
HAL Id: hal-00334697
https://hal.science/hal-00334697

Submitted on 27 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Adaptive Importance Sampling for Normal
Random Vectors

Benjamin Jourdain, Jérôme Lelong

To cite this version:
Benjamin Jourdain, Jérôme Lelong. Robust Adaptive Importance Sampling for Normal Random
Vectors. The Annals of Applied Probability, 2009, 19 (5), pp.1687-1718. �10.1214/09-AAP595�. �hal-
00334697�

https://hal.science/hal-00334697
https://hal.archives-ouvertes.fr


Robust Adaptive Importance Sampling for Normal Random

Vectors

Benjamin Jourdain1 and Jérôme Lelong2,3

October 27, 2008

Abstract

Adaptive Monte Carlo methods are very efficient techniques designed to tune simu-
lation estimators on-line. In this work, we present an alternative to stochastic approxi-
mation to tune the optimal change of measure in the context of importance sampling for
normal random vectors. Unlike stochastic approximation, which requires very fine tuning
in practice, we propose to use sample average approximation and deterministic optimiza-
tion techniques to devise a robust and fully automatic variance reduction methodology.
The same samples are used in the sample optimization of the importance sampling param-
eter and in the Monte Carlo computation of the expectation of interest with the optimal
measure computed in the previous step. We prove that this highly non independent Monte
Carlo estimator is convergent and satisfies a central limit theorem with the optimal lim-
iting variance. Numerical experiments confirm the performance of this estimator : in
comparison with the crude Monte Carlo method, the computation time needed to achieve
a given precision is divided by a factor going from 3 to 15.

1 Introduction

We are interested in the computation of E(f(G)) where G = (G1, . . . , Gd) is a d-dimensional
standard normal random vector and f : R

d → R is a measurable function such that f(G)
is integrable. This problem is particularly important in mathematical finance where the
calculation of the price and hedging ratios of European options in multidimensional Black-
Scholes models amounts to the computation of E(f(G)) for a well chosen function f . The
same is true when the underlying assets follow more complex dynamics given by stochastic
differential equations, which can be discretized using the Euler scheme for instance. We
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are assuming that the random variable f(G) is not zero and is slightly more than square
integrable :

P(f(G) 6= 0) > 0, (1.1)

∀θ ∈ R
d, E(f2(G)e−θ·G) < +∞. (1.2)

By Hölder’s inequality, for ε > 0,

E

(

f2(G)e−θ·G
)

≤
(

E
(

|f |2+ε(G)
))

2
2+ε

(

E

(

e−
2+ε

ε
θ·G
))

ε
2+ε

.

As a consequence, (1.2) holds as soon as

∃ε > 0, E
(

|f |2+ε(G)
)

< +∞.

From time to time, we will also need the following reinforced integrability condition :

∀θ ∈ R
d, E(f4(G)e−θ·G) < +∞. (1.3)

For any measurable function h : R
d → R either nonnegative or such that E|h(G)| < +∞, one

has

∀θ ∈ R
d, E(h(G)) = E

(

h(G+ θ)e−θ·G− |θ|2
2

)

. (1.4)

Applying this equality to h(x) = f(x) and to h(x) = f2(x)e−θ.x+
|θ|2
2 , one obtains that the

expectation and the variance of the random variable f(G+θ)e−θ.G− |θ|2
2 are respectively equal

to E(f(G)) and vf (θ) − E
2(f(G)) where

vf (θ)
def
= E

(

f2(G)e−θ.G+ |θ|2
2

)

.

As a consequence, if (Gi)i≥1 denotes a sequence of i.i.d. d-dimensional standard normal
random vectors, for any importance sampling parameter θ ∈ R

d,

Mn(θ, f)
def
=

1

n

n
∑

i=1

f(Gi + θ)e−θ·Gi− |θ|2
2

is an unbiased and convergent estimator of E(f(G)). Since nVar(Mn(θ, f)) = vf (θ) −
E

2(f(G)), to improve the accuracy of the estimation for a fixed number n of random samples,
one should choose θ minimizing vf (θ). The first section of this paper addresses this minimiza-
tion problem. First, we check that vf is a strongly convex function going to infinity at infinity,
which ensures the existence of a unique value θf

⋆ such that vf (θf
⋆ ) = infθ∈Rd vf (θ). Of course,

when E(f(G)) is unknown, so is generally the function vf . Therefore, direct optimization
of this function is not implementable. Under (1.2), the function vf is infinitely continuously
differentiable and such that

∇θv
f (θ) = E

(

(θ −G)f2(G)e−θ.G+
|θ|2
2

)

. (1.5)
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At this stage, we can see the interest of performing the change of measure (1.4) to transform
E(f2(G + θ)e−2θ·G−|θ|2) into the above expression of vf : no smoothness assumption on the
function f is required in order to differentiate within the expectation.

Arouna [Arouna, 0304] [Arouna, 2004] takes advantage of the characterization of the optimal

parameter θf
⋆ as the unique solution of the equation E

(

(θ −G)f2(G)e−θ.G+ |θ|2
2

)

= 0, in

order to approximate it by a Robbins-Monro procedure. The standard Robbins-Monro algo-
rithm explodes but it can be stabilized using random truncation techniques, see for instance
[Chen et al., 1988, Chen and Zhu, 1986] or [Lelong, 2008]. According to [Arouna, 2004], the

same random drawings Gi may be used to estimate simultaneously the optimal parameter θf
⋆

and the expectation of interest E(f(G)). Moreover, both estimators are strongly consistent
and the one of E(f(G)) is asymptotically normal with an asymptotic variance equal to the

optimal one vf (θf
⋆ ) − E

2(f(G)). Asymptotic normality of the estimator of θf
⋆ is discussed in

[Lelong, 2007].

Tuning the increasing sequence of compact subsets used in randomly truncated procedures
is not easy. In [Lemaire and Pagès, 2008], Lemaire and Pagès notice that using (1.4) in (1.5)
leads to ∇θv

f (θ) = e|θ|
2
E((2θ−G)f2(G− θ)) and propose to use the characterization of θ⋆ as

the unique solution of E((2θ−G)f2(G−θ)) = 0 to approximate it by a Robbins-Monro proce-
dure. As soon as the function f satisfies some exponential growth assumptions at infinity, the
algorithm they propose is stable without resorting to random truncation techniques. Starting
from the present Gaussian framework, Lemaire and Pagès [Lemaire and Pagès, 2008] extend
this construction of non-exploding Robbins-Monro algorithms to a large class of families of
multidimensional probability distributions and even to diffusion process distributions.

In the present paper, we propose and study an alternative approach, which does not re-
quire the delicate tuning of the gain sequence which is still necessary to ensure the stability
of Robbins-Monro procedures. When f(Gi) 6= 0 for some index i ∈ {1, . . . , n} (by (1.1),

a.s. this condition is satisfied for n large enough), the Monte-Carlo approximation vf
n(θ)

def
=

1
n

∑n
i=1 f

2(Gi)e
−θ·Gi+

|θ|2
2 of the function vf is also strongly convex and going to infinity at

infinity. This ensures the existence of a unique parameter θf
n such that vf

n(θf
n) = infθ∈Rd v

f
n(θ).

The function vf
n is of class C∞ and its gradient and Hessian matrices

∇θv
f
n(θ) =

1

n

n
∑

i=1

(θ −Gi)f
2(Gi)e

−θ·Gi+
|θ|2
2

∇2
θv

f
n(θ) =

1

n

n
∑

i=1

(Id + (θ −Gi)(θ −Gi)
∗)f2(Gi)e

−θ·Gi+
|θ|2
2

are easily computed if the random samples (Gi)1≤i≤n are stored in the computer memory.

Therefore, θf
n can be obtained by Newton’s optimization procedure and we propose to estimate

E(f(G)) by Mn(θf
n, f). In the context of control variate variance reduction techniques, Kim

and Henderson [Kim and Henderson, 2007] also propose sample average optimization of the
control variate parameters as an alternative to stochastic approximation techniques. But
in their algorithm, the expectation of interest is only computed in a second step involving
random variables independent from the ones used in the optimization step. In our algorithm,
in order to save computation time, the respective approximations θf

n and Mn(θf
n, f) of the
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optimal parameters and of the expectation of interest are computed using the same random
samples (Gi)1≤i≤n. This makes the mathematical analysis of the properties of Mn(θf

n, f) more

complicated : for instance, in general, Mn(θf
n, f) is a biased estimator of E(f(G)). The ideea of

using the same samples both for the optimization procedure and the Monte Carlo computation
has mainly been investigated in the context of linear control variates. Lavenberg, Moeller and
Welsh [Lavenberg et al., 1982] and Nelson [Nelson, 1990] have already noticed that for linear
control variates, using the same samples does not bring any bias in the Monte Carlo estimator.
Kim and Henderson [Kim and Henderson, 2004] and Glasserman [Glasserman, 2004] have also
deeply investigated the linear case.

The first section of the paper is devoted to the convergence of θf
n to θf

⋆ : almost sure
convergence holds and a central limit theorem can be derived under the reinforced inte-
grability condition (1.3). Moreover, vf

n(θf
n) converges a.s. to vf (θ⋆). The second section

addresses the asymptotic properties as n → ∞ of our estimator Mn(θf
n, f) of the expec-

tation of interest E(f(G)). We prove that when f is continuous and such that ∀M > 0,

E

(

sup|θ|≤M |f(G+ θ)|
)

< +∞, then Mn(θf
n, f) converges a.s. to E(f(G)). In dimension

d = 1, this continuity assumption may be relaxed : the strong consistency of Mn(θf
n, f) still

holds as soon as f is the sum of a continuous function as before and a function of finite
variation satisfying some natural growth condition. When f satisfies (1.3) and can be de-
composed as the sum of a locally Lipschitz continuous function with some natural control
of the growth of the Lipschitz constant and of a C1 function satisfying some integrability
conditions, then the estimator Mn(θf

n, f) is asymptotically normal with optimal asymptotic

variance vf (θ⋆) − E
2(f(G)) :

√
n(Mn(θf

n, f) − E(f(G)))
L→ N1

(

0, vf (θ⋆) − E
2(f(G))

)

. More-

over,
√
n Mn(θf

n,f)−E(f(G))√
vf

n(θf
n)−M2

n(θf
n,f)

L→ N1 (0, 1), which enables us to construct confidence intervals for

E(f(G)). Again, in dimension d = 1, the conclusion is preserved if one adds a function
with finite variation satisfying some natural growth condition to the previous decomposition.
The third section of the paper deals with a generalization of the framework which permits
to recover results concerning the weighted Monte Carlo calibration technique introduced in
[Avellaneda et al., 2001] and studied in [Jourdain and Nguyen, 2001, Nguyen, 2003]. In the
last section, we illustrate our theoretical results with numerical experiments which confirm
the performance of our algorithm.

2 Convergence of the importance sampling parameters

According to our numerical experiments, it may be optimal, in terms of the computation
time needed to achieve a given precision for the estimation of E(f(G)), to look for the best
importance sampling parameter θ in a subspace {Aϑ : ϑ ∈ R

d′} of R
d where A ∈ R

d×d′ is
a matrix with rank d′ ≤ d. When f(G) corresponds to the payoff of an option written on a
d′-dimensional Black-Scholes model monitored on a regular time grid, it is sensible to use the
same parameter for each coordinate Gk corresponding to a time increment of a given stock.
That is why we introduce

vf,A(ϑ)
def
= E

(

f2(G)e−Aϑ·G+
|Aϑ|2

2

)

.
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Since vf,A(ϑ) = vf (Aϑ), the properties of the function vf,A may be deduced from the ones
of vf . The case tackled in the introduction corresponds to the particular choice d′ = d and
A = Id.

