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Numerical modelling of concrete flow: homogeneous approach

The aim of this paper is to model numerically concrete flow inside formworks like the Lbox. For this 
purpose, we use a finite element method with Lagrangian integration points (FEMLIP). We are able to 

follow in time and space material motion with any type of material behaviour, including non-linear and 

time-dependent ones. We also can deal with free surfaces or material interfaces. Bingham’s rheology is used 

for fresh concrete behaviour. In order to compare with experiments, we have considered three concretes 
(OC, HPC and SCC) with contrasted rheologies. Their yield stress is identified by experimental slump tests 
and also compared with the value given by a formulation concrete software. Experimental data are found 

to be quite close to numerical predictions. We have also made some experimental flow tests in a LBOX. We 

measured the flow speed and the flow shape in the final stage. The numerical modelling of these 

experiments is very encouraging and shows the capability of the FEMLIP using the Bingham’s law to model 
concrete flow and filling properties.

KEY WORDS: numerical modelling; fresh concrete flow; Bingham’s model; finite element method with
Lagrangian integration points

1. INTRODUCTION

Many problems of durability of concrete structures are due to bad filling of formworks. This

issue is increasing year after year as formworks are getting more and more complex and

reinforcements are getting denser and denser with the use of high performance concretes (HPC)

with a high workability and self-compacting concretes (SCC). As for aesthetic aspects, it is most

of the time only a matter of cost as the surface can be retrofitted afterwards. Unfortunately, if

problems such as segregation of aggregates occur inside the structure, they cannot be detected

easily. This may happen for tortuous formworks and/or around reinforcement bars due to

locking problems. Even if no voids are formed during the filling, segregation may still occur

which yields a heterogeneous hardened material at the scale of the structure. In this case, the

durability of the structure may be endangered as transfer properties of concrete are increased or
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the steel concrete interface mechanical properties are decreased. It is therefore of

importance to devise numerical tools aimed at the simulation of the filling of formworks with

concrete. This paper is a first step toward this goal. It addresses the numerical modelling of

concrete flow, assuming that concrete is homogeneous but the material modelling and the

numerical method can easily be applied to the simulation of heterogeneous fluids (see e.g.

Reference [1]).

Among the difficulties of the simulation of concrete flow, the numerical aspects and the

identification of the concrete rheology parameters are those addressed in this paper where we

model fresh concrete as a homogeneous viscous fluid. On the material side, tests, as simple as

possible, are required in order to calibrate the model parameters. On the numerical side, we need

to follow in time and space the flow of concrete with moving free surfaces. A purely Eulerian

finite element method cannot easily handle the tracking of free surfaces and material interfaces

when aggregates are modelled explicitly. On the contrary with heterogeneous materials, it is

natural to deal with a Lagrangian description in the finite element description, but unfortunately

not for very large deformation processes. The discrete element method (DEM) has also been

used by Petersson [2] and Noor and Uomoto [3]. Even if large deformations are natural for

DEM, inter-particle properties are not easy to identify. Very often, a trial and error approach is

needed for that, and it is not really compatible with the large amount of computational time

needed per run.

In the present paper, we use a finite element method with Lagrangian integration points

(FEMLIP). This method has already shown a great potential [1, 4] in geophysics. We focus here

on the numerical aspect of concrete flow modelling. In the first section, we describe the

numerical code and discuss the rheological models for concrete. In the second part, we calibrate

Bingham’s parameters on experimental tests and compare them with values given by a

formulation concrete software named B !eetonlab. Finally, we compare numerical results on

LBOX flow against experimental results.

2. NUMERICAL MODELLING

2.1. Constitutive equations

Concrete, in its fresh state, can be considered as a fluid, provided that a certain degree of flow

can be achieved and that the mix is quasi-homogeneous with regularly dispersed aggregate

particles (in space and size). Modelling concrete rheology is a very difficult task as every concrete

behaves differently depending on their composition and mixing method. Therefore, it is

impossible to write a relation between the stress and the strain rate based on every single

parameter at the microscale, namely quantities and nature of each admixtures which are

nowadays more and more numerous. Here, the concrete rheology is thought at a mesoscale and

it is written as a relation between the shear stress t and the shear strain rate ’gg: A complete review

of rheological models for cement-based materials has been done by Yahia and Khayat [5]. We

discuss here only the three simplest ones, namely Newton’s, Bingham’s and Herschel–Bulkley’s

models.

