϑp if β = 0, to δp,r if β = er, and to 0 otherwise. We get from the proof

of Lemma 2.10 that (for 1 ≤ |α′| ≤ |α|) Pα,α′(ψb′,b
z′,z)(x) = O(〈x〉−σ(|α|−|α′|)). As a consequence,

using (2.1), we see that ∂αLi,p(x) = O(〈x〉−σ|α|). Thus, if |β| > 1, ∂(α,β)ψ∗ = 0 and

if β = 0 , (∂(α,β)ψ∗)i(x, ϑ) = O(〈x〉−σ(|α|−1)) and (∂(α,β)ψ∗)n+i(x, ϑ) = O(〈x〉−σ|α|〈ϑ〉) ,
if |β| = 1 , (∂(α,β)ψ∗)i = 0 and (∂(α,β)ψ∗)n+i(x, ϑ) = O(〈x〉−σ|α|) .
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Similar results hold for ψT , the only difference is that we just have to take L̃ := (dψb′,b
z′,z)x(ϑ)

instead of L.
We have for any f ∈ C∞(T ∗M,E),

∂νz,b(f) = ∂ν(f ◦ (nb
z,∗)

−1) ◦ nb
z,∗ = ∂ν(f ◦ (nb′

z′,∗)
−1 ◦ ψ∗) ◦ nb

z,∗ .

Using again the Faa di Bruno formula in Theorem 2.11, we get

∂νz,b =
∑

1≤|ν′|≤|ν|

(Pν,ν′(ψ∗) ◦ nb
z,∗) ∂

ν′

z′,b′ =:
∑

1≤|ν′|≤|ν|

fν,ν′ ∂
ν′

z′,b′

where Pν,ν′(ψ∗) is a linear combination of terms of the form
∏s
j=1(∂

ljψ∗)
kj , where 1 ≤ s ≤ |ν|,

the kj and lj are 2n-multi-indices with |kj | > 0, |lj | > 0,
∑s

j=1 k
j = ν ′ and

∑s
j=1 |kj |lj = ν.

Let us note lj =: (lj,1, lj,2), kj =: (kj,1, kj,2) where lj,1, lj,2, kj,1, kj,2 are n-multi-indices.
Thus,

(∂l
j
ψ∗)

kj =
n∏

i=1

((∂l
j
ψ∗)i)

kj,1i ((∂l
j
ψ∗)n+i)

kj,2i

and we get, for a given s, (lj), (kj) such that (∂l
j
ψ∗)

kj 6= 0 for all 1 ≤ j ≤ s,

if lj,2 = 0 , (∂l
j
ψ∗)

kj = O(〈x〉−σ(|lj |−1)|kj |−σ|kj,2|〈ϑ〉|kj,2|) ,
if |lj,2| = 1 , kj,1 = 0 and (∂l

j
ψ∗)

kj = O(〈x〉−σ(|lj |−1)|kj |) .

Since kj 6= 0 and (∂l
j
ψ∗)

kj 6= 0, lj,2 always satisfies |lj,2| ≤ 1. By permutation on the
j indices, we can suppose that for 1 ≤ j ≤ j1 − 1, we have lj,2 = 0, for j1 ≤ j ≤ s, we have
|lj,2| = 1, where 1 ≤ j1 ≤ s+ 1. Thus,

s∏

j=1

(∂l
j
ψ∗)

kj = O(〈x〉−σ(
∑s
j=1(|lj |−1)|kj |+

∑j1−1
j=1 |kj,2|)〈ϑ〉

∑j1−1
j=1 |kj,2|) .

Since, with ν = (α, β), ν ′ = (α′, β′),

j1−1∑

j=1

|kj,2| =
s∑

j=1

|kj,2| −
s∑

j=j1

|kj,2| = |β′| −
s∑

j=j1

|kj ||lj,2| = |β′| − |β| ,

(2.5) follows. If we set f0,0,0,0 := 1 and fα,0,0,0 := 0 if α 6= 0, then for any 2n-multi-index (α, β),

∂
(α,β)
z,b =

∑

0≤|(α′,β′)|≤|(α,β)|

|β′|≥|β|

fα,β,α′,β′ ∂
(α′,β′)
z′,b′

and the estimate (2.5) holds for any fα,β,α′,β′ . In the case of OM -bounded geometry, the proof is

similar, and we obtain for a rν ≥ 1,
∏s
j=1(∂

ljψ∗)
kj = O(〈x〉rν 〈ϑ〉|β′|−|β|), which gives the result.

(ii) Replacing ψ∗ by ψb′,b
z′,z,M2 := nb′

z′,M2 ◦ (nb

z,M2)
−1 in (i), we obtain the result by similar

arguments.
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2.4 Basic function and distribution spaces

We suppose in this section that E is an hermitian vector bundle on the exponential manifold
(M, exp). Recall that if u ∈ C∞(M ;E) (resp. C∞

c (M ;E)) the Fréchet space of smooth sections
(resp. the LF -space of compactly supported smooth sections) of E → M , we have for any
z ∈M , uz := τ−1

z u ∈ C∞(M,Ez) (resp. C∞
c (M,Ez)). We define for any frame (z, b) on M ,

Tz,b(u) := uz ◦ (nb
z)

−1.

Thus, Tz,b sends sections of E → M to functions from R
n to Ez and is in fact a topological

isomorphism from C∞(M ;E) (resp. C∞
c (M ;E)) onto C∞(Rn, Ez) (resp. C∞

c (Rn, Ez)).
In the following, a density (resp. a codensity) is a smooth section of the complex line

bundle over M defined by the disjoint union over x ∈ M of the complex lines formed by the
1-twisted forms on TxM (resp. T ∗

x (M)). Recall that a 1-twisted form on a n-dimensional vector
space V is a function on F on ΛnV \{0} such that

F (cv) = |c|F (v) for all v ∈ ΛnV \{0} and c ∈ R
∗.

For a given frame (z, b), let us note |dxz,b| the density associated to the volume form on M :
dxz,b := dx1,z,b ∧ · · · ∧ dxn,z,b and |∂z,b| the codensity defined as |∂1,z,b ∧ · · · ∧ ∂n,z,b|.

Any density (resp. codensity) is of the form c|dxz,b| (resp. c|∂z,b|) where c is a smooth
function on M , and by definition is strictly positive if c(x) > 0 for any x ∈ M . For a given
strictly positive density dµ, we also note by dµ its associated (positive, Borel–Radon, σ-finite)
measure on M . This allows to define the following Banach spaces of (equivalence classes of)
functions on M : Lp(M,dµ) (1 ≤ p ≤ ∞). Actually, L∞(M) := L∞(M,dµ) does not depend on
the chosen dµ, since the null sets for dµ are exactly the null sets for any other strictly positive
density dµ′ on M .

For a given z ∈ M , we note Lp(M,Ez , dµ) (1 ≤ p < ∞) and L∞(M,Ez) the Bochner
spaces on M with values in Ez. Ez is a hermitian complex vector space, so we can identify Ez
with its antidual E′

z. There is a natural anti-isomorphism between E′
z and the dual of Ez but

there is in general no canonical way to identify Ez with its dual with a linear isomorphism. Thus,
we shall use antiduals rather than duals in the following. However, Ez is anti-isomorphic with
its dual by complex conjugaison on E′

z. We shall note x the image under this anti-isomorphism
of x ∈ Ez and Ez the dual of Ez.

We note Lp(M ;E, dµ) := {ψ section of E → M such that |ψ|p ∈ L1(M,dµ) }/ ∼a.e.

and L∞(M ;E) := {ψ section of E → M such that |ψ| ∈ L∞(M) }/ ∼a.e. where ∼a.e. the stan-
dard “almost everywhere” equivalence relation. Since the τxy maps are isometries, for any
z ∈ M , the map ψ → τ−1

z ψ defines linear isometries: Lp(M ;E, dµ) ≃ Lp(M,Ez, dµ), and
L∞(M ;E) ≃ L∞(M,Ez). In particular, Lp(M ;E, dµ) and L∞(M ;E) are Banach spaces and
L2(M ;E, dµ) a Hilbert space. Moreover, we can define for any ψ ∈ L1(M ;E, dµ) and z ∈M the
following Bochner integral

∫
τ−1
z ψ ∈ Ez. We can canonically identify L∞(M ;E) as the antidual

of L1(M ;E, dµ) and L2(M ;E, dµ) as its own antidual. The (strong) antiduals of C∞
c (M ;E)

and C∞(M ;E) are noted respectively D′(M ;E) and E ′(M ;E).
We define Gσ(R

p,E) (resp. Sσ(R
p)), where σ ∈ [0, 1], as the space of smooth functions

g from R
p into E (resp. R) such that for any p-multi-index ν 6= 0 (resp. any p-multi-index ν),

there exists Cν > 0 such that ‖∂νg(v)‖ ≤ Cν〈v〉−σ(|ν|−1) (resp. |∂νg(v)| ≤ Cν〈v〉−σ|ν|) for any
v ∈ R

p. We note OM (Rp,E) the space of smooth E-valued functions with polynomially bounded
derivatives. We use the shorcuts Gσ(R

p) := Gσ(R
p,Rp) and OM (Rp) := OM (Rp,R).
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We have the following lemma which will give an equivalent formulation of Sσ or OM -
bounded geometry.

Lemma 2.14. (i) Let f ∈ Gσ(R
p,E) (resp. Sσ(R

p)) and g ∈ Gσ(R
n,Rp) such that, if σ > 0,

there exists ε > 0 such that 〈g(v)〉 ≥ ε〈v〉 for any v ∈ R
n. Then f ◦ g ∈ Gσ(R

n,E) (resp.
Sσ(R

n)).
(ii) The set G×

σ (Rp) of diffeomorphisms g on R
p such that g and g−1 are in Gσ(R

p) is a subgroup
of Diff(Rp) and contains GLp(R) as a subgroup.
(iii) We have OM (Rp,E) ◦ OM (Rn,Rp) ⊆ OM (Rn,E). In particular, the space OM (Rp,Rp) is
a monoid under the composition of functions. The set of inversible elements of the monoid
OM (Rp,Rp), noted O×

M (Rp,Rp), is a subgroup of Diff(Rp) and contains G×
σ (Rp) as a subgroup.

(iv) (M, exp) has a Sσ (resp. OM )-bounded geometry if and only if there exists a frame (z0, b0)

such that for any frame (z, b), ψb0,b
z0,z ∈ G×

σ (Rn) (resp. O×
M (Rn,Rn)).

(v) The set, noted S×
σ (Rp) (resp. O×

M (Rp)), of smooth functions f : R
p → R

∗ such that f and
1/f are in Sσ(R

p) (resp. OM (Rp)) is a commutative group under pointwise multiplication of
functions. Moreover, S×

σ (Rp) ≤ S×
σ′(R

p) ≤ O×
M (Rp) if 1 ≥ σ ≥ σ′ ≥ 0.

(vi) If g ∈ G×
σ (Rp) (resp. O×

M (Rp,Rp)) then its Jacobian determinant J(g) is in S×
σ (Rp) (resp.

O×
M (Rp)).

Proof. (i) The Faa di Bruno formula yields for any n-multi-index ν 6= 0,

∂ν(f ◦ g) =
∑

1≤|λ|≤|ν|

(∂λf) ◦ g Pν,λ(g) (2.9)

where Pν,λ(g) is a linear combination (with coefficients independant of f and g) of functions

of the form
∏s
j=1(∂

ljg)k
j

where s ∈ { 1, · · · , |ν| }. The kj are p-multi-indices and the lj are

n-multi-indices (for 1 ≤ j ≤ s) such that |kj | > 0, |lj | > 0,
∑s

j=1 k
j = λ and

∑s
j=1 |kj |lj = ν.

As a consequence, since g ∈ Gσ(R
n,Rp), for each ν, λ with 1 ≤ |λ| ≤ |ν| there exists Cν,λ > 0

such that for any v ∈ R
n,

|Pν,λ(g)(v)| ≤ Cν,λ〈v〉−σ(|ν|−|λ|) . (2.10)

Moreover, if f ∈ Gσ(R
p,E) (resp. Sσ(R

p)), there is C ′
λ > 0 such that for any v ∈ R

n,∥∥(∂λf) ◦ g(v)
∥∥ ≤ C ′

λ〈v〉−σ(|λ|−1) (resp. |(∂λf) ◦ g(v)| ≤ C ′
λ〈v〉−σ|λ|). The result now follows

from (2.9) and (2.10).
(ii) Let f and g in G×

σ (Rp). We have ∂ig
−1 = O(1) for any i ∈ { 1, · · · , p }. Taylor–Lagrange

inequality of order 1 entails that 〈g−1(v)〉 = O(〈v〉) and thus there is ε > 0 such that 〈g(v)〉 ≥
ε〈v〉 for any v ∈ R

n. With (i), we get f ◦ g ∈ Gσ(R
p). The same argument shows that

g−1 ◦ f−1 ∈ Gσ(R
p).

(iii) Direct consequence of Theorem 2.11.

(iv) The only if part is obvious. Suppose then that for any frame (z, b), ψb0,b
z0,z ∈ G×

σ (Rn) (resp.

O×
M (Rn,Rn). Let (z, b), (z′, b′) be two frames. We have ψb,b′

z,z′ = ψb,b0
z,z0 ◦ ψb0,b′

z0,z′
. So, by (ii) (resp.

(iii)), ψb,b′

z,z′ ∈ G×
σ (Rn) (resp. O×

M (Rn,Rn)), which yields the result.
(v) By Leibniz rule, the spaces Sσ(R

p) and OM (Rp) are R-algebras under the pointwise product
of functions. The result follows.
(vi) Consequence of (ii), (iii), 1/J(g) = J(g−1) ◦ g and the fact that Sσ(R

p) (resp. OM (Rp)) is
stable under the pointwise product of functions.

Remark that for any g ∈ G×
σ (Rp), we have g ≍ IdRp . The multiplication by a function

in O×
M (Rn) is a topological isomorphism from the Fréchet space of rapidly decaying Ez-valued
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functions S(Rn, Ez) onto itself. If we note Jb,b′

z,z′ the Jacobian of ψb,b′

z,z′ , then 1/Jb,b′

z,z′ = Jb′,b
z′,z ◦ψ

b,b′

z,z′

and Jb,b′

z,z′ ◦ nb′

z′(x) = dxz,b/dxz
′,b′(x) = detMb

z,x(M
b′

z′,x)
−1 = det(Mb′

z′,x)
−1Mb

z,x. We deduce from

Lemma 2.14 (vi) that if (M, exp) has a Sσ (resp. OM ) bounded geometry then Jb,b′

z,z′ is in S×
σ (Rn)

(resp. O×
M (Rn)).

Definition 2.15. Any smooth function f is in Sσ (resp. OM ) if for any frame (z, b), f ◦(nb
z)

−1 ∈
Sσ(R

n) (resp. OM (Rn)). Similarly, any smooth function f is in S×
σ (resp. O×

M ) if for any frame
(z, b), f ◦ (nb

z)
−1 ∈ S×

σ (Rn) (resp. O×
M (Rn)).

Lemma 2.16. If (M, exp) has a Sσ-bounded geometry then a smooth function f on M is in
Sσ (resp. S×

σ ) if there exists a frame (z, b) such that f ◦ (nb
z)

−1 ∈ Sσ(R
n) (resp. S×

σ (Rn)).
Similarly, If (M, exp) has a OM -bounded geometry then f is in OM (resp. O×

M ) if there exists
a frame (z, b) such that f ◦ (nb

z)
−1 ∈ OM (Rn) (resp. O×

M (Rn)).

Proof. Let (z′, b′) be a frame such that f ◦ (nb′

z′)
−1 ∈ Sσ(R

n), and let (z, b) be another frame.
By Lemma 2.10 (ii), if (M, exp) has a Sσ-bounded geometry then for any n-multi-index α,

∂α(f ◦ (nb
z)

−1) =
∑

0≤|α′|≤|α|

fα,α′ ◦ (nb
z)

−1 (∂α
′
f ◦ (nb′

z′)
−1) ◦ ψb′,b

z′,z

where (fα,α′ ◦ (nb
z)

−1)(x) = O(〈x〉−σ(|α|−|α′|)). As a consequence ∂α(f ◦ (nb
z)

−1)(x) = O(〈x〉−σ|α|)
and the result follows. The case of OM bounded geometry is similar.

Definition 2.17. A smooth strictly positive density dµ is a S×
σ -density (resp. O×

M -density) if
for any frame (z, b), the unique smooth strictly positive function fz,b such that dµ = fz,b|dxz,b|
is in S×

σ (resp. O×
M ). In this case, we shall note µz,b the smooth stricly positive function in

S×
σ (Rn) (resp. O×

M (Rn)) such that dµ = (µz,b ◦ nb
z) |dxz,b|.

We shall say that (M, exp, dµ) has a Sσ (resp. OM ) bounded geometry if (M, exp) has
a Sσ (resp. OM ) bounded geometry and dµ is a S×

σ (resp. O×
M ) density.

Lemma 2.18. If (M, exp) has a Sσ (resp. OM ) bounded geometry then any density of the form
u◦nb′

z′ |dxz,b| where u is a smooth strictly positive function in S×
σ (Rn) (resp. OM (Rn)) and (z, b),

(z′, b′) are frames, is a S×
σ -density (resp. O×

M -density).

Proof. Let (z′′, b′′) be an arbitrary frame. Noting dµ := u◦nb′

z′ |dxz,b|, we get dµ = (u◦nb′

z′)|J
b,b′′

z,z′′ |◦
nb′′

z′′ |dxz
′′,b′′ |. We already saw that the function Jb,b′′

z,z′′ is in S×
σ (Rn) (resp. O×

M (Rn)). By Lemma

2.16, (u ◦ nb′

z′)(|J
b,b′′

z,z′′ | ◦ nb′′

z′′) is in S×
σ (resp. O×

M ).

Remark 2.19. By taking u := x 7→ 1 in the previous lemma, we see that for any exponential
manifold (M, exp) with Sσ (resp. OM ) bounded geometry, we can define a canonical family of
S×
σ -densities (resp. O×

M -densities) on M : D := (|dxz,b|)(z,b)∈I where I is the set of frames on M .
If the map exp is the exponential map associated to a pseudo-Riemannian metric g on M , we
can also define a canonical subfamily of D by Dg := (|dxz |)z∈M where |dxz| := |dxz,b| with b any
orthonormal basis (in the sense gz(bi, bj) = ηiδi,j where ηi = 1 for 1 ≤ i ≤ m and ηi = −1 for
i > m, where g has signature (m,n −m)) of Tz(M) (|dxz | is then independant of b). A priori,
the Riemannian density does not belong to the canonical M -indexed family Dg.
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We shall need integration over tangent and cotangent fibers and manifolds. We thus
define dµ∗ := (µ−1

z,b ◦ nb
z) |∂z,b| the codensity associated to dµ, where µ−1

z,b := 1
µz,b

and (z, b)

is a frame. Note that since |∂z,b|/|∂z′,b′ | = |dxz′,b′ |/|dxz,b| = (µz,b ◦ nb
z)/(µz′,b′ ◦ nb′

z′), dµ
∗ is

independant of (z, b). For a given x ∈ M , the density on Tx(M) associated to dµ is dµx :=

(µz,b ◦ nb
z(x)) |dxz,bx | and the associated density on T ∗

x (M) is dµ∗x := (µ−1
z,b ◦ nb

z(x)) |∂z,bx|. For a
function f defined on Tx(M) or T ∗

x (M), we have formally:

∫

Tx(M)
f(ξ) dµx(ξ) = µz,b ◦ nb

z(x)

∫

Rn

f ◦ (Mb
z,x)

−1(ζ) dζ ,

∫

T ∗
x (M)

f(θ) dµ∗x(θ) = µ−1
z,b ◦ nb

z(x)

∫

Rn

f ◦ (M̃b
z,x)

−1(ϑ) dϑ ,

and it is straightforward to check that these integrals are independant of the chosen frame (z, b).

2.5 Schwartz spaces and operators

Assumption 2.20. We suppose in this section and in section 2.6 that (M, exp, E, dµ), where
E is an hermitian vector bundle on M , has a OM -bounded geometry.

The main consequence of the exponential structure is the possibility to define Schwartz
functions on M .

Definition 2.21. A section u ∈ C∞(M,E) is rapidly decaying at infinity if for any (z, b), any
n-multi-index α and p ∈ N, there exists Kα,p > 0 such that the following estimate

∥∥∂αz,buz(x)
∥∥
Ez
< Kα,p〈x〉−pz,b (2.11)

holds uniformly in x ∈M . We note S(M,E) the space of such sections.

With the hypothesis of OM -bounded geometry, we see that the requirement “any (z, b)”
can be reduced to a simple existence:

Lemma 2.22. A section u ∈ C∞(M,E) is in S(M,E) if and only if there exists a frame (z, b)
such that (2.11) is valid.

Proof. Suppose that (2.11) is valid for (z′, b′) and let (z, b) be another frame. Thus, with Lemma
2.10 (ii) and Leibniz rule,

∂αz,bu
z(x) =

∑

0≤|α′|≤|α|

∑

β≤α′

fα,α′

(α′

β

)
∂α

′−β
z′,b′ (τ−1

z τz′) ∂
β
z′,b′u

z′(x). (2.12)

Moreover |fα,α′

(α′

β

)
∂α

′−β
z′,b′ (τ−1

z τz′)| ≤ Cα〈x〉qαz,b for a Cα > 0 and a qα ≥ 1. Now (2.11) and

(2.3) entail that for any p ∈ N, there is K > 0 such that
∥∥∥∂αz,buz(x)

∥∥∥
Ez

≤ K〈x〉−pz,b. The result

follows.

Remark 2.23. Let u ∈ C∞(M,E) and (z, b) a frame. Then u ∈ S(M,E) if and only if
(τ−1
z u) ◦ (nb

z)
−1 ∈ S(Rn, Ez). In other words, if v ∈ S(Rn, Ez) then τz(v ◦ nb

z) ∈ S(M,E).

The following lemma shows that we can define canonical Fréchet topologies on S(M,E).
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Lemma 2.24. Let (z, b) a frame. Then
(i) The following set of semi-norms:

qα,p(u) := sup
x∈M

〈x〉pz,b
∥∥∂αz,buz(x)

∥∥
Ez

.

defines a locally convex metrizable topology T on S(M,E).
(ii) The application Tz,b is a topological isomorphism from the space S(M,E) onto S(Rn, Ez).
(iii) The topology T is Fréchet and independent of the chosen frame (z, b).

Proof. (i) and (ii) are obvious.
(iii) Since Tz,b is a topological isomorphism, T is complete. Following the arguments of the
proof of Lemma 2.22, we see that there is r ∈ N

∗ such that for any n-multi-index α and p ∈ N,
there exist Cα,p > 0, rα,p ∈ N

∗, such for any u ∈ S(M,E),

q(z,b)
α,p (u) ≤ Cα,p

∑

|β|≤|α|

q
(z′,b′)
β,rα,p

(u) .

The independance on (z, b) follows.

Remark 2.25. If (M, exp, E, dµ) has a S0-bounded geometry, then it is possible to define
the Fréchet space of smooth sections with bounded derivatives B(M,E) by following the same
procedure of S(M,E), with Lemma 2.10.

Classical results of distribution theory [48] and the previous topological isomorphisms
Tz,b entail the following diagrams of continuous linear injections ((M ;E) ommitted and 1 ≤ p <
∞):

C∞
c

//

��

S //

��

C∞

��
E ′ // S ′ // D′

B // L∞

""DD
DD

DD
DD

S //

@@
��������

Lp(dµ) // S ′ .

The injections S → B → L∞ are valid in the case where M has a S0-bounded geometry.
In the case of a general OM -bounded geometry, only the injection S → L∞ holds a priori. The
injection from functions into distribution spaces is given here by u 7→ 〈u, ·〉 where 〈u, v〉 :=∫

(u|v) dµ. Note that the following continuous injections S → S ′ and S → Lp(dµ) → S ′,
(1 ≤ p <∞) have a dense image.

Using the same principles of the definition of S together with the OM -bounded geometry
hypothesis and Lemma 2.13 (ii), we define the Fréchet space S(M ×M,L(E)) such that for any
(z, b) the applications Tz,b,M2 := K 7→ Kz ◦(nb

z,M2)
−1 are topological isomorphisms from S(M×

M,L(E)) onto S(R2n, L(Ez)). Noting jM2 the continous dense injection from S(M ×M,L(E))
into its antidual S ′(M ×M,L(E)) defined as 〈jM2(K),K ′〉 =

∫
M×M Tr(K(x, y)(K ′(x, y))∗) dµ⊗

dµ(x, y), we have the following commutative diagram, where j is the classical continuous dense
inclusion from S(R2n, L(Ez)) into its antidual, and Mµ⊗µ is the multiplication operator from
S(R2n, L(Ez)) onto itself by the O×

M (R2n) function µz,b ⊗ µz,b:

S(M ×M,L(E))
jM2 //

Tz,b,M2

��

// S ′(M ×M,L(E))

S(R2n, L(Ez)) Mµ⊗µ

// S(R2n, L(Ez)) j
// S ′(R2n, L(Ez)) .

T ∗
z,b,M2

OO
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Since S is nuclear, L(S,S ′) ≃ S ′(M ×M,L(E)) and S(M ×M,L(E)) ≃ S ⊗̂ S where S :=

S(M,E). Thus, S ′(M ×M,L(E)) ≃ S ′⊗̂ S ′
, where S ′

is the dual of S which is also the antidual
of S. Note that the isomorphism L(S,S ′) ≃ S ′(M ×M,L(E)) is given by

〈AK(v), u〉 = K(u⊗ v)

where AK is operator associated to the kernel K, u, v ∈ S, and v(y) := v(y). Formally,

〈AK(v), u〉 =

∫

M×M
(K(x, y)v(y)|u(x))dµ ⊗ dµ(x, y) , (AKv)(x) =

∫

M
K(x, y)v(y)dµ(y).

Thus any continuous linear operator A : S → S ′ is uniquely determined by its kernel KA ∈
S ′(M ×M,L(E)). The transfert of A into the frame (z, b) is the operator Az,b from S(Rn, Ez)
into S ′(Rn, Ez) such that

〈Az,b(v), u〉 := 〈A(T−1
z,b (v)), T−1

z,b (u)〉.

Thus, if KA is the kernel of A, we have KAz,b := T̃z,b,M2(KA) as the kernel of Az,b, where

T̃z,b,M2 here is the inverse of the adjoint of Tz,b,M2. T̃z,b,M2 is a topological isomorphism from
S ′(M ×M,L(E)) onto S ′(R2n, L(Ez)).

Definition 2.26. An operator A ∈ L(S,S ′) is regular if A and its adjoint A† send continously S
into itself. An isotropic smoothing operator is an operator with kernel in S(M ×M,L(E)). The
space regular operators and the space of isotropic smoothing operators are respectively noted
ℜ(S) and Ψ−∞.

Note that this definition of isotropic smoothing operators differs from the standard
smoothing operators one where only local effect are taking into account, since in this case,
a smoothing operator is just an operator with smooth kernel. Clearly, A is regular if and only if
for any frame (z, b), Az,b is regular as an operator from S(Rn, Ez) into S ′(Rn, Ez). Remark that
the space of regular operators forms a ∗-algebra under composition and the space of isotropic
smoothing operators Ψ−∞ is a ∗-ideal of this algebra.

Let us record the following important fact:

Proposition 2.27. Any isotropic smoothing operator extends (uniquely) as a Hilbert–Schmidt
operator on L2(dµ).

Proof. An isotropic smoothing operator A (with kernel K) extends as a continous linear operator
from S ′ to S, and thus it also extends as a bounded operator on L2(dµ). Let (z, b) be a frame. If
U is the unitary associated to the isomorphism L2(dµ) onto Hz,b := L2(Rn, Ez, µz,b dx) we have
A = U∗Az,bU where Az,b is a bounded operator on Hz,b given by the kernel Kz ◦ (nb

z, n
b
z)

−1.
Since this kernel is in Hz,b⊗Hz,b = L2(R2n, Ez⊗Ez, (µz,bdx)⊗2), it follows that Az,b is Hilbert–
Schmidt on Hz,b, which gives the result.

2.6 Fourier transform

Fourier transform is the fundamental element that will allow the passage from operators to their
symbols. In our setting, it is natural to extend the classical Fourier transform on R

n to Schwartz
spaces of rapidly decreasing sections on the tangent and cotangent bundles of M , and use the
fibers Tx(M), T ∗

x (M) as support of integration.
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Definition 2.28. A smooth section a ∈ C∞(T ∗M,L(E)) is in S(T ∗M,L(E)) if for any (z, b),
any 2n-multi-index ν and any p ∈ N, there exists Kp,ν > 0 such that

∥∥∂νz,baz(x, θ)
∥∥
L(Ez)

≤ Kp,ν〈x, θ〉−pz,b (2.13)

uniformly in (x, θ) ∈ T ∗M . A similar definition is set for S(TM,L(E)).

Following the same technique as for the space S(M,E), using the coordinate invariance
given by Lemma 2.13 we obtain the

Proposition 2.29. (i) A section u ∈ C∞(T ∗M,L(E)) is in S(T ∗M,L(E)) if and only if there
exists a frame (z, b) such that (2.13) is valid. A similar property holds for S(TM,L(E)).
(ii) There is a Fréchet topology on S(T ∗M,L(E)) such that each

Tz,b,∗ : a 7→ az ◦ (nb
z,∗)

−1

is a topological isomorphism from S(T ∗M,L(E)) onto S(R2n, L(Ez)). A similar property holds
for S(TM,L(E)) and the applications Tz,b,T := a 7→ az ◦ (nb

z,T )−1.

