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HIGH ORDER RESOLUTION OF THE

MAXWELL-FOKKER-PLANCK-LANDAU MODEL INTENDED FOR ICF

APPLICATIONS

ROLAND DUCLOUS, BRUNO DUBROCA, FRANCIS FILBET AND VLADIMIR TIKHONCHUK

Abstract. A high order, deterministic direct numerical method is proposed for the nonrela-
tivistic 2Dx × 3Dv Vlasov-Maxwell system, coupled with Fokker-Planck-Landau type operators.
Such a system is devoted to the modelling of electronic transport and energy deposition in the
general frame of Inertial Confinement Fusion applications. It describes the kinetics of plasma
physics in the nonlocal thermodynamic equilibrium regime. Strong numerical constraints lead
us to develop specific methods and approaches for validation, that might be used in other fields
where couplings between equations, multiscale physics, and high dimensionality are involved.
Parallelisation (MPI communication standard) and fast algorithms such as the multigrid method
are employed, that make this direct approach be computationally affordable for simulations of
hundreds of picoseconds, when dealing with configurations that present five dimensions in phase
space.

Keywords. High order numerical scheme, Fokker-Planck-Landau, NLTE regime, ICF, Magnetic
field, Electronic transport, Energy deposition.
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1. Introduction

In the context of the interaction of intense, short laser pulses with solid targets [29], Inertial
Confinement Fusion (ICF) schemes [3, 33], the energy transport is an important issue. In this
latter field of applications (ICF), it determines the efficiency of plasma heating and the possibility
to achieve the fusion conditions. The appropriate scales under consideration here are about one
hundred of micrometers for the typical spatial sizes, and one hundred of picoseconds for the time
scales.

Several key features should be accounted for. First of all, in typical ICF configurations, a
significant amount of energetic electrons have a large mean free path, exceeding the characteristic
gradient length of the temperature and the density: the particles motion exhibits nonlocal features.

A wide range of collisional regimes should be dealt with to describe the propagation and the
deposit of energetic electrons from the underdense corona of the target to its dense and compressed
core.

The collisions are important even if the beam particles themselves are collisionless [3] : these
particles, when propagating in a plasma, trigger a return current that neutralizes the inci-
dent current. This return current is determined by collisions of thermal, background electrons.
The structure of the generated electron distribution function is then often anisotropic, with a
strongly intercorrelated two population structure. For nonrelativistic laser intensities, smaller
than 1018 W cm−2, a small angle description for collisions between the two populations is well-
suited, leading to the classical Fokker-Planck-Landau collision model. The Coulomb potential
involves a large amount of collisions with small energy exchanges between particles, so that the
Landau form of the Fokker-Planck operator is required here. Such a configuration with two
counterstreaming beams typically leads to the developement of microscopic instabilities that can
modify strongly the beam propagation. We refer to the two-stream and filamentation instabili-
ties, where the wave vector of the perturbation is respectively parallel and perpendicular to the
incident beam [7, 8]. A self-consistent description of electromagnetic fields is then required to
describe the plasma behaviour and associated instabilities. Furthermore in the process of plasma
heating, strong magnetic fields are generated at intensity that can reach a MegaGauss scale and
may affect the energy transport [6, 21, 23]. The sources of magnetic field generation include on
the one hand the effects of the rotational part of the electronic pressure which is a cross gradient
∇T ×∇n effect, and on the other hand the exponential growth of perturbations of anisotropic dis-
tribution functions (Weibel instability). Some electromagnetic processes can be strongly coupled
with nonlocal effects.

The plasma model studied in this paper is based on the nonrelativistic Vlasov-Maxwell equa-
tions, coupled with Fokker-Planck-Landau collision operators. It gathers the listed requirements
at laser intensities which are relevant for ICF. At higher laser intensities, a relativistic treatment
should be considered [3, 36], and collision operators with large energy exchanges are required if
secondary fast electron production proves to be non-negligible, paticularly with dense plasmas.
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There are several numerical methods that treat the Vlasov-Maxwell model together with
Fokker-Planck-Landau type operators. Among them, the Particle-In-Cell (PIC) methods pro-
vide satisfying results only in a limited range of collisional regimes. Moreover, they suffer from
the “finite grid instability”, that leads to numerical heating. Also the statistical noise and the
low resolution of the electron distribution function by PIC solvers lead generally to an inaccurate
treatment of collisions, particularly when dealing with low temperature and high density plasmas.
Another approach consists in the expansion of the distribution function in Legendre polynomials,
retaining the lowest order terms. However, with this approach, a strong anisotropy of the distri-
bution function cannot be treated [3, 22, 1]. Both of these methods are well-suited in particular
regimes but fail at modelling more complicated situations where a collisionless anisotropic fast
electron population is coupled to a collision dominated thermal population. To overcome these
difficulties, a spherical harmonic expansion has been proposed, that proves to be efficient [3].
Here we propose a different approach which consists in approximating the full model by a direct
deterministic numerical method. It discretizes directly the initial set of equations and enables
to preserve, at a discrete level, the physical invariants of the model (positivity of the distribu-
tion function, total mass and energy, entropy decreasing behaviour, etc). Many deterministic
schemes of this type have already been considered for homogeneous Fokker-Planck type opera-
tors [14, 9, 10, 27]. The nonhomogeneous case, that includes the transport part (see [20] for a
comparison between Eulerian Vlasov solvers), involves a large computational complexity that can
only be reduced with fast algorithms. Multipole expansion [26] and multigrid [10] techniques, as
well as fast spectral methods [27, 19], have been applied to the Landau equation. For computa-
tional complexity constraints, very few results on the accuracy of these methods are known in the
nonhomogeneous case [12, 19], particularly when the coupling with magnetic fields is considered.

Our starting point for the transport part discretization is a second order finite volume scheme
introduced in [12]. Its main feature is that it preserves exactly the discrete energy, if slope
limiters are not active. We intoduce additional dissipation on these limiters in order to successfully
address the two-stream instability test case. We will underline the important role of the limitation
procedure for the accuracy, on the second order scheme. This scheme is compared in this test
case with a fourth order MUSCL scheme [35], with a limitation ensuring the positivity of the
distribution function [5]. A similar approach, with the introduction of a fourth order scheme for
transport to avoid numerical heating, has already been proposed in the context of PIC solvers
[32]. The discretization of the Maxwell equations is performed with a Crank-Nicholson method,
allowing to have time steps of the order of the collision time. It is designed to preserve the discrete
total electromagnetic energy, which is a very important numerical constraint when considering the
coupling of Vlasov and Maxwell equations for applications aiming at capturing an accurate energy
deposition. We use for the Landau operator a fast multigrid technique that proves to be accurate
in a wide range of collisional regimes. Moreover, the use of domain decomposition techniques and
distributed memory MPI standard on the space domain leads to affordable computational cost,
allowing to treat time dependent 2Dx × 3Dv problems. As for the Lorentz electron-ion collision
operator, we insist on discrete symmetry properties that are important when coupling to the
Maxwell equations.

Finally, we propose to validate the numerical method on several physical test cases.
The paper is organized as follows. First, we present the model and its properties, then we discuss

the numerical schemes for the transport part, their properties, and propose several numerical tests.
Then the discretization for the collision operators is treated and we finally present physical test
cases 1Dx × 3Dv and 2Dx × 3Dv that show the accuracy of the present algorithm.
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2. Kinetic model

Two particle species are considered: ions which are supposed to be fixed (assuming an electron-
ion mass ratio me/mi ≪ 1), and electrons for which the evolution is described by a distribution
function fe(t,x,v) where for the more general case (x,v) ∈ Ω × R

3, with Ω ⊂ R
3. The nonrela-

tivistic Vlasov equation with Fokker-Planck-Landau (FPL) collision operator is given by

(1)
∂fe
∂t

+ ∇x · (v fe) +
qe
me

∇v · ((E + v ×B) fe) = Ce,e(fe, fe) + Ce,i(fe),

where qe = −e is the charge of an electron and me is the mass of an electron. On the one hand,
electromagnetic fields (E,B) are given by the classical Maxwell system

(2)



















∂E

∂t
− c2 ∇x × B = − J

ǫ0
,

∂B

∂t
+ ∇x × E = 0,

where ǫ0 represents the permittivity of vacuum, c is the speed of light. The electric current is
given by

J(t,x) = qe

∫

R3

fe(t,x,v)v dv.

Moreover, Maxwell system’s is supplemented by Gauss law’s

(3) ∇x ·E =
ρ

ǫ0
, ∇x ·B = 0,

where ρ is the charge density:

ρ = qe (ne − no) = qe

(∫

R3

fe(t,x,v)dv − n0

)

,

and n0/Z is the initial ion density.
On the other hand in (1), the right hand side represents collisions between particles, which

only act on the velocity variable, so we drop the x variable. The operator Ce,e(fe, fe) stands for
the electron-electron collision operator whereas Ce,i(fe) is the electron-ion collision operator

(4) Ce,e(fe, fe) =
e4 ln Λ

8π ǫ20m
2
e

∇v ·
(∫

R3

Φ(v − v′)
[

fe(v
′)∇vfe(v) − fe(v)∇v′fe(v

′)
]

dv′

)

,

whereas Ce,i(fe) is the electron-ion collision operator

(5) Ce,i(fe) =
Z n0 e

4 ln Λ

8π ǫ20m
2
e

∇v · [Φ(v)∇vfe(v)] .

where ln Λ is the Coulomb logarithm, which is supposed to be constant over the domain and Φ(u)
is an operator acting on the relative velocity u

Φ(u) =
‖u‖2 Id − u⊗ u

‖u‖3
.(6)

As we assume ions to be fixed, the FPL operator can then be simplified for electron-ion collisions
[12], and reduced to the Lorentz approximation. We refer to [2] for a physical derivation.

In this model, the Vlasov equation stands for the invariance of the distribution function along
the particles trajectories affected by the electric and magnetic fields E and B. The Vlasov equation
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representing the left-hand side in (1) is written in a conservative form, but it can also be written
in an equivalent non-conservative form, while Maxwell equations (2)-(3) provide with a complete
self-consistent description of electromagnetic fields. The coupling between both is performed via
the Lorentz force term E + v×B in the Vlasov equation, and the current source terms in Maxwell
equations. Furthermore, the FPL operator is used to describe elastic, binary collisions between
charged particles, with the long-range Coulomb interaction potential. Classical but important
properties of the system (1)-(3) together with operators (4) and (5), are briefly recalled. For
detailed proofs, we refer to [12, 13].