The simplest model (one parameter) assumes that concrete is a Newtonian fluid

t ¼ Z’gg ð1Þ
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where Z is the viscosity but Tatersall [6] has shown that a single parameter is not enough to

model concrete flow. At least two parameters are needed to model concrete with a slump at the

Abrams cone test lower than 30 cm: The first one needs to be related to the static behaviour

(slump test) and the second one to the dynamic fluid response (rheometer test). Hence, a stress

threshold has been added to the Newton’s model to give the Bingham’s model:

t ¼ t0 þ Z’gg if t5t0

’gg ¼ 0 if t4t0
ð2Þ

where t0 is the yield stress and Z is the plastic viscosity.

When experimental data are fitted for many different concretes and for self-compacting

concrete especially, it often yields a negative value of the yield stress although very small. For

this reason de Larrard et al. [7] preferred to use a Herschel–Bulkley’s model (3 parameters):

t ¼ t00 þ a’ggb ð3Þ

The same authors [8] propose a method to keep using the simpler Bingham’s model. Instead

of deducting the Bingham’s curve directly from experimental results using a least square

method, a Herschel–Bulkley curve is fitted on experimental results as a first step and then, the

Bingham’s curve is deducted from the Herschel–Bulkley curve with a least square method. This

method keeps the yield stress t0 unchanged for both models and computes the plastic viscosity

for the Bingham’s model as follows:

Z ¼
3a

bþ 2
’ggb�1
max ð4Þ

where ’ggmax is the maximum shear strain rate applied to the sample during test (usually
’ggmax ¼ 6 s�1). One example for each rheological model is plotted in Figure 1.

Ferraris and de Larrard [8] have found a mean value for b of 1.53 for concrete without

superplasticizer and 1.36 for others. The Bingham’s model (e.g. b ¼ 1) is most widely

used [9] because it needs less experimental tests to be calibrated. For the same reason, we have

chosen to use the Bingham’s model in this study where three different concretes will be

represented.

For an easier numerical implementation, the Bingham’s model needs to be smoothed [10] in

order to avoid the sharp angle at t ¼ t0 on the material response and the use of two equations

below and above the shear stress threshold. This yields

Z ¼ Z0 þ
t0

’gg
ð1� e�m’ggÞ ð5Þ

where m is the stress growth rate parameter. The higher m; the more accurate the

approximation. We found out, for the range of strain rate reached during our numerical tests,

that a value m ¼ 5000 is high enough as we observed no differences with results obtained with a

value of m ¼ 10 000:

2.2. Mathematical model

We begin our analysis in a general way with the classical momentum conservation equation on a

domain O bounded by G

sij; j þ fi ¼ 0 ð6Þ
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where r is the Cauchy stress tensor and f is the specific body force reduced to the gravity term

for concrete flow problems. The notation sij;j denotes the differentiation of r with respect to xj
and the Einstein rules are also used for double indices. As we are only interested in very slow

deformations, inertia forces are neglected in Equation (6) (infinite Prandtl number assumption).

The boundary conditions are given as follows:

tijnj � pi ¼ %tti on the natural boundary Gt ð7Þ

ui ¼ %uui on the essential boundary Gu ð8Þ

in which the superposed bar denotes prescribed boundary values and n is the unit outward

normal to the domain O: Although concrete can be slightly dilatant [11], we assume that it is an

incompressible fluid, and it is convenient to split the stress tensor into a deviatoric part s and an

isotropic term p

sij ¼ tij � pdij ð9Þ

where p is the pressure and d the Kronecker symbol. Equation (6) becomes

tij; j � dijp; j þ fi ¼ 0 ð10Þ

with the continuity equation

vi;i ¼ 0 ð11Þ

where v is the material velocity.
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Figure 1. Different rheological models for fluid-like materials: (a) Newton ðZ ¼ 650 Pa sÞ; (b) Bingham
ðt0 ¼ 500 Pa; Z ¼ 500 Pa sÞ; and (c) Herschel–Bulkley ðt00 ¼ 400 Pa; a ¼ 500 Pa sb and b ¼ 1:2).
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2.3. Numerical method

We have implemented the Bingham’s model in the ellipsis code initially developed by Moresi

and Solomatov [12]. This code is based on an Eulerian grid of finite element and a set of

Lagrangian particles or tracers inside the mesh. Figure 2 presents an attempt of ranking the

most used numerical methods.