Lemma 2.1 Under (1.2), the function vf is infinitely continuously differentiable with ∀α =
(α1, . . . , αd) ∈ N

d, ∀θ = (θ1, . . . , θd) ∈ R
d,

∂α1+...+αd

∂α1

θ1 . . . ∂
αd

θd

vf (θ) = E

(

∂α1+...+αd

∂α1

θ1 . . . ∂
αd

θd

[

f2(G)e−θ.G+
|θ|2
2

]

)

.

Under (1.1), the function vf is strongly convex and hence such that lim|θ|→+∞ vf (θ) = +∞.

Proof : The function θ 7→ f2(G)e−θ·G+
|θ|2
2 is infinitely continuously differentiable with

∂
∂

θj
f2(G)e−θ·G+ |θ|2

2 = f2(G)(θj −Gj)e−θ·G+ |θ|2
2 . Since,

sup
|θ|≤M

|∂θjf2(G)e−θ·G+
|θ|2
2 | ≤ e

M2

2 f2(G)
(

M + (eG
j

+ e−Gj

)
)

d
∏

k=1

(eMGk

+ e−MGk

) (2.1)

where the right-hand-side is integrable by (1.2), Lebesgue’s theorem ensures that vf is con-

tinuously differentiable with ∂
∂

θj
vf (θ) = E

(

f2(G)(θj −Gj)e−θ·G+ |θ|2
2

)

. Higher order dif-

ferentiability properties are obtained by similar arguments and in particular ∂2

∂
θj ∂

θi
vf (θ) =

E

(

(1{i=j} + (θj −Gj)(θi −Gi))f2(G)e−θ·G+
|θ|2
2

)

.

Assumption (1.1) ensures the existence of ε > 0 such that P(f2(G) ≥ ε, |G| ≤ 1
ε ) >

0. Since E(f2(G)e−θ·G+ |θ|2
2 ) ≥ εe−

|θ|
ε

+ |θ|2
2 P(f2(G) ≥ ε, |G| ≤ 1

ε ), one easily deduces that

lim|θ|→+∞ E(f2(G)e−θ·G+ |θ|2
2 ) = +∞. As the continuous function θ 7→ E(f2(G)e−θ·G+ |θ|2

2 )

does not vanish, the Hessian matrix ∇2
θv

f (θ) is uniformly bounded from below by the pos-

itive definite matrix infθ∈Rd E(f2(G)e−θ·G+
|θ|2
2 )Id. This yields the strong convexity of the

function vf . �

As a consequence, vf,A is a strongly convex function going to infinity at infinity and there
exists a unique ϑf,A

⋆ ∈ R
d′ such that vf,A(ϑf,A

⋆ ) = infϑ∈Rd′ vf,A(ϑ).

Let (Gi)i≥1 be a sequence of d-dimensional independent standard normal random variables.

For n large enough, f(Gi) 6= 0 for some index i ∈ {1, . . . , n} and the approximation vf,A
n (ϑ) =

1
n

∑n
i=1 f

2(Gi)e
−Aϑ.Gi+

|Aϑ|2
2 of vf,A(ϑ) is also strongly convex and such that lim|ϑ|→+∞ vf,A

n (ϑ) =

+∞. Hence, there exists a unique ϑf,A
n ∈ R

d′ such that vf,A
n (ϑf,A

n ) = infϑ∈Rd′ v
f,A
n (ϑ). The

following proposition describes the asymptotic behavior of ϑf,A
n as n→ ∞.

Proposition 2.2 Under (1.1) and (1.2), ϑf,A
n and vf,A

n (ϑf,A
n ) converge a.s. to ϑf,A

⋆ and

vf,A(ϑf,A
⋆ ) as n→ ∞. If, moreover, (1.3) holds, then

√
n(ϑf,A

n − ϑf,A
⋆ )

L−→ Nd(0,Γ) where

Γ = [∇2vf,A(ϑf,A
⋆ )]−1Cov

(

A∗(Aϑf,A
⋆ −G)f2(G)e−Aϑf,A

⋆ ·G+
|Aϑ

f,A
⋆ |2
2

)

[∇2vf,A(ϑf,A
⋆ )]−1,
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and ∇2vf,A(ϑ) = E

(

A∗(Id + (Aϑ−G)(Aϑ −G)∗)Af2(G)e−Aϑ·G+ |Aϑ|2
2

)

.

Remark 2.3 The Hessian matrix ∇2vf,A(ϑ) is positive definite under (1.1) and (1.2). If,

moreover, (1.3) holds, using the inequality |Gk| ≤ eGk
+ e−Gk

for all 1 ≤ k ≤ d, one obtains

that the covariance matrix Cov

(

(Aϑf,A
⋆ −G)f2(G)e−Aϑf,A

⋆ ·G+
|Aϑ

f,A
⋆ |2
2

)

exists and Γ is well

defined.
To get some insights on the expression of this asymptotic covariance matrix, notice that if

φ(ϑ, x) = f2(x)e−Aϑ.x+
|Aϑ|2

2 , subtracting 1
n

∑n
i=1 ∇ϑφ(ϑf,A

⋆ , Gi) to both sides of the equality

∇vf,A
n (ϑf,A

n ) = ∇vf,A(ϑf,A
⋆ ) and multiplying by

√
n, one obtains

∫ 1

0

1

n

n
∑

i=1

∇2
θφ(tϑf,A

n + (1 − t)ϑf,A
⋆ , Gi)dt

√
n(ϑf,A

n − ϑf,A
⋆ )

=
√
n

(

E(∇ϑφ(ϑf,A
⋆ , G)) − 1

n

n
∑

i=1

∇ϑφ(ϑf,A
⋆ , Gi)

)

.

To prove the Proposition, we use the following uniform strong law of large numbers, which is a
restatement of [Rubinstein and Shapiro, 1993, Lemma A1]. This result is also a consequence
of the strong law of large numbers in Banach spaces [Ledoux and Talagrand, 1991, Corollary
7.10, page 189].

Lemma 2.4 Let (Xi)i≥1 be a sequence of i.i.d. R
m-valued random vectors and h : R

d×R
m →

R be a measurable function. Assume that

• a.s., θ ∈ R
d 7→ h(θ,X1) is continuous,

• ∀M > 0, E

(

sup|θ|≤M |h(θ,X1)|
)

< +∞.

Then, a.s. θ ∈ R
d 7→ 1

n

∑n
i=1 h(θ,Xi) converges locally uniformly to the continuous function

θ ∈ R
d 7→ E(h(θ,X1)).

Proof of Proposition 2.2 : Since for M > 0,

sup
|θ|≤M

f2(G)e−θ·G+ |θ|2
2 ≤ e

M2

2 f2(G)

d
∏

k=1

(eMGk

+ e−MGk

),

where the right-hand-side is integrable by (1.2), applying Lemma 2.4 with (Xi)i≥1 = (Gi)i≥1

and h(θ, x) = f2(x)e−θ.x+ |θ|2
2 ensures that a.s., vf

n converges locally uniformly to vf . We
restrict ourselves to a subset with probability one of the original probability space on which
this convergence holds. Let ε > 0. By the strict convexity and the continuity of vf,A,

α
def
= inf

ϑ:|ϑ−ϑf,A
⋆ |=ε

vf,A(ϑ) − vf,A(ϑf,A
⋆ ) > 0.
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The local uniform convergence of vf,A
n to vf,A ensures that

∃nα ∈ N
∗, ∀n ≥ nα, ∀ϑ s.t. |ϑ− ϑf,A

⋆ | ≤ ε, |vf,A
n (ϑ) − vf,A(ϑ)| ≤ α

3
.

For n ≥ nα and ϑ such that |ϑ − ϑf,A
⋆ | ≥ ε, we deduce, using the convexity of vf,A

n for the
first inequality,

vf,A
n (ϑ) − vf,A

n (ϑf,A
⋆ ) ≥ |ϑ− ϑf,A

⋆ |
ε

[

vf,A
n

(

ϑf,A
⋆ + ε

ϑ− ϑf,A
⋆

|ϑ − ϑf,A
⋆ |

)

− vf,A
n (ϑf,A

⋆ )

]

≥ |ϑ− ϑf,A
⋆ |

ε

[

vf,A

(

ϑf,A
⋆ + ε

ϑ− ϑf,A
⋆

|ϑ − ϑf,A
⋆ |

)

− vf,A(ϑf,A
⋆ ) − 2α

3

]

≥ α

3
.

Since vf,A
n (ϑf,A

n ) ≤ vf,A
n (ϑf,A

⋆ ), we conclude that |ϑf,A
n − ϑf,A

⋆ | < ε for n ≥ nα. Therefore, ϑf,A
n

converges a.s. to ϑf,A
⋆ . By combining this last result with the local uniform convergence of

vf,A
n to the continuous function vf,A, we deduce that vf,A

n (ϑf,A
n ) converges a.s. to vf,A(ϑf,A

⋆ ).

By (2.1) and (1.2), for M > 0, E

(

sup|θ|≤M |∇θf
2(G)e−θ·G+ |θ|2

2 |
)

< +∞.

Similarly, E

(

sup|θ|≤M |∇2
θf

2(G)e−θ·G+
|θ|2
2 |
)

< +∞. The central limit theorem governing the

convergence of ϑf,A
n to ϑf,A

⋆ ensues from [Rubinstein and Shapiro, 1993, TheoremA2]. �

3 Strong Law of Large Numbers and Central Limit Theorem

Let
θf,A
n = Aϑf,A

n and θf,A
⋆ = Aϑf,A

⋆ .

The convergence of our estimator Mn(θf,A
n , f) of E(f(G)) is ensured by the following theorem,

which is a consequence of Propositions 3.6 and 3.13 below. As we do not take advantage of
the definition of θf,A

n but only use its convergence properties obtained in the previous section,
these propositions deal with the asymptotic properties of Mn(θf,A

n , g) where g : R
d → R is an

arbitrary function and

∀θ ∈ R
d, Mn(θ, g)

def
=

1

n

n
∑

i=1

g(Gi + θ)e−θ·Gi− |θ|2
2 .

To precise the hypotheses on f in the case d′ = 1 of a one-dimensional importance sampling
parameter ϑ, we introduce the following definition.

Definition 3.1 For A ∈ R
d, we say that a function h : R

d → R

• is A-nondecreasing (resp. A-nonincreasing) if

∀x ∈ R
d, ϑ ∈ R 7→ h(x+ Aϑ) is nondecreasing (resp. nonincreasing),

7



• is A-monotonic if it is either A-nondecreasing or A-nondecreasing,

• belongs to VA if h may be decomposed as the sum of two A-monotonic functions g1 and
g2 such that

∃λ > 0, ∃β ∈ [0, 2), ∀x ∈ R, |gi(x)| ≤ λe|x|
β

for i = 1, 2. (3.1)

When d = 1, V1 consists of the functions of finite variation which satisfy the growth assump-
tion (3.1).

Theorem 3.2 Assume (1.1), (1.2) and that f admits a decomposition f = f1+1{d′=1}f2 with

f1 a continuous function such that ∀M > 0, E

(

sup|θ|≤M |f1(G+ θ)|
)

< +∞ and f2 ∈ VA.

Then, for any deterministic integer valued sequence (νn)n going to ∞ with n, Mn(θf,A
νn , f)

converges a.s. to E(f(G)).

Note that for the integrability condition on f1 to hold, it is enough that ∃β ∈ [0, 2), λ > 0,

∀x ∈ R
d, |f1(x)| ≤ λe|x|

β
.