2.1. Transport equation under electromagnetic fields. Let us neglect in this section the
collision operators. The Vlasov-Maxwell system (1)-(3) with a zero right-hand side is strictly
equivalent to (1)-(2) provided Gauss’s laws (3) are initially satisfied. This gives a compatibility
condition at initial time.
The mass and momentum are preserved with respect to time for the Vlasov-Maxwell system, i.e.
system (1)-(2) without collision operators

d

dt

∫

R3×R3

fe(t,x,v)

(

1
v

)

dxdv = 0, t ≥ 0.

Moreover, conservation of energy can be proved for the Vlasov-Maxwell system by multiplying
equation (1) by me ‖v‖2/2 and integrating it in the velocity space. It gives after an integration
by parts

1

2

d

dt

∫

R3

{

ǫ0 ‖E(t,x)‖2 +
1

µ0
‖B(t,x)‖2 +

[
∫

R3

me‖v‖2fe(t,x,v)dv

]}

dx = 0, t ≥ 0,

with c2 ǫ0 µ0 = 1. The Vlasov-Maxwell system also conserves the kinetic entropy

d

dt
H(t) =

d

dt

∫

R3×R3

fe(t,x,v) log(fe(t,x,v))dxdv = 0, t ≥ 0.

2.2. Collision operators. The FPL operator is used to describe binary elastic collisions between
electrons. Its algebraic structure is similar to the Boltzmann operator, in that it satisfies the
conservation of mass, momentum and energy

∫

R3

Ce,e(fe, fe)(v)





1
v

‖v‖2



dv = 0, t ≥ 0.

Moreover, the entropy is decreasing with respect to time

dH

dt
(t) =

d

dt

∫

R3

fe(v, t) log(fe(v, t))dv ≤ 0, t ≥ 0.

The equilibrium states of the FPL operator, i.e. the set of distribution functions in the kernel of
Ce,e(fe, fe), are given by the Maxwellian distribution functions

Mne,ue,Te(v) = ne

(

me

2π Te

)3/2

exp

(

−me
‖v − ue‖2

2Te

)

,
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where ne is the density, ue is the mean velocity and Te is the temperature, defined as










































ne =

∫

R3

fe(v)dv,

ue =
1

ne

∫

R3

fe(v)vdv,

Te =
me

3ne

∫

R3

fe(v)‖v − ue‖2dv.

On the other hand, the operator (5), modelling collisions between electrons and ions, is a Lorentz
operator. It satisfies the conservation of mass and energy

∫

R3

Ce,i(fe)(v)

(

1
‖v − ue‖2

)

dv = 0.

Moreover, the equilibrium states for this operator are given by the set of isotropic functions:

Ker (Ce,i) =
{

fe ∈ L1
(

(1 + ‖v‖2)dv
)

, fe(v) = φ(z), z = ‖v − ue‖2
}

.

Finally, each convex function ψ of fe is an entropy for Ce,i(fe),

d

dt

∫

R3

ψ(fe)dv ≤ 0, t ≥ 0.

In addition to these properties, we present a symmetry property. This property may have some
importance, in particular in presence of magnetic fields. In that case, any break of symmetry due
to an inadequate discretization method could lead to generation of an artificial magnetic field, via
the current source terms, when coupling with the Maxwell equations.

Proposition 2.1. If fe has the following symmetry property with respect to the direction k at
time t0

(7) fe(t0,v) = fe(t0,v
k),

with components for

vki =

{

+vi if i 6= k,
−vi if i = k.

Then, this symmetry property is preserved with respect to time.

3. Numerical scheme for transport

We present a finite volume approximation for the Vlasov-Maxwell system (1)-(2) without col-
lision operators. Indeed, it is crucial to approximate accurately the transport part of the system
to asses the collective behaviour1 of the plasma, that occurs typically at a shorter scale than the
collision processes. We introduce a uniform 1D space discretization (xi+1/2)i∈I , I ⊂ N, of the
interval (0, L1), in the direction denoted by index 1. The associated space variable is denoted by
x1. We define the control volumes Ci,j = (xi−1/2, xi+1/2) × (vj−1/2,vj+1/2), the size of a control
volume in one direction in space ∆x and velocity ∆v.

1By collective effects, we denote here the self-consistent interaction of electromagnetic fields and particles. Some
collective effects are also considered in the collision processes, which make two particles interact via the Coulomb
field. The self-consistent electromagnetic field then screens the long range Coulomb potential and removes the
singularity in the Fokker-Plank-Landau operator.
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The velocity variable v = t(v1, v2, v3) is discretized on the grid vj = j∆v = t(vj1 , vj2, vj3)
with j = t(j1, j2, j3) ∈ Z3. Moreover we note vj+1/2 = t(j1 + 1/2, j2 + 1/2, j3 + 1/2)∆v. Finally,
the time discretization is defined as tn = n∆t, with n ∈ N.

Let fni,j be an average approximation of the distribution function on the control volume Ci,j at
time tn, that is

fni,j ≃ 1

∆x∆v3

∫

Ci,j

f(tn, x,v)dxdv.

Moreover since the discretization is presented in a simple 1Dx space geometry, the electromag-
netic field has the follownig structure: E = t(E1(t, x1)), E2(t, x1), 0), B = t(0, 0, B3(t, x1)). Hence
t(En1,i, E

n
2,i) is an approximation of the electric field t(E1, E2) whereas Bn

3,i represents an approxi-

mation of the magnetic field B3 in the control volume (xi−1/2, xi+1/2) at time tn.

3.1. Second order approximation of a one dimensional transport equation. For the sake
of simplicity, we focus on the discretization of a 1D transport equation; the extension to higher
dimensions is straightforward on a grid, without requiring time splitting techniques between
transport terms. In this section, the index 1 is dropped both on space and velocity directions, for
this simple 1Dx geometry.

Let us consider the following equation for t ≥ 0 and x ∈ (0, L),

(8)
∂f

∂t
+ v

∂f

∂x
= 0 ,

where the velocity v > 0 is given. By symmetry it is possible to recover the case when v is
negative. In the following we skip the velocity variable dependency of the distribution function.
Using a time explicit Euler scheme and integrating the 1D Vlasov equation on a control volume
(xi−1/2, xi+1/2), it yields

(9) fn+1
i = fni − ∆t

∆x

[

Fn
i+1/2 −Fn

i−1/2

]

,

where Fn
i+1/2 represents an approximation of the flux v f(tn, xi+1/2) at the interface xi+1/2.

The next step consists in approximating the fluxes and to reconstruct the distribution func-
tion. To this aim, we approximate the distribution function f(tn, x) by fh(x) using a second
order accurate approximation of the distribution function on the interval [xi−1/2, xi+1/2), with a
reconstruction technique by primitive [12]

(10) fh(x) = fni + ǫ+i
(x− xi)

∆x
(fni+1 − fni ).

We introduce the limiter

(11) ǫ+i =



























0 if (fni+1 − fni ) (fni − fni−1) < 0,

min

(

1,
2
(

‖f0‖∞ − fni
)

fni − fni+1

)

if (fni+1 − fni ) < 0 ,

min

(

1,
2 fni

fni+1 − fni

)

else,

and set Fn
i+1/2 = v fh(xi+1/2). This type of limiter introduces a particular treatment for extrema.

At this price only (dissipation at extrema), we were able to recover correctly the two-stream in-
stabililty test case, without oscillations destroying the salient features of the distribution function
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structure. Another choice for the limitation consits in choosing the “Van Leer’s one parameter
family of the minmod limiters” [24]

(12) ǫ+i = minmod

(

b
(fni+1 − fni )

∆x
,
(fni+1 − fni−1)

2∆x
, b

(fni − fni−1)

∆x

)

,

where

minmod(x, y, z) ≡ max(0,min(x, y, z)) + min(0,max(x, y, z)) , (x, y, z) ∈ R
3,

and b is a parameter between 1 and 2. We will see on the two-stream instability test case the
importance of the choice for limiters.
Finally, this reconstruction ensures the conservation of the average and maximum principle on
fh(x) [12].

3.2. Fourth order transport scheme. We turn now to a higher order approximation (fourth
order MUSCL TVD scheme) [35]. This scheme has also been considered in [5], in the frame of
VFRoe schemes for the shallow water equations, where the authors proposed an additional lim-
itation. Here we note that an optimized limitation procedure is possible in our case, breaking
the similar treatment for both right and left increments, and taking advantage of the structure of
the flux in the nonrelativistic Vlasov equation: the force term does not depend of the advection
variable.

For this MUSCL scheme, we only provide here with the algorithm for the implementation of
this scheme and refer to [5], [35] for the derivation procedure of this scheme.
The high order flux at the interface xi+1/2, at time tn reads

Fn
i+1/2 = F

(

fni,r, f
n
i+1,l

)

=

{

vfni,r if v > 0 ,

vfni+1,l if v < 0 .

This numerical flux involves the reconstructed states: fni,r = fni + (∆f)+i and fni,l = fni + (∆f)−i ,

where (∆f)±i are the reconstruction increments.

An intermediate state f∗i , defined by
1

3

(

fni,r + f∗i + fni,l
)

= fni si introduced. It is shown in [5]

that the introduction of this intermediate state preserves, provided the CFL condition is formally
divided by three, the positivity of the distribution function. Following [35] and [5], the fourth
order MUSCL reconstruction reads
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Algorithm of reconstruction.

Compute

(∆f)−i = −1

6

(

2∆∗f̄i−1/2 + ∆∗f̃i+1/2

)

,

(∆f)+i =
1

6

(

∆∗f̄i−1/2 + 2∆∗f̃i+1/2

)

,

where
∆∗f̄i−1/2 = minmod(∆∗fi−1/2, 4∆

∗fi+1/2),

∆∗f̃i+1/2 = minmod(∆∗fi+1/2, 4∆
∗fi−1/2)

and

∆∗fi+1/2 = ∆fi+1/2 −
1

6
∆3f̄i+1/2,

∆3f̄i+1/2 = ∆f̄ai−1/2 − 2∆f̄ bi+1/2 + ∆f̄ ci+3/2,

with
∆f̄ai−1/2 = minmod(∆fi−1/2, 2∆fi+1/2, 2∆fi+3/2),

∆f̄ bi+1/2 = minmod(∆fi+1/2, 2∆fi+3/2, 2∆fi−1/2),

∆f̄ ci+3/2 = minmod(∆fi+3/2, 2∆fi−1/2, 2∆fi+1/2),

with the notation ∆fi+1/2 = fi+1 − fi.

Reminding that the minmod limiter is given by

minmod(x, y) =























0, if x y ≤ 0,

x if |x| ≤ |y|,

y else,

with (x, y) ∈ R
3.