Proof. (i, ii) Suppose that (2.13) is valid for (z′, b′) and a ∈ C∞(T ∗M,L(E)) and let (z, b)
another frame. With Lemma 2.13 and Leibniz rule, noting ν = (α, β), ν ′ = (α′, β′), λ = (λ1, λ2)
and ρ = (ρ1, ρ2), we get

∂νz,ba
z =

∑

0≤|ν′|≤|ν|

|β′|≥|β|

∑

ρ≤λ≤ν′

fν,ν′Cν′,λ,ρ ∂
α′−λ1

z′,b′ (τ−1
z τz′) ∂

(ρ1,β′)
z′,b′ (az

′
) ∂λ

1−ρ1

z′,b′ (τ−1
z′ τz) (2.14)

where Cν′,λ,ρ = δβ′,λ2δβ′,ρ2
(
ν′

λ

)(
λ
ρ

)
. Using now the fact that for any x, ϑ ∈ R

n, 〈x〉1/2〈ϑ〉1/2 ≤
〈(x, ϑ)〉 ≤ 〈x〉〈ϑ〉, and (2.3), (2.4), we see that for any 2n-multi-index ν, and p ∈ N, there is

rν,p ∈ N
∗ and Cν,p > 0 such that q

(z,b)
ν,p (a) ≤ Cν,p

∑
|ρ|≤|ν| q

(z′,b′)
ρ,rν,p (a), where

q(z,b)
ν,p (a) := sup

(x,θ)∈T ∗M
〈x, θ〉pz,b

∥∥∂νz,baz(x, θ)
∥∥
L(Ez)

.

The results follow, as in the case of S(M,E), by taking the topology given by the seminorms

qz,bν,p for an arbitrary frame (z, b).

Remark 2.30. If (M, exp, E) has a S0-bounded geometry, we saw in Remark 2.25 that a
coordinate free (independant of the frame (z, b)) definition of a space of smooth E-sections on
M with bounded derivatives is possible. However, a similar definition cannot be done in the
same manner for L(E)-sections on TM or T ∗M with bounded derivatives, due to the fact that
the change of coordinates of Lemma 2.13 impose a increasing power of 〈θ〉 (when |β′| > |β|).
However, the independance over (z, b) would still hold for the space of smooth sections of
L(E) → T ∗M (resp. TM) with polynomially bounded derivatives.

We note S ′(T ∗M,L(E)) and S ′(TM,L(E)) the strong antiduals of S(T ∗M,L(E)) and
S(TM,L(E)), respectively. We have the following continuous inclusion with dense image

jT ∗M : S(T ∗M,L(E)) → S ′(T ∗M,L(E))
(
resp. jTM : S(TM,L(E)) → S ′(TM,L(E))

)
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defined by

〈jT ∗M (a), b〉 :=

∫

TM∗

Tr(ab∗)dµ∗
(
resp. 〈jTM (a), b〉 :=

∫

TM
Tr(ab∗)dµT

)

where dµ∗ is the measure on T ∗M given by dµ∗(x, θ) := dµ∗x(θ)dµ(x) and dµT is the measure on
TM given by dµT (x, ξ) := dµx(ξ)dµ(x). Note that for any (z, b), dµ∗(x, θ) = |∂z,bx|(θ)|dxz,b|(x)
(this is the Liouville measure on T ∗M) and dµT (x, θ) = µ2

z,b◦nb
z(x)|dxz,bx |(ξ)|dxz,b|(x). We have

the following commutative diagram, where Mµ2 is the multiplication operator by the O×
M (R2n)

function (x, ζ) 7→ µ2
z,b(x),

S(TM,L(E))
jTM //

Tz,b,T
��

// S ′(TM,L(E))

S(R2n, L(Ez)) Mµ2

// S(R2n, L(Ez)) j
// S ′(R2n, L(Ez))

T ∗
z,b,T

OO

and, in the case of S(T ∗M,L(E)) a similar diagram is valid if Mµ2 is replaced by the identity.

Definition 2.31. The Fourier transform of a ∈ S(TM,L(E)) is

F(a) : (x, θ) 7→
∫

Tx(M)
e−2πi〈θ,ξ〉 a(x, ξ) dµx(ξ) .

Proposition 2.32. F is a topological isomorphism from S(TM,L(E)) onto S(T ∗M,L(E)) with
inverse

F(a) := (x, ξ) 7→
∫

T ∗
x (M)

e2πi〈θ,ξ〉 a(x, θ) dµ∗x(θ) .

The adjoint F∗
of F coincides with F on S(TM,L(E)), so we still note F∗

by F and F∗ by F .

Proof. Let (z, b) be a frame. It is straightforward to check that the following diagram commutes

S(TM,L(E))
F //

Tz,b,T
��

S(T ∗M,L(E))

S(R2n, L(Ez)) Fz,b
// S(R2n, L(Ez))

T−1
z,b,∗

OO

where Fz,b = FP ◦ Mµ = Mµ ◦ FP , with Mµ the multiplication operator on S(R2n, L(Ez))
defined by Mµ(a) := (x, ζ) 7→ µz,b(x) a(x, ζ) and FP the partial Fourier transform on the space
S(R2n, L(Ez)) (only the variables in the second copy of R

n in R
2n being Fourier transformed).

It is clear that Fz,b is a topological isomorphism from S(R2n, L(Ez)) onto itself with inverse
F−1
z,b = M1/µ ◦ FP . The fact that F∗

coincides with F on S(TM,L(E)) is a consequence of the
following equality ∫

TM
Tr(a(F(b))∗) dµT =

∫

T ∗M
Tr(F(a)b∗) dµ∗

for any a ∈ S(TM,L(E)) and b ∈ S(T ∗M,L(E)), that is a direct consequence of the Parseval
formula for FP .
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3 Linearization and symbol maps

3.1 Linearization and the Φλ, Υt diffeomorphisms

Recall that a linearization (Bokobza-Haggiag [3]) on a smooth manifold M is defined as a
smooth map ν from M ×M into TM such that π ◦ ν = π1, ν(x, x) = 0 for any x ∈ M and
(dyν)y=x = IdTxM . Using this map, it is then possible by restricting ν on a small neighborhood
of the diagonal of M ×M , to obtain a diffeomorphism onto a neighborhood of the zero section
of TM and obtain an isomorphism between symbols (with a local control of the x variables
on compact) and pseudodifferential operators modulo smoothing ideals. These isomorphisms
depend on the linearization, as shown in [3, Proposition V.3]. We follow here the same idea,
with a global point of view, since we are interested in the behavior at infinity. We thus consider,
on the exponential manifold (M, exp, E, dµ) a fixed linearization ψ that comes from an (abstract)
exponential map ψ on M (also called linearization map in the following), so that ψ(x, y) = ψ−1

x y,
and ψx is a diffeomorphism from TxM onto M , with ψx(0) = x, (dψx)0 = IdTxM . For example,
ψ may be the exponential map exp.

Let λ ∈ [0, 1] and Φλ be the smooth map from TM onto M ×M defined by

Φλ : (x, ξ) 7→
(
ψx(λξ), ψx(−(1 − λ)ξ)

)
.

Assumption 3.1. We suppose from now on that whenever the parameters λ, λ′, are in ]0, 1[,
it is implied that the linearization map ψ satisfies for any x, y ∈ M and t ∈ R, ψx(tψ

−1
x (y)) =

ψy((1− t)ψ−1
y (x)). This hypothesis, called (Hψ) in the following, is automatically satisfied if the

linearization is derived from a exponential map of a connection on the manifold.

A computation shows that Φλ is a diffeomorphism with the following inverse Φ−1
λ :

(x, y) 7→ α′
yx(1 − λ) for λ 6= 0 and Φ−1

0 (x, y) :7→ −α′
xy(0), where αxy(t) := ψx(tψ

−1
x (y)). Noting

Φ−1
λ (x, y) =: (mλ(x, y), ξλ(x, y)), we see that mλ(x, y) = αxy(λ) and, if λ 6= 0, ξλ(x, y) =

1
λψ

−1
mλ(x,y)(x), while ξ0(x, y) = −ψ−1

x (y). In all the following, we shall use the symbol W (for

Weyl) for the value λ = 1
2 , so that mW := m 1

2
, ΦW := Φ 1

2
, and similar conventions for the

other mathematical symbols containing λ. Note that mλ is a smooth function from M ×M
onto M , with mλ(x, x) = x for any x ∈M . Moreover, for any x, y ∈M , mλ(x, y) = m1−λ(y, x),
mW (x, y) = mW (y, x) (the “middle point“ of x and y), ξλ(x, y) = −ξ1−λ(y, x), ξW (x, y) =
−ξW (y, x) and x 7→ Φ−1

λ (x, x) is the zero section of TM → M . Noting j the involution on
M ×M : (x, y) 7→ (y, x), we have Φλ = j ◦ Φ1−λ ◦ − IdTM .

For any t ∈ [−1, 1] (with the convention that if (Hψ) is not satisfied, we are restricted
to t ∈ {−1, 0, 1 }), we define,

Υt : (x, ξ) 7→
(
ψx(tξ),

−1
t ψ

−1
ψx(tξ)

(x)
)

with the convention −1
t ψ

−1
ψx(tξ)

(x) := ξ if t = 0, so that Υ0 = IdTM . A computation shows that

Υ−1
t = Υ−t. The Φλ and Υt diffeomorphisms are related by the following property: for any

λ, λ′ ∈ [0, 1], Φ−1
λ ◦ Φλ′ = Υλ′−λ. We will use the shortcut Υt,T (x, ξ) := −1

t ψ
−1
ψx(tξ)

(x), so that

Υt = (ψ ◦ t IdTM ,Υt,T ).

Remark 3.2. Note that (Hψ) entails that (Υt)t∈R is a one parameter subgroup of Diff(TM).

Remark 3.3. Suppose that ψ is the exponential map associated to a connection ∇ on TM , and
αx,ξ the unique maximal geodesic such that α′

x,ξ(0) = (x, ξ). It is a standard result of differential
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geometry (see for instance [24, Theorem 3.3, p.206]) that for any v := (x, η) ∈ TM , and

ξ ∈ Tx(M), there exists an unique curve βξv : R → TM such that ∇α′
v
βξv = 0, π◦βξv = αv (in other

words, βξv is αv-parallel lift of αv) and βξv(0) = (x, ξ). By definition of geodesics, βηx,η = α′
x,η.

Moreover, βξx,η(1) ∈ Teηx(M), so we can define the following linear isomorphism of tangent fibers:

Px,η : Tx(M) → Teηx(M), ξ 7→ βξx,η(1) . Note that P−1
x,η = Peηx,e−1

e
η
x

(x) = P−Υ1(x,η) = PΥ−1(x,−η).

The Px,ξ are the parallel transport maps along geodesics on the tangent bundle. These maps
are related to the Υt diffeomorphisms, since a computation shows that for any (x, η) ∈ TM and
t ∈ R, Px,tη(η) = Υt,T (x, η).

If (z, b) is a frame, we define Φλ,z,b := nb

z,M2◦Φλ◦(nb
z,T )−1 and we note Jλ,z,b its Jacobian.

We also define Υt,z,b = nb
z,T ◦ Υt ◦ (nb

z,T )−1 and the smooth maps from R
2n to R

n:

ψb
z : (x, ζ) 7→ nb

z ◦ ψ ◦ (nb
z,T )−1(x, ζ) ,

ψb
z : (x, y) 7→Mb

z,(nb
z)

−1(x) ◦ ψ−1
(nb
z )

−1(x)
◦ (nb

z)
−1(y).

Noting ψb
z,x(ζ) := ψb

z(x, ζ) and ψb
z,x(y) := ψb

z(x, y), we have (ψb
z,x)

−1 = ψb
z,x. A computation

shows that for any (x, ζ, y) ∈ R
3n,

Φλ,z,b(x, ζ) = (ψb
z (x, λζ), ψ

b
z (x,−(1 − λ)ζ)) , Φ−1

λ,z,b(x, y) = (mλ,z,b(x, y), ξλ,z,b(x, y)) (3.1)

where we defined the following functions: mλ,z,b(x, y) := ψb
z(x, λ ψ

b
z (x, y)), ξ0,z,b := −ψb

z and for

λ 6= 0, ξλ,z,b(x, y) := 1
λψ

b
z(mλ,z,b(x, y), x). We also obtain for t ∈ [−1, 1], (x, ζ) ∈ R

2n,

Υt,z,b(x, ζ) =
(
ψb
z(x, tζ),

−1
t ψ

b
z(ψ

b
z(x, tζ), x)) =: (ψb

z(x, tζ),Υ
z,b
t,T (x, ζ)

)
, (3.2)

and Υ0,z,b = IdR2n . Note that Υt,z,b(x, 0) = (x, 0) for any x ∈ R
n and Υz,b

t,T = 1
tΥ

z,b
1,T ◦ I1,t where

Ir,r′ is the diagonal matrix with coefficients Iii = r for i ≤ n for 1 ≤ i ≤ n and Iii = r′ for
n+ 1 ≤ i ≤ 2n.

3.2 OM -linearizations

We intent to use the linearization to define topological isomorphisms between rapidly decaying
section on TM and M × M . We thus need a control at infinity over the derivatives of the
linearization ψ.

We note τ z,b = τ z ◦ (nb

z,M2)
−1 ∈ C∞(R2n, L(Ez)). Remark that for any (x, y) ∈ R

2n,

τ z,b(x, y) is an unitary operator on Ez. We will also need the following functions parametrized

by t ∈ R: τt(x, η) := τx(ψx(tη)) for any (x, η) ∈ TM and τ z,bt (x, ζ) := τ z,b(x, ψb
z (x, tζ)).

Definition 3.4. A linearization ψ on the exponential manifold (M, exp, E, dµ) is said to be a

OM -linearization if for any frame (z, b) the functions ψb
z and ψb

z are in in OM (R2n,Rn) and the

functions τ z,b1 and (τ z,b1 )−1 are in OM (R2n, L(Ez)). We will say that (M, exp, E, dµ, ψ) has a
OM -bounded geometry, if it the case of (M, exp, E, dµ) and ψ is a OM -linearization.

Lemma 3.5. Suppose that ψ is a OM -linearization. Then for any frame (z, b), λ ∈ [0, 1] and
t ∈ [−1, 1],
(i) Φλ,z,b ∈ O×

M (R2n,R2n) and Jλ,z,b ∈ O×
M (R2n),

(ii) Υt,z,b ∈ O×
M (R2n,R2n) and J(Υt,z,b) ∈ O×

M (R2n),

(iii) τ z,bt and (τ z,bt )−1 are in OM (R2n, L(Ez)).

22



Proof. (i) By (3.1), we have Φλ,z,b = (ψb
z ◦ I1,λ, ψb

z ◦ I1,λ−1) and Φ−1
λ,z,b = (mλ,z,b, ξλ,z,b) where

mλ,z,b = ψb
z ◦ I1,λ ◦ (π1, ψb

z) and if λ 6= 0, ξλ = 1
λψ

b
z ◦ (mλ,z,b, π1), while ξ0,z,b = −ψb

z . Thus, the
result is a consequence Lemma 2.14 (iii) and (vi).

(ii) By (3.2), we have for t 6= 0, Υt,z,b = (ψb
z ◦I1,t, −1

t ψ
b
z ◦ (ψb

z ◦I1,t, π1)). The result follows again
from Lemma 2.14 (iii) and (vi).

(iii) We have τ z,bt = τ z,b1 ◦ I1,t and (τ z,bt )−1 = (τ z,b1 )−1 ◦ I1,t so the result follows from Lemma
2.14 (iii).

The following lemma shows that we can obtain topological isomorphisms on spaces of
rapidly decaying functions from the functions τt and Φλ.

Lemma 3.6. Let p ∈ N
∗, τ ∈ O×

M (Rp, GL(Ez)) and Φ ∈ O×
M (Rp,Rp). Then the maps Lτ :=

u 7→ τu, Rτ := u 7→ uτ and CΦ := u 7→ u ◦ Φ are topological isomorphisms of S(Rp, L(Ez)).

Proof. Since L−1
τ = Lτ−1 , R−1

τ = Rτ−1 and C−1
Φ = CΦ−1 , we only need to check the continuity

of Lτ , Rτ and CΦ. The continuity of Lτ and Rτ is a direct application of Leibniz formula. Let
ν be a p-multi-index and r ∈ N. Theorem 2.11 implies that for any u ∈ S(Rp, L(Ez)),

qν,N (u ◦ Φ) ≤
∑

|λ|≤|ν|

sup
x∈Rp

〈x〉N |Pν,λ(Φ)(x)|
∥∥∥(∂λu) ◦ Φ(x)

∥∥∥
L(Ez)

where the functions Pν,λ(Φ) are such that |Pν,λ(Φ)(x)| ≤ Cν〈x〉qν for a qν ∈ N
∗ and a Cν > 0.

Since 〈Φ−1(x)〉 ≤ C〈x〉r for a r ∈ N
∗ and a C > 0, we see that there is C ′

ν > 0 such that
qν,N (u ◦ Φ) ≤ C ′

ν

∑
|λ|≤|ν| qλ,(qν+N)r(u), which gives the result.

Lemma 3.7. If (M, exp, E, dµ) has a OM -bounded geometry and ψ is a linearization such that

there exists (z0, b0) such that the functions ψb0
z0 , ψ

b0

z0 are in OM (R2n,Rn) and τ z0,b0
1 , (τ z0,b0

1 )−1

are in OM (R2n, L(Ez0)), then ψ is a OM -linearization.

Proof. The result is a direct consequence of the formulas ψb
z = ψb,b0

z,z0 ◦ ψb0
z0 ◦ ψb0,b

z0,z,T
, ψ

b

z,x(y) =

(dψb0,b
z0,z )

−1
x ψ

b0

z0 ◦ ψ
b0,b
z0,z,M2(x, y) and τ z,b = (τ−1

z τz0) ◦ π2 ◦ (nb

z,M2)
−1 τ z0,b0 ◦ ψb0,b

z0,z,M2 (τ−1
z0 τz) ◦ π1 ◦

(nb

z,M2)
−1.

3.3 Symbol maps and λ-quantization

Assumption 3.8. We suppose in this section and in section 3.4 that (M, exp, E, dµ, ψ) has a
OM -bounded geometry.

The operator F is a topological isomorphism from S ′(TM,L(E)) onto S ′(T ∗M,L(E)).
We shall now introduce a topological isomorphism between S ′(M×M,L(E)) and S ′(TM,L(E)).
We define the linear application Γλ from C∞(M ×M,L(E)) into C∞(TM,L(E))):

Γλ(K) : v 7→ Kπ(v) ◦ Φλ(v) .

As a consequence, Γλ(K) = τ−1
λ (K ◦Φλ) τλ−1 and Γ−1

λ (a) = (τλ a τ
−1
λ−1)◦Φ−1

λ . For a given frame

(z, b), we note Γλ,z,b := Tz,b,T ◦Γλ ◦T−1
z,b,M2. A computation shows that for any smooth function

u ∈ C∞(R2n, L(Ez)), Γλ,z,b(u) = (τ z,bλ )−1(u ◦ Φλ,z,b)τ
z,b
λ−1.

Let us define the smooth strictly positive functions on R
2n and M ×M respectively:

µλ,z,b(x, y) :=
µz,b(x)µz,b (y)

µ2
z,b(mλ,z,b(x,y))

|Jλ,z,b| ◦ Φ−1
λ,z,b(x, y) µλ := µλ,z,b ◦ (nb

z, n
b
z). (3.3)
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It is straithtforward to check that µλ is indeed independent of (z, b). Note that µ1−λ(x, y) =
µλ(y, x). Since µλ,z,b ∈ O×

M (R2n), the operator of multiplication Mµλ is a topological isomor-
phism on S(M ×M,L(E)). Note also that Γλ ◦Mµλ = Mµλ◦Φλ ◦ Γλ.

Proposition 3.9. Γλ is a topological isomorphism from S(M ×M,L(E)) onto S(TM,L(E)).
Moreover, Γ̃λ ◦ jM2 = jTM ◦ Γλ ◦Mµλ , where Γ̃λ := Γ−1

λ

∗
.

Proof. Let (z, b) be a frame. It suffices to prove that Γλ,z,b is a topological isomorphism from
S(R2n, L(Ez)) onto itself. Since Γλ,z,b = L

(τz,bλ )−1 ◦ R
τz,bλ−1

◦ CΦλ,z,b , the result follows from

Lemma 3.6 and Lemma 3.5 (i) and (iii). Let u, v ∈ S(R2n, L(Ez)). We have (with j the
canonical inclusion from S(R2n, L(Ez)) into S ′(R2n, L(Ez)):

(Γ̃λ,z,b ◦ j(u))(v) =

∫

R2n

Tr
(
u(x, y)(Γ−1

λ,z,b(v)(x, y))∗
)
dx dy

=

∫

R2n

Tr
(
(τ z,bλ )−1 ◦ Φ−1

λ,z,b(x, y) u(x, y) τ z,bλ−1 ◦ Φ−1
λ,z,b(x, y)

v∗ ◦ Φ−1
λ,z,b(x, y)

)
dx dy

=

∫

R2n

Tr(Γλ,z,b(u)(m, ζ)v
∗(m, ζ))|Jλ,z,b|(m, ζ) dmdζ

= (j ◦M|Jλ,z,b| ◦ Γλ,z,b(u))(v)

where we used the following change of variables (m, ζ) := Φ−1
λ,z,b(x, y). Thus, we have Γ̃λ,z,b◦ j =

j ◦M|Jλ,z,b| ◦Γλ,z,b. The relation Γ̃λ ◦ jM2 = jTM ◦Γλ ◦Mµλ now follows since M|Jλ,z,b| ◦Γλ,z,b =

Γλ,z,b◦M|Jλ,z,b |◦Φ
−1
λ,z,b

, T ∗
z,b,T ◦j◦Mµ2

z,b
= jTM◦T−1

z,b,T and T ∗
z,b,M2◦j◦Mµz,b⊗µz,b = jM2◦T−1

z,b,M2 .

As a consequence, Γ̃λ is a topological isomorphism from the space tempered distributional
L(E)-sections on M×M , S ′(M×M,L(E)) onto S ′(TM,L(E)) and when restricted (in the sense
of the previous continous inclusions) to S(M ×M,L(E)), is equal to Γλ ◦M−1

µλ
, so provides a

topological isomorphism from S(M ×M,L(E)) onto S(TM,L(E)). Fourier transform coupled
with Γ̃λ lead us to the following natural isomorphism from S ′(M×M,L(E)) onto S ′(T ∗M,L(E)).

Definition 3.10. Let λ ∈ [0, 1]. The λ-symbol map is the topological isomorphism from S ′(M×
M,L(E)) onto S ′(T ∗M,L(E)): σλ := F ◦Γ̃λ. The λ-quantization map is the inverse of σλ, noted
Opλ.

Thus, the data of a tempered distributional section on the cotangent bundle (i.e. an
element of S ′(T ∗M,L(E))) determines in an unique way (for a given λ), an operator continuous
from S to S ′, and vice versa. Remark that σλ ◦ jM2 = jT ∗M ◦ F ◦ Γλ ◦Mµλ and Opλ ◦jT ∗M =

jM2 ◦M1/µλ ◦Γ−1
λ ◦F . If (z, b) is a frame then, noting Opλ,z,b := T̃z,b,M2 ◦Opλ ◦T̃−1

z,b,∗, we obtain

Opλ,z,b = Γ∗
λ,z,b ◦M∗

µz,b ◦ F∗
P so that for any u ∈ S(R2n, L(Ez)) and b ∈ OM (R2n, L(Ez)),

〈Opλ,z,b(b), u〉 =

∫

R3n

e2πi〈ζ,ϑ〉 Tr
(
µb(x, ϑ)(Γλ,z,b(u))

∗(x, ζ)
)
dζ dϑ dx . (3.4)

where µb : (x, ϑ) 7→ µz,b(x) b(x, ϑ).
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3.4 Moyal product

The applications Op0, Op1, OpW := Op 1
2

are respectively the normal, antinormal and Weyl

quantization maps. Remark that for any T ∈ S ′(T ∗M,L(E)), Opλ(T
∗) = (Op1−λ(T ))†. In

particular
Op0(T

∗) = (Op1(T ))† , OpW (T ∗) = (OpW (T ))†

where † is the topological isomorphism of S ′(M ×M,L(E)) defined as 〈K†, u〉 := 〈K,u∗ ◦ j〉
with j the diffeomorphism on M ×M : (x, y) 7→ (y, x) and u ∈ S(M ×M,L(E)). The kernel
of the adjoint A† of any operator A ∈ L(S,S ′) is (KA)†. As a consequence, σλ is a linear
topological isomorphism (and a ∗-isomorphism in the case of the Weyl quantization) from the
algebra ℜ(S) = L(S, S)∩L(S′, S′) of regular operators onto its image Mλ := σλ(ℜ(S)). We can
transport the operator composition in the world of functions, by defining the λ-product on Mλ

as
T ◦λ T ′ := σλ(Opλ(T )Opλ(T

′))

so that Mλ forms an algebra, and M∗
λ = M1−λ. In the case of λ = 1

2 , we recover the Moyal
∗-algebra MW and the Moyal product ◦W . The space Ψ−∞(M) ≃ S(M ×M,L(E)) of isotropic
smoothing operators being an ∗-ideal of ℜ(S), the space S(T ∗M,L(E)) = σλ(Ψ

−∞(M)) forms
an ideal of Mλ. Since we will focus on the pseudodifferential calculus over M , we shall not
investigate in this paper the full analysis of the Moyal product over T ∗M . Note however the
following property on S(T ∗M) := S(T ∗M,L(M × C)) ≃ S(T ∗M,C):

Proposition 3.11. (S(T ∗M), ◦λ) is a (noncommutative, nonunital) Fréchet algebra. Moreover,

a ◦λ b (x, η) =

∫

Tx(M)×M
dµx(ξ)dµ(y)

∫

V λx,ξ,y

dµ∗x,ξ,y(θ, θ
′) gλx,ξ,y e

2πiωλx,ξ,y(η,θ,θ
′)a(yλx,ξ, θ) b(y

1−λ
x,−ξ, θ

′)

where yλx,ξ := mλ(ψ
λξ
x , z), yλx,ξ := ξλ(ψ

λξ
x , z) and

V λ
x,ξ,y := T ∗

yλx,ξ
(M) × T ∗

y1−λx,−ξ

(M) , dµ∗x,ξ,y(θ, θ
′) := dµ∗

yλx,ξ
(θ) dµ∗

y1−λx,−ξ

(θ′) ,

gλx,ξ,y := µλ(ψλξx ,ψ
(λ−1)ξ
x )

µλ(ψλξx ,y)µλ(y,ψ
(λ−1)ξ
x )

,

ωλx,ξ,y(η, θ, θ
′) := 〈θ, yλx,ξ〉 − 〈θ′, y1−λ

x,−ξ〉 − 〈η, ξ〉 .

Proof. The product a ◦λ b on S(T ∗M) is obtained by computation of F ◦ Γλ ◦Mµλ ◦
(
(M−1

µλ
◦

Γ−1
λ ◦ F(a)) ◦V (M−1

µλ
◦ Γ−1

λ ◦ F(b))
)
, where ◦V is the Volterra product of kernels. Since σλ is a

topological isomorphism between S(M2) and S(T ∗M), the continuity of the Moyal product is
equivalent to the continuity of ◦V , which is equivalent to the continuity of the following product
on S(R2n):

K ·K ′(x, y) :=

∫

Rn

K(x, t)K(t, y)µz,b(t)dt.

The continuity of this product is obtained by the following estimates

qp,(α,β)(K ·K ′) ≤ C q2(p+r),(α,0)(K) qp,(0,β)(K
′), qp,ν(K) := sup

(x,y)∈R2n

〈(x, y)〉p|∂νK(x, y)|

where |µz,b(t)| ≤ C1〈t〉r−n−1 and C := C1

∫
Rn

〈t〉−(n+1)dt.
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Remark 3.12. (S(T ∗M), ◦W ) is a ∗-algebra since (a ◦W b)∗ = b∗ ◦W a∗ for any a, b ∈ S(T ∗M).
We can also construct another ∗-algebra on S(T ∗M) with the product a ⋆ b := 1

2(a ◦0 b+ a ◦1 b).
This proves that when (Hψ) (see Assumption 3.1) is not satisfied (so that no middle point exist
in the classical world) we can still have a canonical star-product on S(T ∗M) which satisfies
(a ⋆ b)∗ = b∗ ⋆ a∗.

4 Symbol calculus of pseudodifferential operators

4.1 Symbols

Assumption 4.1. Let σ ∈ [0, 1]. We suppose in this section that (M, exp, E) has a Sσ-bounded
geometry.

The algebra ℜ(S) and Ψ−∞ are respectively too big and too small to develop a satisfac-
tory pseudodifferential calculus that allows an efficient utilization of symbol maps. We shall in
this section define some spaces of symbols that will be used to define later special algebras of
pseudodifferential operators that lies between ℜ(S) and Ψ−∞.

Definition 4.2. A symbol of degree (l,m) ∈ R
2 of type σ, on M is a smooth section a ∈

C∞(T ∗M,L(E)) such that for any (z, b) and any n-multi-indices α, β, there exists K > 0 such
that ∥∥∥∂(α,β)

z,b az(x, θ)
∥∥∥
L(Ez)

≤ K〈x〉σ(l−|α|)
z,b 〈θ〉m−|β|

z,b,x (4.1)

is valid for all (x, θ) ∈ T ∗M . The space of symbols of degree (l,m) and type σ is noted Sl,mσ .

Remark that Sl,m0 is independant of l, so we note this space Sm0 . We note S−∞
σ :=

∩l,mSl,mσ and in the case σ > 0, we define S−∞ := S−∞
σ = S(T ∗M,L(E)) (it is independant of

σ > 0). We set S∞
σ := ∪l,mSl,mσ . We define similarly Sl,mσ,z := Sl,mσ (R2n, L(Ez)), without reference

to a frame.
Since M has a Sσ-bounded geometry, we get the following coordinate independance of

the previous definition:

Proposition 4.3. Let a ∈ C∞(T ∗M,L(E)). Then a ∈ Sl,mσ if and only if there exists a frame
(z, b) such that a satisfies (4.1).

Proof. Suppose that (4.1) is satisfied for (z′, b′) and let (z, b) be another frame. For (x, θ) ∈ T ∗M
and α, β two n-multi-indices with ν = (α, β) 6= 0, we get from Equation (2.14) and Lemma 2.13,

∥∥∂νz,baz(x, θ)
∥∥
L(Ez)

≤ K
∑

α′,β′

∑

ρ≤λ≤ν′

〈x〉σ(|α′|−|α|)
z,b 〈θ〉|β

′|−|β|
z,b,x 〈x〉σ(|λ1|−|α′|)

z′,b′

×〈x〉σ(l−|ρ1|)
z′,b′ 〈θ〉m−|β′|

z′,b′,x 〈x〉σ(|ρ1|−|λ1|)
z′,b′ .