Under stronger assumptions on f , the convergence of Mn(θf,A
n , f) to E(f(G)) is governed by a

central limit theorem with optimal asymptotic variance vf,A(ϑf,A
⋆ )−E

2(f(G)). For α ∈ (0, 1],
let

Hα =

{

g : R
d → R s.t. ∃β ∈ [0, 2), λ > 0,∀x ∈ R

d, |g(x)| ≤ λe|x|
β

∀x, y ∈ R
d, |g(x) − g(y)| ≤ λe|x|

β∨|y|β |x− y|α
}

.

Note that the assumptions of Theorem 3.2 are satisfied for f ∈ Hα such that (1.1) holds and
that the Hölder condition in the definition of Hα implies the growth assumption for possibly
larger constants λ and β.

Theorem 3.3 Assume (1.1), (1.3) and that f admits a decomposition f = f1+f2+1{d′=1}f3

with f1 a C1 function such that

∀M > 0, E

(

sup
|θ|≤M

|f1(G+ θ)| + sup
|θ|≤M

|∇f1(G+ θ)|
)

< +∞,

f2 ∈ Hα with α ∈
(√

d′2+8d′−d′

4 , 1

]

and f3 ∈ VA. Then,

√
n(Mn(θf,A

n , f) − E(f(G)))
L→ N1

(

0, vf,A(ϑf,A
⋆ ) − E

2(f(G))
)

.

Note that

√
d′2+8d′−d′

4 is increasing with d′, equals 1
2 for d′ = 1 and converges to 1 as d′ → ∞.

Theorem 3.3 follows from Propositions 3.7 and 3.14 below. With Proposition 2.2, one obtains
the following corollary which enables us to construct confidence intervals for E(f(G)) with
our algorithm.
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Corollary 3.4 Under the assumptions of Theorem 3.3, if Var(f(G)) > 0, then
√

n

vf,A
n (ϑf,A

n ) −M2
n(θf,A

n , f)
(Mn(θf,A

n , f) − E(f(G)))
L→ N1 (0, 1) .

Remark 3.5 When Var(f(G)) is positive, then the optimal variance vf,A(ϑf,A
⋆ ) − E

2(f(G))

is also positive. The estimator vf,A
n (ϑf,A

n ) −M2
n(θf,A

n , f) converges a.s. to this variance but
may take negative values for n small.

Examples : Let us give some examples, inspired by financial applications, of functions f
such that the hypotheses of Theorems 3.2 and 3.3 are satisfied.

• f(x) =
(

K +
∑d

k=1 ωke
σk(Mx)k

)+
where the coefficients K, ωk and σk are real numbers

and M ∈ R
d×d : this class of functions belonging to H1 includes the payoffs of Call

and Put options written on baskets of underlyings in a multidimensional Black-Scholes
framework or on a discretely sampled arithmetic average of a single Black-Scholes asset
and the payoffs of exchange options on baskets.

• f(x) =
(

K + maxd
k=1 ωke

σk(Mx)k
)+

, f(x) =
(

K + mind
k=1 ωke

σk(Mx)k
)+

: this class of
functions belonging to H1 includes the payoffs of best-of options.

• when d = 1, the functions of bounded variation f(x) = 1{ωeσx≥K} and f(x) = 1{ωeσx≤K}
belong to V1 and correspond respectively to binary Call and Put options in the Black-
Scholes model.

• The time-discretization of the one-dimensional Black-Scholes model on the grid 0 =

t0 ≤ t1 ≤ . . . ≤ td is given by ϕ(G) where ϕ(x) = (e(r−
σ2

2
)tk+σ

Pk
j=1 xj

√
tj−tj−1)1≤k≤d

with σ > 0. For the choice A = (
√
t1,

√
t2 − t1, . . . ,

√
td − td−1)

∗ which corresponds to
the Cameron-Martin formula for the underlying Brownian motion, each coordinate of
the function ϕ is A-nondecreasing. Therefore, when g : R

d → R is either nondecreasing
in each variable or nonincreasing in each variable, the function g ◦ ϕ is A-monotonic.
For g1(y) = (yd − K)+ and g2(y) = (yd − K)+1{mink yk≥L}, the functions g2 ◦ ϕ and
(g1 − g2) ◦ ϕ, which correspond to the down-and-out and the down-and-in barrier Call
options also belong to VA. More generally, all the barrier Call and Put option payoffs
belong to VA.

• Let us consider the model

dSt = St (σ(t, St)dWt + rdt) , S0 = s

where (Wt)t≥0 is a one-dimensional Brownian motion and the local volatility function
σ : [0, T ] × R → R is bounded and such that x 7→ xσ(t, x) is Lipschitz continuous
uniformly for t ∈ [0, T ]. When discretizing this SDE by the Euler scheme with d steps
of length h = T/d on [0, T ], one approximates ST by ϕ(G) where

ϕ(x) = φd(xd, φd−1(xd−1, . . . , φ1(x1, s))) with φk(u, v) = v(1 + σ((k − 1)h, v)
√
hu+ rh),

and G =
1√
h

(

Wh,W2h −Wh, . . . ,Wdh −W(d−1)h

)

.
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There exists C > 0 such that for all k ∈ {1, . . . , d},

∀u, v, u′, v′ ∈ R, |φk(u, v)| ≤ C|v|(1 + |u|)
|φk(u, v) − φk(u

′, v′)| ≤ C
(

(1 + (|u| ∨ |u′|))|v − v′| + (|v| ∨ |v′|)|u− u′|
)

.

One deduces by induction that for x, y ∈ R
d, |ϕ(x)| ≤ Cd|s|∏d

k=1(1+|xk |) ≤ Cd|s|e
√

d|x|

and

|ϕ(x) − ϕ(y)| ≤ Cd|s|
d
∑

k=1

|xk − yk|
d
∏

j=1

j 6=k

(1 + (|xj | ∨ |yj |) ≤ Cd|s|
√
ded(|x|∨|y|)|x− y|.

Hence, the functions f(x) = (ϕ(x) − K)+ and f(x) = (K − ϕ(x))+ corresponding to
the Call and Put payoffs in the discretized model belong to H1.

We are now going to study the convergence properties of Mn(θf,A
n , g) in the multidimensional

framework d′ ≥ 1 before obtaining stronger results in the case d′ = 1 of a one-dimensional
importance sampling parameter.

3.1 The general case

Proposition 3.6 Let (θn)n≥1 be a sequence of d-dimensional random vectors converging al-
most surely to some random vector θ∞ and g : R

d → R be a continuous function such that

∀M > 0, E

(

sup|θ|≤M |g(G + θ)|
)

<∞. Then Mn(θn, g) converges a.s. to E (g(G)).

Proof : We apply Lemma 2.4 with (Xi)i≥1 = (Gi)i≥1 and h(θ, x) = g(x + θ)e−θ.x− |θ|2
2 .

The continuity assumption follows from the continuity of g. Concerning the integrability
condition, we deduce from (1.4) and the following inequality

sup
|θ|≤M

(

|g(G + θ)|e−θ·G− |θ|2
2

)

≤ sup
|θ|≤M

|g(G + θ)|
d
∏

k=1

(eMGk

+ e−MGk

)

that

E

(

sup
|θ|≤M

(

|g(G + θ)|e−θ·G− |θ|2
2

)

)

≤ e
dM2

2

∑

µ∈{−M,M}d

E

(

sup
|θ|≤M

|g(G + θ + µ)|
)

≤ 2de
dM2

2 E

(

sup
|θ|≤(1+

√
d)M

|g(G + θ)|
)

.

Therefore, a.s., θ 7→ Mn(g, θ) converges locally uniformly to the constant function θ 7→
E(h(θ,G)) = E(g(G)). We easily conclude with the a.s. convergence of θn to θ∞. �
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Proposition 3.7 Assume that g : R
d −→ R is such that E(g2(G+θf,A

⋆ )e−2θf,A
⋆ ·G) < +∞ and

admits a decomposition g = g1 + g2 with g1 of class C1 satisfying

∀M > 0, E

(

sup
|θ|≤M

|g1(θ +G)| + sup
|θ|≤M

|∇g1(θ +G)|
)

<∞ (3.2)

and g2 ∈ Hα for α ∈
(√

d′2+8d′−d′

4 , 1

]

. Then, under (1.1) and (1.3),

√
n(Mn(θf,A

n , g) − E(g(G)))
L→ N1

(

0,Var

(

g(G+ θf,A
⋆ )e−θf,A

⋆ .G− |θf,A
⋆ |2
2

))

.

By the central limit theorem,
√
n(Mn(θf,A

⋆ , g)−E(g(G)))
L→ N1

(

0,Var

(

g(G+ θf,A
⋆ )e−θf,A

⋆ .G− |θf,A
⋆ |2
2

))

.

As a consequence, it is enough to check that for i ∈ {1, 2}, √n(Mn(θf,A
n , gi)−Mn(θf,A

⋆ , gi))
Pr→

0. The next lemma deals with the case i = 1.

Lemma 3.8 Let g : R
d −→ R be a C1 function satisfying (3.2). Then, under (1.1) and

(1.3),
√
n(Mn(θf,A

n , g) −Mn(θf,A
⋆ , g))

Pr→ 0.

Since, for ε > 0,

P

(√
n|Mn(θf,A

n , g2) −Mn(θf,A
⋆ , g2)| ≥ ε

)

≤ P

(

nδ|ϑf,A
n − ϑf,A

⋆ | ≥ 1
)

+

P



 sup
|ϑ−ϑf,A

⋆ |≤ 1

nδ

√
n|Mn(Aϑ, g2) −Mn(Aϑf,A

⋆ , g2)| ≥ ε



 ,

choosing δ ∈ (d′/2α(d′ + 2α), 1/2), which is possible since α >

√
d′2+8d′−d′

4 , the case i = 2 fol-

lows from the central limit theorem governing the convergence of ϑf,A
n to ϑf,A

⋆ (see Proposition
2.2) combined with the following result.

Proposition 3.9 Let A ∈ R
d×d′ and g ∈ Hα for α ∈ (0, 1],

∀δ > d′

2α(d′ + 2α)
,∀ϑ0 ∈ R

d′ , sup
|ϑ−ϑ0|≤ 1

nδ

√
n|Mn(Aϑ, g) −Mn(Aϑ0, g)| Pr−→ 0.

Remark 3.10 By the argument given in the case i = 2, if g ∈ Hα for α >

√
d′2+8d′−d′

4 ,

√
n(Mn(θf,A

νn
, g) − E(g(G)))

L→ N1

(

0,Var

(

g(G+ θf,A
⋆ )e−θf,A

⋆ .G− |θf,A
⋆ |2
2

))

for any deterministic integer-valued sequence (νn)n such that ∃λ > 0, ∃γ > d′
α(d′+2α) , ∀n ∈

N
∗, νn ≥ λnγ.
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Proof of Lemma 3.8 : The function θ 7→ Mn(·, g) is of class C1 and it is easy to check
that ∇θMn(θ, g) = Mn(θ, ḡ) with ḡ(x) = ∇g(x) − g(x)x. The mean value theorem gives√
n(Mn(θf,A

n , g) − Mn(θf,A
⋆ , g)) = A

√
n(ϑf,A

n − ϑf,A
⋆ ).Mn(θ̄f,A

n , ḡ), with θ̄f,A
n ∈ (θf,A

n , θf,A
⋆ ).