The limitation proposed in [5] is then applied.
It allows to satisfy the positivity of the reconstructed states.
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Algorithm for the limitation involving the intermediate state.

Compute (∆f)lim,±i such that

fni + (∆f)lim,−i ≥ 0,

fni + (∆f)lim,+i ≥ 0,
and

f∗i = fni − (∆f)lim,−i − (∆f)lim,+i ≥ 0.

This limitation reads:







(∆f)lim,−i = θ max
(

(∆f)−i ,−fni
)

,

(∆f)lim,+i = θ max
(

(∆f)+i ,−fni
)

,
where

θ =















1, if max
(

(∆f)−i ,−fni
)

+ max
(

(∆f)+i ,−fni
)

≤ 0 ,

min

(

1,
fn

i

max((∆f)−i ,−f
n
i )+max((∆f)+i ,−f

n
i )

)

otherwise.

3.3. Application to the Vlasov-Maxwell system. We exactly follow the same idea to design
a scheme for the full Vlasov equation in phase space (x,v) ∈ Ω × R

3. In addition, a centered
formulation for the electromagnetic fields is chosen:

(13) En+1/2 =
1

2

(

En+1 + En
)

and Bn+1/2 =
1

2

(

Bn+1 + Bn
)

.

The discretization of the Maxwell equations (2)-(3) is performed via an implicit θ-scheme, with
θ = 1/2, which corresponds to the Crank-Nicholson scheme and thus preserves the total discrete
energy. This discretization is presented in a simple 1D space geometry. The electric field E =
t(E1, E2, 0) and the magnetic field B = t(0, 0, B3) are collocated data on the discrete grid. These
fields are solution of the system

(14)



















































En+1
1,i − En1,i

∆t
= −

Jn1,i
ǫ0
,

En+1
2,i − En2,i

∆t
+ c2

B
n+1/2
3,i+1 −B

n+1/2
3,i−1

2∆x
= −

Jn2,i
ǫ0
,

Bn+1
3,i −Bn

3,i

∆t
+
E
n+1/2
2,i+1 − E

n+1/2
2,i−1

2∆x
= 0.

This scheme is well suited for the electrodynamics situations that are treated here in the test
cases.
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The approximation for the current in (14) Jn1 and Jn2 has been chosen such as

(15) Jn1,i =
∑

j∈Z3

∆v3 vj1 f
n
i,j and Jn2,i =

∑

j∈Z3

∆v3 vj2 f
n
i,j.

Unfortunately, these expressions do not preserve the total energy when slopes limiters are active,
but we will show that they have the important feature to reproduce the discrete two-stream
dispersion relation.

First, we remind discrete properties concerning positivity, mass and energy conservation [12] of
the second order scheme (9)-(10) coupled with (13)-(15), considering now the magnetic component.

Proposition 3.1. Let the initial datum (f0
i,j)i,j∈Z3 be nonnegative and assume the following CFL

type condition on the time step

(16) ∆t ≤ Cmin (∆x,∆v) ,

where C > 0 is related to the maximum norm of the electric and magnetic fields and the upper
bound of the velocity domain.

Then the scheme (9)-(10) coupled with (13)-(15), when extended to the infinite 3Dx × 3Dv

geometry, gives a nonnegative approximation, preserves total mass and preserves total energy
when slopes limiters are not active on the transport in the velocity directions

1

2

∑

i∈I

∆x3







ǫ0 ‖En
i ‖2 +

1

µ0
‖Bn

i ‖2 + me





∑

j∈Z3

∆v3 ‖vj‖2 fni,j











= C0 , n ∈ N.

In addition to these properties, we justifiy our choice for the numerical current thanks to a
discrete dispersion relation on the two-stream instability. In the rest of the section, we drop the
index 1 on the variables x1, v1, E1 and J1, because the transport is considered 1Dx × 1Dv .

Proposition 3.2. Consider the second order scheme (9)-(10) coupled with (13)-(15), when slope
limiters are not active, to approximate the Vlasov-Ampère system

(17)



















∂f

∂t
+ v

∂f

∂x
+

qe
me

E
∂f

∂v
= 0,

∂E

∂t
= − J

ǫ0
.

Then the definition (15) for the current J defines a discrete dispersion relation that converges
toward the continuous dispersion relation when ∆v, ∆x and ∆t tend to 0.

Proof: The two-stream instability configuration can be fully analysed with the Vlasov-Ampère
system (17) extracted from equations (1)-(3). The dispersion relation for a perturbation f (1) ∝
ei(k x−ω t) of an initial equilibrium state f (0), with ‖f (1)‖ ≪ ‖f (0)‖, then reads

(18) 1 +
q2e

ǫ0me

∫

R

v

ω(ω − k v)

∂f (0)

∂v
dv = 0.

Here the crucial point is the discretization on the velocity part of the phase space, so that we
perform a semi-discrete analysis. In the frame of the discretization (9)-(10) coupled with (13)-(15),
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we consider the semi-discrete scheme approximating (17)

(19)























∂f

∂t
+ v

∂f

∂x
+

qe
me

E
fj+1/2 − fj+1/2

∆v
= 0,

∂E

∂t
= −qe

ǫ0

∑

j∈Z

∆v vj fj,

with

fj+1/2 =
fj+1 + fj

2
,

assuming the slope limiter is not active. Then we performe a discrete linearization around an
equilibrium state

fj = f
(0)
j + f

(1)
j ,

where ‖f (1)‖ ≪ ‖f (0)‖. Using f
(1)
j ∝ ei(k x−ωt) in (19), it yields

(20)



























−i (ω − k vj) f
(1)
j +

qe
me

E(1)
f

(0)
j+1/2 − f

(0)
j−1/2

∆v
= 0,

−i ω E(1) = −qe
ǫ0

∑

j∈Z

∆v vj f
(1)
j .

These equations lead to the discrete dispersion relation

(21) 1 +
q2e

ǫ0me

∑

j∈Z

vj
ω (ω − k vj)





f
(0)
j+1/2 − f

(0)
j−1/2

∆v



∆v = 0.

We recover the continuous dispersion relation (18) when passing at the limit ∆v → 0. Any other
choice for the discrete current in (20) would introduce an additional error to the O(∆v2) error in
the relation dispersion (21). For instance, choosing

J =
∑

j∈Z

∆v vj fj+1/2

would have lead to the analogous of (21):

(22) 1 +
q2e

ǫ0me

∑

j∈Z

(vj − ∆v)

ω (ω − k vj)





f
(0)
j+1/2 − f

(0)
j−1/2

∆v



∆v = 0,

which is a “shifted” dispersion relation, with a O(∆v) accuracy, compared to the O(∆v2) accuracy
on relation (21). �
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4. Validation of the transport schemes

We first propose a validation stategy in the linear, collisionless regime, based on the work of
Sartori and Coppa [30]. They performed a transient analysis, and obtain exact solutions of the
periodic Vlasov-Poisson system, in the nonrelativistic and relativistic regime.

Their approach, relying on Green kernels, is recalled in Appendix A, in the nonrelativistic
regime. A generalization of the 2D periodic relativistic Vlasov-Maxwell system, including mag-
netic fields, will be presented in a forthcoming paper. Our objective is to capture kinetic effects in
the linear regime, such as the Landau damping and the two-stream instability. A semi-analytical
solutin is obtained, with a prescribed accuracy. Moreover, this method allows to explore wavenum-
ber ranges where other approaches relying on dispersion relations fail. We recall that classical
validations of kinetic solvers dedicated to plasma physics [12, 25] are based on the calculation of
the growth rates (instability), or decrease rates (damping) in the linear regime. Let us show the
efficiency of the semi-analytical method on the two-stream instability test case.

4.1. Scaling with plasma frequency. Scaling parameters can be introduced to obtain a di-
mensionless form of the Vlasov-Maxwell-Fokker-Planck equations. The plasma frequency ωpe,
the Debye length λD, the thermal velocity of electrons vth, and the cyclotron frequency ωce are
defined as follows

ωpe =

√

n0e2

ǫ0me
, λD =

√

ǫ0κBT0

n0e2
, vth =

√

κBT0

me
, ωce =

eB

me
.(23)

These parameters enable us to define dimensionless parameters marked with tilde.

• Dimensionless time, space and velocity, respectively:

(24) t̃ = ωpe t, x̃ =
x

λD
, ṽ =

v

vth
.

• Dimensionless electric field, magnetic field and distribution function, respectively

(25) Ẽ =
eE

me vthωpe
, B̃ =

eB

me ωpe
=

ωce
ωpe

, f̃e = fe
v3
th

n0
.

This leads to the following dimensionless equations

(26)























































∂fe
∂t

+ ∇x · (vfe) −∇v · ((E + v × B)fe) =
ν

Z
Ce,e(fe, fe) + ν Ce,i(fe),

∂E

∂t
− 1

β2
∇x × B = nu,

∂B

∂t
+ ∇x × E = 0,

∇x ·E = (1 − n), ∇x ·B = 0,

where β = vth/c, ν is the ratio between electron-ion collision frequency and plasma frequency

ν =
Z n0 e

4 ln Λ

8π ǫ20m
2
e v

3
th ωpe

=
Z ln Λ

8π n0 λ3
D

=
νe,i
ωpe

with νe,i =
Z n0 e

4 ln Λ

8π ǫ20m
2
e v

3
th

.
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The zero and first order moments of the distribution function are


















n(t,x) =

∫

R3

fe(t,x,v)dv,

u(t,x) =
1

n(t,x)

∫

R3

fe(t,x,v)v dv.

Moreover, in (26) the dimensionless collision operators are considered

(27)















Ce,e(fe, fe) = ∇v ·
(
∫

R3

Φ(v − v′)
[

fe(v
′)∇vfe(v) − fe(v)∇v′fe(v

′)
]

dv′

)

,

Ce,i(fe) = ∇v · [Φ(v)∇vfe(v)] ,

with Φ given by (6).

4.2. Test 1 : 1D two-stream instability. The ICF physics involves a propagation of electron
beams in plasma. The plasma response to the beam consists in a return current that goes opposite
to the beam in order to preserve the quasineutrality. This leads to a very unstable configuration
favorable to the excitation of plasma waves. We focus here on the instability with a perturbation
wavevector parallel to the beam propagation direction, namely the two-stream intability. Of
course, this stands as an academic test case but it is closely related to the physics of the ICF.
Also it is a very demanding test for numerical schemes of transport, that have to be specially
designed (see Proposition 3.2). In particular, a discrete dispersion relation relative to that problem
is developed to justify numerical choices for the second order scheme. For this scheme also, during
the limitation procedure, an additional dissipation at extrema is introduced, compared to [12],
in order to preserve the solution from spurious oscillations. We will show the sensitivity of the
scheme with respect to the chosen limiter, for this particular test case. Moreover, the fourth
order scheme is introduced to reduce numerical heating, for simulations intended to deal with the
two-stream instability.