Using (2.1), (2.2) and the fact that |α| ≥ |ρ1|, we get the result.

Corollary 4.4. If a ∈ C∞(T ∗M,L(E)), then a ∈ Sl,mσ if and only if for any (z, b), az◦(nb
z,∗)

−1 ∈
Sl,mσ (R2n, L(Ez)), or equivalently, there exists (z, b) such that az ◦ (nb

z,∗)
−1 ∈ Sl,mσ (R2n, L(Ez)).
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We see that Sl,mσ · Sl′,m′

σ ⊆ Sl+l
′,m+m′

σ where · is the composition of sections induced

by the matricial product on the fibers of L(E). Moreover, Sl,mσ ⊆ Sl
′,m′

σ for m ≤ m′ and
l ≤ l′. Thus, S∞

σ is a ∗-algebra, which is bigraduated for σ > 0 and graduated for σ = 0.
Remark also that S−∞ · Sm0 and Sm0 · S−∞ are included in S−∞. Note that if f ∈ Sl,mσ (T ∗M)
(a symbol where M has its trivial bundle M × C), then af (x, θ) := f(x, θ)IL(Ex) defines a

symbol in Sl,mσ . Such symbols will be called scalar symbols. Note also that if a ∈ Sl,mσ , then

∂
(α,β)
z,b a := (τz ◦ π)(∂

(α,β)
z,b az)(τ−1

z ◦ π) ∈ S
l−|α|,m−|β|
σ .

If f ∈ Sσ(R
n) then (x, ϑ) 7→ f(x) IdL(Ez) ∈ S0,0

σ (Rn, L(Ez)). In particular (x, ϑ) 7→
µ±1
z,b(x) IdL(Ez) ∈ S

0,0
σ (Rn, L(Ez)) if dµ is a S×

σ -density.

Remark 4.5. We note PSl,mσ (R2n, L(Ez)) the subspace of Sl,mσ (R2n, L(Ez)) consisting of func-
tions of the form

∑
1≤i≤(dimEz)2

Piei where (ei) is a linear basis of L(Ez) and Pi are of the form∑
β ci,β(x)ϑβ (finite sum over the n-multi-indices β), where for any i, β, ∂αci,β(x) = O(〈x〉σ(l−|α|))

for any n-multi-indices α, and m = maxi degϑ Pi. We check that this definition is independant
of the chosen basis (ei).

We call polynomial symbol of order l,m and type σ any section of the form (τz ◦ π)(P ◦
nb
z,∗)(τ

−1
z ◦π) where P ∈ PSl,mσ (R2n, L(Ez)) and (z, b) is a frame. This definition is independant

of (z, b). We note PSl,mσ the subspace of Sl,mσ consisting of polynomial symbols of order l,m
and type σ. Remark that the section I : (x, θ) 7→ IL(Ex) is in PS0,0

1 .

We now topologize the symbol spaces:

Lemma 4.6. The following semi-norms on Sl,mσ , for N ∈ N,

q(α,β)(a) := sup
(x,θ)∈T ∗M

〈x〉σ(|α|−l)
z,b 〈θ〉|β|−mz,b,x

∥∥∥∂(α,β)
z,b az(x, θ)

∥∥∥
L(Ez)

determine a Fréchet topology on Sl,mσ , which is independant of (z, b). The applications Tz,b,∗
are topological isomorphisms from Sl,mσ onto Sl,mσ (R2n, L(Ez)). The following inclusions are

continous for these topologies: Sl,mσ · Sl′,m′

σ ⊆ Sl+l
′,m+m′

σ , Sl,mσ ⊆ Sl
′,m′

σ (m ≤ m′ and l ≤ l′)

and S−∞
σ ⊆ Sl,mσ . Moreover, the last inclusion is dense when Sl,mσ has the topology of Sl

′,m′

σ for
m < m′ and l < l′.

Proof. The independance of the topology for (z, b) follows from the easily checked estimate for
any (α, β),

q
(z,b)
(α,β)(a) ≤ Kα,β

∑

0≤|(α′,β′)|≤|(α,β)|

|β′|≥|β| ,γ≤α′

q
(z′,b′)
(γ,β′) (a).

where Kα,β > 0. By construction the applications Tz,b,∗ are clearly topological isomorphisms

from Sl,mσ onto Sl,mσ (R2n, L(Ez)). The continuity of Sl,mσ · Sl′,m′

σ ⊆ Sl+l
′,m+m′

σ , Sl,mσ ⊆ Sl
′,m′

σ

(m ≤ m′ and l ≤ l′) and S−∞
σ ⊆ Sl,mσ are straightforward. Following [27], to prove the density

result, we shall prove the stronger property: for any a ∈ Sl,mσ (R2n, L(Ez)) the sequence

ap(x, ϑ) := (ρ(x/p))1−δσ,0 ρ(ϑ/p) a(x, ϑ)

converges to a for the topology of Sl
′,m′

σ (R2n, L(Ez)) where m′ > m and l′ > l. Here ρ ∈
C∞
c (Rn, [0, 1]) with ρ = 1 on B(0, 1) and ρ = 0 on R

n\B(0, 2). First, it is clear that ap ∈
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S−∞
σ (R2n, L(Ez)). Noting Rp(x, ϑ) := 〈x〉σ(|α|−l′)〈ϑ〉|β|−m′ ∥∥∂(α,β)(a− ap)(x, ϑ)

∥∥
L(Ez)

for a given

2n-multi-index ν := (α, β), we get with Leibniz rule, for a K > 0 (by convention ν ′ < ν if and
only if ν ′ ≤ ν and ν ′ 6= ν):

1
K Rp(x, ϑ) ≤ ∆p(x, ϑ)〈x〉σ(l−l′)〈ϑ〉m−m′

+
∑

ν′<ν

|∂ν−ν′∆p(x, ϑ)|〈x〉σ(l−l′+|α|−|α′|)〈ϑ〉m−m′+|β|−|β′|

where ∆p(x, ϑ) := 1 − (ρ(x/p))1−δσ,0ρ(ϑ/p). Suppose that σ = 0. In that case, |∆p(x, ϑ)| ≤
1[p,+∞[(ϑ) and if ν ′ < ν,

|∂ν−ν′∆p(x, ϑ)| ≤ δα,α′ Kβ p
−|β|+|β′| 1[p,2p](ϑ) (4.2)

where 1[r,r′] is the characteristic function of the annulus Ar,r′ := {ϑ ∈ R
n : r ≤ ‖ϑ‖ ≤ r′ } and

Kβ := supβ′<β

∥∥∥∂β−β′
ρ
∥∥∥
∞

. As a consequence, for K ′ > 0,

1
K Rp(x, ϑ) ≤ 〈p〉m−m′

+Kβ

∑

ν′<ν

δα,α′ 1[p,2p](ϑ) p−|β|+|β′| 〈ϑ〉m−m′+|β|−|β′| ≤ K ′〈p〉m−m′

and the result follows. Suppose now σ 6= 0. In that case |∆p(x, ϑ)| ≤ 1Fp(x, ϑ) where Fp :=
R

2n −B(0, p)2 and if ν ′ < ν, for a constant Kν > 0

|∂ν−ν′∆p(x, ϑ)| ≤ Kν 1[sgn(α−α′)p,2p](x) 1[sgn(β−β′)p,2p](ϑ) p−|ν|+|ν′| . (4.3)

As a consequence, for K ′,K ′′ > 0, and with r := max{m−m′, σ(l − l′)} < 0,

1
K Rp(x, ϑ) ≤ 〈p〉r +K ′

∑

ν′<ν

1[sgn(α−α′)p,2p](x) 1[sgn(β−β′)p,2p](ϑ) 〈x〉σ(l−l′)〈ϑ〉m−m′ ≤ K ′′〈p〉r

and the result follows.

Note that S−∞ := ∩l,mS−∞
σ>0 = S(T ∗M,L(E)) and the equality is also valid for the

topologies. The following lemma shows that the symbols of Sl,mσ are tempered distributional
sections on T ∗M .

Lemma 4.7. The application jT ∗M is injective and continuous from Sl,mσ into S ′(T ∗M,L(E)).

Proof. Since we have the following commutative diagram

Sl,mσ
jT∗M //

Tz,b,∗
��

S ′(T ∗M,L(E))

Sl,mσ (R2n, L(Ez)) i
// OM (R2n, L(Ez)) j

// S ′(R2n, L(Ez))

T ∗
z,b,∗

OO

where T ∗
z,b,∗ is the adjoint of Tz,b,∗ on S(T ∗M,L(E)) and OM (R2n, L(Ez)) is the locally convex

complete Hausdorff space of L(Ez)-valued functions on R
2n with polynomially bounded deriva-

tives, it is sufficient to check that the natural injection i is continuous from Sl,mσ (R2n, L(Ez)) into
OM (R2n, L(Ez)). This is obtained by the following estimate, for any ϕ ∈ S(R2n) and ν = (α, β)
2n-multi-index,

sup
(x,ϑ)∈R2n

‖ϕ∂νa(x, ϑ)‖L(Ez)
≤ Kϕ,ν qν(a)

where Kϕ,ν := sup(x,ϑ)∈R2n |ϕ(x, ϑ)〈x〉σ(l−|α|)〈ϑ〉m−|β||.
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Definition 4.8. Let (aj)j∈N∗ be a sequence in S
lj ,mj
σ where (lj) and (mj) are real strictly

decreasing sequences such that limj→∞ lj = limj→∞mj = −∞. We say that a is an asymptotic
expansion of (aj)j∈N∗ and we note

a ∼
∞∑

j=1

aj

if a ∈ C∞(T ∗M,L(E)) is such that a−∑k−1
j=1 aj ∈ Slk,mkσ for any k ∈ N with k ≥ 2. In particular,

we have a ∈ Sl1,m1
σ .

We need asymptotic summation of symbols modulo S−∞
σ . The following result of asymp-

totic completeness is based on a classical method [41] of approximation of series by weightening
summands aj(x, θ) with functions which “cut” a neighborhood of zero in the domain of x (if
σ 6= 0) and θ. The idea is that the part we cut is bigger and bigger when j → ∞ so that
convergence occurs.

Lemma 4.9. Let (aj)j∈N∗ be a sequence in S
lj ,mj
σ where (lj) and (mj) are real strictly decreasing

sequences such that limj→∞ lj = limj→∞mj = −∞. Then

(i) There exists a ∈ Sl1,m1
σ such that a ∼

∑∞
j=1 aj.

(ii) If another a′ satisfies a′ ∼ ∑∞
j=1 aj , then a− a′ ∈ S−∞

σ .

Proof. (ii) is obvious. Let us prove (i) for a sequence (aj)j∈N∗ in S
lj ,mj
σ (R2n, L(Ez)) and with

a ∼ ∑∞
j=1 aj ∈ Sl1,m1

σ (R2n, L(Ez)). The result will then follows for a sequence (bj) in Sl,mσ by

taking b := T−1
z,b,∗(a) where aj := Tz,b,∗(bj). Define

a′j(x, ϑ) := ∆pj(x, ϑ) aj(x, ϑ)

where ∆pj is defined in the proof of Lemma 4.6 and (pj) is a real sequence in [1,+∞[. For any
j ∈ N, a′j − aj ∈ S−∞

σ (R2n, L(Ez)). Thus, the result will follow if we prove that for a specified
sequence (pj) and for any N ≥ 0, there exists k0(N) ≥ 2 such that for any k ≥ k0(N),

∞∑

j=k+1

qN,lk,mk(a
′
j) <∞ (4.4)

where qN,lk,mk := sup|ν|≤N qν,lk,mk , and qν,lk,mk are the semi-norms of Slk,mkσ (R2n, L(Ez)). In-

deed, with
∥∥∥∂νa′j

∥∥∥
∞

≤ q|ν|,lk,mk(a
′
j) for k ≥ k1(ν), a

′ :=
∑∞

j=1 a
′
j is a well defined smooth

function and we have then a′ − ∑k−1
j=1 aj ∈ Slk,mkσ (R2n, L(Ez)). Using Leibniz rule, we see that

for any 2n-multi-index ν := (α, β), and any j ∈ N
∗, there is Kν,j > 0 such that

1
Kν,j

∥∥∂νa′j(x, ϑ)
∥∥
L(Ez)

≤ ∆p(x, ϑ)〈x〉σ(lj−|α|)〈ϑ〉mj−|β|

+
∑

ν′<ν

|∂ν−ν′∆p(x, ϑ)|〈x〉σ(lj−|α′|)〈ϑ〉mj−|β′|.

Let us suppose that σ = 0. The estimate (4.2) yields for any N ≥ 0, k ≥ 2, j ≥ k + 1,

qN,lk,mk(a
′
j) ≤ KN,j〈pj〉mj−mj−1
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for a constant KN,j > 0. If we now fix pj as pj = (2j supN≤j{KN,j , 1 })1/(mj−1−mj), then we see
that for any N ≥ 0, k ≥ N + 2, j ≥ k + 1, we have qN,lk,mk(a

′
j) ≤ 2−j and (4.4) is satisfied.

Suppose now σ 6= 0. The estimate (4.3) yields for any N ≥ 0, k ≥ 2, j ≥ k + 1,

qN,lk,mk(a
′
j) ≤ K ′

N,j〈pj〉rj

for a constant K ′
N,j > 0 and with rj := max{mj −m′

j−1, σ(lj − l′j−1)} < 0. If we now fix pj as

pj = (2j supN≤j{K ′
N,j , 1 })−r

−1
j , then we see that for any N ≥ 0, k ≥ N + 2, (4.4) is satisfied as

for the case σ = 0.

4.2 Amplitudes and associated operators on S(Rn, Ez)

We shall see in this section amplitudes as generalizations of symbols of the type Sl,mσ,z :=

Sl,mσ (R2n, L(Ez)) where z ∈ M is fixed. For each amplitude, a continuous operator from
S(Rn, Ez) into itself will be defined. Here the spaces L(Ez) and Ez can simply be consid-
ered as Mn(C) and C

n. The results in this section will be important for pseudodifferential
operators on M in the next section.

Definition 4.10. An amplitude of order l, w,m and type σ ∈ [0, 1], κ ≥ 0, is a smooth function
a ∈ C∞(R3n, L(Ez)) such that for any 3n-multi-index ν = (α, β, γ), there exists Cν > 0 such
that ∥∥∥∂(α,β,γ)a(x, ζ, ϑ)

∥∥∥
L(Ez)

≤ Cν 〈x〉σ(l−|α+β|) 〈ζ〉w+κ|α+β| 〈ϑ〉m−|γ| (4.5)

for any (x, ζ, ϑ) ∈ R
3n. We note Πl,w,m

σ,κ,z := Πl,w,m
σ,κ (R3n, L(Ez)) the space of amplitudes of order

l, w,m and type σ, κ.

Remark that Πl,w,m
0,κ,z is independant of l, we note this space Π0,w,m

0,κ,z . We note Π−∞,w
σ,κ,z :=

∩l,mΠl,w,m
σ,κ,z . We set Π∞

σ,κ,z := ∪l,w,mΠl,w,m
σ,κ,z and Π−∞

σ,z := ∩l,m ∪w,κ Πl,w,m
σ,κ,z . We see that Πl,w,m

σ,κ,z ·
Πl′,w′,m′

σ,κ,z ⊆ Πl+l′,w+w′,m+m′

σ,κ,z and Πl,w,m
σ,κ,z ⊆ Πl′,w′,m′

σ,κ,z for m ≤ m′, w ≤ w′, and l ≤ l′. Thus, Π∞
σ,κ,z

is a ∗-algebra, which is trigraduated for σ > 0 and bigraduated for σ = 0. Note also that if

a ∈ Πl,w,m
σ,κ,z , then ∂(α,β,γ)a ∈ Π

l−|α+β|,w+κ|α+β|,m−|γ|
σ,κ,z .

Amplitudes and symbols in Sl,mσ,z are related by the following lemma:

Lemma 4.11. (i) For any a ∈ Πl,w,m
σ,κ,z we have aζ=0 := (x, ϑ) 7→ a(x, 0, ϑ) in Sl,mσ,z .

(ii) For any s ∈ Sl,mσ,z , the function (x, ζ, ϑ) 7→ s(x, ϑ) is in Πl,0,m
σ,0,z .

(iii) For any f ∈ Sσ(R
n), the function (x, ζ, ϑ) 7→ f(x) IdL(Ez) is in Π0,0,0

σ,0,z.

Proof. (i) follows from the fact that ∂ν(a ◦ P ) = (∂P (ν)a) ◦ P where P (x, ϑ) := (x, 0, ϑ).
(ii) Noting Q(x, ζ, ϑ) := (x, ϑ), the result follows from ∂α,β,γ(s ◦Q) = δβ,0(∂

α,γs) ◦Q.

(iii) follows from (ii) and the fact that (x, ϑ) 7→ f(x) IdL(Ez) ∈ S0,0
σ,z .

As the spaces of symbols, the Πl,w,m
σ,κ,z are naturally Fréchet spaces:

Lemma 4.12. The following semi-norms on Πl,w,m
σ,κ,z :

ql,w,m(α,β,γ)(a) := sup
(x,ζ,ϑ)∈R3n

〈x〉σ(|α+β|−l)〈ζ〉−w−κ|α+β|〈ϑ〉|γ|−m
∥∥∥∂(α,β,γ)a(x, ζ, ϑ)

∥∥∥
L(Ez)
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determine a Fréchet topology on Πl,w,m
σ,κ,z . The following inclusions are continous for these topolo-

gies: Πl,w,m
σ,κ,z · Πl′,w′,m′

σ,κ,z ⊆ Πl+l′,w+w′,m+m′

σ,κ,z , Πl,w,m
σ,κ,z ⊆ Πl′,w′,m′

σ,κ,z (m ≤ m′, w ≤ w′ and l ≤ l′) and

Π−∞,w
σ,κ,z ⊆ Πl,w,m

σ,κ,z . Moreover, the last inclusion is dense when Πl,w,m
σ,κ,z has the topology of Πl′,w,m′

σ,κ,z

for m < m′ and l < l′.

Proof. The continuity results are straightforward. For the density result, we prove as in Lemma
4.6, that for any a ∈ Πl,w,m

σ,κ,z the sequence

ap(x, ζ, ϑ) := (ρ(x/p))1−δσ,0 ρ(ϑ/p) a(x, ζ, ϑ) =: (1 − ∆p(x, ϑ)) a(x, ζ, ϑ)

converges to a for the topology of Πl′,w,m′

σ,κ (R2n, L(Ez)) where m′ > m and l′ > l. First note
that the application (x, ζ, ϑ) 7→ (ρ(x/p))1−δσ,0 ρ(ϑ/p) IdL(Ez) is an amplitude in Π−∞,0

σ,0,z . Thus,

(ap)p∈N∗ is a sequence in Π−∞,w
σ,κ,z . We define the function Rp such that ql

′,w,m′

(α,β,γ)(a − ap) =

sup(x,ζ,ϑ)∈R3n Rp(x, ζ, ϑ), where m′ > m and l′ > l. For a given 3n-multi-index ν := (α, β, γ), we
get with Leibniz rule, for a K > 0,

1
K Rp(x, ζ, ϑ) ≤ ∆p(x, ϑ) 〈x〉σ(l−l′) 〈ϑ〉m−m′

+
∑

ν′<ν

|∂ν−ν′∆p(x, ϑ)|

× 〈x〉σ(l−l′+|α+β|−|α′+β′|)〈ζ〉κ(|α′+β′|−|α+β|)〈ϑ〉m−m′+|γ|−|γ′| .

Suppose that σ = 0. In that case, |∆p(x, ϑ)| ≤ 1[p,+∞[(ϑ) and if ν ′ < ν,

|∂ν−ν′∆p(x, ϑ)| ≤ δα,α′ δβ,β′ Kγ p
−|γ|+|γ′| 1[p,2p](ϑ) .

As a consequence we find Rp(x, ζ, ϑ) = Op→∞(〈p〉m−m′
), as in Lemma 4.6. Suppose now σ 6= 0.

In that case |∆p(x, ϑ)| ≤ 1Fp(x, ϑ) where Fp := R
2n − Bn(0, p) × Bn(0, p) and if ν ′ < ν, for a

constant Kν > 0

|∂ν−ν′∆p(x, ϑ)| ≤ δβ−β′,0Kν 1[sgn(α−α′)p,2p](x) 1[sgn(γ−γ′)p,2p](ϑ) p−|ν|+|ν′| .

As a consequence, we find Rp(x, ζ, ϑ) = Op→∞(〈p〉r) where r := max{m−m′, σ(l− l′)} < 0 and
the result follows.

We shall note ∆ζ the differential operator
∑n

i=1 ∂
2
ζi

. The following formula is valid for
any ϑ, ζ ∈ R

n and p ∈ N,

〈ϑ〉2pe2πi〈ϑ,ζ〉 = (1 − (2π)−2∆ζ)
p e2πi〈ϑ,ζ〉 =: Lpζ e

2πi〈ϑ,ζ〉 (4.6)

A computation shows that (1 − (2π)−2∆ζ)
p =

∑
0≤|β|≤p cp,β ∂

2β
ζ , where the summation is on n-

multi-indices β and cp,β :=
( p
|β|

)
(−1)|β|(2π)−2|β|β!. We shall also use the following useful formula

valid for any ϑ ∈ R
n, ζ ∈ R

n\{ 0 } and p ∈ N,

e2πi〈ϑ,ζ〉 =
∑

|β|=p

λβ
ζβ

‖ζ‖2p ∂
β
ϑ e

2πi〈ϑ,ζ〉 =: Mp,ζ
ϑ e2πi〈ϑ,ζ〉 (4.7)

where λβ := β!(2π)−|β|i|β|. We define tMp,ζ
ϑ :=

∑
|β|=p λβ(−1)p ζβ

‖ζ‖2p∂
β
ϑ .
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Definition 4.13. We note Of,z, where f1, f2, f3 : N
3n → R, and f := (f1, f2, f3), the space

of smooth functions in C∞(R3n, L(Ez)) such that for any 3n-multi-index ν = (α, β, γ), there is
Cν > 0 such that

‖∂νa(x, ζ, ϑ)‖L(Ez)
≤ Cν〈x〉f1(ν)〈ζ〉f2(ν)〈ϑ〉f3(ν)

uniformly in (x, ζ, ϑ) ∈ R
3n.

The vector space Of,z has a natural family of seminorms qfν given by the best constants
Cν in the previous estimate. With this family, Of,z is a Fréchet space. Obviously, amplitudes in

Πl,w,m
σ,κ,z form an Of,z space where f1(ν) := σ(l−|α+β|), f2(ν) := w+κ|α+β| and f3(ν) := m−|γ|.

For a given triple f := (f1, f2, f3) and ρ ∈ R, we will note f3,ρ,α,γ := supβ f3(α, β, γ) − ρ|β|,
f2,ρ,α,β := supγ f2(α, β, γ) − ρ|γ| and f1,ρ,α,β := supγ f1(α, β, γ) − ρ|γ|.

Proposition 4.14. Let Γ a continuous linear operator on the space S(R2n, L(Ez)), and f :=
(f1, f2, f3) a triple such that there exists ρ < 1 such that f3,ρ,0,0 <∞.
(i) For any function a ∈ Of,z the following antilinear form on S(R2n, L(Ez))

〈OpΓ(a), u〉 :=

∫

R3n

e2πi〈ϑ,ζ〉 Tr(a(x, ζ, ϑ) Γ(u)∗(x, ζ)) dζ dϑ dx

is in S ′(R2n, L(Ez)).
(ii) For any given u ∈ S(R2n, L(Ez)), the linear form Lu,Γ := a 7→ 〈OpΓ(a), u〉 is continuous on

Of,z. In particular Lu,Γ is continuous on any amplitude space Πl,w,m
σ,κ,z .

Proof. (i) We have OpΓ(a) = I(a) ◦ Γ, where I(a) is the antilinear form on S(R2n, L(Ez)):

〈I(a), u〉 :=

∫

R3n

e2πi〈ϑ,ζ〉 Tr(a(x, ζ, ϑ)u∗(x, ζ)) dζ dϑ dx .

We shall prove that I(a) ∈ S ′(R2n, L(Ez)), which will give the result. Let u ∈ S(R2n, L(Ez))
and let us fix for now x and ϑ ∈ R

n. We can check that the map ζ 7→ a(x, ζ, ϑ)u∗(x, ζ) is in
S(Rn, L(Ez)). As a consequence, with (4.6) and integration by parts, we get with R(x, ϑ) :=∫

Rn
e2πi〈ϑ,ζ〉a(x, ζ, ϑ)u∗(x, ζ) dζ,

R(x, ϑ) =

∫

Rn

e2πi〈ϑ,ζ〉〈ϑ〉−2p(1 − (2π)−2∆ζ)
p a(x, ζ, ϑ)u∗(x, ζ) dζ

=
∑

0≤|β|≤p

∑

β′≤2β

cp,β
(2β
β′

)
〈ϑ〉−2p

∫

Rn

e2πi〈ϑ,ζ〉(∂(0,β′,0) a(x, ζ, ϑ)) (∂(0,2β−β′)u∗(x, ζ)) dζ .

Thus, for any x, ϑ ∈ R
n, we get by fixing p such that 2(ρ− 1)p+ f3,ρ,0,0 ≤ −2n (this is possible

since ρ < 1) that for any N ∈ N,

‖R(x, ϑ)‖L(Ez)
≤ Cp〈ϑ〉−2n

∫

Rn

〈x, ζ〉−N+rp dζ
∑

0≤|β|≤p

∑

β′≤2β

qf0,β′,0(a) qN,(0,2β−β′)(u)

for a Cp > 0, where rp := max|β′|≤2p |f1(0, β
′, 0)| + |f2(0, β

′, 0)|. If we now fix N such that
−N + rp ≤ −4n, we see, using the inequality 〈x, ζ〉−2 ≤ 〈x〉−1〈ζ〉−1, that there is Cρ,f > 0 such
that

|〈I(a), u〉| ≤ Cρ,f
∑

0≤|β|≤p

∑

β′≤2β

qf0,β′,0(a) qN,(0,2β−β′)(u) (4.8)
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which yields the result.
(ii) The continuity of Lu,Γ on Of,z follows directly from (4.8) since Lu,Γ(a) = 〈I(a),Γ(u)〉. Since

Πl,w,m
σ,κ,z = Of,z for a triple f = (f1, f2, f3) such that f3,0,0,0 < ∞, Lu,Γ is continous on any

amplitude space.

For any amplitude a, we will also note OpΓ(a) the continous linear map from S(Rn, Ez)
into S ′(Rn, Ez), associated to the tempered distribution u 7→ 〈OpΓ(a), u〉.

Remark 4.15. If (M, exp, E, dµ, ψ) has a OM -bounded geometry, we saw that for any frame
(z, b) and λ ∈ [0, 1], the Γλ,z,b maps are topological isomorphisms on S ′(R2n, L(Ez)). Thus,

Lemma 4.14 implies that for a given a ∈ Πl,w,m
σ,κ,z , we can define a family indexed by λ ∈ [0, 1] of

operators OpΓλ,z,b
(a) which are continous from S(Rn, Ez) into S ′(Rn, Ez).

Remark 4.16. Suppose that (M, exp, E, dµ) has a Sσ bounded geometry and that ψ is a OM -

linearization. We deduce from (3.4) that if s is a symbol in Sl,mσ and λ ∈ [0, 1], we have
(Opλ(s))z,b = OpΓλ,z,b

(µsz,b) where (z, b) is a frame, sz,b := Tz,b,∗(s) and µsz,b := (x, ζ, ϑ) 7→
µz,b(x) sz,b(x, ϑ) ∈ Πl,0,m

σ,0,z . We will also note µ−1sz,b(x, ζ, ϑ) := µ−1
z,b(x)sz,b(x, ϑ) ∈ Πl,0,m

σ,0,z .

We now establish a sufficient condition on Γ and a in order to have OpΓ(a) stable (and
continuous) on S(Rn, Ez). The result will be used to establish regularity of pseudodifferential
operators.

Lemma 4.17. Let Γ be a continuous linear operator on S(R2n, L(Ez)) of the form Γ = Lτ1 ◦
Rτ2 ◦ CΦ, where τi ∈ OM (R2n, L(Ez)) (for 1 ≤ i ≤ 2), and Φ := (π1, ψ) ∈ C∞(R2n,R2n)
is such that ψ ∈ OM (R2n,Rn) and there exist c, ε, r > 0, such that for any (x, ζ) ∈ R

2n,
〈ψ(x, ζ)〉 ≥ c〈x〉ε〈ζ〉−r and for any x ∈ R

n, there is cx > 0 such that 〈ψ(x, ζ)〉 ≥ cx〈ζ〉ε uniformly
in ζ ∈ R

n.
Suppose that f = (f1, f2, f3) is such that there exist (ρ1, ρ2, ρ3) ∈ R

3 such that ρ3 < 1,
(r/ε)ρ1 + ρ2 < 1 and for any 2n-multi-index µ, f1,ρ1,µ < ∞, f2,ρ2,µ < ∞, f3,ρ3,µ < ∞ and for
any n-multi-index α f3,ρ3,α := supγ f3,ρ3,α,γ <∞. Then for any function a ∈ Of,z, the operator
OpΓ(a) is continuous from S(Rn, Ez) into itself. In particular, this is the case for any amplitude

a ∈ Πl,w,m
σ,κ,z .

Proof. Let u, v ∈ S(Rn, Ez). By definition, 〈OpΓ(a)(v), u〉 = OpΓ(a)(u⊗ v) and Γ(K) = τ1 (K ◦
Φ) τ2. Noting a′(x, ζ, ϑ) := τ∗1 (x, ζ) a(x, ζ, ϑ) τ∗2 (x, ζ), we obtain

〈OpΓ(a)(v), u〉 :=

∫

R3n

e2πi〈ϑ,ζ〉
(
a′(x, ζ, ϑ) v(ψ(x, ζ))

∣∣ u(x)
)
dζ dϑ dx

=

∫

Rn

(
g(x)

∣∣ u(x)
)
dx

where g(x) :=
∫

R2n e
2πi〈ϑ,ζ〉 a′(x, ζ, ϑ) v ◦ ψ(x, ζ) dζ dϑ.