Tracers carry material properties and time variables, as shown in Figure 3. This method

combines the versatility and the robustness of the classical finite element method and adds a new

concept of Lagrangian integration points to handle large deformation processes. At the same

time, tracers may carry different material properties depending on their initial location in the

finite element grid and heterogeneous structures can easily be handled [13, 14]. At each node, we

solve for the velocity v and the pressure p; Equations (10) and (11), using tracers as integration

points with a specific scheme described in Reference [13]. For computational time reasons, we

have used the 2D version of ellipsis with bilinear elements for velocity and constant pressure

elements.

For the spatial integration, we use particles instead of the classical Gaussian points. For the

integration to be as accurate as with the Gaussian scheme (four integration points for bilinear

Figure 2. Different ways to discretize a problem provide a natural representation for systems with different
controlling physics. In fully Lagrangian FEM, SPH and DEM all the computational points are also
material points. In the FEMLIP, computational points are not materials points but a set of material points

is also tracked. In ALE and Eulerian FEM there is no tracking of material points.
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solution) Moresi et al. [13] have shown that a minimum of 16 particles per element are needed as

they may stand in any position inside the element during the flow process. One of the

consequences is that the numerical weight of each particle needs to be recalculated at each

timestep. At the end of each step, tracer positions are updated (Figure 3) using a Runge–Kutta

time integration scheme. Tracer velocities are computed from nodal velocity field. Tracer

displacements are computed according to a timestep chosen as a tracer cannot cross one element

within one timestep. Contrary to the choice of the timestep for explicit schemes, our timestep is

only chosen for accuracy purposes.

This method is very well suited to model fluid-like materials with interfaces and time-

dependent behaviours in extremely large deformation processes. Unfortunately it has one major

drawback: contrary to the Lagrangian finite element method for which only the structure of

interest is discretized, the entire space occupied by the material and where it is assumed to move

must be discretized. Indeed if one thinks about the Lbox problem described in Section 4, initially

the material stands in the column and then it will flow down. The space where the material will

flow needs to be discretized by the Eulerian grid and since each finite element needs to be filled

by at least one integration point to compute nodal velocity, even if it is not accurate, it implies

the use of ‘air particles’ to fill each finite element in which the material is supposed to flow in at

any time of the computation. The same phenomenon is observed at the back of the flow where

material particles leave some element empty as they flow down. Some ‘air particles’ have to take

their place in order to keep integrating over elements. Of course those particles must have a

negligible effect on the flow and therefore we set their shear strength to a negligible value

compared to the strength of other particles. At the end, the major drawback yields a larger use

of memory and computational time for taking into account particles, which have no effect on

the flow. In the particular case of the Lbox problem, by looking at Figure 11, one can figure out

that nearly 80% time and memory is used for the treatment of air particles.

2.4. Solution technique

By inserting the constitutive relation (3) into the momentum conservation equation (10) and

using Equation (11), the above finite element method with moving integration points produces a

Figure 3. Summary of the FEMLIP formulation: (a) by setting different material properties onto particles
one can model material interfaces; (b) the FEMLIP implies the use of more numerous particles as the
integration scheme is not exact; and (c) tracers carry history variables and their position is updated

according to the nodal velocity field.
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set of equations close to the one obtained with a standard finite element method:

K G

G
T 0

!

v

p

 !

¼
f

0

 !