The (1Dx × 1Dv) Vlasov-Ampère system (17) is approximated on a Cartesian grid. For this
test case, we consider the scaling (23)-(25). The initial distribution function and electric field are











f0(x, v) =
1

2
[(1 +A cos(kx))M1,vd

(v) + (1 −A cos(kx))M1,−vd
(v)] ,

E0(x) = 0,

where

M1,vd
(v) =

1√
2π

e−‖v−vd‖
2/2

is the Maxwellian distribution function centered around vd.
In order to compare the numerical heating associated with the second order and the fourth

order scheme, we choose a strong perturbation amplitude A = 0.1. The perturbation wavelength
is k = 2π/L and the beam initial mean velocities are vd = ±4, L = 25 being the size of the
periodic space domain. We choose a truncation of the velocity space to be vmax = 12 and time
steps are chosen to be ∆t = 1/200.

The objectives of this numerical simulation are on the one hand to compare the second order
finite volume scheme (specially designed to conserve exactly the discrete total energy, exept if the
slope limiters are active) for different slope limiters and the fourth order MUSCL scheme. On
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the other hand we want to explore the effect of a reduced number of grid points on the discrete
invariants conservation.
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Figure 1. Beams phase space (a) at initial time, (b) at 20 plasma periods (after saturation)

In Figure 1, two countersteaming beams that are initially well separated in the phase space (a)
start to mix together. They finally create a complicated vortex structure, involving wave-particle
interactions. This behaviour remains quantitatively the same whatever the transport scheme is
(second or fourth order). However with a reduced number of grid points (smaller than 128 points
in velocity), the second order (with limiter (11)) and fourth order schemes present a different
behaviour for the total electric energy and total energy.
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Figure 2. Evolution of the electrostatic energy for 322, 642, 1282, 2562 grid points,
and the semi-analytical solution in the linear regime. Results are shown for (a) the
second order with limiter (11) and (b) fourth order transport scheme
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Figure 3. Evolution of the electrostatic energy for 322, 642, 1282, 2562 grid points,
and the semi-analytical solution in the linear regime. Results are shown here for
the second order scheme with the limiters (12), with b = 2.

 210

 215

 220

 225

 230

 235

 0  10  20  30  40  50  60

Second order

Fourth order

Dimensionless time

T
o

ta
l 
d

im
e

n
s
io

n
le

s
s
 e

n
e

rg
y

 210

 211

 212

 213

 214

 215

 216

 217

 218

 219

 0  10  20  30  40  50  60

Fourth order

Second order

Dimensionless time

T
o

ta
l 
d

im
e

n
s
io

n
le

s
s
 e

n
e

rg
y

(a) (b)

Figure 4. Comparison of the energy evolution for the second (with limiter (11))
and fourth order transport schemes. Results are shown (a) for 322 (b) 642 grid
points

For reduced grid resolutions, of 322 or 642 points, the fourth order scheme proves to be better
than the second order one. For 322 points, plasma oscillations at the plasma frequency in the
nonlinear phase are not reproduced with the second order scheme whereas they can be seen with
the fourth order scheme (see Figure 2). Moreover for this resolution, the transition from the linear
phase to the nonlinear phase occurs earlier than it should for the second order scheme.
As the grid resolution increases, the accuracy remains better for the fourth order scheme than for
the second order one in the nonlinear phase (Figure 2). The convergence toward curves with 1282

or 2562 resolution grid is indeed better. We recall that quantities in Figure 2 and 3 are plotted
17
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Figure 5. Comparison of the energy evolution for the second (with limiter (12),
b = 2) and fourth order transport schemes. Results are shown (a) for 322 (b) 642

grid points

with a logarithmic scale, that smoothes out discrepancies between curves. In addition to these
results, the respect of total discrete energy conservation proves to be better for the fourth order
scheme than for the second order one at a reduced grid resolution, see Figure 4 and 5.

The use of limiters (12) for the second order scheme introduces accuracy improvements on
the convergence behaviour and capture of plasma wave structure at reduce grid resolutions, see
Figure 3. However, the energy dissipation remains quantitatively the same as the second order
scheme with limiter (11), see Figures 4 and 5.

As this test case requires both a good preservation of invariants and accuracy when nonlinear
phenomena occur, we might conclude that the fourth order scheme, with a resolution along each
velocity direction greater than 32 cell, is well suited for our physical applications. The semi-
analytical solution in the linear regime shown in Figure 2, using a Green function, brings some
improvements compared to the classical validation in the linear regime, based on instabilities
growth rates in the linear regime. In particular it discriminates precisely in time the linear and
nonlinear phases.

4.3. Test 2: 1D X-mode plasma in a magnetic field. This test case stands as a validation
in the linear regime for the coupling between Vlasov and Maxwell equations without collisions.
A particular initial data is chosen (see the derivation in the appendix B) to trigger an X-mode
plasma wave at a well-defined frequency ω. This type of wave presents a mixed polarization
(longitudinal and transverse with respect to the magnetic field), that propagates in the plane P⊥,
perpendicular to the magnetic field direction.

The chosen frequency ω is a solution of the dispersion relation (71) of the linearized Vlasov-

Maxwell equations, introducing the equilibrium state f (0)
(

‖v‖2
)

. The initial data are chosen

such that f (0), Ê1, Ê2, and B̂3 only depend on ω, B(0), k1 = 2π/L1 and A; where f̂n, B̂3, Ê1 and

Ê2 are the reconstructed (in the appendix B) Fourier transforms of the distribution function and

electromagnetic fields. The magnetic field B(0) is the nonperturbed magnitude of the magnetic
18



field, L1 is the length of the space domain, A is the perturbation amplitude. The initial data can
then be constructed with the help of truncated Fourier series























































f (0)(x1,v) = f (0)(‖v‖2) +

2
∑

n=−2

f̂n(v⊥)eik1 x1 + i nψ, x1 ∈ (0, L1), v ∈ R
3,

E1(t, x1) = Ê1 e
−iωt+ik1x1 , x1 ∈ (0, L1) ,

E2(t, x1) = Ê2e
−iωt+ik1x1 , x1 ∈ (0, L1) ,

B(t, x1) = B(0) + B̂3e
−iωt+ik1x1 , x1 ∈ (0, L1).

We define ψ as the angle in the cylindrical coordinates for the velocity, defined with respect to
the direction of the magnetic field (See appendix B).

The normalisations are defined by relations (23)-(25). We choose B(0) = 2 and a rather strong
amplitude perturbation A = 0.1 with periodic boundary conditions on the space domain. Also we
have set β = vth/c = 0.05. The dispersion relation have been solved for these parameters. One of
the solution ω ≃ 5.1432 is injected in the initial data set.

We considered 126 points along the 1D space direction, and 64 points along each velocity
direction v = t(v1, v2, v3). The dimension of the space domain is L1 = 25 whereas the truncation
of the velocity space occurs at vmax = 7 for each velocity direction. Furthermore, the time step
is ∆t = 1/200.

The Fourier spectrum in Figure 6 exhibits a well defined frequency f = 1/T ≃ 1.6375 (corre-
sponding to a period T ) for the total magnetic energy, that corresponds to a frequency f/2 for

the magnetic field oscillations. We finally find ω = 2π
(

f
2

)

≃ 5.1443 from the numerical solution,

to be compared with the analytical results 5.1432. This proves a good accuracy of the numerical
results, while the distribution function is greatly affected by the magnetic field. As an illustration,
we show in Figure 7 how the magnetic field makes the distribution function rotate in the velocity
space perpendicular to the magnetic field axis.

5. Approximation of the collision operators

In the following, the presentation is restricted to the space homogeneous equation, for the sake
of simplicity,











∂f

∂t
= Ce,e(f, f) + Ce,i(f),

f(0,v) = f (0)(v),

where Ce,e(f, f) and Ce,i(f) are given by (27).

5.1. Discretization of the Lorentz operator. We consider fj an approximation of the distri-
bution function f(vj) and introduce the operator D, which denotes a discrete form of the usual
gradient operator ∇v whereas D∗ represents its formal adjoint, which represents an approxima-
tion of −∇v·. Therefore, for any test sequence (ψj)j∈Z3 , we set (Dψj)j∈Z3 as a sequence of vectors

of R
3

Dψj = t(D1ψj,D2ψj,D3ψj) ∈ R
3,
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Figure 6. Discrete Fourier spectrum in frequency of the discrete analogous of the

total dimensionless magnetic energy

∫ L1

0

‖B3‖2

2
dx1.

where Ds is an approximation of the partial derivative ∂
∂vs

with s ∈ {1, 2, 3}. In order to preserve
the property of decreasing entropy at the discrete level, we use the log weak formulation of the
Lorentz operator [14]

∫

R3

Ce,i(f)(v)ψ(v)dv = −
∫

R3

Φ(v) f(v)∇v log(f(v)) · ∇vψ(v)dv,

where Φ is given by (6) and ψ is a smooth test function. Then, using the notations previously
introduced, the discrete operator C∆v

e,i (f) is given by

C∆v
e,i (f)(vj) = −D∗

[

1

‖vj‖3
S(ṽj) fj D(log(fj))

]

,(28)

where S(ṽj) is the following matrix

S(ṽj) = ‖ṽj‖2 Id − ṽj ⊗ ṽj.
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Figure 7. Projection on the v1 − v2 velocity domain for the distribution function
is shown at initial time tn = 0 and at tn = 18.72, for a particular point of the
space domain, x1 = 23.0114, v3 = 0.

Now, ṽj has to satisfy the discrete conservation of energy

D1(‖vj‖2)

ṽj1
=

D2(‖vj‖2)

ṽj2
=

D3(‖vj‖2)

ṽj3
.(29)

Then, we consider the 8 uncentered operators Dǫ, with the formalism:

Dǫ = t(Dǫ1
1 ,D

ǫ2
2 ,D

ǫ3
3 ),

with ǫ = t(ǫ1, ǫ2, ǫ3), and ǫi ∈ {+1,−1} for i ∈ {1, 2, 3}. More precisely, the operator Dǫi is the
forward uncentered discrete operator if ǫi = +1 and the backward uncentered discrete operator
if ǫi = −1:

DǫΨj =
1

∆v





ǫ1[Ψj1+ǫ1 − Ψj1]
ǫ2[Ψj2+ǫ2 − Ψj2]
ǫ3[Ψj3+ǫ3 − Ψj3]



(30)

This 8 operators respectively match to 8 expressions of ṽǫj , following (29)

ṽǫj =
1

2
(vj + vj+ǫ) .