A computation with the Faa di Bruno formula shows that for any 2n-multi-index ν,
any N ∈ N and any x ∈ R

n there is Cx,N,ν > 0 such that ‖∂ν(v ◦ ψ)(x, ζ)‖Ez ≤ Cx,N,ν〈ζ〉−N
uniformly in ζ ∈ R

n. As a consequence, the map ζ 7→ ∂α
′,0a′(x, ζ, ϑ) ∂α−α

′
(v ◦ ψ)(x, ζ) is in

S(Rn, Ez). We can thus successively integrate by parts in g(x) so that for any p ∈ N
∗,

g(x) =

∫

R2n

e2πi〈ϑ,ζ〉〈ϑ〉−2pLpζ(a
′(v ◦ ψ))(x, ζ, ϑ) dζ dϑ .
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By taking p such that (ρ3−1)2p+c0 ≤ −2n where cα := supα′≤α f3,ρ3,α′ , we see that the previous
integrand is absolutely integrable, and we can permute the order of integrations dζdϑ → dϑdζ.
Since all the successive ϑ-derivatives of 〈ϑ〉−2pLpζ(a

′(v ◦ψ))(x, ζ, ϑ) converges to 0 when 〈ϑ〉 goes
to infinity, we can then integrate by parts in ϑ so that for any q ∈ N and p ≥ p0

g(x) =

∫

R2n

e2πi〈ϑ,ζ〉〈ζ〉−2qLqϑ(〈ϑ〉−2pLpζ(a
′(v ◦ ψ)))(x, ζ, ϑ) dζ dϑ .

Noting hp,q the previous integrand, we see that for any n-multi-index α, ∂αhp,q is a linear
combination of terms of the form

e2πi〈ϑ,ζ〉〈ζ〉−2q〈ϑ〉−2p−|γ−γ′|∂α
′,β′,γ′a′∂α−α

′,β−β′
v ◦ ψ

where |γ| ≤ 2p, γ′ ≤ γ, |β| ≤ 2q, β′ ≤ β and α′ ≤ α. A computation with the Faa di Bruno
formula shows that for any 2n-multi-index ν there is rν ∈ N

∗ such that for any N > 0, there
is Cν,N > 0 such that for any w ∈ S(Rn, Ez) and any (x, ζ) ∈ R

2n, ‖∂ν(w ◦ ψ)(x, ζ)‖Ez ≤
Cν,N 〈x, ζ〉rν−N 〈ζ〉rν+(r/ε)N

∑
|ν′|≤|ν| q[N/ε]+1,ν′(w). Moreover, we check that there is Kα,p > 0

such that
∥∥∥∂(α′,β′,γ′)a′(x, ζ, ϑ)

∥∥∥
L(Ez)

≤ Cα,p,q〈x〉Kα,p+ρ12q〈ζ〉Kα,p+ρ22q〈ϑ〉cα+ρ32p .

As a consequence, we get the estimate

‖∂αhp,q‖ ≤ Cα,p,q,N〈x〉K
′
α,p+ρ12q−N 〈ζ〉K ′

α,p+(ρ2−1)2q+(r/ε)N 〈ϑ〉cα+(ρ3−1)2p
∑

|ν′|≤|ν|

q[N/ε]+1,ν′(v) .

or equivalently, replacing K ′
α,p + ρ12q −N by −N ,

‖∂αhp,q‖ ≤ Cα,p,q,N〈x〉−N 〈ζ〉K
′′
α,p+(ρ2−1+(r/ε)ρ1)2q+(r/ε)N 〈ϑ〉cα+(ρ3−1)2p

∑

|ν′|≤|ν|

q[N+K ′
α,p+ρ12q/ε]+1,ν′(v) .

Fixing now, for a given N , p such that (ρ3 − 1)2p+ cα ≤ −2n and q such that K ′′
α,p + (ρ2 − 1 +

(r/ε)ρ1)2q + (r/ε)N ≤ −2n, we obtain the result.

The following lemma gives a characterization of smoothing kernels in the cases σ = 0
and σ 6= 0. If s is in a space of symbols and Γ is a continuous linear map on S(R2n, L(Ez)), we

will note OpΓ(s) := OpΓ((x, ζ, ϑ) 7→ s(x, ϑ)). We shall use the Fréchet space Ol,m
σ,f,z of smooth

functions a in C∞(R3n, L(Ez)) such that for any ν := (µ, γ) ∈ N
2n × N

n

‖∂νa(x, ζ, ϑ)‖L(Ez)
≤ Cν〈x〉σ(l+f1(µ))〈ζ〉f2(ν)〈ϑ〉m+f3(µ) .

We will note Ol,m
0,f,z =: Om

f2,f3,z
. Clearly, OpΓ(a) (see Lemma 4.14) is defined as an antilinear

form on S(R2n, L(Ez)) whenever a ∈ Ol,m
f,z with m + f3(0) < −n. We note F the set of

functions f2 : N
3n → R such that there is ρ < 1 such that for any (α, β) ∈ N

2n f2,ρ,α,β :=
supγ f2(α, β, γ) − ρ|γ| <∞.
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Lemma 4.18. Let K ∈ S ′(R2n, L(Ez)), and Γ a topological isomorphim on S(R2n, L(Ez)) of
the form Γ = Lτ1 ◦Rτ2 ◦ CΦ with τ1, τ2 ∈ O×

M (R2n, GL(Ez)), Φ ∈ O×
M (R2n,R2n). Then

(i) Case σ = 0. The following are equivalent:
(i-1) There is f3 : N

2n → R such that for any m ≤ −f3(0) − 2n, there exist f2,m ∈ F ,
am ∈ Om

f2,m,f3,z
such that K = OpΓ(am).

(i-2) K ∈ C∞(R2n, L(Ez)) and for any 2n-multi-index ν, N ∈ N, there is Cν,N > 0
such that for any (x, ζ) ∈ R

2n, ‖∂νKΓ(x, ζ)‖L(Ez)
≤ Cν,N 〈ζ〉−N , where KΓ := K ◦ Γ = τ̃1K ◦

Φ τ̃2 |J(Φ)|.
(i-3) There is s ∈ S−∞

0,z such that K = OpΓ(s).
(ii) Case σ > 0. The following are equivalent:

(ii-1) There is f1, f3 : N
2n → R such that for any m ≤ −f3(0)− 2n, there exist f2,m ∈ F

and am ∈ Om,m
σ,f1,f2,m,f3,z

such that K = OpΓ(am).

(ii-2) K ∈ S(R2n, L(Ez)).
(ii-3) There is s ∈ S−∞

z such that K = OpΓ(s).

Proof. (i) The implication (i-3) ⇒ (i-1) is trivial. We will prove (i-1) ⇒ (i-2) ⇒ (i-3). Suppose
(i-1). Thus, for any m ≤ −2n − f3(0), there is f2,m ∈ F , am ∈ Om

f2,m,f3,z
such that for any

u ∈ S(R2n, L(Ez)),

〈K ◦ Γ−1, u〉 =

∫

R3n

e2πi〈ϑ,ζ〉 Tr
(
am(x, ζ, ϑ)u∗(x, ζ)

)
dζ dϑ dx .

Since m ≤ −2n− f3(0), the preceding integral is absolutely convergent and we can permute the
order of integration. As a consequence, we get 〈K ◦ Γ−1, u〉 =

∫
R2n Tr

(
Um(x, ζ)u∗(x, ζ)

)
dζ dx

where Um(x, ζ) :=
∫

Rn
e2πi〈ϑ,ζ〉 am(x, ζ, ϑ) dϑ, we check easily that Um is a continous function

on R
2n, so we deduce that Um =: U is independant of m and K ◦ Γ−1 is a distribution which

is continous function equal to U . Noting bm := e2πi〈ϑ,ζ〉 am(x, ζ, ϑ) we see that for any 2n-
multi-index µ := (α, β), ∂µx,ζbm = e2πi〈ϑ,ζ〉

∑
β′≤β

(β
β′

)
(2πiϑ)β−β

′
∂α,β

′,0am and we have then the
estimates

‖∂µbm‖ ≤ Cµ,m〈ζ〉supβ′≤β f2,m(α,β′,0)〈ϑ〉m+cµ

where cµ = supβ′≤β f3(α, β
′)+ |β|. Defining mµ := −2n− sup|µ′|≤|µ| cµ′ , we see that U is smooth

and

∂µU =

∫

R2n

∂µbmµdϑ =
∑

β′≤β

(β
β′

)
(2πi)|β−β

′|

∫

Rn

e2πi〈ϑ,ζ〉ϑβ−β
′
∂α,β

′,0amµ(x, ζ, ϑ) dϑ .

All the ϑ-derivatives of ϑ 7→ ϑβ−β
′
∂α,β

′,0amµ(x, ζ, ϑ) converge to zero when ‖ϑ‖ → ∞ so we can
we integrate by parts in ϑ so that for any p ∈ N:

∂µU =
∑

β′≤β

(
β
β′

)
(2πi)|β−β

′|

∫

Rn

e2πi〈ϑ,ζ〉〈ζ〉−2pLpϑ
(
ϑβ−β

′
∂α,β

′,0amµ
)
(x, ζ, ϑ) dϑ .

Since amµ ∈ Omµ
f2,mµ ,f3,z

and f2,mµ,ρµ,λ < ∞ for a ρµ < 1, we see that the integrand hp of the

previous integral satisfies the estimate

‖hp(x, ζ, ϑ)‖ ≤ Cp,µ〈ζ〉−2p+supβ′≤β f2,mµ,ρµ,α,β′+2pρµ〈ϑ〉−2n .

Given N > 0 and fixing p such that (ρµ − 1)2p + supβ′≤β f2,mµ,ρµ,α,β′ ≤ −N , we finally obtain
that K ◦Γ−1 = U is smooth and satisfies for any µ ∈ N

2n and N > 0,
∥∥∂µK ◦ Γ−1(x, ζ)

∥∥
L(Ez)

≤
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Cµ,N 〈ζ〉−N . We also have for any u ∈ S(R2n, L(Ez)), 〈K,u〉 = 〈U,Γ(u)〉 =
∫

R2n Tr(U ′(x, ζ)u∗ ◦
Φ(x, ζ))dx dζ where U ′(x, ζ) := τ∗1 (x, ζ)U(x, ζ)τ∗2 (x, ζ). Using the change of variables provided
by the diffeomorphism Φ, we get 〈K,u〉 =

∫
R2n Tr(K(x, y)u∗(x, y)) dx dy where K(x, y) :=

(|J(Φ−1)|(x, y))U ′ ◦ Φ−1(x, y). The result follows.
Suppose now (i-2). It is not difficult to see that FP sends S−∞

0,z (seen as a subspace of

S ′(R2n, L(Ez))) into S−∞
0,z . In particular, we have s := FP (KΓ) ∈ S−∞

0,z . A computation shows

that 〈K,u〉 = 〈OpΓ(s), u〉 for any u ∈ S(R2n, L(Ez)).
(ii) Suppose (i-1). Following the proof of (i), we see that it is sufficient to prove that U is
in S(R2n, L(Ez)), where U(x, ζ) :=

∫
Rn
e2πi〈ϑ,ζ〉am(x, ζ, ϑ) dϑ (independant of m). Let us fix

N > 0. For any 2n-multi-index µ := (α, β), ∂µx,ζbm = e2πi〈ϑ,ζ〉
∑

β′≤β

(
β
β′

)
(2πiϑ)β−β

′
∂α,β

′,0am
and we have the estimates

‖∂µbm‖ ≤ Cµ,m〈x〉σm+σdµ 〈ζ〉supβ′≤β f2,m(α,β′,0)〈ϑ〉m+cµ

where cµ = supβ′≤β f3(α, β
′) + |β| and dµ := supβ′≤β f1(α, β

′). Defining

mµ,N := min{−2n− sup
|µ′|≤|µ|

cµ′ ,−N/σ − sup
|µ′|≤|µ|

dµ′}

we see that U is smooth and

∂µU =

∫

R2n

∂µbmµ,N dϑ =
∑

β′≤β

(β
β′

)
(2πi)|β−β

′|

∫

Rn

e2πi〈ϑ,ζ〉ϑβ−β
′
∂α,β

′,0amµ,N (x, ζ, ϑ) dϑ .

All the ϑ-derivatives of ϑ 7→ ϑβ−β
′
∂α,β

′,0amµ,N (x, ζ, ϑ) converge to zero when ‖ϑ‖ → ∞ so we
can we integrate by parts in ϑ so that for any p ∈ N:

∂µU =
∑

β′≤β

(
β
β′

)
(2πi)|β−β

′|

∫

Rn

e2πi〈ϑ,ζ〉〈ζ〉−2pLpϑ
(
ϑβ−β

′
∂α,β

′,0amµ,N
)
(x, ζ, ϑ) dϑ .

Since amµ,N ∈ Omµ,N ,mµ,N
σ,f1,f2,mµ,N ,f3,z

and f2,mµ,N ,ρµ,N ,λ <∞ for a ρµ,N < 1, we see that the integrand

hp of the previous integral satisfies the estimate

‖hp(x, ζ, ϑ)‖ ≤ Cp,µ,N〈x〉−N 〈ζ〉
−2p+supβ′≤β f2,mµ,N ,ρµ,N ,α,β′

+2pρµ,N 〈ϑ〉−2n .

Fixing p such that (ρµ,N − 1)2p + supβ′≤β f2,mµ,N ,ρµ,N ,α,β′ ≤ −N , we finally obtain the follow-

ing estimate ‖∂µU‖L(Ez)
≤ Cµ,N 〈x〉−N 〈ζ〉−N , which yields (i-2). The other implications are

straightforward.

Corollary 4.19. Same hypothesis. We have (for σ = 0 or σ > 0), OpΓ(S−∞
σ,z ) = ∩l,m ∪w,κ

OpΓ(Πl,w,m
σ,κ,z ) = OpΓ(Π−∞

σ,z ).

Lemma 4.20. Let u ∈ S(R2n, L(Ez)) and β a n-multi-index.
(i) For any triple f := (f1, f2, f3) such that there exists ρ < 1 such that for any 2n-multi-index
(α, γ), f3,ρ,α,γ <∞, the following linear forms are continuous on Of,z

Rβ,u : a 7→
∫

R3n

ζβe2πi〈ϑ,ζ〉 Tr(a(x, ζ, ϑ)u(x, ζ)) dζ dϑ dx ,

Sβ,u : a 7→ (i/2π)|β|
∫

R3n

e2πi〈ϑ,ζ〉 Tr(∂βϑa(x, ζ, ϑ)u(x, ζ)) dζ dϑ dx .

(ii) Rβ,u = Sβ,u on any Πl,w,m
σ,κ,z space.
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Proof. (i) The continuity of Rβ,u is a direct consequence of Proposition 4.14 since Rβ,u = Luβ ,Id
where uβ(x, ζ) := ζβu(x, ζ). Suppose that ν0 is a 3n-multi-index, we note f ν0 := ν 7→ f(ν + ν0).
A computation shows for any ρ, and n-multi-indices α, γ, f ν03,ρ,α,γ ≤ f3,ρ,α+α0,γ+γ0 +ρ|β0|. Thus if
there is ρ < 1 such that for any 2n-multi-index (α, γ), f3,ρ,α,γ <∞, then for any 2n-multi-index
(α, γ), f ν03,ρ,α,γ < ∞. If a ∈ Of,z then ∂ν0a ∈ Ofν0 ,z and the linear map a 7→ ∂ν0a is continuous.

As a consequence, since Sβ,u = Lu,Id ◦ Dβ, where Dβ := (i/2π)β∂βϑ , the continuity of Sβ,u on
Of,z follows from Proposition 4.14.
(ii) The equality is easily obtained on Π−∞,w

σ,κ,z by an integration by parts in ϑ and permutations
of the order of integration dζdϑ→ dϑdζ in Rβ,u(a) (authorized for a ∈ Π−∞,w

σ,κ,z ). The result now
follows from (i) and the density result of Lemma 4.12.

If N ≥ 1 and β, γ, n-multi-indices, we note for any amplitude a ∈ Πl,w,m
σ,κ,z , the smooth

function aβ,γ,N as aβ,γ,N (x, ζ, ϑ) :=
∫ 1
0 (1 − t)N (∂(0,β,γ)a)(x, tζ, ϑ) dt. It is straightforward to

check that the linear map a 7→ aβ,γ,N is continuous from Πl,w,m
σ,κ,z into Π

l−|β|,|w|+κ|β|,m−|γ|
σ,κ,z .

The following lemma shows that λ-quantization of amplitudes and symbols yields the
same operators. This result of “reduction” of amplitudes to symbols will be important for
Theorem 4.30 and thus, for a λ-invariant definition of pseudodifferential operators.

Lemma 4.21. (i) For any a ∈ Πl,w,m
σ,κ,z , (∂0,β,βa)ζ=0 ∈ S

l−|β|,m−|β|
σ,z for any n-multi-index β.

(ii) Let Γ be as in Lemma 4.18 and let a ∈ Πl,w,m
σ,κ,z . Then for any symbol s ∈ Sl,mσ,z such that

s ∼ ∑
β

(i/2π)|β|

β! (∂0,β,βa)ζ=0, there is r ∈ S−∞
σ,z such that OpΓ(a) = OpΓ(s + r). In particular

there exists an unique symbol s(a) ∈ Sl,mσ,z such that OpΓ(a) = OpΓ(s(a)). Moreover, we have

s(a) ∼
∑

β
(i/2π)|β|

β! (∂0,β,βa)ζ=0.
(iii) Suppose that (M, exp, E, dµ) has a Sσ-bounded geometry and ψ is a OM -linearization.

Let a ∈ Πl,w,m
σ,κ,z , λ ∈ [0, 1] and (z, b) be given a frame. Then there exists an unique sym-

bol sλ(a) ∈ Sl,mσ such that OpΓλ,z,b
(a) = (Opλ(sλ(a))z,b. Moreover, we have Tz,b,∗(sλ(a)) ∼

∑
β

(i/2π)|β|

β! µ−1(∂0,β,βa)ζ=0.

Proof. (i) is a direct consequence of Lemma 4.11 (i).
(ii) Using a Taylor expansion of a at ζ = 0, we find that for any u ∈ S(R2n, L(Ez)), N ∈ N

∗,
〈OpΓ(a), u〉 =

∑
0≤|β|≤N Iβ +

∑
|β|=N+1

N+1
β! Rβ,N where

Iβ :=

∫

R3n

ζβe2πi〈ϑ,ζ〉 Tr
(

1
β!(∂

(0,β,0)a)ζ=0(x, ϑ)Γ(u)∗(x, ζ)
)
dζ dϑ dx ,

Rβ,N :=

∫

R3n

ζβe2πi〈ϑ,ζ〉 Tr
(
aβ,0,N(x, ζ, ϑ) Γ(u)∗(x, ζ)

)
dζ dϑ dx .

We get from Lemma 4.20 (ii),

Iβ =

∫

R3n

e2πi〈ϑ,ζ〉 Tr
( (i/2π)|β|

β! (∂(0,β,β)a)ζ=0(x, ϑ)Γ(u)∗(x, ζ)
)
dζ dϑ dx .

Let s ∈ Sl,mσ,z be a symbol such that s ∼
∑

β
(i/2π)|β|

β! (∂0,β,βa)ζ=0. Then noting sN := s −
∑

|β|≤N
(i/2π)|β|

β! (∂0,β,βa)ζ=0 ∈ S
l−(N+1),m−(N+1)
σ,z , we find with Lemma 4.20 (ii) that OpΓ(a−s) =

OpΓ(rN ) where

rN :=
∑

|β|=N+1

(N+1)(i/2π)N+1

β! aβ,β,N − sN .
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We check that rN ∈ Π
l−(N+1),wN ,m−(N+1)
σ,κ,z where wN = |w|+κ(N +1). Corollary 4.19 applied to

OpΓ(a−s) now implies that there is r ∈ S−∞
σ,z such that OpΓ(a) = OpΓ(s+r). As a consequence,

there exists s(a) ∈ Sl,mσ,z such that OpΓ(a) = (OpΓ(s(a)). The unicity is a direct consequence of
the fact that OpΓ = Γ∗ ◦ F∗

P on S ′(R2n, L(Ez)).
(iii) Direct consequence of (ii) and that fact that (Opλ(s))z,b = OpΓλ,z,b(µz,bsz,b).

4.3 Sσ-linearizations

In order to have a full symbol-operator isomorphism, a polynomial control at infinity on the
linearization is not enough. As we shall see, a stronger, “amplitude-like” control on the ψb

z

maps and a local equivalent of the Px,ξ parallel transport linear isomorphisms (see Remark 3.3)
appears to be crucial for pseudodifferential calculus on (M, exp, E) and the λ-invariance (see
Theorem 4.30).

We define Hw
σ,κ(E) (resp. Ewσ,κ(E)), where w ∈ R, σ ∈ [0, 1] and κ ≥ 0, as the space

of smooth functions g from R
2n into E such that for any 2n-multi-index ν, there exists Cν >

0 such that for any (x, ζ) ∈ R
2n, ‖∂νg(x, ζ)‖ ≤ Cν〈x〉−σ(|ν|−1)〈ζ〉w+κ(|ν|−1) (if ν 6= 0) (resp.

‖∂νg(x, ζ)‖ ≤ Cν〈x〉−σ|ν|〈ζ〉w+κ|ν|). We note Hσ,κ(E) := ∪w∈RH
w
σ,κ(E), Hσ(E) := ∪κ≥0Hσ,κ(E),

Eσ,κ(E) = ∪w∈RE
w
σ,κ(E) and Eσ(E) = ∪κ≥0Eσ,κ(E). Remark that by Leibniz rule, Eσ,κ(R) and

Eσ,κ(Mp(R)) are R-algebras (graduated by the parameter w) while Eσ,κ,z := Eσ,κ(L(Ez)) is a C-
algebra (under pointwise matricial product). Thus, if P ∈ Eσ,κ(Mp(R)), then detP ∈ Eσ,κ(R).
Note also that f ∈ Hσ,κ(E) if and only if for any i ∈ { 1, · · · , 2n }, ∂if ∈ Eσ,κ(E). In particular,
f ∈ Hσ,κ(R

p) if and only if df := (x, ζ) 7→ (df)x,ζ is in Eσ,κ(Mp,2n(R)). As a consequence, if
f ∈ Hσ,κ(R

2n), its Jacobian determinant J(g) is in Eσ,κ(R). Note that any function in E0
σ,κ(E)

is bounded and if f ∈ H0
σ,κ(E) then there is C > 0 such that ‖f(x, ζ)‖

E
≤ C〈x, ζ〉 for any

(x, ζ) ∈ R
2n. The following lemma will give us the behaviour of the Eσ,κ and Hσ,κ spaces under

composition.

Lemma 4.22. (i) Let f ∈ Hw′

σ,κ(E) (resp. Ew
′

σ,κ(E)) and g ∈ Hw
σ,κ(R

2n) such that there exists
C, c > 0, r ≥ 0, such that 〈g1(x, ζ)〉 ≥ c〈x〉〈ζ〉−r (if σ 6= 0) and 〈g2(x, ζ)〉 ≤ C〈ζ〉 for any

(x, ζ) ∈ R
2n, where g =: (g1, g2). Then f ◦ g ∈ H

|w|+|w′|
σ,κ+|w|+rσ(E) (resp. E

|w′|
σ,κ+|w|+rσ(E)).

(ii) If P ∈ Ewσ,κ(Mn(R)), then (x, ζ) 7→ Px,ζ(ζ) ∈ Hw+κ+1
σ,κ (Rn).

(iii) Let f ∈ Gσ(R
n,E) and g ∈ Hw

σ,κ(R
n) such that there exists c > 0, r ≥ 0, such that, if

σ 6= 0, 〈g(x, ζ)〉 ≥ c〈x〉〈ζ〉−r for any (x, ζ) ∈ R
2n. Then f ◦ g ∈ H

|w|
σ,max{ rσ,κ }+|w|(E). Moreover,

if f ∈ Gσ(R
n,Rp), then df ◦ g ∈ E0

σ,max{ rσ,κ }+|w|(Mp,n(R)).

Proof. (i) The Faa di Bruno formula yields for any 2n-multi-index ν 6= 0,

∂ν(f ◦ g) =
∑

1≤|λ|≤|ν|

(∂λf) ◦ g Pν,λ(g) (4.9)

where Pν,λ(g) is a linear combination (with coefficients independant of f and g) of functions

of the form
∏s
j=1(∂

ljg)k
j

where s ∈ { 1, · · · , |ν| }. The kj and lj are 2n-multi-indices (for

1 ≤ j ≤ s) such that |kj | > 0, |lj | > 0,
∑s

j=1 k
j = λ and

∑s
j=1 |kj |lj = ν. As a consequence,

since g ∈ Hw
σ,κ(R

2n), we see that for each ν, λ with 1 ≤ |λ| ≤ |ν| there exists Cν,λ > 0 such that
for any (x, ζ) ∈ R

n,

|Pν,λ(g)(x, ζ)| ≤ Cν,λ〈x〉−σ(|ν|−|λ|)〈ζ〉w|λ|+κ(|ν|−|λ|) . (4.10)
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Moreover, since f ∈ Hw′

σ,κ(R
2n) (resp. Ew

′

σ,κ(R
2n)), there is C ′

λ > 0 such that for any (x, ζ) ∈ R
2n,

the estimate
∥∥(∂λf) ◦ g(x, ζ)

∥∥ ≤ C ′
λ〈x〉−σ(|λ|−1)〈ζ〉|w′|+(κ+rσ)(|λ|−1) (resp.

∥∥(∂λf) ◦ g(x, ζ)
∥∥ ≤

C ′
λ〈x〉−σ|λ|〈ζ〉|w

′|+(κ+rσ)|λ|) is valid. We deduce then from (4.9) and (4.10) that f ◦ g belongs to

H
w+|w′|
σ,κ+|w|+rσ(E) (resp. E

|w′|
σ,κ+|w|+rσ(E)).

(ii) We note P i,jx,ζ the matrix entries of Px,ζ . Each component (f i)1≤i≤n of the map f := (x, ζ) 7→
Px,ζ(ζ) is of the form f i =

∑n
j=1 P

i,j ζj. It is straightforward to check that the applications

(x, ζ) 7→ ζj satify for any ν ∈ N
2n, ∂νζj = O(〈ζ〉1−|ν|〈x〉σ(1−|ν|)). The result now follows from an

application of the Leibniz rule.
(iii) Following the proof of (i), (4.10) is still valid, this time with λ as n-multi-indices and
ν as 2n-multi-indices with 1 ≤ |λ| ≤ |ν|. Using the fact that 〈g(x, ζ)〉 ≥ c〈x〉〈ζ〉−r for any
(x, ζ) ∈ R

2n, we obtain the following estimate

∥∥∥(∂λf) ◦ g(x, ζ)
∥∥∥ ≤ C ′

λ〈x〉−σ(|λ|−1)〈ζ〉rσ(|λ|−1) ≤ C ′
λ〈x〉−σ(|λ|−1)〈ζ〉max{ rσ,κ }(|λ|−1)

which, with (4.10) and (4.9), yields f ◦ g belongs to H
|w|
σ,max{ rσ,κ }+|w|(E). The fact that df ◦ g is

in E0
σ,max{ rσ,κ }+|w|(Mp,n(R)) when f ∈ Gσ(R

n,Rp) is based on the same argument.

TheHσ,κ and Eσ,κ spaces are related to the symbol and amplitude spaces by the following
lemma.

Lemma 4.23. (i) If f ∈ Ewσ,κ,z, then (x, ζ, ϑ) 7→ f(x, ζ) is in Π0,w,0
σ,κ,z .

(ii) Let s ∈ Sl,mσ,z , m ∈ Hw
σ,κ(R

n) such that there exist C, c, r > 0 such that, if σ 6= 0, for any
(x, ζ) ∈ R

2n, c〈x〉〈ζ〉−r ≤ 〈m(x, ζ)〉 ≤ C〈x〉〈ζ〉r, and P ∈ E0
σ,κ(Mn(R)) such that such that for

any (x, ζ, ϑ) ∈ R
3n, 〈Px,ζ(ϑ)〉 ≥ c〈ϑ〉. Then (x, ζ, ϑ) 7→ s(m(x, ζ), Px,ζ(ϑ)) is in Π

l,σr|l|,m
σ,κ+|σr−κ+w|,z.

(iii) If s ∈ Sσ(R
n), m ∈ Hw

σ,κ(R
n) such that, if σ 6= 0, there exists c, r > 0 such that for any

(x, ζ) ∈ R
2n 〈m(x, ζ)〉 ≥ c〈x〉〈ζ〉−r, then (x, ζ, ϑ) 7→ s(m(x, ζ)) IdL(Ez) is in Π0,0,0

σ,κ+|σr−κ+w|,z.

(iv) If a ∈ Πl,w,m
σ,κ,z and P ∈ E0

σ,κ(Mn(R)) is such that such that there is c > 0 such that for any

(x, ζ, ϑ) ∈ R
3n, 〈Px,ζ(ϑ)〉 ≥ c〈ϑ〉, then aP : (x, ζ, ϑ) 7→ a(x, ζ, Px,ζ(ϑ)) ∈ Πl,w,m

σ,κ,z .