Since by Proposition 2.2
√
n(ϑf,A

n − ϑf,A
⋆ ) converges in law to a normal random variable, it is

enough to prove that Mn(θ̄f,A
n , ḡ)

Pr−→ 0. The a.s. convergence of ϑf,A
n to ϑf,A

⋆ implies the a.s.

convergence of θ̄f,A
n to θf,A

⋆ . Since

sup
|θ|≤M

|(G+ θ)g(G+ θ)| ≤
(

d
∑

k=1

(eG
k

+ e−Gk

) +M

)

sup
|θ|≤M

|g(G + θ)|,

(3.2) combined with the reasoning made at the beginning of the proof of Proposition 3.6 yields

∀M > 0, E

(

sup
|θ|≤M

|(G + θ)g(G+ θ)| + sup
|θ|≤M

|∇g(G+ θ)|
)

< +∞. (3.3)

Then, Proposition 3.6 implies that Mn(θ̄f,A
n , ḡ)

Pr−→ E(ḡ(G)). By (3.3) and the reasoning made
at the beginning of the proof of Proposition 3.6,

∀M > 0,E

(

sup
|θ|≤M

|ḡ(G+ θ)|e−θ·G− |θ|2
2

)

< +∞.

Hence, Lebesgue’s Theorem implies that ∇θE

(

g(G + θ)e−θ·G− |θ|2
2

)

= E

(

ḡ(G+ θ)e−θ·G− |θ|2
2

)

.

Since the left-hand-side is equal to 0, one deduces for θ = 0 that E(ḡ(G)) = 0. �

Remark 3.11 Let g : R
d → R be a C2 function, ḡ(x) = ∇g(x)−g(x)x and ¯̄g(x)

def
= ∇2g(x)−

g(x)Id − x∇∗g(x) −∇g(x)x∗ + g(x)xx∗. Assume that

E

(

(|g(θf,A
⋆ +G)|2 + |ḡ(θf,A

⋆ +G)|2)e−2θf,A
⋆ ·G

)

< +∞ (3.4)

∀M > 0, E

(

sup
|θ|≤M

|g(θ +G)| + sup
|θ|≤M

|∇g(θ +G)| + sup
|θ|≤M

|∇2g(θ +G)|
)

<∞. (3.5)

Let (νn)n be a deterministic integer valued sequence such that ∃λ > 0, ∀n ∈ N
∗, νn ≥ λ

√
n.

Then, using the decomposition

√
n(Mn(θf,A

νn
, g) −Mn(θf,A

⋆ , g)) =
1√
νn

√
nMn(θf,A

⋆ , ḡ) · √νn(θf,A
νn

− θf,A
⋆ )

+

√
n

νn

√
νn(θf,A

νn
− θf,A

⋆ )∗
(
∫ 1

0
(1 − t)Mn(tθf,A

νn
+ (1 − t)θf,A

⋆ , ¯̄g)dt

)√
νn(θf,A

νn
− θf,A

⋆ ),

one obtains that under (1.1) and (1.3), the left-hand-side converges in probability to 0. As a

consequence,
√
n(Mn(θf,A

νn , g)−E(g(G)))
L→ N1

(

0,Var

(

g(G+ θf,A
⋆ )e−θf,A

⋆ .G− |θf,A
⋆ |2
2

))

. More

generally, if g is of class Ck and satisfies moment assumptions like (3.4) and (3.5) respectively
involving its derivatives up to order k − 1 and k, this result is preserved if ∃λ > 0, ∀n ∈
N
∗, νn ≥ λn1/k.
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In order to prove Proposition 3.9, we need the following Lemma :

Lemma 3.12 If g ∈ Hα for α ∈ (0, 1], then

∀M > 0, ∃C > 0, ∀θ, θ′ ∈ B̄(0,M), ∀n ∈ N
∗, E

(

(

Mn(θ, g) −Mn(θ′, g)
)2
)

≤ C|θ − θ′|2α

n
.

Proof : Let M > 0. Since, by (1.4),

E

(

g(G + θ)e−θG− θ2

2 − g(G + θ′)e−θ′G− θ′2
2

)

= 0,

it is enough to check that

∃C > 0, ∀θ, θ′ ∈ B̄(0,M), E

((

g(G + θ)e−θ.G− |θ|2
2 − g(G+ θ′)e−θ′.G− |θ′|2

2

)2)

≤ C|θ − θ′|2α.

One has

E

((

g(G + θ)e−θ.G− |θ|2
2 − g(G+ θ′)e−θ′.G− |θ′|2

2

)2)

≤ 2E

(

(g(G + θ) − g(G + θ′))2e−2θ.G−|θ|2
)

+ 2E

(

g2(G+ θ′)

(

e−θ.G− |θ|2
2 − e−θ′.G− |θ′|2

2

)2)

.

Let λ > 0 and β ∈ [0, 2) be such that

∀x ∈ R
d, |g(x)| ≤ λe|x|

β

(3.6)

∀x, y ∈ R
d, |g(x) − g(y)| ≤ λe|x|

β∨|y|β |x− y|α. (3.7)

One has

for c = 2(β−1)+ , ∀a, b ≥ 0, (a+ b)β ≤ c(aβ + bβ). (3.8)

Since for θ ∈ B̄(0,M), |∇θe
−θG− θ2

2 | = |(G+ θ)e−θG− θ2

2 | ≤ (|G| +M)eM |G|, one deduces that
for θ, θ′ ∈ B̄(0,M),

E

((

g(G + θ)e−θ.G− |θ|2
2 − g(G + θ′)e−θ′.G− |θ′|2

2

)2)

≤ 2λ2e2cMβ

E

(

(

|θ − θ′|2α + |θ − θ′|2(|G| +M)2
)

e2M |G|+2c|G|β
)

≤ C|θ − θ′|2α.

�

Proof of Proposition 3.9 : Let ε > 0.

P



 sup
|ϑ−ϑ0|≤ 1

nδ

√
n|Mn(Aϑ, g) −Mn(Aϑ0, g)| > ε



 ≤ nP

(

|G| >
√

2d log n
)

+ P



 sup
|ϑ−ϑ0|≤ 1

nδ

√
n|Mn(Aϑ, g) −Mn(Aϑ0, g)| > ε, max

1≤i≤n
|Gi| ≤

√

2d log n



 .
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Since

P(|G| >
√

2d log n) ≤
d
∑

k=1

P

(

|Gk| >
√

2 log n
)

= 2dP
(

G1 >
√

2 log n
)

≤ 2d√
2 log n

e−
(
√

2 log n)2

2 , (3.9)

the second term of the r.h.s tends to 0 as n goes to infinity. Now, let us focus on the first
term.

Let M = |ϑ0| + 1 and M̃ = |A|M . For ϑ′, ϑ ∈ B̄(0,M), using (3.7), (3.8) and (3.6) for the
second inequality, one obtains

|Mn(Aϑ′, g) −Mn(Aϑ, g)| ≤ 1

n

n
∑

i=1

|g(Gi + Aϑ′) − g(Gi + Aϑ)|e−Aϑ′·Gi− |Aϑ′|2
2

+
1

n

n
∑

i=1

|g(Gi + Aϑ)|
∣

∣

∣

∣

e−Aϑ′·Gi− |Aϑ′|2
2 − e−Aϑ·Gi− |Aϑ|2

2

∣

∣

∣

∣

≤ λ|A|α|ϑ′ − ϑ|α
n

n
∑

i=1

ec(|Gi|β+M̃β)+M̃ |Gi|
(

1 + (2M̃ )1−α(M̃ + |Gi|)
)

.

Hence, when max1≤i≤n |Gi| ≤
√

2d log n there exists a constant γ not depending on n such

that if ν
def
= β∨1

2 ,

∀ϑ′, ϑ ∈ B̄(0,M), |Mn(Aϑ′, g) −Mn(Aϑ, g)| ≤ γ|ϑ − ϑ′|αeγ(log n)ν

. (3.10)

We can cover B̄(ϑ0,
1
nδ ) withK = C⌈(γ 1

αn
1
2α

−δe
γ
α

(log n)ν

/ε
1
α )d

′⌉ balls of radius
(

ε
2γeγ(log n)ν

√
n

)
1
α
,

where C is a geometrical constant not depending on n. For k ∈ {1, . . . ,K}, let Bk denote the
k − th ball and ϑk its center. By (3.10), when max1≤i≤n |Gi| ≤

√
2d log n,

∀k ∈ {1, . . . ,K}, sup
ϑ∈Bk

|Mn(Aϑ, g) −Mn(Aϑk, g)| ≤
ε

2
√
n
.

Using Lemma 3.12 for the fourth inequality, one deduces that

P



 sup
|ϑ−ϑ0|≤ 1

nδ

√
n |Mn(Aϑ, g) −Mn(Aϑ0, g)| > ε, max

1≤i≤n
|Gi| ≤

√

2d log n





≤ P

(

∃k ≤ K : |Mn(Aϑk, g) −Mn(Aϑ0, g)| >
ε√
n
− sup

ϑ∈Bk

|Mn(Aϑ, g) −Mn(Aϑk, g)|

, max
1≤i≤n

|Gi| ≤
√

2d log n

)

≤ P

(

max
k≤K

|Mn(Aϑk, g) −Mn(Aϑ0, g)| >
ε

2
√
n

)

≤
∑

k≤K

4n

ε2
E

(

(Mn(Aϑk, g) −Mn(Aϑ0, g))
2
)

≤
∑

k≤K

4n

ε2
C|ϑ− ϑk|2α

n
≤ Cn

d′
2α

−(d′+2α)δe
d′γ
α

(log n)ν

. (3.11)
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Since β < 2 and δ > d′
2α(d′+2α) , ν < 1 and d′

2α − (d′ + 2α)δ < 0. Therefore, the upper bound

in Equation (3.11) converges to 0 as n increases to infinity. �

3.2 The case of a one-dimensional importance sampling parameter

In the present section, dedicated to the case d′ = 1 of a one-dimensional importance sampling
parameter, we obtain convergence results under weaker assumptions on the function g.

Proposition 3.13 Let A ∈ R
d. Assume that g : R

d → R admits a decomposition g = g1 + g2

with g1 a continuous function such that ∀M > 0, E

(

sup|θ|≤M |g1(G+ θ)|
)

< +∞ and g2 ∈
VA. Then, for any sequence (ϑn)n of real valued random variables converging a.s. to some
deterministic limit ϑ⋆ ∈ R, Mn(Aϑn, g) converges a.s. to E(g(G)).

Proof of Proposition 3.13 : By Proposition 3.6, it is enough to deal with the situation
where g = g↑ + g↓ with g↑ (resp. g↓) an A-nondecreasing (resp. A-nonincreasing) function
satisfying (3.1). One has g = g↑1{g↑≥0}+g↑1{g↑<0}+g↓1{g↓≥0}+g↓1{g↓<0} where the functions
g↑1{g↑≥0} and −g↓1{g↓<0} (resp. g↓1{g↓≥0} and −g↑1{g↑<0}) are nonnegative, A-nondecreasing
(resp. A-nonincreasing) and satisfy (3.1). As a consequence, it is enough to deal with the case
g nonnegative, A-monotonic and satisfying (3.1). Choosing ϑ′ ≥ ϑ when g is A-nondecreasing
and ϑ ≥ ϑ′ when g is A-nonincreasing, one has for all x ∈ R

d,

g(x+ Aϑ′)e−Aϑ′·x− |Aϑ′|2
2 − g(x+ Aϑ)e−Aϑ·x− |Aϑ|2

2

≥
(

g(x+ Aϑ′)(e−Aϑ′·x− |Aϑ′|2
2 − e−Aϑ·x− |Aϑ|2

2 )

)

∨
(

g(x+ Aϑ)(e−Aϑ′·x− |Aϑ′|2
2 − e−Aϑ·x− |Aϑ|2

2 )

)

.