This choice has been made to avoid the use of the centered discrete operator that conserves
non physical quantities. On the other hand, the uncentered operators, taken separately, intro-
duce some artificial unsymmetry in the distribution function leading to a loss of accuracy when
coupling to Maxwell equations. To overcome these difficulties, following the idea of [9], we intro-
duce a symmetrization of the discrete operator based on the averaging over the eight uncentered
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discretizations:

C∆v
e,i (f)(vj) =

1

8

∑

ǫ

Cǫe,i(f)

Cǫe,i(f) = −D∗,ǫ

[

1

‖vj‖3
S(ṽǫj) fj D

ǫ(log(fj))

]

.

This final expression will introduce an additional discrete symmetry property compared to the
operator presented in [12].

We now present the discrete properties for the electron-ion collision operator. We have the
classical properties: mass and energy preservation, an entropy decreasing behaviour, the positivity
preservation of the distribution function in a finite time sequence. The proofs are not detailed
here but can be deduced easily from those presented in [12]. The difference stands in the fact
that we obtain the operator as an average over the full set of the uncentered operators (instead
of an average over two operators). This modification allows to get a discrete analogous of the
symmetry property presented in Proposition 2.1:

Proposition 5.1. Under the condition (29) on ṽj, the discretization (31) to the Lorentz operator
(5) satisfies the following properties,

• it preserves mass and energy,
• it decreases discrete entropy

H(t) = ∆v3
∑

j∈Z3

fj(t) log(fj(t)),

• there exists a time-sequence ∆tn such that the scheme

fn+1
j = fnj + ∆t C∆v

e,i (f)(vj),

defines a positive solution at any time i.e.
∑

n tn = +∞.

Furthermore, if fj is symmetric with respect to 0 in the direction jk at time tn, then this property
is preserved at time tn+1,

(31)
∑

j∈Z3

C∆v
e,i (f)(vj)vjk∆v3 = 0.

Proof: We prove the last property and rewrite the operator (31) in a different manner, assuming
we have a symmetry along the velocity direction vjk

(32) C∆v
e,i (f)(vj) =

1

8

∑

ǫ

Cǫe,i(f)(vj) =
1

4

[

∑ 1

2

(

Cǫ
+,(k)

e,i (vj) + Cǫ
−,(k)

e,i (vj)
)

]

,

where the notation ǫ±,(k) refers to
{

ǫ
±,(k)
i = ±1 if i = k,

ǫ
±,(k)
i = ǫi if i 6= k.

(33)
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We are interested in the cancellation of the operator
∑

j∈Z3

C∆v
e,i (f)(vj)vjk . This is equivalent to the

cancellation of

Q(k) :=
∑

j∈Z3

(

Cǫ
+,(k)

e,i (vj) + Cǫ
−,(k)

e,i (vj)
)

vjk

=
∑

j∈Z3

1

‖vj‖3
fj

[

S(ṽj
ǫ+,(k)

)Dǫ+,(k)
log(fj)

]

· Dǫ+,(k)
vjk

+
∑

j∈Z3

1

‖vj‖3
fj

[

S(ṽj
ǫ−,(k)

)Dǫ−,(k)
log(fj)

]

·Dǫ−,(k)
vjk .

Then, since Dǫ+,(k)
vjk = Dǫ−,(k)

vjk = ek, it yields

Q(k) =
∑

j∈Z3

1

‖vj‖3
fj





∑

i6=k

(

ṽ
ǫ
+,(k)
i

ji

)2


Dǫ
+,(k)
k (log(fj))

−
∑

j∈Z3

1

‖vj‖3
fjṽ

ǫ
+,(k)
k

jk





∑

i6=k

ṽ
ǫ
+,(k)
i

ji
Dǫ

+,(k)
i (log fj)





−
∑

j∈Z3

1

‖vj‖3
fj





∑

i6=k

(

ṽ
ǫ
−,(k)
i

ji

)2


Dǫ
−,(k)
k (log(fj))

−
∑

j∈Z3

1

‖vj‖3
fjṽ

ǫ
−,(k)
k

jk





∑

i6=k

ṽ
ǫ
−,(k)
i

ji
Dǫ

−,(k)
i (log fj)



 .

Then using definition (33) and the symmetry of fnj with respect to 0 in the velocity direction vjk ,

we obtain Q(k) = 0. Then multiplying (32) by vjk and integrating in the full velocity space gives

the relation (31). This relation implies that fn+1
j

is symmetric with respect to 0 in the direction
vjk . �

5.2. Discrete Landau operator. We consider the discretization of the FPL operator (4) on the
whole 3D velocity space. It is based on the entropy conservative discretization introduced in [14],
where a discrete weak log form of the FPL operator is used. This discretization yields:

(34)



















dfj(t)

dt
= (D∗ρ(t))j j ∈ Z

3,

ρ(t) = ∆v3
∑

m∈Z3

fj(t)fm(t)Φ(vj − vm) (D(log(f(t))j − D(log f(t))m) ,

where D stands for a downwind or upwind finite discrete operator approximating the usual gra-
dient operator ∇v. This uncentered approximation ensures that the only equilibrium states are
the discrete Maxwellian. The use of centered discrete operators would have lead to non physical
conserved quantities. The discretization of the FPL operator is then obtained as the average over
uncentered operators, but here for a different reason as in the previous section, on the electron-ion
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collision operator discretization. In [10], the scheme is rewritten as the sum of two terms: a sec-
ond order approximation and an artificial viscosity term in ∆v2 which kills spurious oscillations.
However the computational cost of a direct approximation of (34) remained too high. Therefore, a
multigrid technique has been used. We refer to [10] and [11] for the details of the implementation
on the FPL operator. Nevertheless, these latter approaches introduce a new approximation than
can affect accuracy. Based on [27], Crouseilles and Filbet proposed another approach and noticed
that the discrete FPL operator (34) in the Fourier space can be written as a discrete convolution,
which directly gives a fast algorithm. Here we adopt the multigrid method, detailed in [10], that
has a complexity of order O(n3

v log n3
v).

This discrete approximation preserves positivity, mass, momentum, energy, and decreases the
entropy. Moreover the discrete equilibrium states are the discrete Maxwellian.

6. Numerical results

6.1. Scaling with collision frequency. For the analysis of collisional processes, a new scaling
is introduced here, that allows time steps to be of the order of the electron-ion collision time. In
order to account for transport phenomena occuring at the collision time scale, several parameters
are required: the electron-ion collision frequency νe,i, the associated mean free path λe,i, the
thermal velocity vth, and the cylotron frequency ωce

(35) νe,i =
Z n0 e

4 ln Λ

8π ǫ20m
2
e v

3
th

, λe,i =
vth
νe,i

, vth =

√

κBT0

me
, ωce =

eB

me
,

These parameters enable us to define the dimensionless parameters with tilde.

• Dimensionless time, space and velocity, respectively

(36) t̃ = νe,it, x̃ = x/λe,i, ṽ = v/vth.

• Dimensionless electric field, magnetic field, and distribution function, respectively

(37) Ẽ =
eE

mevthνe,i
, B̃ =

eB

meνe,i
=
ωce
νe,i

, f̃e = fe
v3
th

n0
.

This leads to the following dimensionless equations

(38)















































































∂fe
∂t

+ ∇x · (vfe) −∇v · ((E + v × B)fe) =
1

Z
Ce,e(fe, fe) + Ce,i(fe),

∂E

∂t
− 1

β2
∇x × B =

1

α2
nu,

∂B

∂t
+ ∇x × E = 0,

∇x ·E =
1

α2
(1 − n),

∇x ·B = 0,

where α = νe,i/ωpe and β = vth/c. The collision terms Ce,e(fe, fe) and Ce,i(fe) are given in (27).
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6.2. 1D temperature gradient test case. In the context of laser produced plasma, the heat
conduction is the leading mecanism of energy transport between the laser energy absoption zone
and the target ablation zone.
In such a system, the parameters of importance for the heat flux are

• The effective electron collision mean free path λe.
• The electron temperature gradient length λT .
• The magnetic field B and its orientation with respect to ∇T .

These parameters enable to distinguish different regimes of transport, according to the Knudsen
and the Hall parameters.
The Knudsen number Kn is a mesure of the thermodynamical non-equilibrium of the system

Kn =
λe
λT
.(39)

A regime characterized by Kn → 0 refers to an hydrodynamical descripion, whereas a regime
characterized by Kn ≥ 1 refers to a kinetic description, where the nonlocal phenomena appear.
The parameters for ICF imply Kn ≥ 0.1, while the classical, local approach fails at Kn ≥ 0.01.
This premature failure of the classical diffusion approach in plasma is explained by a specific
dependence of the electron mean free path on their energy. In our applications the energy is
transported by the fastest electrons, which have a much longer mean free path.
The Hall parameter χ = ωcτ quantifies the relative importance of magnetic and collisional effects.
ωc = eB/me is the electron cyclotron frequency and τ the mean electron-ion collision time

τ =
3

4

16π2ǫ20
√
meT

3/2
e√

2πniZ2e4lnΛ
.(40)

For this test case, a simple gradient temperature configuration is shown in figure (8), modelling
the following situation: through a layer of homogeneous plasma, a laser deposits its energy on the
hot temperature side and the absorbed energy is transported with electrons to the cold tempera-
ture side.

Let us define the average over velocity of a function A(v)

< A >=
1

ne

∫

R3

Afdv ,(41)

where ne(t,x) =

∫

R3

f(t,x,v)dv is the density of electrons.

Following [6, 16], we introduce the macroscopic quantities



































j = qene 〈v〉 ,

q =
1

2
mene 〈(v · v)v〉 ,

R =

∫

R3

mevCe,i(fe)dv,

(42)
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Figure 8. Initial configuration for the temperature gradient test case: a tem-
perature profile is considered between to two domains of plasma with particles at
thermodynamical equilibrium. Zero current boundary conditions enable to main-
tain mass conservation. A heat flux is generated wherever there is a nonzero tem-
perature gradient, as well as boundary layers on the heat flux, temperature, and
electromagnetic profiles.







































p = neTe =
1

3
mene 〈(v− < v >) · (v− < v >)〉 ,

Π =
1

3
mene 〈(v− < v >) ⊗ (v− < v >)〉 − pI,

qloc =
1

2
mene 〈[(v− < v >) · (v− < v >)] (v− < v >)〉 .