Proof. (i) is straightforward.
(ii) Let us note g(x, ζ, ϑ) := (m(x, ζ), Px,ζ(ϑ)). For any i, j ∈ { 1, · · · , n }, we note P i,jx,ζ the (i, j)

matrix entry of Px,ζ . Since P ∈ E0
σ,κ(Mn(R)), we have P i,j·,· ∈ E0

σ,κ(R). Faa di Bruno formula
in Theorem 2.11 yields for any ν 6= 0

∂ν(s ◦ g) =
∑

1≤|λ|≤|ν|

(Pν,λ(g)) (∂λs) ◦ g (4.11)

where Pν,λ(g) is a linear combination of terms of the form
∏s
j=1(∂

ljg)k
j
, where 1 ≤ s ≤ |ν|, the

kj (resp. lj) are 2n-multi-indices (resp. 3n-multi-indices) with |kj | > 0, |lj | > 0,
∑s

j=1 k
j = λ

and
∑s

j=1 |kj |lj = ν. Let us note lj =: (lj,1, lj,2, lj,3), kj =: (kj,1, kj,2) where lj,1, lj,2, lj,3, kj,1, kj,2

are n-multi-indices. We have, noting Q(x, ζ, ϑ) := (x, ζ),

(∂l
j
g)k

j
=

n∏

i=1

(δlj,3,0(∂
(lj,1,lj,2)m)i ◦Q)k

j,1
i

n∏

i=1

( n∑

k=1

∂(lj,1,lj,2)P i,k·,· ∂l
j,3
ϑk

)kj,2i
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and we get, for a given s, (lj), (kj) such that (∂l
j
g)k

j 6= 0 for all 1 ≤ j ≤ s,

if lj,3 = 0 , (∂l
j
g)k

j
= O(〈x〉−σ|lj ||kj|+σ|kj,1|〈ζ〉κ|lj ||kj|−κ|kj,1|+w|kj,1|〈ϑ〉|kj,2|) ,

if |lj,3| = 1 , kj,1 = 0 and (∂l
j
g)k

j
= O(〈x〉−σ|lj ||kj|+σ|kj |〈ζ〉κ|lj ||kj|−κ|kj|) .

The case is |lj,3| > 1 is excluded since kj 6= 0 and (∂l
j
g)k

j 6= 0. By permutation on the j
indices, we can suppose as in the proof of Lemma 2.13 that for 1 ≤ j ≤ j1 − 1, we have lj,3 = 0
and for j1 ≤ j ≤ s, we have |lj,3| = 1, where 1 ≤ j1 ≤ s+ 1. Thus, we get

s∏

j=1

(∂l
j
g)k

j
= O(〈x〉−σ(

∑s
j=1(|lj |−1)|kj |+

∑j1−1
j=1 |kj,2|)

× 〈ζ〉w
∑s
j=1 |k

j,1|+κ(
∑s
j=1(|lj |−1)|kj |+

∑j1−1
j=1 |kj,2|)〈ϑ〉

∑j1−1
j=1 |kj,2|) .

We check that
∑j1−1

j=1 |kj,2| = |λ2| − |γ| and
∑s

j=1(|lj | − 1)|kj | = |ν| − |λ| where λ = (λ1, λ2) and
ν = (α, β, γ). As a consequence,

Pν,λ(g) = O(〈x〉−σ(|α+β|−|λ1|)〈ζ〉w|λ1|+κ(|α+β|−|λ1|)〈ϑ〉|λ2|−|γ|) . (4.12)

Since there exist C, c > 0 such that for any (x, ζ) ∈ R
2n 〈m(x, ζ)〉 ≤ C〈x〉〈ζ〉r and 〈m(x, ζ)〉 ≥

c〈x〉〈ζ〉−r, we see that there is Kν > 0 such that for any 1 ≤ |λ| ≤ |ν| and any (x, ζ) ∈ R
2n,

〈m(x, ζ)〉σ(l−|λ1|) ≤ Kν〈x〉σ(l−|λ1|)〈ζ〉σr|l|+σr|λ1|. As a consequence, we see that there is Cν > 0
such that for any 1 ≤ |λ| ≤ |ν| and any (x, ζ, ϑ) ∈ R

3n,
∥∥∥(∂λs) ◦ g(x, ζ, ϑ)

∥∥∥
L(Ez)

≤ Cν〈x〉σ(l−|λ1|)〈ζ〉σr|l|+σr|λ1|〈ϑ〉m−|λ2|.

so, since we can reduce the sum in (4.11) to 2n-multi-indices λ such that |λ2| ≥ |γ| (and thus
|λ1| ≤ |α + β|), we obtain the result from (4.12) and a straightforward verification of the case
ν = 0.
(iii) is obtain exactly as (ii) (with Px,ζ = Id), since (x, ζ) 7→ µz,b(x) IdL(Ez) ∈ S0,0

σ,z . The
hypothesis m(x, ζ) = O(〈x〉〈ζ〉r) is not necessary since l = 0 here.
(iv) We have, noting g(x, ζ, ϑ) := (x, ζ, Px,ζ(ϑ)), for any 3n-multi-indices ν 6= 0, 1 ≤ |ν ′| ≤ |ν|,
Pν,ν′(g) as a linear combination of terms of the form

∏s
j=1(∂

ljg)k
j
, with

∑s
j=1 |kj |lj = ν and∑s

j=1 k
j = ν ′, noting kj = (kj,1, kj,2), lj = (lj,1, lj,2), where kj,1 and lj,1 are 2n-multi-indices, we

get, following the proof of (ii),

Pν,ν′(g) = O(〈x〉−σ(|α+β|−|α′+β′|)〈ζ〉κ(|α+β|−|α′+β′|)〈ϑ〉|γ′|−|γ|) .

Since Px,ζ = O(1) and 〈Px,ζ(ϑ)〉 ≥ ε〈ϑ〉 we get the result.

Definition 4.24. Let σ ∈ [0, 1] and ψ a linearization on (M, exp, E, dµ). We say that ψ is a
Sσ-linearization if for any frame (z, b), there is κz,b ≥ 0 such that

(i) ψb
z ∈ Hσ,κz,b (Rn) with ψb

z(x, ζ) = O(〈x〉〈ζ〉r) for a r ≥ 1 and ψb
z ∈ OM (R2n,Rn) ,

(ii) there is P z,b ∈ C∞(R2n, GLn(R)) such that P z,b and (P z,b)−1 are in E0
σ,κz,b

(Mn(R)), and

for any (x, ζ) ∈ R
2n, P z,bx,ζ (ζ) = Υz,b

1,T (x, ζ) and P z,bx,0 = IdRn .

(iii) τ z,b1 and (τ z,b1 )−1 are in E0
σ,κz,b

(L(Ez)).
We shall say that the combo (M, exp, E, dµ, ψ) has a Sσ-bounded geometry if this is the case of
(M, exp, E, dµ) and ψ is a Sσ-linearization.
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It is clear that a Sσ-linearization is also a OM -linearization. Moreover, we can check, in
case of Sσ bounded geometry, we check the properties (i), (ii) and (iii) in just one frame:

Lemma 4.25. If (M, exp, E, dµ) has a Sσ-bounded geometry and ψ is a linearization such that

there exists (z0, b0), κz0,b0 ≥ 0, such that the functions ψb0
z0 , ψ

b0

z0 satisfy (i), (ii) and (iii), then
ψ is a Sσ-linearization.

Proof. This follows from applications of Lemma 4.22.

Remark 4.26. The condition (ii) in Definition 4.24 encodes an abstract parallel transport iso-
morphisms in normal coordinates. Indeed, in the case where the linearization ψ is derived
from a connection on M , the GLn(R)-valued smooth functions on R

2n: P z,b := (x, ζ) 7→
Mb

z,exp ◦(nb

z,T )−1(x,ζ)
P(nb

z,T )−1(x,ζ)(M
b

z,(nb
z)

−1(x)
)−1 where the applications Px,ξ are the parallel trans-

port isomorphisms on the tangent bundle (see Remark 3.3), satisfy for any (x, ζ) ∈ R
2n,

P z,bx,ζ (ζ) = Υz,b
1,T (x, ζ) and P z,bx,0 = IdRn . Thus, in this case, (ii) is satisfied if P z,b and (P z,b)−1

are in E0
σ,κz,b

(Mn(R)) for a κz,b ≥ 0.

Remark that for any t ∈ R and (x, ζ) ∈ R
2n, if P z,b ∈ C∞(R2n, GLn(R)) satisfies

(ii), then P z,bx,tζ(ζ) = Υz,b
t,T (x, ζ). We shall note P z,bt := (x, ζ) 7→ P z,bx,tζ , so that P z,b1 = P z,b and

P z,b0 = IdRn . Thus, Υt,z,b(x, ζ) = (ψb
z(x, tζ), P

z,b
t,x,ζ(ζ)) and we define the following diffeomorphism

on R
3n,

Ξt,z,b := (x, ζ, ϑ) 7→ (Υt,z,b(x, ζ), P̃
z,b
t,x,ζ(ϑ)) . (4.13)

We also define the R
2n-valued function Ξ̂t,z,b : (x, ζ, ϑ) 7→ (ψb

z(x, tζ), P̃
z,b
t,x,ζ(ϑ)). We check that

J(Ξt,z,b) = J(Υt,z,b) (det(P z,bt )−1) and J(Ξ−1
t,z,b) = J(Υ−t,z,b) (det(P z,bt ◦Υ−t,z,b)). Note also that

for any (x, y) ∈ R
2n, ψb

z(y, x) = −P z,b
x,ψb

z (x,y)
(ψb

z (x, y)).

Lemma 4.27. Let (z, b) be a given frame, λ, λ′ ∈ [0, 1] and t ∈ [−1, 1]. Suppose also that
(M, exp, E, dµ, ψ) has a Sσ-bounded geometry. Then

(i) P z,bt , (P z,bt )−1 are in E0
σ,κz,b

(Mn(R)), and τ z,bt , (τ z,bt )−1 are in E0
σ,κz,b

(L(Ez)).

(ii) mz,b
t := ψb

z ◦ I1,t ∈ Hσ,κz,b(R
n) and there is c > 0, r ≥ 1 such that for any (x, ζ) ∈ R

2n,

〈mz,b
t (x, ζ)〉 ≥ c〈x〉〈ζ〉−r.

(iii) There is c, ε > 0 such that for any (x, ζ) ∈ R
2n, 〈ψb

z(x, ζ)〉 ≥ c〈ζ〉ε〈x〉−1.
(iv) Φλ,z,b ∈ Hσ,κz,b(R

2n). In particular Jλ,z,b ∈ Eσ,κz,b (R).
(v) Υt,z,b ∈ Hσ,κz,b(R

2n). In particular J(Υt,z,b) ∈ Eσ,κz,b (R). Moreover, there is C > 0 such

that 〈(Υz,b
t,T )(x, ζ)〉 ≤ C〈ζ〉 for any (x, ζ) ∈ R

2n.

(vi) J(Ξt,z,b) and J(Ξ−1
t,z,b) are in Eσ,κz,b (R).

Proof. (i) The case t = 0 is obvious. Suppose t 6= 0. Since P z,bt = P z,b ◦ I1,t and I1,t ∈ H0
σ,κz,b

the result follows from Lemma 4.22 (i). The same argument is applied to (P z,bt )−1, τ z,bt and

(τ z,bt )−1.
(ii) In the case t = 0, m0 = π1, so we obtain the result. Suppose t 6= 0. In that case Lemma

4.22 (i) entails that mt ∈ Hσ,κz,b (Rn). Since Υt,z,b = (mt,Υ
z,b
t,T ), we see that 〈Υt,z,b(x, ζ)〉 =

O(〈x〉〈ζ〉r) for a r ≥ 1. Thus, there is C > 0 such that for any (x, ζ) ∈ R
2n, we have

〈mt(x, ζ)〉〈Pt,x,ζ(ζ)〉r ≥ C〈x, ζ〉. Since there is K > 0 such that for any (x, ζ) ∈ R
2n, 〈P z,bt,x,ζ(ζ)〉 ≤

K〈ζ〉, we obtain the desired estimate.
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(iii) V := (π1, ψ
b
z) is a diffeomorphism on R

2n with inverse V −1 = (π1, ψb
z). Since ψb

z = O(〈x, y〉r)
for a r ≥ 1 by hypothesis, we see that there is c > 0 such that 〈x, ψb

z (x, ζ)〉 ≥ c〈x, ζ〉 for any
(x, ζ) ∈ R

2n. This yields the result.
(iv) Direct consequence of (ii) and the fact that Φλ,z,b = (mλ,mλ−1).
(v) follows from a straithforward application of (ii), Lemma 4.22 (ii) and the fact that for any

(x, ζ) ∈ R
2n, Υt,z,b(x, ζ) = (mt(x, ζ), P

z,b
t,x,ζ(ζ)).

(vi) By (i), (v) and and Lemma 4.22 (i), P z,bt ◦ Υ−t,z,b ∈ E0
σ,κ(Mn(R)). Thus the result

follows from (i), (v), and the formulas J(Ξt,z,b) = J(Υt,z,b) (det(P z,bt )−1) and J(Ξ−1
t,z,b) =

J(Υ−t,z,b) (det(P z,bt ◦ Υ−t,z,b)).

4.4 Pseudodifferential operators

Assumption 4.28. We suppose in this section and until section 5 that (M, exp, E, dµ, ψ) has
a Sσ-bounded geometry.

Definition 4.29. A pseudodifferential operator of order l,m and type σ is an element of Ψl,m
σ :=

Opλ(S
l,m
σ ), where λ ∈ [0, 1].

By Lemma 4.7, Sl,mσ can be seen as included in S ′(T ∗M,L(E)), so Opλ(S
l,m
σ ) is well

defined. The following theorem shows that it does not depend on λ, and thus justify the

notation Ψl,m
σ . We note τλ,λ

′

R := (τ z,bλ )−1 ◦ Υλ′−λ,z,b τ
z,b
λ′ and τλ,λ

′

L := (τ z,bλ′−1)
−1τ z,bλ−1 ◦ Υz,b

λ′−λ.

If ψ = exp, we have τλ,λ
′

R = τR,λ′−λ and τλ,λ
′

L = (τL,λ′−λ)
−1 where τL,t := τ z,bt if t 6= 1 and

τL,t := (τ z,b−1 )−1 ◦Υ1,z,b if t = 1, and τR,t := τ z,bt if t 6= −1 and τR,t := (τ z,b1 )−1 ◦Υ−1,z,b if t = −1.

Theorem 4.30. Let λ, λ′ ∈ [0, 1] and K = Opλ(a), with a ∈ Sl,mσ . Then there exists (an unique)

a′ ∈ Sl,mσ such that K = Opλ′(a
′). Moreover, for any frame (z, b),

a′z,b ∼
∑

β

(i/2π)|β|

β!

(
∂(0,β,β)τλ,λ

′

L az,bλ′−λτ
λ,λ′

R

)
ζ=0

where az,b := Tz,b,∗(a), a
′
z,b := Tz,b,∗(a

′), and az,bt is the amplitude defined for any t ∈ [−1, 1] as

az,bt (x, ζ, ϑ) :=
µz,b(mz,bt (x,ζ))

µz,b(x) |JΞt,z,b(x, ζ)| (az,b ◦ Ξ̂t,z,b(x, ζ, ϑ)) .

Proof. Let us fix a frame (z, b) and note az,b := Tz,b,∗(a). We saw in Remark 4.16 that
Opλ(a)z,b = OpΓλ,z,b

(µaz,b)). Thus, for any u ∈ S(M × M,L(E)), we have with uz,b :=

Tz,b,M2(u) ∈ S(R2n, L(Ez)),

〈K,u〉 =

∫

R3n

e2πi〈ϑ,ζ〉 Tr
(
µaz,b(x, ϑ) (Γλ,z,b(uz,b)(x, ζ))

∗
)
dζ dϑ dx .

Suppose that m ≤ −2n so that the integral is absolutely convergent. We now proceed to the
global change of variables provided by the diffeomorphism Ξz,bλ′−λ of R

3n (Ξt,z,b is defined at

(4.13)). We get 〈K,u〉 = 〈Opλ′,z,b(µτ
λ,λ′

L az,bλ′−λτ
λ,λ′

R ), uz,b〉. We check with Lemmas 4.27 and 4.23

that τλ,λ
′

L az,bλ′−λτ
λ,λ′

R is an amplitude in Πl,w,m
σ,κ,z for a κ ≥ 0 and a w ∈ R. We also see that the

linear map az,b 7→ µτλ,λ
′

L az,bλ′−λτ
λ,λ′

R is continuous on Sl,mσ,z , which yields, using Proposition 4.14

(ii) and the density result of Lemma 4.6, the equality 〈K,u〉 = 〈Opλ′,z,b(µτ
λ,λ′

L az,bλ′−λτ
λ,λ′

R ), uz,b〉,
for any order m of the symbol a. The result now follows from Lemma 4.21 (iii).
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Proposition 4.31. For each λ ∈ [0, 1] and l,m ∈ R, σλ is a linear isomophism from Ψl,m
σ onto

Sl,mσ and σλ(A
†) = (σ1−λ(A))∗ for any A ∈ Ψl,m

σ . In particular a pseudodifferential A operator
is formally selfadjoint (i.e A = A† as operators on S) if and only if its Weyl symbol σW (A) is
selfadjoint (as a L(E) → T ∗M section).

Proof. The fact that σλ is a linear isomophism from Ψl,m
σ onto Sl,mσ is a consequence The-

orem 4.30 and the fact that σλ is a topological isomorphism from S ′(M × M,L(E)) onto
S ′(T ∗M,L(E)). We check that for any T ∈ S ′(T ∗M,L(E)), Opλ(T )† = Op1−λ(T

∗) which
is a direct consequence of the fact that Φλ(x,−ξ) = j ◦ Φ1−λ(x, ξ) where j(x, y) = (y, x).

Proposition 4.32. Any operator in Ψl,m
σ is regular. Moreover, for any A ∈ Ψl,m

σ and v ∈ S,
we have

A(v) : x 7→
∫

T ∗
x (M)

dµ∗x(θ)

∫

Tx(M)
dµx(ξ) e

2πi〈θ,ξ〉 σ0(A)(x, θ) τ−1
−1 (x, ξ) v(ψ−ξ

x ) .

Proof. Let A ∈ Ψl,m
σ and a := σ0(A). Thus, for any frame (z, b), Az,b = OpΓ0,z,b

(µaz,b) so by
Lemmas 4.17, 4.27 (ii) and (iii), Az,b is continuous from S(Rn, Ez) into itself. By Proposition

4.31, A† is a pseudodifferential operator in Ψl,m
σ , so we also obtain (A†)z,b continuous from

S(Rn, Ez) into itself. The result follows.

4.5 Link with standard pseudodifferential calculus on R
n and L2-continuity

We suppose in this section that E is the scalar bundle. If A ∈ Ψσ, then Az,b belong to the space,
noted Ψσ,ψ, of regular operators B on S(Rn), of the form

B(v)(x) =

∫

R2n

e2πi〈ϑ,ζ〉a(x, ϑ)v(ψb
z (x,−ζ))dζdϑ

where a ∈ S∞
σ (R2n). We study in this section an sufficient condition on ψ, such that this space

Ψσ,ψ is in fact equal to the usual algebra Ψσ,std pseudodifferential operators on R
n with the

standard linearization ψ(x, ζ) = x+ ζ.
We will note ψ := ψb

z , Vx(ζ) := −ψ(x,−ζ) + x, Mx,ζ := [
∫ 1
0 ∂j(V

−1
x )i(tζ)dt]i,j and

Nx,ζ := [
∫ 1
0 ∂jV

i
x(tζ)dt]i,j. We consider the following hypothesis, noted (HV ):

(i) there is ε, δ, η > 0 such that for any (x, ζ) ∈ R
2n with ‖ζ‖ ≤ ε〈x〉ση , we have detMx,ζ ≥ δ

and detNx,ζ ≥ δ,
(ii) the functions (dVx)x,ζ and (dV −1

x )x,ζ are in E0
σ(Mn(R)).

Proposition 4.33. If the hypothesis (HV ) holds, we have Ψσ,ψ = Ψσ,std.

We set χε,η(x, ζ) := b( ‖ζ‖2

ε2〈x〉2ση ) where b ∈ C∞
c (R, [0, 1]) is such that b = 0 on R\] − 1, 1[

and b = 1 on [−1/4, 1/4].

Lemma 4.34. Suppose (HV ). If a ∈ Sl,mσ (R2n), then the application

aχ,M : (x, ζ, ϑ) 7→ χε,η(x, ζ)a(x, M̃x,ζϑ)|J(V −1
x |(ζ) (detMx,ζ)

−1

is an amplitude in ∪k,w Πl,w,m
σ,κ,z (R3n). Similarly,

aχ,N : (x, ζ, ϑ) 7→ χε,η(x, ζ)a(x, Ñx,ζϑ)|J(Vx)|(ζ) (detNx,ζ)
−1

is in
⋃
k,w Πl,w,m

σ,κ,z (R3n).
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Proof. The result follows from Lemma 4.23 (ii) and applications of Proposition 5.4.

Proof of Proposition 4.33. Suppose that a ∈ Sl,mσ (R2n) and define A as the operator in Ψσ,ψ

with normal symbol a. We obtain for any v ∈ S(R2n)

A(v)(x) :=

∫

R2n

e2πi〈ϑ,ζ〉a(x, ϑ)v(ψ(x,−ζ))dζdϑ .

We suppose first that a ∈ S−∞
σ (R2n). We have after a change of variable, and cutting the

integral in two parts A(v)(x) = A1(v)(x) +A2(v)(x) where

A1(v)(x) =

∫

R2n

e2πi〈ϑ,Mx,ζ(ζ)〉χε,η(x, ζ)a(x, ϑ)|J(V −1
x )|(ζ)v(x − ζ)dζdϑ ,

A2(v)(x) =

∫

R2n

e2πi〈ϑ,V
−1
x (ζ)〉(1 − χε,η)(x, ζ)a(x, ϑ)|J(V −1

x )|(ζ)v(x − ζ)dζdϑ .

In A1, we permute the integrations dζ and dϑ and proceed to a change of the variable ϑ, while
in A2 we integrate by parts in ϑ using formula (4.7) so that for any p ∈ N,

A1(v)(x) =

∫

R2n

e2πi〈ϑ,ζ〉aχ,M(x, ϑ)v(x − ζ)dζdϑ ,

A2(v)(x) =

∫

R2n

e2πi〈ϑ,V
−1
x (ζ)〉(1 − χε,η)(x, ζ)

tM
p,V −1

x (ζ)
ϑ (a)|J(V −1

x )|(ζ)v(x − ζ)dζdϑ .

As a consequence with Lemma 4.34, and with the density of S−∞
σ (R2n) in Sl,mσ (R2n), we see

that A is the sum of two pseudodifferential operators in Ψσ,std: A = Aχ + R where Ψ−∞
σ,std and

Aχ has aχ,M as (standard) amplitude. The implication in the other sense is similar.

Remark 4.35. In the case of pseudodifferential operator with local compact control over the x
variable and with ψ coming from a connection, by cutting-off in the ζ-variable or in other words
taking y := ψ(x,−ζ) and x sufficiently close to each other, we have in fact Ψσ,ψ equal to Ψσ,std

modulo smoothing elements (see [39]).

As a consequence, we see that if the hypothesis (HV ) are satisfied for a frame (z, b), then
Ψσ,ψ(= Ψσ,std) is stable under composition of operators and the symbol composition formula is
then given by a quadruple asympotic summation modulo smoothing symbols.

We will show in the next section that we can also obtain stability under composition
directly, without using a reduction to the standard calculus on R

n. We shall obtain with this
method a simpler symbol composition formula on Ψσ,ψ, analog to the usual one on Ψσ,std.

As a direct consequence of the previous proposition, we have the following L2-continuity
result for pseudodifferential operators on M .

Proposition 4.36. If (HV ) is satisfied for the function V −1
x in a frame (z, b), then any pseu-

dodifferential operators on M of order (0, 0) extends as a bounded operator on L2(M,dµ).

Proof. Since (HV ) are satisfied for V −1
x , the proof of the previous proposition entails that

Ψ0,0
σ,ψ ⊆ Ψ0,0

σ,std, so the result follows from the Calderon–Vaillancourt theorem of L2-continuity of
pseudodifferential operators [6].
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4.6 Compostion of pseudodifferential operators

The goal of this section is to prove that pseudodifferential operators of Ψ∞
σ are stable under

composition without using the hypothesis of the previous section, and to obtain an adapated
symbol composition formula. We shall adapt to our situation a technique used for Fourier
integral operators in Coriasco [11], Ruzhansky and Sugimoto [34, 36].

Let us note for (x, ξ) ∈ TM and ξ′ ∈ T
ψ−ξ
x

(M), ψx,ξ,ξ′ := ψ−ξ′

ψ−ξ
x

, rx(ξ, ξ
′) := ψ−1

x (ψx,ξ,ξ′)

and qx(ξ, ξ
′) := ψ−1

ψx,ξ,ξ′
(ψ−ξ

x ). We define Vx the 2n dimensional smooth manifold as Vx :=

{ (ξ, ξ′) ∈ Tx(M) × ∪y∈MTy(M) | ξ′ ∈ T
ψ−ξ
x

(M) }. Each Vx manifold is diffeomorphic to R
2n

via the map, defined for any fixed frame (z, b), nb
z,Vx

(ξ, ξ′) := (Mb
z,x(ξ),M

b

z,ψ−ξ
x

(ξ′)), and has a

canonical involutive diffeomorphism Rx defined as

Rx : (ξ, ξ′) 7→ (rx(ξ, ξ
′), qx(ξ, ξ

′)) .

In all the following we fix a frame (z, b), and note also ψ the function mz,b
−1. We note xζ,ζ

′
:=

ψ(ψ(x, ζ), ζ ′). For each x ∈ R
n, Rx := nb

z,V
(nb
z )−1(x)

◦ R(nb
z )

−1(x) ◦ (nb
z,V

(nb
z )−1(x)

)−1 is a dif-

feomorphism on R
2n, and we define Rx =: (rx, qx), r = rz,b := (x, ζ, ζ ′) 7→ rx(ζ, ζ

′) and

q = qz,b := (x, ζ, ζ ′) 7→ qx(ζ, ζ
′). Remark that rx(ζ, ζ

′) = −ψb
z(x, x

ζ,ζ′) =: ψx ◦ ψψx(ζ)(ζ
′)

and qx(ζ, ζ
′) = −P z,b−1,ψ(x,ζ),ζ′(ζ

′). The map rx,ζ : ζ ′ 7→ rx(ζ, ζ
′) is a diffeomorphism on R

n such

that r−1
x,ζ = rψx(ζ),ψψ(x,ζ)(x) so that (drx,ζ)

−1
ζ′ = (drψx(ζ),ψψ(x,ζ)(x))rx,ζ(ζ′). We will use the shortcut

τ := (τ z,b−1 )−1.

We note s(x, ζ, ζ ′) := r(x, ζ, ζ ′)− ζ. We have s(x, ζ, ζ ′) = sx,ζ(ζ
′) where sx,ζ = T−ζ ◦ψx ◦

ψψx(ζ) is a diffeomorphism on R
n such that sx,ζ(0) = 0. We also define

ϕx,ζ(ζ
′) := rx,ζ(ζ

′) − ζ − (drx,ζ)0(ζ
′)

so that ϕx,ζ(0) = 0 and (dϕx,ζ)0 = 0, and

V (x, ζ, ζ ′) := (drx,ζ)ζ′

as a smooth function from R
3n into Mn(R). We shall note (x, ζ) 7→ Lx,ζ := − t(drx,ζ)0.

We define Ol,w0,w1
σ,κ,ε0,ε1,c(E), where c ∈ N, l ∈ R, w := (w0, w1) ∈ R

2
+, ε := (ε0, ε1), ε0 ≥ 0,

ε1 > 0, σ ∈ [0, 1] and κ ≥ 0, as the space of smooth functions g from R
3n into E such that for

any 3n-multi-index ν = (µ, γ) ∈ N
2n×N

n, there exists Cν > 0 such that for any (x, ζ, ζ ′) ∈ R
3n,

‖∂νg(x, ζ, ζ ′)‖ ≤ Cν〈x〉σ(l−|µ|−ε1|γ|c)〈ζ〉w0+κ|µ|+ε0|γ|〈ζ ′〉w1+κ|ν|. Here, we noted |γ|c := 0 if |γ| < c

and |γ|c := |γ|−c if |γ| ≥ c. We note Oσ,κ,ε(E) := ∪c,l,wOl,w
σ,κ,ε,c(E). We check that for any multi-

indices γ, γ′ and c, c′ ∈ N, |γ|c + |γ′|c ≥ |γ + γ′|c+c′ , and |γ + γ′|c ≥ |γ|c + |γ′|c. Thus, Oσ,κ,ε(R),
Oσ,κ,ε(Mp(R)) and Oσ,κ,ε,z := Oσ,κ,ε(L(Ez)) are algebras (graduated by the parameters c, l,

w0 and w1) and ∂νOl,w
σ,κ,ε,c(E) ⊆ Ol−|µ|−ε1|γ|c,w0+κ|µ|+ε0|γ|,w1+κ|ν|

σ,κ,ε,c (E). If f ∈ O0,w
σ,κ,ε,c(E), then

(x, ζ) 7→ f(x, ζ, 0) ∈ Ew0
σ,κ(E), and if f ∈ Ol,w

σ,κ,ε,c,z, then (x, ζ, ϑ) 7→ f(x, ζ, 0) ∈ Πl,w0,0
σ,κ,z . Remark

that any monomial of the form (x, ζ, ζ ′) 7→ ζ ′β where β ∈ N
n, is in O0,0,|β|

σ,κ,ε,|β|(R) for any κ ≥ 0
and ε0 ≥ 0, ε1 > 0.

In the definition of S′
σ bounded geometry, we only require a polynomial control over

the ψ
b

z functions. It appears that for the theorem of composition, a stronger control over these
functions is important. We thus introduce the following:
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Definition 4.37. We shall say that (Cσ) is satisfied if there is a frame (z, b), (κv, wv) ∈ R
2
+

with κv ≥ 1, and εv ∈]0, 1[, such that

V ∈ O0,0,wv
σ,κv ,εv,εv,0

(Mn(R)) , and (dψb
z,x)ζ , (dψ

b

z,x)y = O(1) . (4.14)

In particular (Cσ) entails that (drz,bx,ζ)0 and thus L are in E0
σ,κv(Mn(R)).

We note Rw0,w1
σ,κ,ε1 (E) (ε1 > 0) as the space of smooth functions g such that for any nonzero

ν = (µ, γ) ∈ N
2n × N

n, ∂νg = O(〈x〉σ(1−|µ|−ε1|γ|)〈ζ〉w0+κ(|ν|−1)〈ζ ′〉w1+κ(|ν|−1)). It follows from
(Cσ) that r ∈ ∪w0,w1Rw0,w1

σ,κv,εv/2
(Rn).

The following lemma will give us the link between the the O, R, H, E spaces and the
behaviour under composition.