ð12Þ

where K is the global viscosity matrix, G is the discrete gradient operator. We have implemented

the Uzawa scheme [15] in order to compute the velocity from one of the two equations

*KKp ¼ *ff ð13Þ

G
T
v ¼ 0 ð14Þ

where *KK ¼ G
T
K

�1
G and *ff ¼ G

T
K

�1
f: We solve both equations simultaneously with a conjugate

gradient operator as outlined in general in Reference [16]. Furthermore, the Eulerian grid makes

it easy to use a multigrid solver for computational time savings. Indeed, computational time is

proportional to the number of degree of freedom ðnÞ whereas it is order of the square and even

the cube of n for direct solver on one mesh. The main idea of multigrid schemes is to build an

initial guess for an iterative solver on a coarser mesh. The scheme starts at the coarsest mesh on

which it is fast to compute a solution with a direct solver. This solution is then used on the

following finer mesh as an initial guess for the iterative scheme. The other main advantage of

using a multigrid scheme coupled together with an iterative solver is that the first one damps out

the low-frequency oscillations of the residue of Equation (12) whereas the last one damps out

the high frequencies. We preferably use the full multigrid V-cycle scheme illustrated in Figure 4

as it shows good capacities for solving our type of problems. Furthermore, by experience we do

not use more than five levels because the exact solution on the coarsest grid is deteriorated by

going from one grid to another.

Mesh description in this paper will be given by the coarsest grid and the number of level. For

further details on the complete solution technique implemented in the ellipsis software, the

reader can refer to Moresi et al. [13] and Moresi and Solomatov [12].

As for any numerical scheme, one major drawback of the Gauss–Seidel iterative solver is that

the convergence process becomes very slow for ill-conditioned matrix. In practice, we found out

Coarsest grid

Finest grid

Figure 4. Example of a full multigrid V-cycle with 4 levels. Each * is a solving process.
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that we should not use a viscosity contrast (ratio of the most to the least viscous material

discretized) larger than 104: This is quite an important issue because in our approach, ‘air

particles’ ought to be modelled numerically. For heterogenous fluids containing aggregate

particles with a very high viscosity, this may also yield more severe numerical problems, and a

different solver has to be used, or the viscosity of air has to be artificially increased.

3. IDENTIFICATION OF BINGHAM’S PARAMETERS

In this section, the Bingham’s parameters are identified on slump test using ellipsis with a trial

and error approach for several concretes. The obtained modelled parameters are compared to

those predicted by a concrete formulation software named B !eetonlab [17].

3.1. Experimental study

We have formulated three different concretes in order to get three contrasted behaviours at the

fresh state. One ordinary concrete (OC), one high-performance concrete (HPC) and one self-

compacting concrete (SCC) are thus considered. The mix proportions of these concretes are

given in Table I.

Three slump tests for each formulation have been performed on the classical axisymmetric

slump cone (Figure 5(a)).

We have computed the average slump and spreading (Figure 5(b)) which are summarized in

Table II. A spreading of 20 cm means that there is no motion at the base of the cone in the

slump test (the specimen consolidates without any spreading of the base of the cone).

3.2. Numerical modelling

The present simulations assume a 2D (plane) fluid flow. Consequences of this assumption need

to be investigated first. A 2D computation is expected to yield an approximation of the

maximum shear stress value compared to a 3D approach. In order to estimate the error, we have

computed the maximum shear stress with a classical finite element code on an elastic

incompressible material.

We present in Table III, the results obtained according to the 2D and the axisymmetric

models. We ran both models for different heights of the cone ðhÞ: From this table, we conclude

that the maximum error on the shear stress between the axisymmetric model and the plane (2D)

Table I. Composition of the three different concretes.

OC HPC SCC

Aggregate 6=10 ðkg=m3
Þ 1031.3 993.6 838.7

Sand ðkg=m3
Þ 915.2 881.7 806.3

Cement ðkg=m3
Þ 300 360 350

Limestone filler ðkg=m3
Þ 0 50 250

Superplasticizer ðkg=m3
Þ 1.5 3.6 6.13

Water ðkg=m3
Þ 193.5 186.3 197.5
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model is about 17% for OC, 25% for HPC and 35% for SCC. Therefore, we expect a larger

error in the identification of Bingham’s parameters for SCC than for OC.