(3.12)

From now on, we suppose that g is nonnegative, A-nondecreasing and satisfies (3.1) : a
symmetric argument applies to the nonincreasing case. Let ε > 0, η ∈ (0, 1]. For m ∈ N

∗,

P

(

∃n ≥ m, |E(g(G)) −Mn(Aϑn, g)| ≥ ε

)

≤ P

(

∃n ≥ m, |E(g(G)) −Mn(Aϑ⋆, g)| ≥
ε

2

)

+ P (∃n ≥ m, |ϑn − ϑ⋆| > η)

+ P

(

∀n ≥ m, |ϑn − ϑ⋆| ≤ η and ∃n ≥ m, |Mn(Aϑ⋆, g) −Mn(Aϑn, g)| ≥
ε

2

)

.

By the strong law of large numbers and the a.s. convergence of ϑn to ϑ⋆, the first two terms
on the right-hand-side both converge to 0 as m→ +∞. Let us check that the third one also
converges to 0. Let M = |ϑ⋆| + 1, K > 0. For −M ≤ ϑ ≤ ϑ′ ≤ M , one has using (3.12) for
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the first inequality then (3.1) and (3.8),

Mn(Aϑ′, g) −Mn(Aϑ, g)

≥ − 1

n

n
∑

i=1

(|g(Gi + Aϑ′)| ∧ |g(Gi + Aϑ)|)
∣

∣

∣

∣

e−Aϑ′·Gi− |Aϑ′|2
2 − e−Aϑ·Gi− |Aϑ|2

2

∣

∣

∣

∣

1{|Gi|≤K}

− 1

n

n
∑

i=1

(

|g(Gi + Aϑ′)|e−Aϑ′·Gi− |Aϑ′|2
2 + |g(Gi + Aϑ)|e−Aϑ·Gi− |Aϑ|2

2

)

1{|Gi|>K}

≥ −γK(ϑ′ − ϑ) − C

n

n
∑

i=1

ec|Gi|β+M |A||Gi|1{|Gi|>K},

where γK = λ|A|ec(Kβ+(M |A|)β)(M |A| +K)eMK|A| and C = 2λec(M |A|)β
. When |ϑn − ϑ⋆| ≤

η, choosing ϑ = ϑn and ϑ′ = ϑ⋆ + η then ϑ = ϑ⋆ − η and ϑ′ = ϑn, one deduces that
Mn(Aϑ⋆, g) −Mn(Aϑn, g) is bounded from below and from above respectively by

Mn(Aϑ⋆, g) −Mn(A(ϑ⋆ + η), g) − γK(ϑ⋆ + η − ϑn) − C

n

n
∑

i=1

ec|Gi|β+M |A||Gi|1{|Gi|>K}

and Mn(Aϑ⋆, g) −Mn(A(ϑ⋆ − η), g) + γK(ϑn + η − ϑ⋆) +
C

n

n
∑

i=1

ec|Gi|β+M |A||Gi|1{|Gi|>K}.

Choosing K such that E

(

ec|Gi|β+M |A||Gi|1{|Gi|>K}
)

≤ ε
8C and then η such that 2γKη ≤ ε

8 ,

we deduce that

P

(

∀n ≥ m, |ϑn − ϑ⋆| ≤ η and ∃n ≥ m, |Mn(Aϑ⋆, h) −Mn(Aϑn, h)| ≥
ε

2

)

≤ P

(

∃n ≥ m,
1

n

n
∑

i=1

ec|Gi|β+M |A||Gi|1{|Gi|>K} ≥
ε

4C

)

+ P

(

∃n ≥ m, Mn(Aϑ⋆, g) −Mn(A(ϑ⋆ + η), g) ≤ −ε
8

)

+ P

(

∃n ≥ m, Mn(Aϑ⋆, g) −Mn(A(ϑ⋆ − η), g) ≥ ε

8

)

.

By the strong law of large numbersMn(Aϑ⋆, g)−Mn(A(ϑ⋆+η), g) and Mn(ϑ⋆, g)−Mn(A(ϑ⋆−
η), g) both converge a.s. to 0 and 1

n

∑n
i=1 e

c|Gi|β+M |A||Gi|1{|Gi|>K} to some limit not greater
than ε

8C . One concludes that each term on the right-hand-side converges to 0 as m→ ∞. �

Proposition 3.14 Assume that g : R
d −→ R is such that E(g2(G + θf,A

⋆ )e−2θf,A
⋆ ·G) < +∞

and admits a decomposition g = g1 + g2 + 1{d′=1}g3 with g1 of class C1 satisfying (3.2),

g2 ∈ Hα for α ∈
(√

d′2+8d′−d′

4 , 1

]

and g3 ∈ VA. Then, under (1.1) and (1.3),

√
n(Mn(θf,A

n , g) − E(g(G)))
L→ N1

(

0,Var

(

g(G+ θf,A
⋆ )e−θf,A

⋆ .G− |θf,A
⋆ |2
2

))

.

As in Proposition 3.7, this statement is proved by combining the usual central limit theorem
governing the convergence of

√
n(Mn(θf,A

⋆ , g) − E(g(G))), Lemma 3.8, Proposition 3.9, the
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decomposition of functions in VA given at the beginning of the proof of Proposition 3.13 and
the next result.

Proposition 3.15 Let A ∈ R
d and g : R

d → R be an A-monotonic function with constant
sign satisfying (3.1),

∀δ > 1/4, ∀ϑ0 ∈ R, sup
ϑ∈[ϑ0± 1

nδ ]

√
n|Mn(Aϑ, g) −Mn(Aϑ0, g)| Pr→ 0.

Remark 3.16 Assume that d′ = 1. Let g ∈ VA, and (νn)n be a deterministic integer valued
sequence such that

∃λ > 0, ∃γ > 1

2
, ∀n ∈ N

∗, νn ≥ λnγ .

Combining Propositions 2.2 and 3.15, one obtains that under (1.1) and (1.3),
√
n(Mn(θf,A

νn , g)−
E(g(G)))

L→ N1

(

0,Var

(

g(G+ θf,A
⋆ )e−θf,A

⋆ .G− |θf,A
⋆ |2
2

))

.

Proof : Up to a multiplication by −1, we may assume that g is nonnegative. Moreover,
we only deal with the case g A-nondecreasing, the nonincreasing case being obtained by a
symmetric argument. By (3.12), for ϑ′ < ϑ′′ and ϑ ∈ [ϑ′, ϑ′′]

Mn(Aϑ′, g) − 1

n

n
∑

i=1

|g(Gi + Aϑ)|
∣

∣

∣

∣

e−Aϑ·Gi− |Aϑ|2
2 − e−Aϑ′·Gi− |Aϑ′|2

2

∣

∣

∣

∣

≤Mn(Aϑ, g) ≤Mn(Aϑ′′, h) +
1

n

n
∑

i=1

|g(Gi + Aϑ)|
∣

∣

∣

∣

e−Aϑ·Gi− |Aϑ|2
2 − e−Aϑ′′·Gi− |Aϑ′′|2

2

∣

∣

∣

∣

.

With (3.1) and (3.8), one deduces that if −M ≤ ϑ′ ≤ ϑ′′ ≤M ,

sup
ϑ∈[ϑ′,ϑ′′]

|Mn(Aϑ, g) −Mn(Aϑ0, g)| ≤max(|Mn(Aϑ′, g) −Mn(Aϑ0, g)|, |Mn(Aϑ′′, g) −Mn(Aϑ0, g)|)

+
C(ϑ′′ − ϑ′)

n

n
∑

i=1

ec|Gi|β+M |A||Gi|(M |A| + |Gi|). (3.13)

Let ν = β∨1
2 and M = |ϑ0|+1. When max1≤i≤n |Gi| ≤

√
2d log n, the second term on the r.h.s.

is smaller than γeγ(log n)ν
(ϑ′′−ϑ′) where the constant γ does not depend on n. Let ε > 0. We

set K = ⌈2γn 1
2
−δeγ(log n)ν

/ε⌉ and ϑk = ϑ0 + kε/2γeγ(log n)ν
for k ∈ {−K, . . . ,K}. Applying

(3.13) with ϑ′ = ϑk and ϑ′′ = ϑk+1, one obtains that when max1≤i≤n |Gi| ≤
√

2d log n,

sup
ϑ∈[ϑk,ϑk+1]

|Mn(Aϑ, g) −Mn(Aϑ0, g)| ≤
ε

2
√
n

+ max(|Mn(Aϑk, g) −Mn(Aϑ0, g)|, |Mn(Aϑk+1, g) −Mn(Aϑ0, g)|).
Therefore,

P

(

sup
ϑ∈[ϑ0± 1

nδ ]

|Mn(Aϑ, g) −Mn(Aϑ0, g)| ≥
ε√
n

)

≤ P

(

max
1≤i≤n

|Gi| >
√

2d log n

)

+ P

(

max
1≤i≤n

|Gi| ≤
√

2d log n, max
|k|≤K

|Mn(Aϑk, g) −Mn(Aϑ0, g)| ≥
ε

2
√
n

)

.
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By (3.9), the first term on the right-hand-side tends to 0 as n→ ∞. Reasoning like in the end
of the proof of Proposition 3.9, with the next lemma replacing Lemma 3.12, one concludes
that the second term also tends to 0. �

Lemma 3.17 When A ∈ R
d and g : R

d → R is a A-monotonic function with constant sign
satisfying (3.1),

∀M > 0,∃C > 0, ∀ϑ, ϑ′ ∈ [−M,M ], ∀n ∈ N
∗, E

(

(

Mn(Aϑ, g) −Mn(Aϑ′, g)
)2
)

≤ C|ϑ− ϑ′|
n

.

Proof : Choosing ϑ′ ≥ ϑ if g is nonnegative and A-nondecreasing or nonpositive and
A-nonincreasing and ϑ ≥ ϑ′ otherwise, one has

E

(

(

g(G + Aϑ)e−Aϑ.G− |Aϑ|2
2 − g(G + Aϑ′)e−Aϑ′.G− |Aϑ′|2

2

)2
)

= E

(

g2(G)e−Aϑ.G+ |Aϑ|2
2

)

+ E

(

g2(G)e−Aϑ′.G+ |Aϑ′|2
2

)

− 2E

(

g(G)g(G + A(ϑ′ − ϑ))e−Aϑ′.G+Aϑ.Aϑ′− |Aϑ′|2
2

)

≤ E

(

g2(G)

(

e−Aϑ.G+ |Aϑ|2
2 + e−Aϑ′.G+ |Aϑ′|2

2 − 2e−Aϑ′.G+Aϑ.Aϑ′− |Aϑ′|2
2

))

.

Then, the conclusion is a consequence of the following inequality : for θ, θ′ ∈ R
d with |θ|∨|θ′| ≤

|A|M ,

E

(

g2(G)

(

e−θ.G+ |θ|2
2 + e−θ′.G+ |θ′|2

2 − 2e−θ′.G+θ.θ′− |θ′|2
2

))

≤ CE

(

e
|G|2

4

(∣

∣

∣

∣

e−θ.G+
|θ|2
2 − e−θ′.G+

|θ′|2
2

∣

∣

∣

∣

+ 2e−θ′.G− |θ′|2
2

∣

∣

∣
e|θ

′|2 − eθ.θ′
∣

∣

∣

))

≤ C

(

|θ − θ′|
∫ 1

0
e

3|ϑ(t)|2
2

∫

Rd

|ϑ(t) − x|e−
|x+2ϑ(t)|2

4 dxdt + 2e
|θ′|2

2 |e|θ′|2 − eθ.θ′ |
∫

Rd

e−
|x+2θ′|2

4 dx

)

≤ C|θ − θ′|.