Lemma 4.38. (i) Let f ∈ Hw
σ,κ(E) (resp. Ewσ,κ(E)) and g ∈ Rw0,w1

σ,κ,ε1 (R
2n) such that g2(x, ζ, ζ

′) =

O(〈ζ〉k2〈ζ ′〉k′2) for a (k2, k
′
2) ∈ R

2
+ and, if σ 6= 0, 〈g1(x, ζ, ζ ′)〉 ≥ c〈x〉〈ζ〉−k1〈ζ ′〉−k′1 , for a (k1, k

′
1) ∈

R
2
+ and c > 0. Then, f ◦ g ∈ Rw0+k2w,w1+k′2w

σ,κH ,ε1 (E) (resp. O0,k2w,k′2w
σ,κE ,κE ,ε1,0

(E)) where κH := κ +
max{ |w0 + k1σ+ k2κ|, |w1 + k′1σ+ k′2κ| } and κE := κ+max{ |w0 + k1σ+(k2 − 1)κ|, |w1 + k′1σ+
(k′2 − 1)κ| }.
(ii) (x, ζ, ζ ′) 7→ (ψ(x, ζ), ζ ′) ∈ Rwψ ,0

σ,κψ ,1
(R2n) and (x, ζ, ζ ′) 7→ xζ,ζ

′ ∈ Rσ,κψ ,1 for a (κψ, wψ) ∈ R
2
+.

(iii) The functions q, (x, ζ, ζ ′) 7→ (P z,b−1,ψ(x,ζ),ζ′)
−1 and (x, ζ, ζ ′) 7→ det(P z,b−1,ψ(x,ζ),ζ′)

−1 are respec-

tively in Rσ,κq,1(R
n), O0,0,0

σ,κq ,κq,1,0
(Mn(R)), and O0,0,0

σ,κq ,κq,1,0
(R), for a κq ≥ 0. Moreover, there

exists C > 0 such that for any (x, ζ, ζ ′) ∈ R
3n, ‖qx(ζ, ζ ′)‖ ≤ C〈ζ ′〉.

(iv) (x, ζ, ζ ′) 7→ τ(xζ,ζ
′
, qx(ζ, ζ

′)) is in O0,0,0
σ,κτ ,κτ ,1,0,z

for a κτ ≥ 0.

Proof. (i) If ν = (α, β, γ) 6= 0 is a 3n-multi-index, we have ∂νf ◦ g =
∑

1≤|ν′|≤|ν| Pν,ν′(g)(∂
ν′f) ◦

g, with Pν,ν′(g) a linear combination of terms of the form
∏s
j=1(∂

ljg)k
j
, with 1 ≤ s ≤ |ν|,∑s

1 l
j|kj | = ν,

∑s
1 k

j = ν ′. As a consequence, we get the following estimate for any 1 ≤
|ν| ≤ |ν ′|, Pν,ν′(g) = O(〈x〉σ(|ν′|−|µ|−ε1|γ|)〈ζ〉w0|ν′|+κ(|ν|−|ν′|)〈ζ ′〉w1|ν′|+κ(|ν|−|ν′|)). Moreover, for
any 1 ≤ |ν ′| ≤ |ν|, there is Cν > 0 such that for any (x, ζ, ζ ′) ∈ R

3n, the following estimate is

valid
∥∥∥(∂ν

′
f) ◦ g(x, ζ, ζ ′)

∥∥∥ ≤ Cν〈x〉−σ(|ν′|−1)〈ζ〉(k1σ+k2κ)(|ν′|−1)+k2w〈ζ ′〉(k′1σ+k′2κ)(|ν′|−1)+k′2w (resp.∥∥∥(∂ν
′
f) ◦ g(x, ζ, ζ ′)

∥∥∥ ≤ Cν〈x〉−σ|ν
′|〈ζ〉(k1σ+k2κ)|ν′|+k2w〈ζ ′〉(k′1σ+k′2κ)|ν′|+k′2w). The result follows.

(ii) By hypothesis, ψ ∈ H
wψ
σ,κψ . We deduce that (x, ζ, ζ ′) 7→ ψ(x, ζ) ∈ Rwψ ,0

σ,κψ ,1
and the first

statement now follows from (x, ζ, ζ ′) 7→ ζ ′ ∈ R0,0
σ,κψ ,1

. The second statement follows from (i).

(iii) Since qx(ζ, ζ
′) = −P z,b−1,ψ(x,ζ),ζ′(ζ

′), the fact that qx ∈ Rσ,κq,1(R
n) for a κq ≥ 0 is a con-

sequence of (i), (ii) and Lemma 4.22 (iii). We also have by (i) and (ii), (P z,b−1,ψ(x,ζ),ζ′)
−1 ∈

O0,0,0
σ,κq ,κq,1,0

(Mn(R)).

(iv) Since τ ∈ E0
σ,κ(L(Ez)) for a κ ≥ 0, the result follows (i), (ii), (iii) and the estimate

〈xζ,ζ′〉 ≥ c〈x〉〈ζ〉−k〈ζ ′〉−k for c, k > 0.

Lemma 4.39. Suppose (Cσ). Then
(i) s, ϕ ∈ O0,0,ws

σ,κv,εv,εv,1
(Rn) and ϕ ∈ O−εv,εv,wϕ

σ,κv ,εv,εv,2
(Rn) where ws := wv + 1 and wϕ := 2 +wv + κv.

(ii) V = (drx,ζ)ζ′ and (drx,ζ)
−1
ζ′ are bounded on R

3n.

(iii) The function J(R) : (x, ζ, ζ ′) 7→ J(Rx)(ζ, ζ
′) is in ∪κ,w0,w1,ε0,ε1O0,w0,w1

σ,κ,ε0,ε1,0
(R) and (x, ζ, ζ ′) 7→

τ(x, rx(ζ, ζ
′)) is in O0,0,0

σ,κτ ,κτ ,εv/2,0,z
for κτ ≥ 0.
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Proof. (i) We have sx,ζ(ζ
′) =

∑n
i=1 ζ

′
i

∫ 1
0 ∂ζ′irx,ζ(tζ

′) dt. Since V ∈ O0,0,wv
σ,κv ,εv,0

(Mn(R)) each func-

tion (x, ζ, ζ ′) 7→
∫ 1
0 ∂ζ′irx,ζ(tζ

′) dt is in O0,0,wv
σ,κv,εv,0

(Rn) and thus, since (x, ζ, ζ ′) 7→ ζ ′i ∈ O0,0,1
σ,κv ,εv,1

(R),

we see that s ∈ O0,0,ws
σ,κv,εv,1

(Rn). We have also ϕx,ζ(ζ
′) =

∑
|β|=2

2
β!(ζ

′)β
∫ 1
0 (1 − t) ∂βζ′rx,ζ(tζ

′) dt

and each function (x, ζ, ζ ′) 7→
∫ 1
0 (1 − t) ∂βζ′rx,ζ(tζ

′) dt is in O−εv,εv,wv+κv
σ,κv ,εv,0

(Rn). With (x, ζ, ζ ′) 7→
(ζ ′)β ∈ O0,0,2

σ,κv,εv,2
(R), we get ϕ ∈ O−εv,εv,wϕ

σ,κv ,εv,2
(Rn).

(ii) Direct consequence of (Cσ) and the following equalities for any (x, ζ, ζ ′) ∈ R
3n, (drx,ζ)ζ′ =

(dψx)xζ,ζ′ (dψψx(ζ))ζ′ and (drx,ζ)
−1
ζ′ = (dψψx(ζ))xζ,ζ′ (dψx)rx,ζ(ζ′).

(iii) The first statement follows from Lemma 4.38 (ii). The second statement follows from
Lemma 4.38 (i) and the estimate rx(ζ, ζ

′) = O(〈ζ〉〈ζ ′〉wv).

We shall use a generalization to four variables of the Πl,w,m
σ,κ,z spaces of amplitude. We

define Π̃l,w0,w1,m
σ,κ,ε1,z (0 < ε1 ≤ 1) as the space of smooth functions a ∈ C∞(R4n, L(Ez)) such that

for any 4n-multi-index (ν, δ) ∈ N
3n × N

n, (with ν = (µ, γ) ∈ N
2n × N

n) there is Cν,δ > 0 such
that for any (x, ζ, ζ ′, ϑ) ∈ R

4n,

∥∥∥∂(ν,δ)a(x, ζ, ζ ′, ϑ)
∥∥∥
L(Ez)

≤ Cν,δ〈x〉σ(l−|µ|−ε1|γ|)〈ζ〉w0+κ|ν|〈ζ ′〉w1+κ|ν|〈ϑ〉m−|δ| .

These spaces have natural Fréchet topologies and form a graduated topological algebra under
pointwise composition.

Lemma 4.40. (i) If a ∈ Π̃l,w0,w1,m
σ,κ,ε1,z , then aζ′=0 : (x, ζ, ϑ) 7→ a(x, ζ, 0, ϑ) is in Πl,w0,m

σ,κ,z .

(ii) If h ∈ Ol,w0,w1
σ,κ,ε0,ε1,0,z

, then (x, ζ, ζ ′, ϑ) 7→ h(x, ζ, ζ ′) is in Π̃l,w0,w1,0
σ,max{κ,ε0 },ε1,z

.

(iii) There is κΞ, k1 ≥ 0 such that for any b ∈ Sl,mσ,z , the application b ◦ Ξ̃, where Ξ̃(x, ζ, ζ ′, ϑ) :=

(xζ,ζ
′
,−P̃ z,b−1,ψ(x,ζ),ζ′(ϑ)), is in Π̃

l,σk1|l|,σk1|l|,m
σ,κΞ,1,z

.

Proof. (i) and (ii) are direct.
(iii) If µ = (ν, δ) 6= 0 is a 4n-multi-index, we have ∂µ(b ◦ Ξ̃) =

∑
1≤|µ′|≤|µ| Pµ,µ′(Ξ̃) (∂µ

′
b) ◦ Ξ̃

with Pµ,µ′(Ξ̃) a linear combination of terms of the form
∏s
j=1(∂

lj Ξ̃)k
j
, with 1 ≤ s ≤ |µ|, lj =

(lj,1, lj,2) ∈ N
3n × N

n, kj = (kj,1, kj,2) ∈ N
n × N

n, such that lj,2 = 0 for 1 ≤ j ≤ j1 ≤ s, and∑s
1 l
j|kj | = µ,

∑s
1 k

j = µ′. We have

(∂l
j
Ξ̃)k

j
=

n∏

i=1

(δlj,2,0(∂
lj,1xζ,ζ

′
)i)

kj,1i

n∏

i=1

( n∑

k=1

∂l
j,1
P i,k ∂l

j,2
ϑk

)kj,2i

where P i,k are the matrix entries of −P̃ z,b−1,ψ(x,ζ),ζ′ . By Lemma 4.38 (ii) and (iii), xζ,ζ
′ ∈

Rw0,w1
σ,κψ ,1

(Rn) and the P i,k are in O0,0,0
σ,κψ ,κψ,1,0

(R) for a (κψ, w0, w1) ∈ R
3
+. We obtain thus the

following estimate

|Pµ,µ′(Ξ̃)(x, ζ, ζ ′, ϑ)| ≤ Cµ〈x〉−σ(|ν|−|α′|)〈ζ〉w0|α′|+κψ(|ν|−|α′|)〈ζ ′〉w1|α′|+κψ(|ν|−|α′|)〈ϑ〉|β′|−|δ|

with µ′ =: (α′, β′). Since b ∈ Sl,mσ,z we also have the estimate

∥∥∥(∂µ
′
b) ◦ Ξ̃(x, ζ, ζ ′)

∥∥∥ ≤ C ′
µ〈xζ,ζ

′〉σ(l−|α′|)〈ϑ〉m−|β′|

so the result follows now from the estimate 〈xζ,ζ′〉σ(l−|α′|) = O(〈x〉σ(l−|α′|)(〈ζ〉〈ζ ′〉)σk1|l|+σk1|α′|),
with κΞ := κψ + max{ |w0 + σk1 − κψ|, |w1 + σk1 − κψ| }.
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Lemma 4.41. Let s ∈ C∞(Rp,Rn). Then for any p+ n-multi-index ν = (α, β) 6= 0, we have

∂νx,ϑ e
i〈ϑ,s(x)〉 = Pν(x, ϑ) ei〈ϑ,s(x)〉

where Pν is of the form
∑

|γ|≤|α| ϑ
γ Tν,γ(x), and Tν,γ is a linear combination of terms of the

form
∏m
j=1(∂

ljs)µ
j

where 1 ≤ m ≤ |ν|, (lj) are p-multi-indices and (µj) are n-multi-indices.

Moreover, they satisfy |µj | > 0,
∑m

j=1 |µj | = |γ| + |β|, ∑m
j=1 |µj ||lj | = |α| and if |β| = 0, then

|lj | > 0 and |γ| > 0.

Proof. We note g(x, ϑ) := 〈ϑ, s(x)〉. By Theorem 2.11, we get the following equality for any
ν 6= 0, ∂νx,ϑ e

i〈ϑ,s(x)〉 = Pν(x, ϑ)ei〈ϑ,s(x)〉 where Pν(x, ϑ) =
∑

1≤k≤|ν| Pν,k(g) and Pν,k is a linear

combination of terms of the form
∏m
j=1(∂

ljg)k
j

such that |lj | > 0, kj > 0,
∑m

1 kj = k and
∑m

1 kjlj = ν. If we suppose that the term
∏m
j=1(∂

ljg)k
j

is non-zero, then |lj | ≤ 1 and if we

define j1 such that for any 1 ≤ j ≤ j1, l
j,2 = 0, we obtain, noting lj = (lj,1, lj,2),

m∏

j=1

(∂l
j
g)k

j
=

j1∏

j=1

〈ϑ, ∂lj,1s〉kj
m∏

j=j1+1

(∂l
j,1
sqj)k

j

=
∑

|γj |=kj , 1≤j≤j1

γ1! · · · γj ! ϑ
∑j1

1 γj
j1∏

j=1

(∂l
j,1
s)γ

j
m∏

j=j1+1

(∂l
j,1
sqj)k

j
.

Thus, we have Pν,k =
∑

|γ|=k−|β| ϑ
γ Tν,γ,k(x) where Tν,γ,k is a linear combination of terms of

the form
∏j1
j=1(∂

lj,1s)µ
j ∏m

j=j1+1(∂
lj,1sqj)k

j
, where 1 ≤ qj ≤ n, 1 ≤ j ≤ m ≤ |ν|, 1 ≤ j1 ≤ m,

lj,1 ∈ N
p, kj ∈ N

∗, λj ∈ N
n are such that

∑m
1 kj = k,

∑j1
1 |λj ||lj,1|+ ∑m

j1+1 k
j |lj,1 + 1| = |ν| and∑m

j1+1 k
j = |β|. The result follows.

Lemma 4.42. Suppose that (Cσ) is satisfied. Then
(i) Representing by u the letter s or ϕ, for any 3n-multi-index ν = (µ, γ) ∈ N

2n × N
n, we

have the equality ∂νx,ζ,ϑe
2πi〈ϑ,ux,ζ(ζ

′)〉 = (
∑

|ω|≤|µ| ϑ
ωTν,ω,u(x, ζ, ζ

′)) e2πi〈ϑ,ux,ζ (ζ
′)〉 where each term

Tν,ω,s ∈ O−|µ|,κv|µ|,ws|ω+γ|+κv|µ|
σ,κv,εv,εv,|ω+γ|

(R) and Tν,ω,ϕ ∈ O−|µ|−εv|ω+γ|,εv|ω+γ|+κv|µ|,wϕ|ω+γ|+κv|µ|
σ,κv,εv,εv,2|ω+γ|

(R). In

particular, it satisfies the following estimate valid for any (x, ζ, ζ ′) ∈ R
3n, and any n-multi-index

ρ,

|∂ρζ′Tν,ω,s(x, ζ, ζ ′)| ≤ Cν,ω,ρ〈x〉−σ(|µ|+εv |ρ||ω+γ|)〈ζ〉κv|µ|+εv|ρ|〈ζ ′〉ws|ω+γ|+κv(|µ|+|ρ|) ,

|∂ρζ′Tν,ω,ϕ(x, ζ, ζ ′)| ≤ Cν,ω,ρ〈x〉−σ(|µ|+(εv/2)|ρ|)〈ζ〉εv|ω+γ|+κv|µ|+εv|ρ|〈ζ ′〉wϕ|ω+γ|+κv(|µ|+|ρ|) .

(ii) For any n-multi-index β, we have ∂βζ′e
2πi〈ϑ,ϕx,ζ(ζ

′)〉 = Pβ,ϕ(x, ζ, ζ ′, ϑ)e2πi〈ϑ,ϕx,ζ(ζ
′)〉 where

Pβ,ϕ(x, ζ, ζ ′, ϑ) is a linear combination of terms of the form ϑωζ ′λtω,λ(x, ζ, ζ
′) where ω and λ

are n-multi-indices satifying |ω| ≤ |β|, (2|ω| − |β|)+ ≤ |λ| ≤ |ω|, and tω,λ are functions in

O−εv|β|/2,2εv,w′
s|β|

σ,κv ,εv,εv,|β|
(R). In particular they are estimated by

tω,λ(x, ζ, ζ
′) = O(〈x〉−σεv |β|/2〈ζ〉2εv|β|〈ζ ′〉w′

s|β|)

where w′
s := ws + 2κv. Moreover, (x, ζ, ϑ) 7→ Pβ,ϕ(x, ζ, 0, ϑ) 1L(Ez ) ∈ Π

−εv|β|/2,εv|β|,|β|/2
σ,κv ,z .
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(iii) If β ∈ N
n and f ∈ Π̃l,w0,w1,m

σ,κ,ε1,z then the function

fβ,ϕ : (x, ζ, ϑ) 7→ ∂βζ′
(
e2πi〈ϑ,ϕx,ζ (ζ

′)〉∂0,0,0,βf(x, ζ, ζ ′, Lx,ζ(ϑ))
)
ζ′=0

belongs to Π
l−ε′1|β|,w0+κ2|β|,m−|β|/2
σ,κ1,z , where ε′1 := min{ ε1/2, εv/2 } > 0, κ1 := max{κv , κ }, κ2 :=

κ+ |εv − κ|, and the application f 7→ fβ,ϕ is continuous.

Proof. (i) By Lemma 4.41, if ν 6= 0, we have the following equality, valid for any (x, ζ, ζ ′, ϑ) ∈
R

4n, ∂νx,ζ,ϑe
2πi〈ϑ,ux,ζ (ζ

′)〉 = (
∑

|ω|≤|µ| ϑ
ωTν,ω,u(x, ζ, ζ

′)) e2πi〈ϑ,ux,ζ (ζ
′)〉 where Tν,ω,u is a linear com-

bination of terms of the form
∏m
j=1(∂

lj

x,ζu)µ
j

with 1 ≤ m ≤ |ν|, µj 6= 0,
∑m

j=1 |µj | = |ω + γ|
and

∑m
j=1 |µj ||lj | = |µ|. Since by Lemma 4.39 (i), s ∈ O0,0,ws

σ,κv,εv,εv,1
(Rn), it is straightforward

to check that Tν,ω,s ∈ O−|µ|,κv|µ|,ws|ω+γ|+κv|µ|
σ,κv,εv,εv,|ω+γ| (R). Moreover, since ϕ ∈ O−εv,εv,wϕ

σ,κv,εv,εv,2
(Rn), we get

Tν,ω,ϕ ∈ O−|µ|−εv|ω+γ|,εv|ω+γ|+κv|µ|,wϕ|ω+γ|+κv|µ|
σ,κv,εv,εv,2|ω+γ| (R). The first estimate is direct and the second

estimate follows from the inequality |ω + γ| + |ρ|2|ω+γ| ≥ |ρ|/2.
(ii) By Lemma 4.41, if β 6= 0, we have for any (x, ζ, ζ ′, ϑ) ∈ R

4n, the following relation

∂βζ′e
2πi〈ϑ,ϕx,ζ(ζ

′)〉 = (
∑

1≤|ω|≤|β| ϑ
ωTβ,ω,ϕ(x, ζ, ζ ′))e2πi〈ϑ,ϕx,ζ (ζ

′)〉 where Tβ,ω,ϕ is a linear combina-

tion of terms of the form
∏m
j=1(∂

ljϕx,ζ)
µj with 1 ≤ m ≤ |β|, µj 6= 0, lj 6= 0,

∑m
j=1 |µj| =

|ω| and
∑m

j=1 |µj ||lj | = |β|. Let us reorder the lj indices so that for any 1 ≤ j ≤ j1,

|lj | = 1 and for any j ≥ j1 + 1, |lj | > 1, where j1 ∈ { 0, · · ·m }. Thus
∏m
j=1(∂

ljϕx,ζ)
µj =

∏j1
j=1(∂

ljϕx,ζ)
µj

∏
j≥j1+1(∂

ljϕx,ζ)
µj and with a Taylor expansion at order 1 of ∂l

j
ϕx,ζ in ζ ′ around

0 when 1 ≤ j ≤ j1, we get ∂l
j
ϕx,ζ =

∑
1≤i≤n ζ

′
it
k
i,j where tki,j =

∫ 1
0 ∂

ei+lj

ζ′ ϕx,ζ(tζ
′)dt. Thus, using

the fact that ϕ ∈ O0,0,ws
σ,κv,εv,εv,1

(Rn), we see that
∏j1
j=1(∂

ljϕx,ζ)
µj is a linear combination of terms

of the form ζ ′λVλ where |λ| =
∑j1

j=1 |µj | and

Vλ = O(〈x〉−σεv
∑j1

1 |lj ||µj |〈ζ〉εv|λ|+εv
∑j1

1 |µj ||lj |〈ζ ′〉(kv+ws)|λ|+κv
∑j1

1 |lj ||µj |).

As a consequence, we see that
∏m
j=1(∂

ljϕx,ζ)
µj is a linear combination of terms of the form

ζ ′λWλ where |λ| =
∑j1

j=1 |µj| and

Wλ = O(〈x〉−σεv(|β|−v)〈ζ〉2εv|β|〈ζ ′〉w′
s|β|)

where v :=
∑m

j=j1+1 |µj | = |ω| − |λ|. The first statement now follows from the inequality
2v ≤ |β| − |λ|.

Since ϕx,ζ(0) = 0 and (dϕx,ζ)0 = 0, Pβ,ϕ(x, ζ, 0, ϑ) is a linear combination of terms of

the form ϑω
∏m
j=1(∂

0,0,ljϕ(x, ζ, 0))µ
j

with 1 ≤ |ω| ≤ |β|/2, 1 ≤ m ≤ |β|, µj 6= 0, |lj | ≥ 2,∑m
j=1 |µj| = |ω| and

∑m
j=1 |µj||lj | = |β|. We check with Lemma 4.39 (i) that any function

of the form
∏m
j=1(∂

0,0,ljϕ(x, ζ, ζ ′))µ
j

is in O−εv|β|/2,εv|β|,(ws/2+κv)|β|
σ,κv ,εv,|β|/2

(R), and thus, (x, ζ, ϑ) 7→
∏m
j=1(∂

0,0,ljϕ(x, ζ, 0))µ
j
1L(Ez) ∈ Π

−εv|β|/2,εv|β|,0
σ,κv,z . Since (x, ζ, ϑ) 7→ ϑω 1L(Ez) ∈ Π

0,0,|β|/2
σ,κv ,z we

obtain (x, ζ, ϑ) 7→ Pβ,ϕ(x, ζ, 0, ϑ) 1L(Ez ) ∈ Π
−ε|β|/2,εv|β|,|β|/2
σ,κv,z .

(iii) We have

fβ,ϕ(x, ζ, ϑ) =
∑

β′≤β

(β
β′

)
∂β

′

ζ′ (e
2πi〈ϑ,ϕx,ζ (ζ

′)〉)ζ′=0 ∂
0,0,β−β′,βf(x, ζ, 0, Lx,ζ(ϑ))

=
∑

β′≤β

(β
β′

)
Pβ′,ϕ(x, ζ, 0, ϑ) ∂0,0,β−β′,βf(x, ζ, 0, Lx,ζ(ϑ)) .
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Since (x, ζ) 7→ Lx,ζ ∈ E0
σ,κv(Mn(R)) and L−1

x,ζ = O(1), we deduce from Lemma 4.40 (i) and

Lemma 4.23 (iv) that (x, ζ, ϑ) 7→ ∂0,0,β−β′,βf(x, ζ, 0, Lx,ζ(ϑ)) belongs to the amplitude space

Π
l−ε1|β−β′|,w0+κ|β−β′|,m−|β|
σ,max{κ,κv },z

. The result now follows from (ii).

We now introduce two parametrized cut-off functions that will be used later. Let b ∈
C∞
c (R, [0, 1]) such that b = 1 on [−1/4, 1/4] and b = 0 on R\]−1, 1[. We define for ε, δ, η1, η2 > 0

with ε, δ < 1,

χε(ϑ, ϑ
′) := b( ‖ϑ′‖2

ε2〈ϑ〉2
) ,

χδ,η(x, ζ, ζ
′) := b( ‖ζ′‖2

δ2〈x〉2ση1 〈ζ〉−2η2
).

Lemma 4.43. The cut-off functions χε and χδ,η are repectively in the spaces C∞(R2n, [0, 1])
and C∞(R3n, [0, 1]) and satisfy:
(i) For any (x, ζ, ζ ′) ∈ R

3n, if ‖ζ ′‖ ≤ 1
2δ〈x〉ση1〈ζ〉−η2 , then χδ,η(x, ζ, ζ

′) = 1, and if ‖ζ ′‖ ≥
δ〈x〉ση1〈ζ〉−η2 , then χδ,η(x, ζ, ζ

′) = 0. In particular, for any (x, ζ) ∈ R
2n, χδ,η(x, ζ, 0) = 1 and

for any 3n-multi-index ν 6= 0, (∂νχδ,η)(x, ζ, 0) = 0.
(ii) For any (ϑ, ϑ′) ∈ R

2n, if ‖ϑ′‖ ≤ 1
2ε〈ϑ〉, then χε(ϑ, ϑ

′) = 1, and if ‖ϑ′‖ ≥ ε〈ϑ〉, then
χε(ϑ, ϑ

′) = 0. In particular, for any ϑ ∈ R
n, χε(ϑ, 0) = 1 and for any 2n-multi-index ν 6= 0,

(∂νχε)(ϑ, 0) = 0.
(iii) For any 3n-muti-index ν = (α, β, γ), we have ∂νχδ,η(x, ζ, ζ

′) = O(〈x〉−|α|〈ζ〉−β〈ζ ′〉−|γ|),

and ∂νχδ,η(x, ζ, ζ
′) = O(〈x〉−σ|ν|〈ζ〉(−1+η2/η1)|β|+(η2/η1)|γ|〈ζ ′〉(η−1

1 −1)|γ|+η−1
1 |β|). In particular, the

function χδ,η is in O0,0,0
σ,κ′η ,κ

′
η,1,0

(R) for a κ′η > 0.

(iv) For any 2n-muti-index ν, ∂νχε(ϑ, ϑ
′) = O(〈ϑ〉−|ν|) and ∂νχε(ϑ, ϑ

′) = O(〈ϑ′〉−|ν|).

Proof. (i) and (ii) are straightforward. For any ν 6= 0, ∂νχδ,η =
∑

1≤ν′≤|ν| Pν,ν′(g) (∂ν
′
b) ◦ g

where g(x, ζ, ζ ′) := ‖ζ‖2

δ2〈x〉2ση1 〈ζ〉−2η2
. We obtain from a direct computation the estimate Pν,ν′(g) =

O(〈x〉−2ση1ν′−|α|〈ζ〉2η2ν′−|β|〈ζ ′〉2ν′−|γ|). Since for any ν ∈ N, we have ∂ν
′
b = O(1) we obtain

∂νχδ,η = O(〈x〉−|α|〈ζ〉−β〈ζ ′〉−|γ|1Dδ) where Dδ is the set of triples (x, ζ, ζ ′) satifying the inequal-
ities δ/2 ≤ 〈ζ ′〉〈x〉−ση1〈ζ〉η2 ≤

√
2. The estimates of (iii) follow. The proof of (iv) is similar.

We will use in the following lemma the space Ot0,t1,j
κ (κ ≥ 0, j ∈ N, (t0, t1) ∈ R

2
+)

of functions f ∈ C∞(R4n,C) such that for any α ∈ N
n, there is Cα > 0 such that for any

(x, ζ, ζ ′, ϑ) ∈ R
4n, |∂αζ′f(x, ζ, ζ ′, ϑ)| ≤ Cα〈ζ〉t0+κ|α|〈ζ ′〉t1+κ|α|〈ϑ〉−2j . Clearly, Ot0,t1,j

κ Ot′0,t
′
1,j

′

κ ⊆
Ot0+t′0,t1+t′1,j+j

′

κ and ∂αζ′O
t0,t1,j
κ ⊆ Ot0+κ|α|,t1+κ|α|,j

κ .

Lemma 4.44. . Defining h(x, ζ, ζ ′, ϑ) :=
(
1 +

∥∥t(dsx,ζ)ζ′(ϑ)
∥∥2 − (i/2π)〈ϑ, (∆sx,ζ)(ζ ′)〉

)−1
, we

have the following relation, valid for any (x, ζ, ζ ′, ϑ) ∈ R
4n, p ∈ N,

e2πi〈ϑ,sx,ζ(ζ
′)〉 = (h(x, ζ, ζ ′, ϑ)Lζ′)

pe2πi〈ϑ,sx,ζ(ζ
′)〉

where Lζ′ := 1 − (2π)−2∆ζ′. Moreover, if (Cσ) holds, there is κL ≥ 0 such that for any p ∈ N,

there is Np ∈ N
∗, (hpk)1≤k≤Np functions in O2pκL,2pκL,p

κL , (βk,p)1≤k≤Np n-multi-indices satisfying

|βk,p| ≤ 2p, such that (Lζ′ h)
p =

∑Np
k=1 h

p
k ∂

βk,p

ζ′ .