The 2D assumption does change the value of the ratio slump/spreading compared to the

axisymmetric case because the material can only flow in the plane of study on the contrary of the

axisymmetric model where the material can flow radially. With the same classical finite element

code, we ran two sets of tests with the 2D assumption. The first set is for a given height h of the

concrete cone (i.e. constant slump) and we changed the base dimension L (i.e. spreading) and

the second one is for a given L; we changed h: The results are summarized in Table IV. As

expected the maximum shear stress is nearly constant for a given height and various spreadings,

but changes a lot for a given spreading and different heights. We conclude that with our 2D

S
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m
p

Spreading

10 cm

(a) (b)

20 cm

3
0
 c

m

Figure 5. Geometry of the cone in the: (a) initial; and (b) final position.

Table II. Results of the slump test for each concrete.

OC HPC SCC

Slump (cm) 5.5 21.5 27
Spreading (cm) 20 45 69

Table III. Comparison of maximum shear stress be-
tween 2D case and axisymmetric case.

h (cm) Axi (Pa) 2D (Pa) Error (%)

30 2617.7 3077.2 14.9
25 2159.7 2602.3 17
20 1775.5 2262.5 21.5
15 1333.5 1688.3 21
10 774.8 1024.8 24.4
5 314.2 467.6 32.8
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model we may compare only slumps between experiments, which are close to an axisymmetric

geometry, and the numerical model but not the base spreading which is not sensitive on the

shear stress.

We used a mesh with 4 levels and 10� 10 elements at the coarsest level which means 6400

elements overall. The mesh was slightly refined in the central and bottom parts where the

material flow takes place (Figure 6). At least 16 particles per element are initially needed for a

good estimation in the integration scheme over element, nevertheless we decided to use 36

particles per element in the concrete zone and nearby in order to define the interface between

concrete and air from a geometrical point of view better. We kept a resolution of 16 particles per

element in the air zone. Boundary conditions along G was always free-slip. It means zero shear

stress and zero normal velocity. The only force term was gravity and the concrete density was

estimated at 2.45.

For a very high shear strain rate, the concrete apparent viscosity tends to the plastic viscosity

(order of few hundreds) and it tends to infinity as the shear strain rate tends to zero. Since we are

limited to 4 orders of magnitude in the viscosity contrast between different materials (see Section

2.4) and since the behaviour of concrete contains several orders of magnitude according to the

modified Bingham’s model (5), it is interesting to modify the air particle viscosity during the

flow. At each time step, the minimum viscosity over the concrete particles is computed and we

Table IV. Comparison of maximum shear stress for
different Abrams’ cone geometry.

h ¼ 20 cm L ¼ 40 cm

L (cm) t (Pa) h (cm) t (Pa)

30 2223.4 5 496.1
40 2261.1 10 1119.5
50 2247.1 15 1721.4
60 2224.3 20 2261.1
70 2198.6 25 2721
80 2173.1 30 3098.8

1.4 m

0.1 m

0.2 m

0
.4

 m 0
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 m

A
ir 
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rti
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A
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Figure 6. Mesh used in ellipsis for the slump test. For the sake of clarity we show the mesh at level 3. The
actual finest mesh used in this work is obtained by dividing each element in 4. In the dark zone concrete

particles surrounded by air particles is set.
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set up, on one hand, the air viscosity to one-tenth of this value and, on the other hand, the

maximum viscosity of concrete to 103 times this value. The maximum viscosity is used to limit

the viscosity of the modified Bingham’s model for a shear strain rate close to zero. Parametric

studies have shown that results are not significantly influenced by these choices, compared to

computations with a constant, realistic, viscosity of air.

Figures 7 and 8 represent different snapshots of the flow during a slump test for the SCC and

the HPC, respectively. They show the difference in fluidity between these two concretes.

Figure 7. Different snapshots of the slump test on SCC at time: (a) 0 s; (b) 0:36 s; (c) 1:87 s; and (d) 7:24 s.