(43)

There, j is the electric current, q the total heat flow, R the friction force accounting for the
transfer of momentum from ions to electrons in collisions, Te is the temperature, p is the scalar
intrinsic pressure, Π is the stress tensor, qloc is the intrinsic heat flow and I the unit diagonal
tensor.
Quantities p, Π and qloc are defined in the local reference frame of the electrons, whereas j, q

and R are defined relative to the ion center of mass frame. Ions are supposed to be at rest. We
have the relation
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qloc = q + j · (5
2
pI + Π)/(nee) + j(

1

2
mene < v >2)/(nee).(44)

The validation of our Fokker-Planck solver in the domain close to the hydrodynamical regime
(local regime) requires knowledge of transport coefficients. Following the formalism of Braginskii
[6] for the transport relations, the transport coefficients in the hydrodynamical regime have been
calculated by Epperlein in [16]. These coefficients αep, βep, κep, are the electrical resistivity,
thermoelectric and thermal conductivity tensors, respectively. From these quantities, we are able
to compare the heat flux and electric field issued from the Fokker-Planck solver to those calculated
analytically in [16], in the local regime.
The classical derivation procedure to obtain the transport coefficients involves the linearization
of the Fokker-Planck-Landau equation, assuming the plasma to be close to the thermal equilib-
rium. The distribution function is approximated using a truncated Cartesian tensor expansion

f(t,x,v) = f (0)(‖v‖2) +
v

‖v‖2
· f (1)(t,x,v). Following [16], Π and mene < v >2 are neglected.

Then considering appropriate velocity moments of f (1), electric fields and heat fluxes are expressed
as a function of thermodynamical variables. The coefficients of proportionality, in the obtained
relations, are defined as the transport coefficients.
Several notations can be used, depending on the chosen thermodynamical variables. Adopting
the Braginskii notations, we obtain



















R = ∇p+ eneE − j × B =
αep · j
nee

− βep · ∇Te,

q = −5

2

j

e
Te − κep · ∇Te − βep · jTe

e
.

(45)

We want to compare of the results of the solver with the analytical electric fields and heat fluxes in
the local regime. For that purpose, we use the values of coefficients, for Z = 1, that are tabulated
in [16]. As for the components of these tensors, we make use of the standard notations ||, ⊥, and
∧. Directions denoted with || and ⊥ are respectively parallel and perpendicular to the magnetic
field. Consequently, the parallel and perpendicular components of a vector u are respectively
u|| = b(u · b) and u⊥ = b× (b × u), where b is the unit vector in the direction of the magnetic
field. The direction defined by the third direction in a direct orthogonal frame is denoted by ∧.
In the system (45), the relation between any transport coefficient tensor ϕ and vector u is defined
by

ϕ · u = ϕ||b(b · u) + ϕ⊥b× (u × b) ± ϕ∧b× u ,(46)

where the negative sign applies only in the case ϕ = αep. These coefficients can be expressed in
dimensionless form































αc
ep = αep

τ

mene
,

βc
ep = βep,

κc
ep = κep

me

neτTe
.

(47)
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The dimensionless transport coefficients αc
ep, βc

ep, κc
ep are functions of Z and the Hall parameter

χ = ωcτ only.
The heat flux and the electric field in (45) can then be rewritten in terms of dimensionless
quantities, for the particular 1D geometry of our temperature gradient configuration. In that
case, the normalizations using a collision frequency (35)-(37) are used.



















































q1 = −5

2
Ten

−1
e j1 − χTeB

−1
3 ∇x1Teκ

c
ep,⊥ − Te

(

βc
ep,⊥j1 − βc

ep,∧j2
)

,

q2 = −5

2
Ten

−1
e j2 − χTeB

−1
3 ∇x1Teκ

c
ep,∧ − Te

(

βc
ep,⊥j2 + βc

ep,∧j1
)

,

E1 = ne
−1j2B3 − n−1

e ∇x1p−∇x1Teβ
c
ep,⊥ + ne

−1B3χ
−1(αc

ep,⊥j1 + αc
ep,∧j2),

E2 = −ne−1j1B3 −∇x1Teβ
c
ep,∧ + ne

−1B3χ
−1(αc

ep,⊥j2 − αc
ep,∧j1).

(48)

The Hall parameter χ is expressed in terms of the dimensionless quantities B3 and Te:

χ =
3
√
π

2
√

2

B3T
3/2
e

Z
.(49)

6.2.1. Electron transport in the local regime. In order to validate the numerical scheme in the
local regime, we compare the heat flux QFP and electric field EFP computed from the numerical
solution, with those analytically (denoted by QBR and EBR) computed from the system (48).
The transport coefficients αep, βep, κep have been tabulated in [16].

In this test case the source term can be considered stiff; the discretization of the collision
operator is then of crucial importance and its accuracy can be tested. Moreover we provide, in
this local regime, with validation results for a wide range of Hall parameters corresponding to
ICF applications.
The initial temperature gradient Te(x1) has the form of a step

Te(x1) =







TRe (x1) if x1 > xm1 ,

TLe (x1) else ,

(50)

where TRe and TLe are third order polynomials in x1 − xm1 , x1 standing for the space coordinate
and xm1 for the mid-point of the 1D domain. The coefficients of these polynomials are chosen such
as they verify the following conditions at xm1



















∂TLe
∂x1

(xm1 ) =
∂TRe
∂x1

(xm1 ) =
TR − TL

(xR1 − xL1 )/λ
,

TLe (xm1 ) = TRe (xm1 ) =
TR + TL

2
,

(51)
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and at the boundaries






























TLe (xL1 ) = TL,

TRe (xR1 ) = TR,

∂TLe
∂x1

(xL1 ) =
∂TRe
∂x1

(xR1 ) = 0,

(52)

where TL (resp. TR) is the initial temperature of the leftmost (resp. rightmost) point xL1 (resp.
xR1 ) of the domain. λ is a parameter that determines the initial stiffness of the temperature gra-
dient.

The simulations were performed with the following parameters: the uniform magnetic field
B3(t = 0, x1) = 0.001, 0.01, 0.1, 1, the size of the dimensionless domain L = xR1 − xL1 = 5400,
2 × vmax = 12, the ion charge Z = 1, the frequency ratio νe,i/ωpe = 0.01, the electron thermal
velocity such as vth/c = 0.05. The initial electric field is zero over the domain: E1(t = 0, x1) =
E2(t = 0, x1) = 0. The initial distribution function is a Maxwellian depending on the local tem-
perature, the density being constant over the domain. The initial temperature profile is chosen
such as TL = 0.8, TR = 1.2 and λ = 10. This set of parameters enable us to consider the local
regime, close to the hydrodynamics (the Knudsen number is about 1/500). The dimensionless
time step and meshes size are ∆t = 1/500, ∆x1 = L/126, ∆v = 2vmax/32 respectively. The grid
has 126 points in space and 323 points in velocity; 42 processors were used for each simulation
(CEA-CCRT-platine facility). Domain decomposition on the space domain allows each processor
to deal only with 3 points in space. The fourth order scheme on the transport part has been used.

Results are presented in Figures 9-11. The typical run time is 24 hours for 40 collision times,
with that set of parameters. The maximum difference between the numerical and the analytical
solution are less than 10% for longitudinal macroscopic quantities (heat flux and electric field);
20% for transverse ones. Transverse quantities have only been considered for simulations presented
in Figures 10 and 11 where the magnetic field was strong enough so that

• The establishment of transverse heat flux can be acheived during the simulation time.
• Transverse quantities cannot be considered negligible compared to longitudinal ones.

These conditions where fulfilled for B3 = 0.1, 1.
In Figures 9-11, only results for simulations with B3 = 0.001, B3 = 0.1, B3 = 1 are shown,
respectively. The simulation with B3 = 0.01 proved to show no significance differences with those
with B3 = 0.001.

Results shown Figures 9-11 are revealing an important transient phase before the establish-
ment of a stationary regime. The oscillations are enforced by the magnetic field, Figure 11. The
oscillating electric fields are the consequence of the plasma waves excited by our initial conditions;
they are damped in a few electron-ion collision times. These plasma oscillations are smoothed out
by the large time steps we used in simulations, allowed by the implicit treatment of the Maxwell
equations. However this has a little importance on the asymptotic values and a little impor-
tance for accuracy. With a larger magnetic field Figure 11, we observe frequency modulations at
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Figure 9. Longitudinal (along the temperature gradient) ratios
maxx1(QF P )

maxx1 (QBR)

(dashed curve) and
maxx1(EF P )

maxx1 (EBR) (oscillating curve) are shown against the dimen-

sionless time. The dimensionless magnetic field is B3 = 0.001. Asymptotic be-
haviour, where the flux is well established, shows good agreement (less than 5%
error) with analytical solution (Braginskii formalism), denoted by subscript BR.
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Figure 10. Ratios
maxx1 (QF P )

maxx1(QBR) (curve in bold) and
maxx1 (EF P )

maxx1(EBR) (dashed curve) are

shown against the dimensionless time. Longitudinal quantities (along the temper-
ature gradient) are shown in (a), with about 10% accuracy in the asymptotics.
Transverse quantities are shown in (b), with about 20% accuracy in the asymp-
totics. The dimensionless magnetic field is B3 = 0.1.

ωc = νe,i (corresponding to B3 = 1), both on electric fields and heat fluxes.

In order to investigate Larmor radius effects for simulations presented in Figures 10 and 11, we
refined the space grid below the dimensionless Larmor radius rL = B−1

3 . Therefore, simulation
presented in Figure 10 has been done again with the same parameters on the same time period: we
have refined the grid to 1260 points in space (420 processors). In the same manner, the simulation
presented in Figure 11 has been done again with 6300 grid points in space (2100 processors) and
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Figure 11. Ratios
maxx1 (QF P )

maxx1(QBR) (curve in bold) and
maxx1 (EF P )

maxx1(EBR) (dashed curve) are

shown against the dimensionless time. Longitudinal quantities (along the tem-
perature gradient) are shown in (a), with about 5% accuracy in the asymptotics.
Transverse quantities are shown in (b), with about 20% accuracy in the asymp-
totics. The dimensionless magnetic field is B3 = 1.

∆t = 1/1000 (C.F.L. condition), during the same time period. The results prove to be similar
to those with coarse space grids, both for macroscopic quantities and distribution functions. We
thus show no dependence on the Larmor radius. Here we remark that the cyclotron frequency is
always resolved. The time steps are constrained, for most of the cases we treat, by the C.F.L. on
collision operators.