50



Proof. We obtain Lζ′e
2πi〈ϑ,sx,ζ(ζ

′)〉 = (1/h)e2πi〈ϑ,sx,ζ (ζ
′)〉 through a direct computation. Let us

show the remaining statement by induction on p. Note that by Lemma 4.39 (ii), we have |1/h| ≥
c〈ϑ〉2 for a c > 0 and we check that 1/h ∈ Π̃

0,εv,w′
v,2

σ,κv,εv,z where w′
v = max{ 2wv , wv + κv }. With a

reccurence or using Proposition 5.4, we check that h ∈ O0,0,1
κL where κL := max{ 2εv , w

′
v + κv }.

The property is obviously true for p = 0. Suppose now that the property is true for p ≥ 0, so that

(Lζ′ h)
p =

∑Np
k=1 h

p
k ∂

βk,p

ζ′ with Np ∈ N
∗, (hpk)1≤k≤Np functions in O2pκL,2pκL,p

κL and (βk,p)1≤k≤Np
n-multi-indices satisfying |βk,p| ≤ 2p. We also have

(Lζ′h)
p+1 = (Lζ′h)

Np∑

k=1

hpk ∂
βk,p

ζ′ =

Np∑

k=1

hhpk∂
βk,p

ζ′ − (2π)−2
(
∆ζ′(hh

p
k)∂

βk,p

ζ′

+ 2

n∑

i=1

∂ζ′i(hh
p
k)∂

βk,p+ei
ζ′ + hhpk∆ζ′∂

βk,p

ζ′

)

so the property holds for p+ 1.

We note Sσ,c(R3n, L(Ez)) the space of smooth functions f such that for any N ∈ N
∗ and

ν = (µ, γ) ∈ N
2n × N

n, ∂νf(x, ζ, ϑ) = O(〈x〉−σN 〈ζ〉c0+c1N+c2|µ|〈ϑ〉−N ). It follows from Lemma
4.18 that if f ∈ Sσ,c(R3n, L(Ez)), then OpΓ(f) ∈ OpΓ(S−∞

σ,z ). Here and thereafter Γ satisfies the
hypothesis of Lemma 4.18.

Lemma 4.45. Assume that (Cσ) holds.

(i) For any l, w0, w1,m, κ, Sm,w1(Π̃
l,w0,w1,,m
σ,κ,ε1,z ) ⊆ Sσ,c(R3n, L(Ez)) for a triple c := (c0, c1, c2) and

the linear map Sm,w1 : f 7→ Sm,w1(f) is continuous, where

Sm,w1(f) : (x, ζ, ϑ) 7→
∫

R2n

e2πi(〈ϑ
′,ζ′〉+〈ϑ,sx,ζ(ζ

′)〉) tM
pm,w1 ,ζ

′

ϑ′ (f)(x, ζ, ζ ′, ϑ′)(1−χδ,η)(x, ζ, ζ ′) dϑ′ dζ ′

and pm,w1 := max{m+ 2n, [|w1|] + 1 + 2n }.
(ii) For any u ∈ S(R2n, L(Ez)), the linear application f 7→ 〈OpΓ Sm,w1(f), u〉 is continuous.

Proof. We fix N ∈ N
∗. First note that Sm,w1(f) is well-defined since for any (x, ζ) ∈ R

2n,

there is Cx,ζ > 0 such that
∥∥∥ tM

pm,w1 ,ζ
′

ϑ′ (f)(x, ζ, ζ ′, ϑ′)(1 − χδ,η)(x, ζ, ζ
′)
∥∥∥ ≤ Cx,ζ〈ϑ′〉−2n〈ζ ′〉−2n.

Since for any n-multi-index δ, ∂δϑ′
tM

pm,w1 ,ζ
′

ϑ′ (f) decrease to zero with ϑ′, we can successively
integrate by parts with (4.7), which is valid since 1−χδ,η assures that ‖ζ ′‖ ≥ 1

2δ on the domain
of integration. We obtain thus for any q ∈ N

∗,

Sm,w1(f) : (x, ζ, ϑ) 7→
∫

R2n

e2πi(〈ϑ
′,ζ′〉+〈ϑ,sx,ζ(ζ

′)〉) tM
pm,w1+q,ζ′

ϑ′ (f)(1 − χδ,η) dϑ
′ dζ ′ .

We note fq the integrand of the previous integral. If ν = (α, β, γ) = (µ, γ) is a 3n-multi-index,
we see with Lemma 4.41 that

∂νx,ζ,ϑfq = e2πi〈ϑ
′,ζ′〉

∑

µ′≤µ

(µ
µ′

)
e2πi〈ϑ,sx,ζ(ζ

′)〉
∑

|ω|≤|µ′|

ϑωTν′,ω,s(x, ζ, ζ
′)

∑

|δ̃|=pm,w+q

λδ(−1)|δ̃| ζ′δ̃

‖ζ′‖2(pm,w1+q)∂
µ−µ′

x,ζ ∂ δ̃ϑ′(f(1 − χδ,η)) .
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By Lemma 4.43 (iii), (x, ζ, ζ ′, ϑ′) 7→ χδ,η(x, ζ, ζ
′) 1L(Ez) is in Π̃0,0,0,0

σ,κ′η ,1,z
, so the multiplication

operator f 7→ f(1−χδ,η) is continuous from Π̃l,w0,w1,m
σ,κ,ε1,z into Π̃l,w0,w1,m

σ,κη ,ε1,z , where κη = max{κ, κ′η }.
Since ‖ζ ′‖ ≥ δ/2 in the support of f(1 − χδ,η), we get from Lemma 4.42 (i) the following
estimates, where κ′′η := κv + ws + κη,

∥∥∂νx,ζ,ϑfq(x, ζ, ϑ, ζ ′, ϑ′)
∥∥ ≤ Cν,q〈ϑ〉|µ|〈ϑ′〉m−pm,w1−q

∑

µ′≤µ

〈ζ〉κv|µ′|+w0+κη |µ|

× 〈ζ ′〉w1+(κv+ws)|µ′|+κη|µ|−(pm,w1+q)+ws|γ|〈x〉σ|l|

≤ C ′
ν,q〈x〉σ|l|〈ζ〉w0+κ′′η |µ|〈ϑ〉|µ|〈ϑ′〉m−pm,w1−q〈ζ ′〉w1+κ′′η |ν|−pm,w1−q .

If k ∈ N
∗, and if we set q := qk such that w1 + κ′′ηk − pm,w1 − qk ≤ −2n, we see by applying the

theorem of derivation under the integral sign that Sm,w(f) is smooth and for any 3n-multi-index
ν = (α, β, γ) and q ∈ N

∗, after integrations by parts in ϑ′, with ν ′ := (µ′, γ),

∂νSm,w1(f)(x, ζ, ϑ) =
∑

µ′≤µ

∑

|ω|≤|µ′|

(
µ
µ′

)
ϑω

∫

R2n

e2πi(〈ϑ
′,ζ′〉+〈ϑ,sx,ζ(ζ

′)〉)Tν′,ω,s(x, ζ, ζ
′)

tM
pm,w1+q|ν|+q,ζ

′

ϑ′ ∂µ−µ
′

x,ζ (f(1 − χδ,η)) dϑ
′ dζ ′ .

We note gq(x, ζ, ζ
′, ϑ′) := e2πi〈ϑ

′,ζ′〉Tν′,ω,s(x, ζ, ζ
′)tM

pm,w1+q|ν|+q,ζ
′

ϑ′ ∂µ−µ
′

x,ζ (f(1 − χδ,η)). Using now
Lemma 4.44, we get the estimates for any p ∈ N,

∥∥(Lζ′h)
pgq(x, ζ, ζ

′, ϑ′)
∥∥ ≤ Cp〈ζ ′〉2pκL〈ζ〉2pκL〈ϑ〉−2p

Np∑

k=1

∥∥∥∂β
k,p

ζ′ gq(x, ζ, ζ
′, ϑ′)

∥∥∥ .

Thus, with Lemma 4.42 (i), we obtain with k1 := ws + κv + κη + κL,

∥∥(Lζ′h)
pgq(x, ζ, ζ

′, ϑ′)
∥∥ ≤ C ′

p〈x〉σ|l|〈ζ ′〉w1+(2p+|ν|)k1−pm,w1−q|ν|−q〈ϑ〉−2p

〈ϑ′〉2p+m−pm,w1−q|ν|−q〈ζ〉(2p+|µ|)k1+w0
∑

|β̃|≤2p

∑

µ′≤µ

∑

|δ̃|=pm,w1+q|ν|+q

q
µ′,β̃,δ̃

(f(1 − χδ,η)) 1D(x, ζ, ζ ′)

where D := { (x, ζ, ζ ′) ∈ R
2n | ‖ζ ′‖ ≥ 1

2δ〈x〉ση1〈ζ〉−η2 }. If we now fix p such that −N − 2 ≤
−2p+ |µ| ≤ −N , we see that by taking q such that Aq ≤ −N/η1 −|l|/η1 where Aq := w1 +(2p+
|ν|)k1 − pm,w1 − q|ν|− q+ 2n, and 2p+m− pm,w1 − q|ν|− q ≤ −2n, we can successively integrate
by parts in ζ ′ (p times) using the formula of Lemma 4.44. We obtain then the estimate for given
constants c0, c1, c2 > 0,

‖∂νSm,w1(f)(x, ζ, ϑ)‖ ≤ Cν,N 〈x〉−σN 〈ζ〉c0+c1N+c2|µ|〈ϑ〉−N
∑

|β̃|≤2p

∑

µ′≤µ

∑

|δ̃|=pm,w1+q|ν|+q

q
µ′,β̃,δ̃

(f(1 − χδ,η))

which yields the result.
(ii) This statement follows from (i) and Lemma 4.14 (ii).

Lemma 4.46. Suppose (Cσ).
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(i) Defining for any f ∈ Π̃l,w0,w1,m
σ,κ,ε1,z ,

Π(f) : (x, ζ, ϑ) 7→
∫

R2n

e2πi(〈ϑ
′,ζ′〉+〈ϑ,ϕx,ζ(ζ

′)〉)f(x, ζ, ζ ′, ϑ′ + Lx,ζ(ϑ))χδ,η(x, ζ, ζ
′) dζ ′ dϑ′ ,

there is δ, η, such that for any N ≥ |m|, we have Π(f) = ΠN (f) + ΠR,N (f) where ΠN (f) =
∑

0≤|β|≤N
(i/2π)|β|

β! fβ,ϕ and there is such that ΠR,N (f) satisfies the estimates for any 3n-multi-

index ν = (µ, γ) ∈ N
2n × N

n,

∂νΠR,N (f) = O(〈x〉σ(l−ε′1(N+1))〈ζ〉k0+k1(N+1+|µ|)+εv|γ|〈ϑ〉m+|µ|−(N+1)/2+n)

where ε′1, k0, k1 > 0.
(ii) We have for any 3n-multi-index ν = (µ, γ) ∈ N

2n × N
n,

∂νΠ(f) = O(〈x〉σl〈ζ〉k′0+k′1|µ|+εv|γ|〈ϑ〉m)

where k′0, k
′
1 > 0. In particular, for any u ∈ S(R2n, L(Ez)), the linear application f 7→

〈OpΓ Π(f), u〉 is continuous.

Proof. (i) We proceed to a Taylor expansion of f̃(x, ζ, ζ ′, ϑ′, ϑ) := f(x, ζ, ζ ′, ϑ′ + Lx,ζ(ϑ)) in ϑ′

around zero at order N ∈ N
∗, so that

Π(f) =
∑

0≤|β|≤N

1
β!Iβ(f) +

∑

|β|=N+1

N+1
β! Rβ,N (f) =: ΠN (f) + ΠR,N (f)

where

Iβ(f) =

∫

R2n

ϑ′βe2πi(〈ϑ
′,ζ′〉+〈ϑ,ϕx,ζ(ζ

′)〉)∂0,0,0,βf(x, ζ, ζ ′, Lx,ζ(ϑ))χδ,η(x, ζ, ζ
′) dζ ′ dϑ′ ,

Rβ,N (f) =

∫

R2n

ϑ′βe2πi(〈ϑ
′,ζ′〉+〈ϑ,ϕx,ζ(ζ

′)〉)rβ,N,f (x, ζ, ζ
′, ϑ′, ϑ) dζ ′ dϑ′ ,

and rβ,N,f :=
∫ 1
0 (1− t)N∂0,0,0,βfχ(x, ζ, ζ

′, tϑ′ +Lx,ζ(ϑ)) dt, fχ := fχδ,η ∈ Π̃l,w0,w1,m
σ,κη ,z . By integra-

tion by parts in ζ ′ in the integrals Iβ(f), we get

ΠN (f) =
∑

0≤|β|≤N

(i/2π)|β|

β! ∂βζ′
(
e2πi〈ϑ,ϕx,ζ(ζ

′)〉∂0,0,0,βf(x, ζ, ζ ′, Lx,ζ(ϑ))
)
ζ′=0

=
∑

0≤|β|≤N

(i/2π)|β|

β! fβ,ϕ .

Using integration by parts in ζ ′, we obtain Rβ,N,f = (i/2π)|β|If , where for any p ∈ N,

If (x, ζ, ϑ) :=

∫

R2n

e2πi〈ϑ
′,ζ′〉∂βζ′G(x, ζ, ζ ′, ϑ′, ϑ) dζ ′ dϑ′ ,

G(x, ζ, ζ ′, ϑ′, ϑ) := e2πi〈ϑ,ϕx,ζ(ζ
′)〉rβ,N,f (x, ζ, ζ

′, ϑ′, ϑ) .

Using integration by parts in ζ ′ and e2πi〈ϑ
′,ζ′〉 = 〈ϑ′〉−2pLpζ′e

2πi〈ϑ′,ζ′〉, we check that If is smooth

on R
3n and if ν is a 3n-multi-index, we see that ∂νIf is a linear combination of terms of the

form

Jf := ϑω̃
∫

R2n

e2πi(〈ϑ
′,ζ′〉+〈ϑ,ϕx,ζ(ζ

′)〉)∂β
1

ζ′ Tν′,ω̃,ϕPβ2,ϕ∂
ν−ν′

x,ζ,ϑ∂
β3

ζ′ rβ,N,f dζ
′ dϑ′

where |ω̃| ≤ |µ′|, ν ′ ≤ ν,
∑
βi = β, |β| = N + 1. We now cut the integral Jf in two parts

Jχ + J1−χ, where the cut-off function χε(ϑ, ϑ
′) appears in Jχ.
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Analysis of Jχ
Using Lemma 4.42 (ii) and integration by parts in ζ ′, we see that Jχ is a linear combi-

nation of terms of the form

Jχ,ω = ϑω̃ϑω
∫

R2n

e2πi(〈ϑ
′,ζ′〉+〈ϑ,ϕx,ζ(ζ

′)〉)〈ζ ′〉−2ptω,λ ∂
′β1

ζ Tν′,ω̃,ϕ ∂
λ′

ϑ′∂
ν−ν′

x,ζ,ϑ∂
β3
rβ,N,f ∂

λ+ρ−λ′χε dζ
′ dϑ′

where p ∈ N, |ρ| ≤ 2p, |ω| ≤ |β2|, (2|ω| − |β2|)+ ≤ |λ| ≤ |ω|, λ′ ≤ λ+ ρ. We now fix ε such that
ε < c/2 where c is a constant such that c〈ϑ〉 ≤ 〈Lx,ζ(ϑ)〉. Thus, in the domain of integration
of Jχ,ω, we have for any t ∈ [0, 1], 〈tϑ′ + Lx,ζ(ϑ)〉 ≥ c1〈ϑ〉 for a c1 > 0. As a consequence, we
obtain the following estimate:

∥∥∥∂λ′ϑ′∂ν−ν
′

x,ζ,ϑ∂
β3

ζ′ rβ,N,f

∥∥∥ ≤ C〈x〉σ(l−ε1|β3|)〈ζ〉(κv+κη)|µ−µ′|+w0+κη|β3|

〈ζ ′〉w1+κη(|µ−µ′|+|β3|)〈ϑ〉|µ−µ′|+m−|β|−|λ′| .

We also deduce from Lemma 4.42 the estimate

|tω,λ ∂′β
1

ζ Tν′,ω̃,ϕ| ≤ C ′〈x〉−σ(|µ′|+(ε/2)|β1+β2|)〈ζ〉2εv|β1+β2|+(κv+εv)|µ|+εv|γ|〈ζ ′〉c1(N+1)+c2|ν| .

As a consequence, by taking p sufficiently big, the integrand j(x, ζ, ζ ′, ϑ, ϑ′) of Jχ,ω satisfies the
estimate, for a ε′1 > 0 and a k1 > 0,

‖j‖ ≤ C ′′〈x〉σ(l−ε′1(N+1))〈ζ〉w0+k1(N+1+|µ|)+εv|γ|〈ζ ′〉−2n〈ϑ〉m+|µ|−(N+1)/2 1Dε(ϑ, ϑ
′)

where Dε is the set of (ϑ, ϑ′) in R
2n such that ‖ϑ′‖ ≤ ε〈ϑ〉. We deduce finally that for any

ν ∈ N
3n,

Jχ = O(〈x〉σ(l−ε′1(N+1))〈ζ〉w0+k1(N+1+|µ|)+εv |γ|〈ϑ〉m+|µ|−(N+1)/2+n) .

Analysis of J1−χ

We set ω := 〈ζ ′, ϑ′〉 + 〈ϑ,ϕx,ζ(ζ
′)〉. By Lemma 4.39 (i), we have

∑
i

∥∥∥∂ζ′iϕx,ζ(ζ
′)
∥∥∥ ≤

C〈x〉−σεv 〈ζ〉c1〈ζ ′〉c2) for C, c1, c2 > 0. The presence of χδ,η in the integrand of J1−χ allows to use

the estimate 〈ζ ′〉 ≤
√

2δ〈x〉ση1 〈ζ〉−η2 , so that
∑

i

∥∥∥∂ζ′iϕx,ζ(ζ
′)
∥∥∥ ≤ C 2c2/2 δc2 by taking η1 ≤ εv/c2

and η2 ≥ c1/c2. As a consequence, we obtain the following estimate in the domain of integration
of J1−χ,

|∇ζ′ω|2 ≥
∥∥ϑ′

∥∥2
(1 − 4

ε C 2c2/2 δc2) .

We now fix δ such that 4
ε C 2c2/2 δc2 < 1 so that there is k > 0 such that |∇ζ′ω| ≥ k ‖ϑ′‖. Noting

Uζ′ := (2πi|∇ζ′ω|2)−1
∑

i(∂ζ′iω)∂ζ′i we have (see for instance [36]) Uζ′e
2πiω = e2πiω and

(tUζ′)
r = 1

|∇ζ′ω|
4r

∑

|ρ|≤r

Pωρ,r∂
ρ
ζ′

where Pωρ,r is a linear combination of terms of the form (∇ζ′ω)π∂δ
1

ζ′ ω · · · ∂δrζ′ ω, with |π| = 2r,

|δi| > 0 and
∑r

j=1 |δj |+ |ρ| = 2r. We thus obtain after integration by parts in ζ ′, for any r ∈ N
∗,

that J1−χ is a linear combination of integrals of the form

ϑω̃+ω̂

∫

R2n

e2πiω(tUζ′)
r
(
∂β

1

ζ′ Tν′,ω̃,ϕPω̂,β2,ϕ∂
ν−ν′

x,ζ,ϑ∂
β3

ζ′ rβ,N,f
)
(1 − χε)dζ

′ dϑ′
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where |ω̂| ≤ |β2|. We noted Pβ2,ϕ =:
∑

ω̂ Pω̂,β2,ϕϑ
ω̂. By Lemma 4.42 (ii), we see that

Pω̂,β2,ϕ ∈ O−εv|β2|/2,2εv|β2|,(w′
s+1)|β2|

σ,κv ,εv,εv,2|β2|
. Let us note T̃ := ∂β

1

ζ′ Tν′,ω̃,ϕPω̂,β2,ϕ. Lemma 4.42 (i) yields

T̃ ∈ O−(εv/2)|β1+β2|,c0(|µ|+N)+εv|γ|,c0(|ν|+N)
σ,κv,εv,εv,2(|ν|+N) (R) for a constant c0 > 0. With our choice of the

parameters η1 and η2, we also have the following estimate, valid in the domain of integration of
J1−χ,

∂λϑ′∂
γ+ei
ζ′ ω = O

(
〈ζ〉εv|γ|〈ζ ′〉κv|γ|〈ϑ′〉1−|λ|

)
.

In particular, noting Ol,m
κv the space of smooth functions f such that for any n-multi-indices λ, γ,

∂λϑ′∂
γ
ζ′f = O

(
(〈ζ〉〈ζ ′〉)l+κv|γ|〈ϑ′〉m

)
, we see that |∇ζ′ω|2 ∈ O0,2

κv , and for any λ ∈ N
n, ∂λϑ′ |∇ζ′ω|−4r

= O(〈ϑ′〉−4r). Moreover, each term Pωρ,r is in Oκvr,3r
κv so that finally, for any λ ∈ N

n

∂λϑ′
Pωρ,r

|∇ζ′ω|
4r = O

(
(〈ζ〉〈ζ ′〉)κvr〈ϑ′〉−r

)
.

We easily check that if r ≥ 2n, then h := (tUζ′)
r
(
∂β

1

ζ′ T̃ ∂
ν−ν′

x,ζ,ϑ∂
β3

ζ′ rβ,N,f
)
(1 − χε) satisfies

the estimates for any q ∈ N,
∥∥Lqϑ′h

∥∥ ≤ Cx,ζ,ζ′,ϑ,q〈ϑ′〉−2n. As a consequence, we can permute the
integration dζ ′dϑ′ → dϑ′dζ ′ and successively integrate by parts in ϑ′, so that finally J1−χ is a
linear combination of terms of the form

ϑω̃+ω̂

∫

R2n

e2πiω〈ζ ′〉−2q∂λ
1

ϑ′
Pωρ,r

|∇ζ′ω|
4r ∂

ρ1

ζ′ T̃ ∂
λ2

ϑ′ ∂
ν−ν′

x,ζ,ϑ∂
β3+ρ2

ζ′ rβ,N,f ∂
λ3

ϑ′ (1 − χε)dϑ
′ dζ ′

where
∑

i λ
i = λ, |λ| ≤ 2q,

∑
i ρ
i = ρ, |ρ| ≤ r. We also have the following estimate for c′0, c

′
1 > 0,

∂λ
2

ϑ′ ∂
ν−ν′

x,ζ,ϑ∂
β3+ρ2

ζ′ rβ,N,f = O
(
〈x〉σ(l−|β3|)(〈ζ〉〈ζ〉)c′0+c′1(|µ−µ′|+|β3|+|ρ2|)

)
.

With Lemma 4.43 (iv) we now see that the integrand j′ of the previous integral is estimated by

∥∥j′
∥∥ ≤ C〈ϑ′〉−r+|µ|+N+1〈x〉σ(l−ε′1(N+1))〈ζ〉k0+k1N+k2r+k3|µ|+εv|γ|〈ζ ′〉−2q+k0+k1N+k2r+k3|ν|

for constants k0, k1, k2, k3 > 0. If we now fix r ≥ 2n such that −r + |µ| + N + 1 + 2n =
m+ |µ| − (N + 1) + n, and q such that −2q + k0 + k1N + k2r + k3|ν| ≤ −2n we finally obtain
the estimate ν ∈ N

3n,

J1−χ = O(〈x〉σ(l−ε′1(N+1))〈ζ〉k′0+k′1(N+1+|µ|)+εv|γ|〈ϑ〉m+|µ|−(N+1)+n) .

The result follows now from this estimate and the one obtained for Jχ.
(ii) The estimate is obtained by applying (i) and N + 1 = max{ 2(n + |µ|), |m| }. The second
statement is then a consequence of Lemma 4.14 (ii).

Theorem 4.47. If (Cσ) holds, Ψ∞
σ is a ∗-subalgebra of ℜ(S). Moreover, if A ∈ Ψl′,m′

σ and

B ∈ Ψl,m
σ , then AB ∈ Ψl+l′,m+m′

σ with the following asymptotic expansion of the normal symbol
of AB, in a frame (z, b):

σ0(AB)z,b ∼
∑

β,γ∈Nn

cβcγ∂
γ,γ
ζ,ϑ

(
a(x, ϑ)∂βζ′

(
e2πi〈ϑ,ϕx,ζ(ζ

′)〉(∂βϑ′fb)(x, ζ, ζ
′, Lx,ζ(ϑ))

)
ζ′=0

τ−1
x,ζ

)
ζ=0

where a := σ0(A)z,b, b := σ0(B)z,b, cβ := (i/2π)|β|/β! and

fb(x, ζ, ζ
′, ϑ′) := τx,rx,ζ(ζ′) b ◦ Ξ̃(x, ζ, ζ ′, ϑ′) τxζ,ζ′ ,qx,ζ(ζ′) |J(R)|(x, ζ, ζ ′) |det(P z,b−1,ψ(x,ζ),ζ′)

−1| .
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Proof. We fix a frame (z, b). We note KAB the kernel of the operator AB. As a consequence
of Proposition 4.32 we have for any u, v ∈ S(Rn, Ez), 〈(KAB)z,b, u⊗ v〉 =

(
Az,b(µ

−1Bz,b(v))|u
)
.

We shall note g := Az,b(µ
−1Bz,b(v)). A computation shows that for any x ∈ R

n, g(x) =∫
Rn
µa(x, ϑ) b̃(x, ϑ) dϑ, and

b̃(x, ϑ) :=

∫

R3n

e2πi(〈ϑ,ζ〉+〈ϑ′,ζ′〉)τx,ζb(ψ(x, ζ), ϑ′)τψ(x,ζ),ζ′v(x
ζ,ζ′) dζ ′ dϑ′ dζ .

We suppose at first that b ∈ Sl,−2n
σ,z . Since ζ ′ 7→ v(xζ,ζ

′
) ∈ S(Rn, Ez), we can permute the order

integration dζ ′dϑ′ 7→ dϑ′ dζ ′ in b̃(x, ϑ). Thus, after integrations by parts in ϑ′, we get for any
p ∈ N

∗,

b̃(x, ϑ) =

∫

R2n

e2πi〈ϑ,ζ〉τx,ζ
( ∫

Rn

e2πi〈ϑ
′,ζ′〉〈ζ ′〉−2p(Lpϑ′b)(ψ(x, ζ), ϑ′) dϑ′

)
τψ(x,ζ),ζ′ v(x

ζ,ζ′) dζ ′ dζ .

With the estimate 〈xζ,ζ′〉 ≥ c〈ζ〉〈x〉−1〈ζ ′〉−1 for a c > 0, we see that for any N ∈ N,
∥∥∥v(xζ,ζ′)

∥∥∥ ≤
cNq0,N(v)〈x〉N 〈ζ ′〉N 〈ζ〉−N . As a consequence, we get the following estimates for the inte-

grands bp of b̃(x, ϑ): for any x, ζ, ζ ′, ϑ, ϑ′, any p ∈ N
∗ and any N ∈ N

∗, ‖bp(x, ζ, ζ ′, ϑ, ϑ′)‖ ≤
Cp,N〈ζ ′〉N−2p〈x〉σ|l|+N 〈ζ〉σ|l|−N 〈ϑ′〉−2n. Taking N such that σ|l| − N ≤ −2n and then taking p
such that N−2p ≤ −2n, we see that (ϑ′, ζ ′, ζ) 7→ bp(x, ζ, ζ

′, ϑ′, ϑ) is absolutely integrable and we

can thus apply the following change of variable (ζ, ζ ′, ϑ′) 7→ (Rx(ζ, ζ
′), ϑ′) to b̃(x, ϑ). After re-

versing the integration by parts in ϑ′ and applying the change of variable ϑ′ = −P̃ z,b−1,ψ(x,ζ),ζ′(ϑ
′′),

we get

b̃(x, ϑ) =

∫

R3n

e2πi(〈ϑ,rx,ζ(ζ
′)〉+〈ϑ′,ζ′〉)fb(x, ζ, ζ

′, ϑ′) v(ψ(x, ζ)) dϑ′ dζ ′ dζ .

By Lemma 4.40 (ii) and (iii), Lemma 4.38 (iii) and (iv) and Lemma 4.39 (iii), we see that fb ∈
Π̃l,wl,wl,m
σ,κ,ε1,z for a (wl, κ) ∈ R

2
+ and ε1 > 0, and the linear application b 7→ fb is continuous on any

symbol space Sl,mσ,z into Π̃l,wl,wl,m
σ,κ,ε1,z . We have g(x) =

∫
Rn
e2πi〈ζ,ϑ〉µa(x, ϑ) cb(x, ζ, ϑ)v(ψ(x, ζ) dζ dϑ

and 〈(KAB)z,b, u⊗ v〉 = 〈OpΓ0,z,b
(db), u⊗ v〉 where db(x, ζ, ϑ) := µa(x, ϑ) cb(x, ζ, ϑ) τ−1(x, ζ) and

cb(x, ζ, ϑ) :=

∫

R2n

e2πi(〈ϑ,sx,ζ(ζ
′)〉+〈ϑ′,ζ′〉)fb(x, ζ, ζ

′, ϑ′) dϑ′ dζ ′ .

Using now the cut-off function (x, ζ, ζ ′) 7→ χδ,η(x, ζ, ζ
′) we see that

cb(x, ζ, ϑ) = Π(fb)(x, ζ, ϑ) + Sm,wl(fb)(x, ζ, ϑ) .