�

4 Generalization

Let X be a q−dimensional random variable and h : R
d × R

q → R and φ : R
d × R

q → R

two measurable functions such that a.s. θ 7→ φ(θ,X) is a convex (and therefore continuous
by finiteness of φ) function bounded from below by some deterministic finite constant and
E(φ(θ0,X)) <∞ for some θ0 ∈ R

d. We are interested in computing
{

E(h(θφ
⋆ ,X))

with E(φ(θφ
⋆ ,X)) = infθ E(φ(θ,X)).

(4.1)
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For any function ψ : R
d × R

q → R, we define mn(θ, ψ) = 1
n

∑n
i=1 ψ(θ,Xi), where (Xi)i≥1 is

an i.i.d. sample from the distribution of X. To solve the general Problem (4.1), we advise to
compute instead the sample approximation

{

mn(θφ
n, h)

with mn(θφ
n, φ) = infθ∈Rd mn(θ, φ)

The first part of this work was devoted to the particular case where q = d, h(θ, x) = f(θ +

x) e−θ·x− |θ|2
2 and φ(θ, x) = f2(x) e−θ·x+

|θ|2
2 for a given function f : R

d → R
d and a standard

normal random vector X. In the same context of importance sampling, when q = d = 1,
and X is a gamma random variable with density 1{x>0}

xa−1e−x

Γ(a) (a > 0), for f : R → R with
polynomial growth,

∀θ > −1, E(f(X)) = E

(

(1 + θ)af((1 + θ)X)e−θX
)

.

Minimizing the variance of the random variable on the right-hand-side is equivalent to min-

imizing E (φ(θ,X)) where φ(θ, x)
def
= (1 + θ)af2(x)e−

θx
1+θ . When a ≥ 1, the function θ 7→

φ(θ,X) is a.s. convex since ∂2φ
∂θ2 (θ, x) = (1+θ)a−4

[

(a− 1)(1 + θ)2 + ((a− 1)(1 + θ) + x)2
]

f2(x)e−
θx

1+θ .

The asymptotic properties of mn(θφ
n, h) where h(θ, x) = (1 + θ)af((1 + θ)x)e−θx may be de-

duced from what follows.

By the assumptions made on φ, a.s. θ → mn(θ, φ) is continuous and, by Fatou’s Lemma,
θ 7→ E(φ(θ,X)) is lower semi continuous. In order to ensure the existence and uniqueness of

θφ
⋆ and θφ

n, we also suppose that θ 7→ E(φ(θ,X)) is a strictly convex function going to infinity
at infinity and that a.s., the same property holds for θ 7→ mn(θ, φ) when n is large enough. A
sufficient condition is the existence of a function ϕ : R+ 7→ R such that limt→+∞ ϕ(t) = +∞
and that

P (θ 7→ φ(θ,X) strictly convex and not smaller than θ 7→ ϕ(|θ|)) > 0.

By adapting the proofs of Proposition 2.2 and Proposition 3.6, one obtains the following three
results.

Proposition 4.1 Assume that E(supθ∈K |φ(θ,X)|) < ∞ for some compact neighborhood K

of θφ
⋆ . Then, a.s., θφ

n converges to θφ
⋆ and mn(θφ

⋆ , φ) converges to E(φ(θφ
⋆ ,X)).

Theorem 4.2 Assume that the assumptions of Proposition 4.1 hold and that for a given
compact neighborhood K of θφ

⋆ , E(supθ∈K |h(θ,X)|) < ∞ and a.s., θ ∈ K 7→ h(θ,X) is

continuous. Then, a.s., mn(θ, h) converges to E(h(θ,X)) uniformly on K and mn(θφ
n, h)

converges to E(h(θφ
⋆ ,X)).

Note that the a.s. convergence of mn(θn, h) to E(h(θφ
⋆ ,X)) still holds for any sequence (θn)n

converging a.s. to θφ
⋆ .
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Proposition 4.3 Assume that the assumptions of Proposition 4.1 hold, that a.s., θ ∈ R
d 7→

φ(θ,X) is of class C2 in the neighborhood of θφ
⋆ and that E(|∇θφ(θφ

⋆ ,X)|2) <∞,

E

(

sup
θ∈K

|∇θφ(θ,X)| + sup
θ∈K

|∇2
θφ(θ,X)|

)

<∞

for some compact neighborhood K of θφ
⋆ . If the matrix B = E

(

∇2
θφ(θφ

⋆ ,X)
)

is non-singular,

then
√
n(θφ

n − θφ
⋆ )

L−→ Nd(0, B
−1Cov (∇θφ(θφ

⋆ ,X))B−1).

Theorem 4.4 Assume that the assumptions of Proposition 4.3 hold, that E(h2(θφ
⋆ ,X)) <

+∞ and that for a given compact neighborhood K of θφ
⋆ , a.s., θ 7→ h(θ, ·) is C1 on K and

E

(

sup
θ∈K

|h(θ,X)| + sup
θ∈K

|∇θh(θ,X)|
)

<∞.

Then,
√
n(mn(θφ

n, h) − E(h(θφ
⋆ ,X)))

L−→ N1 (0,D∗ΣD) where

D =

(

E(∇θh(θ
φ
⋆ ,X))

1

)

and Σ =

(

B−1 0
0 1

)

Cov

(

∇θφ(θφ
⋆ ,X)

−h(θφ
⋆ ,X)

)

(

B−1 0
0 1

)

.

For this last result, we first prove that
√
n

(

θφ
n − θφ

⋆

mn(θφ
⋆ , h) − E(h(θφ

⋆ ,X))

)

L−→ Nd+1 (0,Σ) ,

using that the equality ∇θmn(θφ
n, φ) = mn(θφ

n,∇θφ) = 0 = E

(

∇θφ(θφ
⋆ ,X)

)

implies that

(
∫ 1

0
mn(tθφ

n + (1 − t)θ∗φ,∇2
θφ)dt

)

(θφ
n − θφ

⋆ ) = E

(

∇θφ(θφ
⋆ ,X)

)

−mn(θφ
⋆ ,∇θφ),

where the first factor on the left-hand-side converges a.s. to B by Theorem 4.2. Then, the
decomposition

√
n(mn(θφ

n, h) − E(h(θφ
⋆ ,X))) =

√
n(mn(θφ

n, h) −mn(θφ
⋆ , h)) +

√
n(mn(θφ

⋆ , h) − E(h(θφ
⋆ ,X)))

=
√
n(θφ

n − θφ
⋆ ) ·mn(θ̄n,∇θh) +

√
n(mn(θφ

⋆ , h) − E(h(θφ
⋆ ,X)))

with θ̄n ∈ [θφ
n, θ

φ
⋆ ] gives the result.

Example : In a financial context, [Avellaneda et al., 2001] propose a Monte-Carlo approach
to transform an a priori probability measure µ on the space R

q of possible evolutions of
the market into an a posteriori probability measure ν compatible with the market prices
C1, . . . , Cd of d financial assets defined by the measurable payoff functions f̄1, . . . , f̄d : R

q →
R. For a sequence (Xi)i≥1 of i.i.d. random vectors according to µ, these authors suggest
to associate with the first n vectors X1, . . . ,Xn nonnegative weights pn

1 , . . . , p
n
n such that

∑n
i=1 p

n
i = 1 and ∀k ∈ {1, . . . , d}, ∑n

i=1 p
n
i f̄k(Xi) = Cj . If the probability measure µ models

the a priori knowledge of the market behavior, it is sensible to choose weights as close as
possible to the uniform ones. For that purpose, [Avellaneda et al., 2001] propose to minimize
∑n

i=1 p
n
i log pn

i .
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Let us define f = (f̄1 − C1, . . . , f̄d − Cd)
∗. Assume from now on that

(H1) : 0 belongs to the interior of the convex hull of the support of the image of µ by f,

and set φ(θ, x) = eθ.f(x). Then, a.s. for n large enough 0 belongs to the interior of
the convex hull of {f(X1), . . . , f(Xn)}, which ensures that θ 7→ mn(θ, φ) is a strictly con-
vex function going to infinity at infinity. Note that in this context, each individual func-
tion θ 7→ φ(θ,Xi) is convex but not strictly convex and does not go to infinity at infin-

ity. There exists a unique θφ
n ∈ R

d such that mn(θφ
n, φ) = infθ∈Rd mn(θ, φ). Introducing

the Lagrangian associated with the strictly convex minimization problem with linear con-
straints as suggested by [Avellaneda et al., 2001], one easily checks that its solution is given

by pn
i = eθ

φ
n.f(Xi)/

∑n
j=1 e

θφ
n.f(Xj) for i ∈ {1, . . . , n}. So, (H1) is a sufficient condition for

the existence of a solution for n large enough (see [Jourdain and Nguyen, 2001] for a more
geometrically intricate necessary and sufficient condition). The price in the calibrated model

of an exotic option with payoff function g : R
q → R is given by mn(θφ

n, γ)/mn(θφ
n, φ) where

γ(θ, x)
def
= g(x)eθ.f(x). The above theory enables to obtain the limiting behavior of both the

optimal parameter θφ
n and the calibrated price. By (H1), the function θ 7→ E(φ(θ,X1)) =

E
(

eθ.f(X1)
)

is strictly convex and goes to infinity at infinity. Since this function is lower

semi-continuous by Fatou’s Lemma and finite for θ = 0, there exists a unique θφ
⋆ such that

E(φ(θφ
⋆ ,X1)) = infθ∈Rd E(φ(θ,X1)). Under

(H2) : θφ
⋆ belongs to the interior of the convex set {θ ∈ R

d : E
(

eθ.f(X1)
)

< +∞},

since

∀x ∈ R
q, sup

|θ−θφ
⋆ |≤ε

eθ.f(x) ≤
d
∏

k=1

(

e−εfk(x) + eεfk(x)
)

eθ
φ
⋆ .f(x).

According to Proposition 4.1, θφ
n andmn(θφ

n, φ) respectively converge a.s. to θφ
⋆ and E(φ(θφ

⋆ ,X1)).
Note that according to [Jourdain and Nguyen, 2001], these convergence results still hold with-
out assumption (H2). Under (H2) and

(H3) : ∃λ, β > 0, ∀x ∈ R
q, |g(x)| ≤ λ(1 + |f(x)|β),

Theorem 4.2 also implies that mn(θφ
n, γ) converges a.s. to E(γ(θφ

⋆ ,X1)) so that the cali-

brated price converges a.s. to E

(

g(X1)e
θφ
⋆ .f(X1)

)

/E
(

eθ
φ
⋆ .f(X1)

)

. Under (H2), the matrix

E(∇2
θφ(θφ

⋆ ,X1)) = E

(

f(X1)f(X1)
∗eθ

φ
⋆ .f(X1)

)

exists and is non-singular by (H1). As a conse-

quence, under (H2) and

(H4) : E

(

|f(X1)|2e2θφ
⋆ .f(X1)

)

< +∞,

Proposition 4.3 gives the central limit theorem governing the convergence of θφ
n to θφ

⋆ . Note
that a sufficient condition for (H2) and (H4) to hold is : ∀θ ∈ R

d, E
(

eθ.f(X1)
)

< +∞. Last,
since

√
n





mn(θφ
n, γ)

mn(θφ
n, φ)

−
E

(

g(X1)e
θφ
⋆ .f(X1)

)

E

(

eθ
φ
⋆ .f(X1)

)



 =

√
n
(

mn(θφ
n, h) − E(h(θφ

⋆ ,X1))
)

mn(θφ
n, φ)E

(

eθ
φ
⋆ .f(X1)

)
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with h(θ, x)
def
= γ(θ, x)E(φ(θφ

⋆ ,X1))−φ(θ, x)E(γ(θφ
⋆ ,X1)), under (H2), (H3) and (H4), by Slut-

sky’s Theorem and Theorem 4.4, the left-hand-side converges in law to N1

(

0,D∗ΣD/E4(eθ
φ
⋆ .f(X1))

)

where the expressions of Σ and D are given in Theorem 4.4. Analogous central limit theorems
are stated in a more general context in [Nguyen, 2003, chapter IV].