6.2.2. Electron transport in the nonlocal regime. The departure of transport coefficients from their
local values is of interest here. We restrict ourselves to cases where the magnetic field is zero. Then
it is possible to obtain directly the ratio of effective thermal conductivity to the Spitzer-Härm
conductivity κ/κSH by the relation:

κ

κSH
=

q1
qSH

.(53)

The Spitzer-Härm regime refers to a local regime with no magnetic field. In (53), q1 is calculated
from the numerical solution and qSH from (48) in the Spitzer-Härm limit.
Transport coefficients are extracted from the domain where the flux and temperature gradient
are maximum.
The wavelength of the temperature perturbation kλe,i in the Fourier space is computed from the
gradient temperature profile. This enables to obtain a range (due to an uncertainty) for kλe,i
corresponding to this temperature gradient.
The results will be compared with the analytical formula from [17]

κ

κSH
=

1

1 + (30kλe,iβ)4/3
,(54)

β =

(

3π

128

3.2(0.24 + Z)

(1 + 0.24Z)

)1/2 Z1/2

2
.(55)
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The comparison between the numerical results and the analytical solution are in good agree-
ment. The three runs have been performed with the same precision for the temperature gradient.

Parameters RUN1 RUN2 RUN3
Size of the domain 5400 540 540
Stiffness parameter λ 10 10 100
Number of points along the Gradient 126 126 1260
Number of processors 42 42 420

Results RUN1 RUN2 RUN3
kλe,i 10−3 0.05 ± 0.03 0.2 ± 0.1

Analytical κ/κSH 0.998 [0.93 − 0.67] [0.60 − 0.26]
Numerical κ/κSH 1.03 0.675 0.395

6.3. 2D nonlocal magnetic field generation. We present here results on the nonlocal mag-
netic field generation during the relaxation of cylindrical laser hot spots, having a periodic repar-
tition, and for a region of constant density. This stands as a first step to prove the 2D capabilities
of the solver. The 2D extension of the presented numerical schemes is straightforward on a grid.

We consider a planar geometry with periodic boundary conditions. For this application, the
normalizations using collision frequency (35)-(37) are used.

The initial dimensionless temperature profile is Te(x, t = 0) = 1+0.12 exp
(

− x2

R2

)

, with R = 5.6.

We used the following parameters for the simulation: the frequency ratio is νe,i/ωpe = 0.003, the
ion charge Z is assumed to be high, so that we do not consider the electron-electron collision
operator; here the relaxation only acts with electron-ion collisions on the anisotropic part of the
electronic distribution function. The electron thermal velocity is such as vth/c = 0.05. These
parameters are close to those used in [31]. The size of the simulation domain is L = 70 for one
space direction, 2 × vmax = 12 for one velocity direction. Initial electric and magnetic fields
are zero over the domain. The initial distribution function is a Maxwellian depending on the
local temperature, the density being constant over the domain. The dimensionless time step and
meshes size are ∆t = 1/500, ∆x = ∆y = L/100, ∆v = 2vmax/32, respectively. The grid has 1002

points in space and 323 points in velocity. 625 processors are used for this simulation.
The mecanism under consideration here (the magnetic field generation Figure 12), is expained

in [23], as the results of non parallel gradients of the third and fifth moments of the electronic
distribution function. We show the magnetic field in Figure 12,(a) and the cross gradients

∇x

(∫

R3

fe‖v‖3dv

)

×∇x

(∫

R3

fe‖v‖5dv

)

in Figure 12,(b).

This mecanism is not due to the magnetic field generation from a ∇ne×∇Te structure, since the
density ne remains constant over the domain.
This structure with eight lobes is the result of the collision operators (of diffusion type) that make
a particular speckle interact, after a rapid transient phase, with the other surrounding (similar)
speckles. We note that an important parameter to anayse further such interactions should be the
size of the speckle over the distance between speckles.
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Figure 12. Dimensionless magnetic field and cross gradients of high order mo-
ments (third and fifth) at tνe,i = 8.

7. Conclusions

In the present paper, we have developed high order numerical methods dedicated to plasma
simulation at a microscopic level.

A fourth order scheme issued from VFRoe schemes has been introduced in our kinetic context.
It brings accuracy improvement on the velocity transport term. The second order scheme remains
interesting for the linear spatial transport term (which is faced to less robustness and accuracy
constraints) in a 2D, distributed memory context without overlapping between processors (each
processor communicating with its neighbours only). It involves indeed a reduced stencil allowing
for a lower minimum number of spatial grid points per processor.
The Maxwell equations have been discretized with a second order, implicit scheme allowing large
time steps. We did not find any dependance on the Larmor radius and show that resolving the
cyclotron frequency is sufficient. The couplings between the equations of the system have intro-
duced a number of constraints (robustness, accuracy, symmetry) both on the transport scheme
and the collision operators. Some numerical and physical test cases have validated our approach
in different regimes of interest for ICF applications, and showed that it is computationally af-
fordable. We also proposed a validation strategy in the linear regime based on [30], using Green
kernels.
Various fundamental studies can be planned on the basis of the actual version of the solver. Col-
lisional Weibel instability [28], forward and backward collisional Stimulated Brillouin Scattering,
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studies on the nonlocal interaction beween speckles for plasma-induced smoothing of laser beams
issues [18], for instance. Also several axis of development are under consideration to bring more
physics to the model: the ion motion, the extension to regimes relevant to higher laser intensities
(relativistic regime and large angle collision terms of Boltzmann type).
Acknowledgments: The authors are thankful to the Commissariat à l’Energie Atomique for
the access to the CEA-CCRT-platine computing facillities. One of the author, Francis Filbet,
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Appendix A. Electrostatic case in the linear regime

The relativistic 1Dx × 3DvVlasov-Poisson system extracted from the equations (1)-(3) reads

∂f

∂t
+ v1

∂f

∂x1
+

qe
me

E1
∂f

∂v1
= 0 ,(56)

∂E1

∂x1
= −qe

ǫ0

(

n0 −
∫

R3

f(t, x1,v)dv

)

.(57)

The distribution function f is assumed to be a perturbation around an equilibrium state f (0)(‖v‖),
E

(0)
1 = 0, n0 =

∫

R3

f (0)(‖v‖)dv. The system (56),(57) is linearized around this equilibrium state

f(t, x1,v) = f (0)(‖v‖) + f (1)(t, x1,v) ,(58)

E
(1)
1 (t, x1) = E

(0)
1 + E

(1)
1 (t, x1) ,(59)

under the hypothesis:

‖f (1)‖ ≪ ‖f (0)‖ ,(60)

‖E(1)
1 ‖ ≪ 1 .(61)
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The Vlasov-Poisson can then be set under the following form (transport equation along the space
directions supplemented by a source term along the v1 direction), after linearization























∂f (1)

∂t
+ v1

∂f (1)

∂x1
= − qe

me
E

(1)
1

∂f (0)

∂v1
,

∂E
(1)
1

∂x1
=
qe
ǫ0

∫

R3

f (1)(t, x1,v)dv .

(62)

If f (1) and E
(1)
1 are periodic and integrable, then their respective normalized Fourier coefficient

are well-defined. A Fourier series expansion gives ∀t > 0














f (1)(t, x1,v) = f̂ (1)(t, k1,v)cos(k1x1) ,

f̂ (1)(t, k1,v) =
1

L

∫ L

0
f (1)(t, x1,v)e−ik1x1dx1 ,

(63)

Where L is the size of the domain. The same reconstruction using Fourier series is used for E
(1)
1 .

These coefficients verify the following equations,obtained by Fourier transformation performed on
the equations of the system (62), for all real k1

∂f̂ (1)

∂t
+ ik1v1f̂

(1) = − qe
me

Ê
(1)
1

∂f (0)

∂v1
,(64)

ik1Ê1 =
qe
ǫ0
n̂1 .(65)

Then introducing the notation f̂ (1)(t = 0, k1,v) = f̂ (10)(k1,v), the equation (64) can be written
in the integral form

f̂ (1)(t, k1,v) = f̂ (10)(k1,v)e−ik1v1t − qe
me

∫ t

0
Ê

(1)
1 (t′, k1)

∂f (0)

∂v1
e−ik1v1(t−t′)dt′ .(66)

Integrating the equation (66) over v and injecting in it the relation (65), one obtains the following
integral equation for the density

n̂(1)(t, k1) = M(t, k1) +

∫ t

0
K(t− t′, k1)n̂

(1)(t′, k1)dt
′ ,(67)

where

K(t, k1) =
iq2e

k1meǫ0

∫

R3

∂f (0)

∂v1
e−ik1v1tdv ,(68)

M(t, k1) =

∫

R3

f̂ (10)(k1,v)e−ik1v1tdv .(69)

These kernels can be computed with the desired accuracy, following [30]. The numerical resolution
of (67) finally reduces to the inversion of a triangular linear system.
Macroscopic quantities such as the density or the heat flux can then be reconstructed using these
latter equations.
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Appendix B. Initialisation for the generation of a single X-mode plasma wave

This test case stands as a validation for the couplings of Vlasov and Maxwell equations. We
determine initial conditions that trigger a plasma wave at a given wavelength. To do so, Vlasov-
Maxwell equations are linearized, setting f = f (0) + f̃ , E = Ẽ, B = B(0) + B̃ around the
equilibrium state f = f (0), E = 0, B = B(0). In this appendix, we use the normalization (23)-
(25). We assume periodic boundary conditions. The fluctuations of the total pressure tensor are
neglected with respect to those of the magnetic field.

Using the conservation law
∂n

∂t
+
∂j1
∂x1

= 0, the former hypothesis lead us to solve the system of

six equations with six unknown j̃1, j̃2, Ẽ1, Ẽ2, B̃3 and ñ

(70)











































































∂j̃1
∂t

+ Ẽ1 +B(0)j̃2 = 0 ,

∂j̃2
∂t

+ Ẽ2 −B(0)j̃1 = 0 ,

∂ñ

∂t
+ ∂x1 j̃1 = 0 ,

∂Ẽ1

∂x1
= −ñ ,

∂Ẽ2

∂t
= − 1

β2

∂B̃3

∂x1
+ j̃2 ,

∂B̃3

∂t
= −∂Ẽ2

∂x1
.

Applying time and space Fourier tranform to this system, and identifying Fourier composants
(ñ = n̂ exp(−iωt+ ik1x1)), the following system is obtain







































−iωĵ1 + Ê1 +B(0)ĵ2 = 0 ,

−iωĵ2 + Ê2 −B(0)ĵ1 = 0 ,

−iωn̂+ ik1ĵ1 = 0 ,

ik1Ê1 = −n̂ ,
−iωÊ2 = − 1

β2
ik1B̂3 + ĵ2 ,

−iωB̂3 = −ik1Ê2 .