For this equality, we used the formula of Lemma 4.7 and integration by parts and in ϑ′ in the
integral

∫
R2n e

2πi(〈ϑ,sx,ζ (ζ
′)〉+〈ϑ′,ζ′〉)fb(x, ζ, ζ

′, ϑ′)(1 − χδ,η(x, ζ, ζ
′)) dϑ′ dζ ′ , which are authorized

since b ∈ Sl,−2n
σ,z by hypothesis. In

∫
R2n e

2πi(〈ϑ,sx,ζ(ζ
′)〉+〈ϑ′,ζ′〉)fb(x, ζ, ζ

′, ϑ′)χδ,η(x, ζ, ζ
′) dϑ′ dζ ′ ,

we translated the ϑ′ variable by −Lx,ζ(ϑ) and permuted the order of integration dϑ′ dζ ′ →
dζ ′ dϑ′, which is legal since b ∈ Sl,−2n

σ,z and ζ ′ 7→ χ(x, ζ, ζ ′) is with compact support. We deduce
from Lemma 4.45 (ii) and Lemma 4.46 (ii) that b 7→ 〈OpΓ0,z,b

(db), u ⊗ v〉 is continuous on

Sl,mσ,z , and thus, by the density result of Lemma 4.6, we have the equality 〈(KAB)z,b, u ⊗ v〉 =

〈OpΓ0,z,b
(db), u⊗ v〉 even when the hypothesis b ∈ Sl,−2n

σ,z does not hold.
Let us recall the linear map s : a 7→ s(a) given in Lemma 4.21 (ii) (for Γ = Γ0,z,b) which

is such that OpΓ0,z,b
(f) = OpΓ0,z,b(s(f)) for any f ∈ Πl,w,m

σ,κ,z . We define fa,b,β := µa(fb)β,ϕτ
−1,
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rN := µaΠR,N (fb)τ
−1, s0 := µaSm,wl(fb)τ

−1. We now consider a symbol sa,b such that

sa,b ∼
∑

β∈Nn

(i/2π)|β|

β! s
(
fa,b,β

)
.

Such a symbol exists since by Lemma 4.42 (iii), s(fa,b,β) ∈ S
l+l′−ε′1|β|,m+m′−|β|/2
σ,z . By Lemma

4.46 (i), we have for any N ≥ |m|, uN := s(µaΠN (fb)τ
−1) − sa,b ∈ S

l+l′−ε′1(N+1),m+m′−(N+1)/2
σ,z .

Thus, noting S0 := OpΓ0,z,b
(s0), which is in OpΓ0,z,b

(S−∞
σ,z ) by Lemma 4.45, RN := OpΓ0,z,b

(rN )
and UN := OpΓ0,z,b

(uN ) we have

(KAB)z,b = OpΓ0,z,b
(db) = OpΓ0,z,b

(s(µaΠN (fb)τ
−1)) +RN + S0

= OpΓ0,z,b
(sa,b) + UN +RN + S0 .

Lemma 4.18 and Lemma 4.46 (i) now implies that the kernel UN + RN (which independant of
N) is in OpΓ0,z,b

(S−∞
σ,z ). As a consequence, (KAB)z,b = OpΓ0,z,b

(sa,b + r) where r ∈ S−∞
σ,z and

the symbol product asymptotic formula is entailed by Lemma 4.21 (ii).

5 Examples

In order to be able to apply the previous results about the pseudodifferential and symbolic
calculi on some concrete cases, we shall see in this section examples of exponential manifolds
and associated linearizations that satisfies the hypothesis Sσ-bounded geometry. The Euclidean
space R

n seen as exponential manifold, has its own exponential map ψ := exp(x, ξ) 7→ x+ ξ as
a S1-linearization, leading to the usual pseudodifferential SG calculus (if σ = 1) or standard (if
σ = 0) pseudodifferential calulus on R

n. However, we can define other kinds of linearization,
leading to new kind of pseudodifferential and symbol calculi, with a non-bilinear linearization
map. We will see in particular that we can construct on the flat R

n, a family of Sσ-linearizations
that generalize the case of the flat euclidian geometry, and we obtain a extension of the normal
(λ = 0) and antinormal (λ = 1) quantization on R

n.
We will also prove that the 2-dimensional hyperbolic space, which is a Cartan–Hadamard

manifold (and thus an exponential Riemannian manifold) has S1-bounded geometry. This allows
to define a global Fourier transform, Schwartz spaces S(H), S(T ∗

H), S(TH), B(H) and the space

of symbols Sl,m1 (T ∗
H). As a consequence, we can define in an intrinsic way a global complete

pseudodifferential calculus on H, if one chose a fixed Sσ-linearization ψ on TH. There are many
possible linearizations, for instance one can take ψ such that in a frame (z, b) ψb

z is the standard
linearization x+ ξ of R

n.

5.1 A family of Sσ-linearizations on the euclidean space

Recall that G×
σ (Rn) (0 ≤ σ ≤ 1) is defined as the subgroup of diffeomorphisms s on R

n such
that for any n-multi-index α 6= 0, there are Cα, C ′

α > 0, such that for any x ∈ R
n, ‖∂αs(x)‖ ≤

Cα〈x〉σ(1−|α|) and
∥∥∂αs−1(x)

∥∥ ≤ C ′
α〈x〉σ(1−|α|). G×

σ (Rn) contains GLn(R) and the translations
Tv := w 7→ v + w.

We fix η ∈]0, 1[ such that for any matrix A ∈ Mn(R) such that ‖A‖1 ≤ η, we have
det(In + A) ≥ 1

2 , where ‖A‖1 := maxi,j |Ai,j |. Taking now h ∈ G0(R
n,Rn) such that for any

1 ≤ i, j ≤ n, |∂jhi| ≤ η/16, and g(x) := h(x) − h(0) − dh0(x) we see that s := Id +g is a
diffeomorphism on R

n which belongs to G×
0 (Rn), satisfying s(0) = 0 and ds0 = Id.
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We set, for σ ∈ [0, 1],

ψ(x, ξ) := x+ ξ + 〈x〉σg( ξ
〈x〉σ ) = x+ 〈x〉σs( ξ

〈x〉σ ).

We obtain the following

Proposition 5.1. (Rn,+, dλ, ψ) has a Sσ-bounded geometry and satisfies (Cσ) (see Definition
4.37).

Proof. A computation shows that ψ ∈ Hσ(R
n) and ψ(x, ζ) = O(〈x〉〈ξ〉). We have ψ(x, y) =

〈x〉σs−1( y−x〈x〉σ ), and thus ψ ∈ OM (R2n,Rn). Noting ĝ := g ◦ (g + Id)−1 ◦ − Id ∈ G0(R
n), we also

have

Υ1,T (x, ξ) = ξ + 〈x〉σg( ξ
〈x〉σ ) + 〈ψ(x, ξ)〉σ ĝ

(
〈ψ(x, ξ)〉−σ〈x〉σs( ξ

〈x〉σ )
)

= (Id+Vx,ξ +Wx,ξ)(ξ)

where Vx,ξ := [
∫ 1
0 ∂jv

i
x(tξ)dt]i,j , Wx,ξ := [

∫ 1
0 ∂jw

i
x,ξ(tξ)dt]i,j , and vx := Mx ◦ g ◦M−1

x , wx,ξ :=

Mψ(x,ξ) ◦ ĝ ◦M−1
ψ(x,ξ) ◦Mx ◦s◦M−1

x , Mx being the multiplication by 〈x〉σ. We get dvx = dg ◦M−1
x

and dwx,ξ = dĝ ◦ (M−1
ψ(x,ξ) ◦Mx ◦ s ◦M−1

x ) ds ◦M−1
x . and thus, after computations we check

that Vx,ξ and Wx,ξ are in E0
σ. Moreover, we have ‖Vx,ξ‖1 ≤ η/2 and ‖Wx,ξ‖1 ≤ η/2, which

proves that Px,ξ := Id +Vx,ξ +Wx,ξ is invertible with detPx,ξ ≥ 1
2 . As a consequence its inverse

P−1
x,ξ = (detPx,ξ)

−1 t cof(Px,ξ) is also in E0
σ. We deduce then that (Rn,+, dλ, ψ) has a Sσ-bounded

geometry. With r(x, ξ, ξ′) = −ψ(x, ψ(ψ(x,−ξ),−ξ′)), we get

r(x, ξ, ξ′) = −〈x〉σs−1
(
s( −ξ

〈x〉σ ) + 〈ψ(x,−ξ)〉σ

〈x〉σ s( −ξ′

〈ψ(x,−ξ)〉σ )
)
.

so that (drx,ξ)ξ′ = (ds−1 ◦ w) (ds ◦ u) where w(x, ξ, ξ′) := s( −ξ
〈x〉σ ) + v(x, ξ, ξ′), v(x, ξ, ξ) :=

〈ψ(x,−ξ)〉σ

〈x〉σ s( −ξ′

〈ψ(x,−ξ)〉σ ), u(x, ξ, ξ′) := − ξ′

〈ψ(x,−ξ)〉σ . We check that v satisfies

∂(µ,γ)v = O
(
〈ψ(x,−ξ)〉−σ|γ|〈x〉−σ(|µ|+1)〈ζ〉κ1|µ|〈ζ ′〉|µ|+1

)
.

It follows from Peetre’s inequality that for any ε ∈ [0, 1] and x, y ∈ R
n, 〈x + y〉 ≥ 2−ε/2 〈x〉ε

〈y〉ε ,

which implies that 〈ψ(x,−ξ)〉σ = O
(
〈x〉−σε〈ξ〉σε

)
. As a consequence we get the estimates

∂(µ,γ)w = O
(
〈x〉−σ(1+|µ|+ε|γ|)〈ζ〉κ1|µ|+ε|γ|+δγ,0〈ζ ′〉|µ|+1

)
,

∂(µ,γ)u = O
(
〈x〉−σ(|µ|+ε|γ|)〈ζ〉κ1|µ|+ε|γ|〈ζ ′〉1−|γ|

)
.

We deduce from this that (Cσ) is satisfied.

We also check that the hypothesis (HV ) of section 4.5 is satisfied so that the previ-
ous pseudodifferential calculus (for λ ∈ { 0, 1 }) is then valid on (Rn,+, dλ, ψ), and proves in
particular the space of operators of the form

A(v)(x) =

∫

R2n

e2πi〈θ,ξ〉a(x, θ)v(ψ(x,−ξ)) dξ dθ =

∫

R2n

e−2πi〈θ,ψx(y)〉a(x, θ)v(y)|J(ψx)|(y) dy dθ

where a ∈ S∞
σ (R2n), is equal to the standard algebra of algebra of pseudodifferential operators

R
n. However, since (Cσ) is satisfied, we have now at our disposal a new symbol composition

formula given by Theorem 4.47, adapted to the new linearization ψ.
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5.2 S1-geometry of the Hyperbolic plane

The (hyperboloid model of the) 2-dimensional hyperbolic space is defined as the submanifold
H

2 := {x = (x1, x2, x3) ∈ R
3 : x2

1 + x2
2 − x2

3 = −1 and x3 > 0 } of the (2, 1)-Minkowski space
R

2,1 with the bilinear symmetric form 〈v,w〉2,1 = v1w1 + v2w2 − v3w3. The induced metric
on H

2: ds2 = (dx1)
2 + (dx2)

2 − (dx3)
2 is Riemannian and it is known that H

2 is a symmetric
Cartan–Hadamard manifold with constant negative sectional curvature (equal to −1). The map
ϕ : R2 → H2 given by

ϕ(x, y) := (sinhx, cosh x sinh y, cosh x cosh y)

is a diffeomorphism with inverse ϕ−1(x1, x2, x3) = (argshx1, argsh( x2
cosh(argsh x1))). As a conse-

quence we can construct another model of the hyperbolic space, noted R2 with domain R
2 and

metric obtained by pulling back the metric on H
2 onto R

2. A computation shows that this
metric is ds2 := (dx)2 + cosh2 x (dy)2. We will note ‖·‖p the norm on TpR

2 ≃ R
2 given by this

metric, where p is point in R
2, and ‖·‖ is the Euclidian norm. The geodesic equation on R2 lead

to the following system of ordinary differential equations:

x′′ − cosh x sinhx (y′)2 = 0 ,

y′′ + 2 tanh xx′ y′ = 0 . (5.1)

For each p = (x, y) ∈ R
2 and v ∈ R

2 such that ‖v‖p = 1 there exists an unique solution on R

γp,v = (x(t), y(t)) of (5.1) such that γp,v(0) = p and γ′p,v(0) = v.
At each point p = (x, y) ∈ R

2, we can define the ellipse of unit vectors centered at 0
in TpR

2 ≃ R
2 with equation X2 + (cosh2 x)Y 2 = 1. The polar equation of this ellipse is ep(θ)

where
ep(θ) := 1√

1+sinh2 x sin2 θ
.

Thus, any tangent vector v ∈ TpR
2 with decompostion v = ‖v‖ (cos θ, sin θ) also admits the

following polar decomposition v = ‖v‖p (cosp θ, sinp θ) where cosp θ := ep(θ) cos θ and sinp θ :=
ep(θ) sin θ. Remark that ep, cosp, sinp and ‖·‖p are in fact independant of the second coordinate
y of p. We shall therefore also use the notations ex := e(x,y) and similarly for cosx, sinx and
‖·‖x. Note that for any vector v := ‖v‖ (cos θ, sin θ), we have ‖v‖x = ‖v‖ /ex(θ).

If p ∈ H
2 and v ∈ R

2,1 are such that 〈p, v〉2,1 = 0 and 〈v, v〉2,1 = 1, then the unique
geodesic αp,v on H

2 such that αp,v(0) = p and α′
p,v(0) = v is αp,v(t) = cosh t p+ sinh t v (see for

instance [23, p.195]). As a consequence, the geodesics γp,v on the R2 hyperbolic space can be
obtained by pushing forward the αp,v geodesics with the diffeomorphic isometry ϕ. We check
after tedious calculations that for any given p = (x, y) ∈ R

2 and θ ∈ R, the following curve

γ1
p,θ(t) = argsh

(
cosh t sinhx+ sinh t coshx cosx θ

)
,

γ2
p,θ(t) = argsh

( cosh t coshx sinh y+sinh t (sinhx sinh y cosx θ+coshx cosh y sinx θ)

cosh
(

argsh(cosh t sinhx+sinh t coshx cosx θ)
) )

, (5.2)

where t ∈ R, is the unique maximal solution of the geodesic system (5.1) satisfying the initial
conditions: γp,θ(0) = p and γ′p,θ(0) = (cosx(θ), sinx(θ)). An explicit formula for the exponential
map at any point can therefore be obtained, since we have expp(v) = γp,θ(‖v‖x) where v ∈
TpR

2 − { 0 } and θ ∈ R such that v = ‖v‖ (cos θ, sin θ). The main interest of this hyperbolic
model with domain equal to R

2 is that it is possible to find explicitely the logarithmic map (the

59



inverse of the exponential map) at any point. We find, after an elementary but long computation,
the following inverse, for any p = (x, y) and p′ = (x′, y′) ∈ R

2,

exp−1
p (p′) =

argch fp(p′)√
(fp(p′))2−1

(
−gp(p′)

cosh x′ sech x sinh(y′ − y)

)
, (5.3)

fp(p
′) := cosh(x′) cosh(y′ − y) cosh(x) − sinh(x′) sinh(x) ,

gp(p
′) := cosh(x′) cosh(y′ − y) sinh(x) − sinh(x′) cosh(x) .

We have
∥∥exp−1

p (p′)
∥∥
p

= argch fp(p
′) which is the geodesic distance between two arbitrary points

p, p′ in the R2 hyperbolic model. The goal of this section is to prove the following result.

Theorem 5.2. H
2 has a S1-bounded geometry.

We note R
2
C := R

2\] − ∞, 0] × { 0 } and R
2
P :=]0,+∞[×] − π, π[. For any x ∈ R, the

map χx : R
2
C → R

2
P given by χx(v1, v2) := (‖v‖x , arctan(v1, v2)) where arctan(v1, v2) is the

unique element θ of ] − π, π[ such that v1 + iv2 = ‖v‖ exp(iθ), is a diffeomorphism with inverse
χ−1
x (r, θ) = (r cosx θ, r sinx θ).

Lemma 5.3. Let x ∈ R and f ∈ C∞(R2,R) such that f ◦ χ−1
x ∈ C∞(R2

P ,R) satisfies for any
(α, β) ∈ N

2\{ (0, 0) }, and (r, θ) ∈ R
2
P , |∂α,βf ◦ χ−1

x (r, θ)| ≤ Cα,β〈r〉1−α where Cα,β > 0. Then
f ∈ G1(R

2,R).

Proof. By Theorem 2.11, for any (α, β) ∈ N
2\{ (0, 0) }, ∂α,βf =

∑
1≤|(α′,β′)|≤|(α,β)|(∂

α′,β′
f ◦

χ−1
x ) ◦ χx Pα,β,α′,β′(χx) on R

2
C , where Pα,β,α′,β′(χx) is a linear combination of functions of the

form
∏s
j=1(∂

ljχx)
kj where s ∈ { 1, · · · , α + β }. The kj and lj are 2-multi-indices (for 1 ≤ j ≤

s) such that |kj | > 0,
∑s

j=1 k
j = (α′, β′) and

∑s
j=1 |kj |lj = (α, β). By definition, χx(v) =

(χ1
x(v), χ

2
x(v)) = (‖v‖x , arctan(v1, v2)). It is straightforward to check that for any 2-multi-

index ν, |∂νχ1
x(v)| ≤ Cν〈v〉1−|ν| and |∂νχ2

x(v)| ≤ C ′
ν〈v〉−|ν| on R

2
C . As a consequence, for each

α, β, α′, β′ with 1 ≤ α′ + β′ ≤ α+ β there exists Cα,β,α′,β′ > 0 such that for any v ∈ R
2
C ,

|Pα,β,α′,β′(χx)(v)| ≤ Cα,β,α′,β′〈v〉α′−(α+β) .

Moreover, by hypothesis, there is Cα′,β′ > 0 such that for any v ∈ R
2
C , |(∂α′,β′

f ◦χ−1
x )◦χx(v)| ≤

Cα′,β′〈v〉1−α′
. This gives f ∈ G1(R

2
C ,R). The extension to G1(R

2,R) is a direct consequence of
the smoothness of f on R

2 and the fact that R
2
C is dense in R

2.

We shall use the following proposition, which gives a formal expression of the successive
derivatives of the inverse (and its real powers) of a smooth function.

Proposition 5.4. Let s > 0 be given. For any nonzero n-multi-index (n ∈ N
∗) α, there exist

a finite nonempty set Jα, nonzero real numbers (λs,α,p)p∈Jα and n-multi-indices βα,p,j (with
p ∈ Jα, 1 ≤ j ≤ |α|) such that
- for any p ∈ Jα,

∑
1≤j≤|α| β

α,p,j = α,
- for any smooth function f ∈ C∞(Rn,R∗

+),

∂α 1
fs = 1

f |α|+s

∑

p∈Jα

λs,α,p

|α|∏

j=1

∂β
α,p,j

f .
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Proof. The result is true for the case |α| = 1. Suppose then that the result holds for any
n-multi-index α such that |α| = k, where k ∈ N

∗ and let α′ be a n-multi-index such that
|α′| = k + 1. Let i be the smallest element of { 1, · · · , n } such that α′

i ≥ 1, and set α :=
(α′

1, · · · , α′
i−1, α

′
i − 1, α′

i+1, · · · , α′
n). Thus for any f ∈ C∞(Rn,R∗

+), ∂α
′ 1
fs = ∂i∂

α 1
fs . Since

|α| = k, there is exist a finite nonempty set Jα, nonzero real numbers (λs,α,p)p∈Jα and n-multi-
indices βα,p,j (with p ∈ Jα, 1 ≤ j ≤ |α|) such that for any p ∈ Jα,

∑
1≤j≤|α| β

α,p,j = α, and such

that for any f ∈ C∞(Rn,R∗
+), ∂α 1

fs = 1
f |α|+s

∑
p∈Jα

λs,α,p
∏|α|
j=1 ∂

βα,p,jf . As a consequence,

with the formula ∂i
∏|α|
j=1 gj =

∑|α|
q=1

∏|α|
j=1 ∂

δq,jeigj , we obtain for any f ∈ C∞(Rn,R∗
+),

∂α
′ 1
fs = 1

f |α
′|+s

( ∑

p∈Jα

−(|α| + s)λs,α,p(

|α|∏

j=1

∂β
α,p,j

f)∂if +
∑

(p,q)∈Jα×N|α|

λs,α,p(

|α|∏

j=1

∂δq,jei+β
α,p,j

f)f
)
.

Thus, if we take Jα′ = Jα
∐

(Jα × N|α|), λs,α′,p̃ := −(s+ |α|)λs,α,p if p̃ = p ∈ Jα, λs,α′,p̃ := λs,α,p
if p̃ = (p, q) ∈ Jα×N|α|, β

α′,p̃,j := βα,p,j if p̃ = p ∈ Jα and 1 ≤ j ≤ |α|, βα′,p̃,j := ei if p̃ = p ∈ Jα

and j = |α| + 1 = |α′|, βα′,p̃,j := δq,jei + βα,p,j if p̃ = (p, q) ∈ Jα × N|α| and 1 ≤ j ≤ |α| and

βα
′,p̃,j := 0 if p̃ = (p, q) ∈ Jα × N|α| and j = |α| + 1 = |α′|, the result now holds for α′.

In the following we set the convention J0 := { 1 }, λs,0,1 := 1 and
∏0
j=1 := 1, so that the

formula giving ∂α 1
fs in the previous lemma is still valid when α = 0. When s ∈ N

∗, the result
is also valid for complex valued nowhere zero smooth functions.

We noteHP the space of C∞(R2
P ,R) functions of the form (r, θ) 7→ a(θ) cosh r+b(θ) sinh r

where a, b ∈ B(R), and AP,k the space of functions f ∈ C∞(R2
P ,R) such that for any 2-multi-

index (α, β) with α ≤ k ∈ N, there is Cα,β > 0 such that for any (r, θ) ∈ R
2
P , |∂α,βf(r, θ)| ≤

Cα,β〈r〉k−α, and also such that for any 2-multi-index (α, β) with α ≥ k + 1, there is C ′
α,β > 0

such that for any (r, θ) ∈ R
2
P , |∂α,βf(r, θ)| ≤ C ′

α,βe
−2r. Clearly, AP,k ⊂ SP,k where SP,k is the

space of functions f ∈ C∞(R2
P ,R) such that for any 2-multi-index (α, β), there is Cα,β > 0 such

that for any (r, θ) ∈ R
2
P , |∂α,βf(r, θ)| ≤ Cα,β〈r〉k−α. By Leibniz rule, SP,kSP,k′ ⊆ SP,k+k′. We

note NP the space of functions f ∈ C∞(R2
P ,R) such that for any 2-multi-index (α, β) there is

Cα,β > 0 such that for any (r, θ) ∈ R
2
P , |∂α,βf(r, θ)| ≤ Cα,βe

−2r. If r0 > 0 we define the spaces
HP,r0, AP,k,r0, SP,k,r0 and NP,r0 exactly as before, except that we now replace the domain R

2
P

by R
2
P,r0

:=]r0,+∞[×] − π, π[.

Lemma 5.5. Let f, g, h,w ∈ HP,r0 where r0 > 0, such that there is ε > 0, C > 1 such that for
any (r, θ) ∈ R

2
P,r0

, f ≥ C, f ≥ ε er and h2 + g2 ≥ ε e2r.

(i) The functions w
(h2+g2)3/2

, w
(f2−1)3/2

and any function of the form (r, θ) 7→
∑4
k=−4 bk(θ)e

kr

((h2+g2)(1+h2+g2))3/2
,

where bk ∈ B(R), are in NP,r0.

(ii) The functions argch
√

1 + h2 + g2 and argch f are in AP,1,r0.
(iii) The functions w√

h2+g2
and w√

f2−1
are in AP,0,r0.

Proof. (i) We give a proof for w
(h2+g2)3/2

. The other cases are similar. By Proposition 5.4 and

Leibniz rule, we have for any 2-multi-index ν,

∂ν w
(h2+g2)3/2

=
∑

ν′≤ν

( ν
ν′

)
∂ν−ν

′
w

(h2+g2)3/2+|ν′|

∑

p∈Jν′

λ3/2,ν′,p

|ν′|∏

j=1

∂β
ν′ ,p,j

(h2 + g2) .
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Note that we have for any 2-multi-index ν, ∂ν(h2 + g2) = O(e2r) and ∂νw = O(er). The result
follows.

(ii) By (i), since ∂2
r argch

√
1 + h2 + g2 is of the form (r, θ) 7→

∑4
k=−4 bk(θ)e

kr

((h2+g2)(1+h2+g2))3/2
where bk ∈

B(R), and ∂2
r argch f is of the form w

(f2−1)3/2
where w ∈ HP,r0, we only need to check that for

0 ≤ α ≤ 1, and β ∈ N, ∂α,β argch
√

1 + h2 + g2 = O(〈r〉1−α) and ∂α,β argch f = O(〈r〉1−α).

Since ∂r argch
√

1 + h2 + g2 = (∂rh)h+(∂rg)g√
(h2+g2)(1+h2+g2)

, ∂r argch f = ∂rf√
f2−1

, ∂θ argch
√

1 + h2 + g2 =

(∂θh)h+(∂θg)g√
(h2+g2)(1+h2+g2)

and ∂θ argch f = ∂θf√
f2−1

, the result follows from an application of Proposition

5.4.
(iii) By (i), since ∂r

w√
h2+g2

is of the form w1

(h2+g2)3/2
where w1 ∈ HP,r0, and ∂r

w√
f2−1

is of the

form w2

(f2−1)3/2
where w2 ∈ HP,r0, we only need to check that for β ∈ N, ∂0,β w√

h2+g2
= O(1) and

∂0,β w√
f2−1

= O(1). This is a direct consequence of Proposition 5.4.

Proof of Theorem 5.2. By Lemma 2.14 (iii) and Proposition 2.12, it is sufficient to prove that
for any p := (x, y) ∈ R

2\{ 0 }, exp−1
p ◦ exp0 and exp−1

0 ◦ expp are in G1(R
2). A computation

based on (5.2) and (5.3) shows that on R
2
P ,

exp−1
p ◦ exp0 ◦χ−1

0 = (argch f)
(

w1√
f2−1

, w2√
f2−1

)
,

exp−1
0 ◦ expp ◦χ−1

x = (argch
√

1 + h2 + g2)
(

h√
h2+g2

, g√
h2+g2

)
,

where

f(r, θ) := cosh r cosh y cosh x− sinh r(sinhx cos θ + sinh y coshx sin θ) ,

w1(r, θ) := − cosh r cosh y sinhx+ sinh r(coshx cos θ + sinh y sinhx sin θ) ,

w2(r, θ) := − cosh r sinh y sech x+ sinh r sin θ cosh y sechx ,

h(r, θ) := cosh r sinhx+ sinh r cosh x cosx θ ,

g(r, θ) := cosh r cosh x sinh y + sinh r(sinhx sinh y cosx θ + coshx cosh y sinx θ) .

All these functions belong to HP and f ≥ 1. Note that f(r, θ) = 1 if any only if exp0 χ
−1
0 (r, θ) =

p, in which case exp−1
p ◦ exp0 ◦χ−1

0 (r, θ) = 0, so that exp−1
p ◦ exp0 ◦χ−1

0 is well defined as a smooth

function on the whole R
2
P . The same argument holds for exp−1

0 ◦ expp ◦χ−1
x . We check that

1
2(cosh x cosh y −

√
cosh2 x cosh2 y − 1)er ≤ f(r, θ) ≤ cosh r eargch(cosh x cosh y)

so that by defining r0 := log 2/ε where 0 < ε < min{ 1, 1
2(cosh x cosh y−

√
cosh2 x cosh2 y − 1) }

we have for any (r, θ) ∈ R
2
P,r0

, f(r, θ) ≥ εer ≥ 2. Note also that for any v ∈ R
2
C , we have

argch f(χ0(v)) =
∥∥exp−1

p ◦ exp0(v)
∥∥
p

and

argch
√

1 + h2(χx(v)) + g2(χx(v)) =
∥∥exp−1

0 ◦ expp(v)
∥∥

0
.

The first equality entails (since exp−1
p ◦ exp0(R

2
C) is a dense open subset of R

2) that for any v in

R
2, cosh ‖v‖p ≤ cosh

∥∥exp−1
0 ◦ expp(v)

∥∥
0
eargch(cosh x cosh y). We then obtain for any (r, θ) ∈ R

2
P ,√

1 + h2 + g2 ≥ cosh r e− argch(cosh x cosh y). In particular, defining

r′0 := argch(
√

2 exp(argch(cosh x cosh y))),
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we get for any r ≥ r′0, the following estimate h2 + g2 ≥ 1
8e

−2 argch(cosh x cosh y)e2r. If we now apply
Lemma 5.5 for the space HP,r′′0

where r′′0 := max{ r0, r′0 }, we see that exp−1
p ◦ exp0 ◦χ−1

0 and

exp−1
0 ◦ expp ◦χ−1

x are in SP,1. The result then follows from Lemma 5.3.

6 Conclusion

We have seen in this paper certain hypothesis on the geometry (Sσ or OM -bounded geomery) of
a manifold with linearization that allows a coordinate free definition of most of the topological
vector spaces that are needed for Fourier analysis and global complete symbol calculus with
uniform and decaying control over the x variable. Given a linearization on the manifold with
some properties of control at infinity, we constructed symbol maps and λ-quantization, explicit
Moyal star-products on the cotangent bundle, and classes of pseudodifferential operators. We
proved a stability under composition result, and an associated symbol product asympotic formula
under a hypothesis (Cσ) of control at infinity of the linearization. The calculus presented here
is a generalization of the standard and SG symbol calculi over the Euclidean space R

n and
can be applied to the hyperbolic 2-space since, as proven in section 5.2, it has a S1-bounded
geometry. L2-continuity of pseudodifferential operators of order (0, 0) has been established in
section 4.5 under the hypothesis (HV ). We do not know however if this result still holds without
this hypothesis.

The full analysis of the obtained Moyal product on S(T ∗M) and spectral properties of

pseudodifferential operators in Ψl,m
σ remain to be studied. Extension and connection of the

symbol calculus presented here could be made with, for instance, noncommutative geometry
(Gayral, Gracia-Bond́ia, Iochum, Schücker and Várilly [18]), the magnetic Moyal calculus (If-
timie, Mantoiu and Purice [22]), spectral asymptotics (Shubin [44]), essential self-adjointness
(Braverman, Milatovich and Shubin [5]), Fourier integral operators (Coriasco [11], Ruzhansky
and Sugimoto [34, 35]), Wiener type calculus (Sjöstrand [46, 47]), generalized operators (Garetto
[17]), Gelfand–Shilov spaces (Cappiello, Gramchev and Rodino [7]), regularized traces (Paycha
[31]), and white noise analysis for an infinite dimensional Moyal product (Léandre [25] and Dito
and Léandre [12]).
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[47] J. Sjöstrand, “ Wiener type algebras of pseudodifferential operators”, Séminaire Équations
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