5 Practical implementation and applications

Option pricing in local or stochastic volatility models eventually boils down to the computa-
tion of an expectation E(f(G)) where G is a d−dimensional standard normal random vector.
In a financial context, there is no restriction in assuming that the payoff function f satisfies
both (1.1) and (1.2). In most cases, this expectation will be computed using Monte Carlo
simulations because closed formulas are barely available. The question of reducing the vari-
ance springs out quite naturally in this context. Relying on Equation (1.4), we have chosen
the importance sampling point of view to tackle the delicate problem of variance reduction.
Practitioners’ concerns with variance reduction is to have an automatic toolbox at hand,
which is precisely what we are devising here. As explained in the introduction, we advise
to compute the minimizer ϑf,A

n of vf,A
n and then use this value in a Monte Carlo procedure

as described in Algorithm 1. Note that the same samples are used to compute ϑf,A
n and the

Monte Carlo estimator Mn(Aϑf,A
n , f). Even though the terms involved in Mf

n (Aϑf,A
n , f) are

Algorithm 1 Reduced Robust Importance Sampling (RRIS)

1. Generate G1, . . . , Gn n i.i.d. samples following the law of G
2. Compute the minimizer ϑf,A

n of

vf,A
n (ϑ) =

1

n

n
∑

i=1

f2(Gi) e−Aϑ·Gi+
|Aϑ|2

2

3. Compute the expectation E(f(G)) by Monte Carlo

Mn(Aϑf,A
n , f) =

1

n

n
∑

i=1

f(Gi +Aϑf,A
n ) e−Aϑf,A

n ·Gi− |Aϑ
f,A
n |2
2 .

not independent, according to Corollary 3.4, it is as easy to construct confidence intervals as
for a crude Monte Carlo computation.

Remark 5.1 In the name of the Algorithm 1, the term “Reduced” emphasizes that the opti-
mal importance sampling parameter is searched for in a subspace of the set of all parameters.
When the matrix A = Id, the algorithm is simply denoted RIS because there is no dimension
reduction anymore.

In this section, we first explain how ϑf,A
n can be computed using Newton’s optimization

procedure. Then, we illustrate the efficiency of this robust variance reduction technique
both in the multidimensional Black Scholes framework and in more general local volatility
frameworks.
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5.1 Solving the minimization problem

We already know from Proposition 2.1 that the function vf,A
n is strongly convex and infinitely

continuously differentiable. Hence, we can approximate ϑf,A
n using Newton’s algorithm for

instance. The Hessian matrix ∇2
ϑv

f,A
n (ϑ) writes as the sum of a scalar matrix and a positive

semi-definite matrix. Hence, it is quite obvious that the smallest eigenvalue of ∇2
ϑv

f,A
n (ϑ) is

larger than the smallest eigenvalue of A∗A times 1
n

∑n
i=1 f

2(Gi) e−Aϑ·Gi+
|Aϑ|2

2 . This last term
can be arbitrary small depending on the function f . Therefore, implementing a straightfor-
ward Newton’s algorithm can be particularly inefficient in some cases. It would be much better
to have an alternative representation of ϑf,A

n as the minimizer of a function whose smallest
eigenvalue of its Hessian matrix does not depend on f . We advise to rewrite ∇ϑv

f,A
n (ϑ) as

∇ϑv
f,A
n (ϑ) = A∗Aϑ

1

n

n
∑

i=1

f2(Gi) e−Aϑ·Gi+
|Aϑ|2

2 − 1

n

n
∑

i=1

A∗Gf2(Gi) e−Aϑ·Gi+
|Aϑ|2

2 .

Hence, ϑf,A
n can be seen as the root of

∇ϑu
f,A
n (ϑ) = A∗Aϑ −

∑n
i=1A

∗Gif
2(Gi) e−Aϑ·Gi

∑n
i=1 f

2(Gi) e−Aϑ·Gi
,

with uf,A
n (ϑ) = |Aϑ|2

2 − log
(
∑n

i=1 f
2(Gi) e−Aϑ·Gi

)

. The Hessian matrix of uf,A
n is given by

∇2
ϑu

f,A
n (ϑ) = A∗A+

∑n
i=1A

∗GiG
∗
iAf

2(Gi) e−Aϑ·Gi

∑n
i=1 f

2(Gi) e−Aϑ·Gi

−
(
∑n

i=1A
∗Gif

2(Gi) e−Aϑ·Gi
) (
∑n

i=1A
∗Gif

2(Gi) e−Aϑ·Gi
)∗

(
∑n

i=1 f
2(Gi) e−Aϑ·Gi)

2 .

Using Cauchy-Schwartz’s inequality, it is clear that ∇2
ϑu

f,A
n (ϑ)−A∗A is a positive semi-definite

matrix. Hence, the smallest eigenvalue of ∇2
ϑu

f,A
n (ϑ) is always larger than the smallest one of

A∗A whatever the values taken by f are. This advocates the use of uf,A
n rather than vf,A

n to
compute ϑf,A

n .

Using this new expression, we implement Algorithm 2 to construct an approximation xk
n

of ϑf,A
n . Since uf,A

n is strongly convex, for any fixed n, xk
n converges to ϑf,A

n when k goes
to infinity. The direction of descent dk

n at step k should be computed as the solution of a
linear system. There is no in point in computing the inverse of ∇2

ϑu
f,A
n (xk

n), which would be
computationally much more expensive.

Remarks on the implementation : From a practical point of view, ε should be chosen
reasonably small ε ≈ 10−6. This algorithm converges very quickly and, in most cases, less than
5 iterations are enough to get a very accurate estimate of ϑf,A

n , actually within the ε−error.
Since the points at which the payoff function f is evaluated remain constant through the
iterations of Newton’s algorithm, the values f2(Gi) for i = 1, . . . , n should be precomputed
before starting the optimization algorithm which considerably speeds up the whole process.
The Hessian matrix of our problem is easily tractable so there is no point in using Quasi-
Newton’s methods.
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Algorithm 2 Newton’s algorithm

Choose an initial value x0
n ∈ R

d.
k = 1
while |∇ϑu

f,A
n (xk

n)| > ε do

1. Compute dk
n such that (∇2

ϑu
f,A
n (xk

n))dk
n = −∇ϑu

f,A
n (xk

n)
2. xk+1

n = xk
n + dk

n , k = k + 1
end while

5.2 Numerical examples

In this part, we present numerical results obtained by combining Algorithms 1 and 2 for
different pricing problems. The variances for the RRIS algorithm (resp. the RIS algorithm)
given in the tables below are computed along a single run of the algorithm using the estimator
vf,A
n (ϑf,A

n )−M2
n(θf,A

n , f) (resp. vf
n(θf

n)−M2
n(θf

n, f)) which converges almost surely to vf (θf
⋆ )−

E
2(f(G)) under the assumptions of Theorem 3.2. The variances of the crude Monte Carlo

methods (denoted Var MC in the tables) are estimated by 1
n

∑n
i=1 f

2(Gi)−
(

1
n

∑n
i=1 f(Gi)

)2
.

All the histograms presented hereafter are centered around their empirical means and renor-
malized by the empirical variances. When no further indications are given, the matrix A is
chosen as the identity which implies that d = d′ and θf,A

n = ϑf,A
n .

5.2.1 Black-Scholes’ framework

First, we consider an I−dimensional Black-Scholes model in which the dynamics under the
risk neutral measure of each asset Si is supposed to be given by

dSi
t = Si

t(rdt + σidW i
t ) S0 = (S1

0 , . . . , S
I
0)

where W = (W 1, . . . ,W I). Each component W i is a standard Brownian motion. For
the numerical experiments, the covariance structure of W will be assumed to be given by
〈W i,W j〉t = ρt1{i6=j} + t1{i=j}. We suppose that ρ ∈ (− 1

d−1 , 1), which ensures that the
matrix C = (1{i6=j} + 1{i=j})1≤i,j≤I is positive definite. Let L denote the lower triangular
matrix involved in the Cholesky decomposition C = LL∗. To simulate W on the time-grid
0 < t1 < t2 < . . . < tN , we need d = I ×N independent standard normal variables and set















Wt1

Wt2
...

WtN−1

WtN















=

















√
t1L 0 0 . . . 0√
t1L

√
t2 − t1L 0 . . . 0

...
. . .

. . .
. . .

...
...

. . .
. . .

√
tN−1 − tN−2L 0√

t1L
√
t2 − t1L . . .

√
tN−1 − tN−2L

√
tN − tN−1L

















G,

whereG is a normal random vector in R
I×N . The vector (σ1, . . . , σd) is the vector of volatilities

and r > 0 is the instantaneous interest rate. We will denote the maturity time by T .

Basket option We consider options with payoffs of the form (
∑d

i=1 ω
iSi

T − K)+ where
(ω1, . . . , ωd) is a vector of algebraic weights. The strike value K can be taken negative to
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deal with Put like options. All these payoffs belong to H1, so that Theorem 3.3 applies as
Figures 1 and 2 illustrate it. These histograms have been obtained with 5000 independent
runs of the RIS algorithm. The case of such basket options is definitely a burning issue
because there is no closed formula as soon as d > 2 and the variance of a crude Monte Carlo
approach can be dramatically large. We can see on the examples of the basket options treated

ρ K Price Variance MC Variance RIS

0.1 45 7.20 12.12 1.04
55 0.56 1.90 0.14

0.2 50 3.29 13.56 1.74
0.5 45 7.68 42.2 5.06

55 1.90 14.46 1.25
0.9 45 8.26 69.47 7.89

55 2.84 30.08 2.58

Table 1: Basket option in dimension d = 40 with r = 0.05, T = 1, Si
0 = 50, σi = 0.2, ωi = 1

d
for all i = 1, . . . , d and n = 10000.

in Table 1 that the Robust Importance Sampling method does reduce the variance by at least
10. The results are obtained within 4.5 CPU seconds, compared to the 1.5 CPU seconds
needed for the crude Monte Carlo computation. The same number of samples are used in
both methods, which brings an overall gain of 10/

√
3 in favor of the RIS algorithm. In the

case ρ = 0.2 and K = 50, which is the option used for the histograms, the empirical variance
is 1.76 whereas the on-line estimated variance is 1.74. This illustrates the conclusion of
Corollary 3.4. The improvement brought by the RIS algorithm is very encouraging; not only
because it definitely reduces the variance but above all because it is fully automatic. Unlike
most adaptive importance sampling strategies developed so far and in particular the ones
based on stochastic approximations, the one we propose here does not require any parameter
tuning.
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Figure 1: Limiting distribution of θf
n for

the option of Table 1 with ρ = 0.2 and
K = 50
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Figure 2: Limiting distribution of
Mn(θf

n, f) (RIS) for the option of Table 1
with ρ = 0.2 and K = 50

We have also tested our algorithm on a 10−dimensional exchange option with randomly
chosen spots and volatilities. The numerical results of Table 2 show that the RIS algorithm
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performs well for a wide variety of basket options. In any case, the variance is at least divided
7, whereas it increases the CPU time by 4 times. This leads to an overall gain of 3.5 in the
worst case.

Price Variance MC Variance RIS

3.58 21.66 2.97
0.129 0.511 0.016
7.4 34.04 5.02
1.08 5.24 0.52

Table 2: Basket option in dimension d = 10 with r = 0.05, T = 1, K = 0, ρ = 0.2. The spots
are chosen uniformly in [70, 130] and the volatilities in [0.1, 0.3]. ωi = 1

d for i = 1, . . . , d/2
and ωi = −1

d for i = d/2 + 1, . . . , d and n = 100 000.