The dispersion equation of this system reads

N2 =
k2
1

β2ω2
= 1 − ω2 − 1

ω2(ω2 − 1 − ‖B(0)‖2)
.(71)

In this equation, the plasma frequency is ωpe = 1 and the cyclotron frequency is ωc = qe‖B(0)‖/m,
that is ‖B0‖ in this dimensionless case. The perturbative term of the distribution function at
initial time can be determined for a particular solution ω of this relation dispersion.
The Fourier transform is applied on the linearized Vlasov equation

(72) (−iω + ik1v1)f̂ − Ê1
∂f (0)

∂v1
− Ê2

∂f (0)

∂v2
−B(0)v2

∂f̂

∂v1
+B(0)v1

∂f̂

∂v2
= 0 .
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This equation is expressed in cylindrical coordinates






v1 = v⊥ cos(ψ) ,
v2 = v⊥ sin(ψ) ,
v3 = v‖

where
{

v⊥ = (‖v1‖2 + ‖v2‖2)1/2 ,

tan(ψ) =
v2
v1

.

Recalling that:

∇vf =
∂f

∂v⊥
∇vv⊥ +

∂f

∂ψ
∇vψ +

∂f

∂v‖
∇vv‖ ,







































∂v⊥
∂v1

= cos(ψ) ,

∂v⊥
∂v2

= sin(ψ) ,

∂ψ

∂v1
= − 1

v⊥
sin(ψ)

∂ψ

∂v2
=

1

v⊥
cos(ψ) ,

with ∇vv⊥ = ~e⊥, ∇vvψ = ~eψ and ∇vv‖ = ~e‖, where ~e are vectors in the local basis. Setting

f (0)(‖v‖2) = (2π)
3
2 exp(−‖v‖2

2 ), and writing

(v ∧ B).∇vf̂ = (∇vf̂ ∧ v).B = −B(0) ∂f

∂ψ
, with B = (0, 0, B(0)) ,

the kinetic equation (72) becomes

(73) (−iω + ik1v⊥ cos(ψ))f̂ +B(0) ∂f̂

∂ψ
+ f (0)(‖v‖2)v⊥(Ê1 cos(ψ) + Ê2 sin(ψ)) = 0.

In order to solve this equation, we decompose the distribution function as a Fourier serie

f̂ =

+∞
∑

n=−∞

f̂n(v⊥)einψ.

Then from (73),

+∞
∑

n=−∞

(−iω + ik1v⊥ cos(ψ) + inB(0))f̂ne
inψ = −f (0)(‖v‖2)v⊥(Ê1 cos(ψ) + Ê2 sin(ψ)) .

Multiplying this equation by eimψ, integrating from 0 to 2π, we obtain

+∞
∑

n=−∞

∫ 2π

0
eimψ(−iω + ik1v⊥ cos(ψ) + inB(0))f̂ne

inψdψ

= −f (0)(‖v‖2)v⊥

∫ 2π

0
eimψ(Ê1 cos(ψ) + Ê2 sin(ψ))dψ .(74)
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For m = 0, terms are different from zero only for n = −1, 0, 1. From (74) comes

(75) k1v⊥f̂−1 − 2ωf̂0 + k1v⊥f̂1 = 0 .

For m = −1,

(76) ik1v⊥f̂0 − 2i(ω −B(0))f̂1 + ik1v⊥f̂2 = −f0(v
2)v⊥(Ê1 − iÊ2) .

For m = 1,

(77) ik1v⊥f̂−2 − 2i(ω +B(0))f̂−1 + ik1v⊥f̂0 = −f (0)(‖v‖2)v⊥(Ê1 + iÊ2) .

The case m = −2 involves f̂3,

(78) ik1v⊥f̂1 − 2(ω − 2B(0))f̂2 + ik1v⊥f̂3 = 0 .

In the same manner the case m = 2 involves f̂−3,

(79) ik1v⊥f̂−3 − 2(ω + 2B(0))f̂−2 + ik1v⊥f̂−1 = 0 .

In order to close the system, the components f−3 and f3 are neglected, and we deduce from
(75-79),



























−2(ω + 2B(0))f̂−2 + ik1v⊥f̂−1 = 0 ,

ikv⊥f̂−2 − 2i(ω +B(0))f̂−1 + ik1v⊥f̂0 = −f (0)(‖v‖2)v⊥(Ê1 + iÊ2) ,

kv⊥f̂−1 − 2ωf̂0 + k1v⊥f̂1 = 0 ,

ik1v⊥f̂0 − 2i(ω −B(0))f̂1 + ik1v⊥f̂2 = −f (0)(‖v‖2)v⊥(Ê1 − iÊ2) ,

ik1v⊥f̂1 − 2(ω − 2B(0))f̂2 = 0 .

The solution of linearized Vlasov equation can be calculted















f(t, x, v) = f (0)(‖v‖2) +
∑+∞

n=−∞ f̂n(v⊥)e−iωt+ik1x1+inψ ,

E1(t, x) = Ê1e
−iωt+ik1x1 ,

E2(t, x) = Ê2e
−iωt+ik1x1 ,

B(t, x) = B(0) + B̂3e
−iωt+ik1x1 .

The dispersion relation (71) provides with a particular ω. Then we obtain the following results
for the construction of the initial solution,

f(0, x, v) = f (0)(‖v‖2) +

2
∑

n=−2

f̂n(v⊥)eik1x+inψ
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With the expressions

f̂−2

f (0)(‖v‖2)D̂
= i(−4ω3Ê1 − 4 iω3Ê2 + 12 iω2B(0) Ê2 + 12ω2B(0) Ê1 − 8 ‖B(0)‖2

ω Ê1

+ k1
2v⊥

2ω Ê1 + 3 ik1
2v⊥

2ω Ê2 − 8 i‖B(0)‖2
ω Ê2 − 4 ik1

2v⊥
2B(0) Ê2)v⊥

2k1,

f̂−1

f (0)(‖v‖2)D̂
= 2 iv⊥ (Ê1 k1

2v⊥
2ω2 + 4 iB(0) ω3Ê2 − 16 ‖B(0)‖3

ω Ê1 − 16 i‖B(0)‖3
ω Ê2

+ 3 iÊ2 k1
2v⊥

2ω2 − 4 Ê1 ω
4 − 8 iÊ2 k1

2v⊥
2‖B(0)‖2

+ 2 k1
2v⊥

2B(0) ω Ê1

+ 2 ik1
2v⊥

2B(0) ω Ê2 + 16 Ê1 ‖B(0)‖2
ω2 + 16 iÊ2 ‖B(0)‖2

ω2 + 4B(0) ω3Ê1

− 4 iÊ2 ω
4),

f̂0

f (0)(‖v‖2)D̂
= 2 iv⊥

2k1(16 ‖B(0)‖2
ω Ê1 + k1

2v⊥
2ω Ê1 − 4ω3Ê1 + 4 iω2B(0) Ê2

− 16 i‖B(0)‖3
Ê2 + 2 ik1

2v⊥
2B(0) Ê2),

f̂1

f (0)(‖v‖2)D̂
= 2 i(−2B(0) + ω)v⊥ (−4 ik1

2v⊥
2B(0) Ê2 + k1

2v⊥
2ω Ê1 − 3 ik1

2v⊥
2ω Ê2

− 12ω2B(0) Ê1 + 12 iω2B(0) Ê2 − 4ω3Ê1 + 4 iω3Ê2 − 8 ‖B(0)‖2
ω Ê1

+ 8 i‖B(0)‖2
ω Ê2),

f̂2

f (0)(‖v‖2)D̂
= ik1v⊥

2(−4 ik1
2v⊥

2B(0) Ê2 + k1
2v⊥

2ω Ê1 − 3 ik1
2v⊥

2ω Ê2 − 12ω2B(0) Ê1

+ 12 iω2B(0) Ê2 − 4ω3Ê1 + 4 iω3Ê2 − 8 ‖B(0)‖2
ω Ê1 + 8 i‖B(0)‖2

ω Ê2),

where

D̂ = ω (64 ‖B(0)‖4 − 16 k1
2v⊥

2ω2 + 16ω4 + 16 k1
2v⊥

2‖B(0)‖2
+ 3 k1

4v⊥
4 − 80 ‖B(0)‖2

ω2).

k1v⊥ being small with respect to B(0) and ω, powers of k1v⊥ can be neglected compared to these
terms. The solution can be written

f̂−2

f (0)(‖v‖2)D̂
= iv⊥

2k1(−4ω3Ê1 − 4 iω3Ê2 + 12 iω2B(0) Ê2

+ 12ω2B(0) Ê1 − 8 ‖B(0)‖2
ω Ê1 − 8 i‖B(0)‖2

ω Ê2),

f̂−1

f (0)(‖v‖2)D̂
= 2 iv⊥ (4 iB(0) ω3Ê2 − 16 ‖B(0)‖3

ω Ê1 − 16 i‖B(0)‖3
ω Ê2 − 4 Ê1 ω

4

+ 16 Ê1 ‖B(0)‖2
ω2 + 16 iÊ2 ‖B(0)‖2

ω2 + 4B(0) ω3Ê1 − 4 iÊ2 ω
4),

f̂0

f (0)(‖v‖2)D̂
= 2 iv⊥

2k1(16 ‖B(0)‖2
ω Ê1 + k1

2v⊥
2ω Ê1 − 4ω3Ê1 + 4 iω2B(0) Ê2

− 16 i‖B(0)‖3
Ê2),

f̂1

f (0)(‖v‖2)D̂
= 2 iv⊥ (ω − 2B(0))(−12ω2B(0) Ê1 + 12 iω2B(0) Ê2 − 4ω3Ê1 + 4 iω3Ê2

− 8 ‖B(0)‖2
ω Ê1 + 8 i‖B(0)‖2

ω Ê2),

f̂2

f (0)(‖v‖2)D̂
= ik1v⊥

2(−12ω2B(0)) Ê1 + 12 iω2B(0) Ê2 − 4ω3Ê1 + 4 iω3Ê2

− 8 ‖B(0)‖2
ω Ê1 + 8 i‖B(0)‖2

ω Ê2),
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where
D̂ = ω (64 ‖B(0)‖4

+ 16ω4 − 80 ‖B(0)‖2
ω2).

We choose to initialise the perturbation from the amplitude of the magnetic field:

B̂3 = A where A ∈ [0, 1].

Then from the system (70) and the dispersion relation (71), we deduce the values of Ê1, Ê2 and

thus reconstruct the f̂i,

Ê1 =
−iB̂3

(

ω4β2 − ω2k1
2 − ω2β2 − ‖B(0)‖2

ω2β2 + ‖B(0)‖2
k1

2
)

k1β2B(0)
, Ê2 =

ωB̂3

k1
.
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