One dimensional digital option We consider an option with payoff 1{ST >L} where L > 0.
We choose T = 1, S0 = 100, σ = 0.2, r = 0.05 and L = 140. We fix the number of samples
to 100 000. A crude Monte Carlo computation gives a price of 0.05952 with a variance of
0.053, whereas the exact price is 0.05968. On each run of the algorithm, we can compute
the on-line estimator of the variance and use it to construct a confidence interval. We have
run the RIS algorithm 100 000 times independently and on each run we have constructed the
confidence interval of level 95% using the on-line estimated variance vf,A

n (ϑf,A
n )−M2

n(θf,A
n , f).

The true price falls outside the confidence interval in 5104 cases out of 100 000 which gives a
level of 94.9%. This little experiment illustrates how Corollary 3.4 can be used to construct
confidence intervals.

One dimensional barrier option This time, we only focus on one asset and we want to
price a Call option with a discrete barrier on this asset. A discrete barrier means that we
only check if the asset has crossed the barrier at fixed dates t1, . . . , td = T , usually one per
month. We assume that the grid defined by t1, . . . , td is regular with step size δt = T/d.
The payoff can be written as (ST − K)+1{∀1≤i≤d, Sti

≥L} for a Down and Out call option

with barrier L. The price of such an option writes as E(f(G1, . . . , Gd)) with f(x1, . . . , xd) =

e−rT (S0 e(r−σ2

2
)T+σ

√
δt

Pd
j=1 xj −K)+1

{∀1≤i≤d, S0 e
(r−σ2

2 )ti+σ
√

δt
Pi

j=1
xj≥L}

. In this particular case,

if we consider the RIS algorithm developed before, the importance sampling parameter θ lies
in R

d. Hence, the optimization problem becomes harder to solve as the number of time steps
increases.

One idea is to restrict the parameter θ to the subspace {Aϑ : ϑ ∈ R} where the vector A is
defined by A = (

√
t1, . . . ,

√
td − td−1)

∗. In this case, the optimal parameter is always real-
valued d′ = 1 whatever the number of time steps we consider. This alternative approach
— referred to as RRIS (Reduced Robust Importance Sampling) — corresponds to adding a
linear drift to the Brownian motion. These two approaches are compared in Table 3 for the
case of a Down and Out Call option and it turns out that the optimal variances obtained
in both cases are very close to each other. When the underlying asset is of dimension one,
the computation time gained by using the RRIS algorithm instead of the RIS one is not
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that important but it will become a burning issue for multidimensional barrier options. The

L Price Variance MC Variance RIS Variance RRIS

70 11.46 401.51 34.10 34.33
80 11.19 401.04 35.68 36.11
90 9.60 383.93 42.54 45.37
95 7.56 342.05 42.01 49.84

Table 3: Down and Out Call option with σ = 0.2, r = 0.05, T = 2, S1
0 = 100, K = 110 and

n = 10000.

efficiency of the two algorithms on the Down and Out Call option is very impressive. Like
in the previous example, the variance is reduced by a factor between 8 and 11. The use
of the RRIS algorithm compared to a crude Monte Carlo method doubles the computation
time, which means that the gain is at least 8/

√
2. Figures 3 and 4 illustrate the asymptotic

behavior of the RIS algorithm. They have been obtained by running the RIS algorithm 5000
times independently. The histogram of Figure 3 represents the limiting distribution of the
first component of θf

n computed with the RIS algorithm and rather well fits the density of
the standard normal distribution (plain line), which illustrates Proposition 2.2. Although
the hypotheses of Theorems 3.2 and 3.3 are not satisfied for the payoff at hand in the RIS
framework, Figure 4 shows that our estimator is still convergent and asymptotically normal.
This numerical convergence is emphasized by the matching of the empirical variance of the
histogram and the on-line variance computed on a single run of the RIS algorithm; for these
two quantities, we respectively find 34.70 and 35.68. Since the payoff belongs to VA, the
convergence and the asymptotic normality of the RRIS estimator are in return ensured by
Theorems 3.2 and 3.3.
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Figure 3: Limiting distribution of the first
component of θf

n (RIS) for the option of
Table 3 with L = 80
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Figure 4: Limiting distribution of
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n, f) (RIS) for the option of Table 3
with L = 80

Barrier Basket option We consider basket options in dimension I with a discrete barrier
on each asset. For instance, if we consider a Down and Out Call option, the payoff writes
down (

∑I
i=1 ω

iSi
T − K)+1{∀i≤I, ∀j≤N, Si

tj
≥Li} where ω = (ω1, . . . , ωI) is a vector of positive

weights, L = (L1, . . . , LI) is the vector of barriers, K > 0 the strike value and tN = T . Once
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again, we consider one time step per month, which means that for an option with maturity
time T = 2 as in Table 4, the number of time steps is N = 24. From now on, we fix I = 5.
Hence, in the RIS algorithm the parameter θ is of dimension d = 120. Even though this is
not that huge, it requires much more computational time as the numerical experiments show
it. For the option of Table 4, a standard Monte Carlo computation takes 4.3 CPU seconds,
the RRIS algorithm 8.7 CPU seconds whereas the RIS algorithm needs 22.5 CPU seconds.
The RIS algorithm is three times slower than the RRIS algorithm in which the parameter θ
lies in the subspace {Aϑ : ϑ ∈ R

d} of dimension d′ = I = 5 with A(j−1)I+i,i =
√
tj − tj−1

(convention t0 = 0) for j = 1, . . . , N and i = 1, . . . , I, all the other coefficients of A being
zero.

Path dependent basket options are a prime case of pricing problems in which the use of
one importance sampling parameter per time step dramatically slows down the computation.
Restricting the importance sampling parameter space to a subspace of dimension d′ = I = 5
as in the RRIS algorithm divides the computational time by 3, whereas the optimal variance
of the RRIS algorithm is very close to the one of the RIS algorithm. Hence, there is no point
in using one importance sampling parameter per time step. The improvement factor in terms
of variance provided by the RRIS algorithm varies between 10 and 20. Because the RRIS
algorithm is twice slower than a standard Monte Carlo computation, the overall gain factor
varies between 10/

√
2 and 20/

√
2.

K Price Var MC Var RIS Var RRIS

45 2.37 22.46 2.58 2.62
50 1.17 10.97 0.78 0.79
55 0.51 4.72 0.19 0.19

Table 4: Down and Out Call option in dimension I = 5 with σ = 0.2, S0 = (50, 40, 60, 30, 20),
L = (40, 30, 45, 20, 10), ρ = 0.3, r = 0.05, T = 2, ω = (0.2, 0.2, 0.2, 0.2, 0.2) and n = 100 000.

The payoff does not satisfy the assumptions of Theorems 3.2 and 3.3 neither in the RIS nor in
the RRIS framework. Nevertheless, it looks pretty clear from Figure 6 that the RRIS estimator
is convergent and asymptotically normal. Besides, for K = 50 the variance computed on a
single run of the RRIS algorithm perfectly matches the empirical variance of the histogram.
These histograms have been drawn with 100 000 independent runs of the RRIS algorithm.

5.2.2 Dupire’s framework

We consider an I−dimensional local volatility model in which the dynamics under the risk
neutral measure of each asset Si is supposed to be given by

dSi
t = Si

t(rdt+ σ(t, Si
t)dW

i
t ) S0 = (S1

0 , . . . , S
d
0 )

where W = (W 1, . . . ,W I) is defined and generated like in the Black-Scholes’ framework. The
local volatility function σ we have chosen is of the form

σ(t, x) = 0.6(1.2 − e−0.1t e−0.001(x ert −s)2) e−0.05
√

t, (5.1)

with s > 0. We know that there exists a duality between the variables (t, x) and (T,K) in
Dupire’s framework. Hence for the formula (5.1) to make sense, one should choose s equal
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of Table 4 with K = 50
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n , f) (RRIS) for the option of Ta-
ble 4 with K = 50

to the spot price of the undermying asset so that the bottom of the smile is located at the
forward monney. We refer to Figure 7 to have an overview of the smile.
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Figure 7: Local volatility function

Best Of option We consider options with payoffs (max1≤i≤I ωiS
i
T − K)+, where K > 0

and (ω1, . . . , ωI) is a vector of positive weights. The payoffs belong to H1. To discretize the
dynamics, we use an Euler scheme with N = 100 time steps per year. The results of Table 5
are encouraging. The RRIS algorithm with A defined like in the barrier basket option case
reduces the variance by 4 whereas it only increases the computational time by 2 which leads
to a gain of 4/

√
2. We do not present any results for the RIS algorithm because the extra

computational time it requires makes it noncompetitive.
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K Price Var MC Var RRIS

70 22.13 873 238
80 16.63 730 194
90 12.31 578 147

Table 5: Best Of option in dimension 12 with ρ = 0.5, r = 0.05, T = 1, n = 50000 and
ωi = 1, Si

0 = 50 for all i = 1 · · · d.

Conclusion

We propose a fully automatic adaptive importance sampling technique for the computation
of E(f(G)) where f : R

d → R and G is a standard d-dimensional normal random vector. For
a large class of functions f including many financial payoffs, we prove that our estimator is
convergent and asymptotically normal with optimal limiting variance. Note that all the con-
vergence results stated in Theorems 3.2, 3.3, Corollary 3.4, Propositions 3.7, 3.14, Lemma 3.8

and Remarks 3.10, 3.11, 3.16 still hold if Mn(θ, g) is defined as 1
n

∑n
i=1 g(G̃i + θ)e−θ.G̃i− |θ|2

2

for any sequence (G̃i)i≥1 of i.i.d. d-dimensional standard normal random vectors and in par-

ticular when this sequence is independent from the one (Gi)i≥1 used to compute (ϑ
f,A]
n )n≥1.

Our numerical experiments confirm the performance of our estimator : in comparison with
the crude Monte Carlo method, the computation time needed to achieve a given precision
is divided by a factor going from 3 to 15. Moreover, they suggest that the convergence and
asymptotic normality of the estimator still hold under weaker assumptions on the function f .
In view of these numerical results and the definition of V1, it would be natural to investigate
the class of functions f such that for some constants λ > 0 and β ∈ [0, 2),

∀ϕ : R
d → R

d C∞ and vanishing outside B(0,M),

∣

∣

∣

∣

∫

Rd

f∇.ϕ(x)dx

∣

∣

∣

∣

≤ λeM
β‖ϕ‖∞.

Unfortunately, we have not been able so far to derive the asymptotic properties of our esti-
mator for such functions. In this work, we have focused on importance sampling. A natural
extension would be to investigate the coulping with statification techniques in the spirit of
[Glasserman et al., 1999]. In particular, it would be interesting to combine the present impor-
tance sampling algorithm with the adaptive stratified sampling methods proposed recently
in [Etoré and Jourdain, 2008] (adaptive optimization of the proportions of random drawings
made in the different strata) and [Etoré et al., 2008] (adaptive optimization of the stratifi-
cation direction e ∈ R

d for a standard normal random vector when the strata are given by
{x ∈ R

d : e · x ∈ [yi−1, yi)} with −∞ = y0 < y1 < y2 < . . . < yI = +∞).
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d’Entropie Relative et Modèles avec Sauts. PhD thesis, Ecole Nationale des Ponts et
Chaussées.

[Rubinstein and Shapiro, 1993] Rubinstein, R. Y. and Shapiro, A. (1993). Discrete event
systems. Wiley Series in Probability and Mathematical Statistics: Probability and Mathe-
matical Statistics. John Wiley & Sons Ltd., Chichester. Sensitivity analysis and stochastic
optimization by the score function method.

32