Figure 8. Different snapshots of the slump test on HPC at time: (a) 0 s; (b) 0:3 s; (c) 0:87 s; and (d) 5:56 s.
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Numerical results of the trial and error approach used to calibrate the Bingham’s model are

summarized in Figure 9. They show that in order to get the same slump as the one observed

experimentally, the yield stress of the three different concretes needs to be 1900, 600 and 200 Pa

for OC, HPC and SCC, respectively. Furthermore, in Figure 9 the slump evolution obtained for

three different plastic viscosity with SCC is plotted for one given yield stress ð292 PaÞ: We

observe that the final slump is not affected by the plastic viscosity. In these computations, the

plastic viscosity given by the concrete formulation software B !eetonlab has been used.

3.3. Comparison with B !eetonlab

The two Bingham’s parameters could be calibrated from the above slump tests in which concrete

flow is measured at different timesteps and inverse analysis using the above simulations. These

two parameters could also be estimated from the composition of concrete and it may be

interesting to compare results. We used for this the software B !eetonlab [17] developed at LCPC}

in France. B !eetonlab is based on the compressible packing model [7]. This model is summarized
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Figure 9. Slump of concrete with the Abrams cone test after Bingham’s parameters identification for OC
(c), HPC (b) and SCC (a). The plain line correspond to the numerical results using B !eetonlab’s parameters
for HPC (2) and SCC (1). There are three different lines for (1) which correspond to three different plastic

viscosity at the same yield stress.

}Laboratoire Central des Ponts et Chauss!eees.
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as follows: concrete is initially considered as a dry assembly of granular material with different

grain classes (i). The proportion ðyiÞ and individual size distribution of each granular class are

known. Firstly, the packing density ðgiÞ of each class, as part of the whole material, is derived

from the theoretical virtual packing density ðbiÞ taking into account wall effects and loosening

effects due to other classes. ðbiÞ is a granular class property measured experimentally. ðgiÞ is the

maximum packing density attainable for the considered material with an infinite amount of

compaction energy. Secondly, concrete is considered as a suspension of a solid skeleton in water.

By analogy with some viscosity models, a compaction index ðK 0Þ is defined from the compaction

index of each solid skeleton ðK 0
i Þ by

K 0 ¼
X

n

i¼1

K 0
i ¼

X

n

i¼1

yi

bi
1

F
�

1

gi

0

B

B

@

1

C

C

A

ð15Þ

where F is the solid content of the concrete (that is the complement to 1 of the water content).

The plastic viscosity is then written as

m ¼ exp A�
F

Fn
� B

� �� �

ð16Þ

where Fn is the packing density of the skeleton defined as the value of F which gives a

compaction index of 9. A and B are two constants empirically evaluated on hundreds of tests.

The yield stress is derived from the empirical formula

t0 ¼ expða0 þ acK
0
c þ afK

0
f þ aSK

0
S þ asK

0
s þ agK

0
g þ aGK

0
GÞ ð17Þ

a are empirical parameters depending on grain size and on superplasticizer quantity. These

parameters are calibrated with the BT RHEOM developed by de Larrard et al. [6]. This BT

RHEOM is a parallel-plate rheometer where the strain field is imposed by the geometry. From

the relation between the torque and the rotation speed, one can deduce the material law of

behaviour. Index c is related to cement, f to calcareous filler, s to powders with grains smaller

than 80 mm; S to sand grains, g to small aggregates and G to larger aggregates.

The Bingham’s parameters predicted by B !eetonlab for the three considered concretes are given

in Table V. The difference with the calibration of the slump test results with ellipsis are also

given in this table.

Mean errors on the plastic viscosity and the yield stress as predicted by the software B !eetonlab

are 50 Pa s and 148 Pa [19], respectively. These errors are due to the non-repeatability of the

experimental procedure used for calibrating the formula (Equations (16) and (17)) because of

material heterogeneities, but they may depend on the type of rheometer used.

Table V. Bingham’s parameters output from B!eetonlab.

OC HPC SCC

Plastic viscosity ðPa sÞ 431 390 244
Yield stress (Pa) 1864 897 292
Numerical calibration 1900 600 200
Error with calibration results (%) 2 33 32
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Hu [20] has compiled results from two studies done on five different concretes with different

rheometers. The first one is the BML [21] and the second one is the BT RHEOM. A summary of

results is presented in Table VI.

Fresh concrete is very sensitive at such an early age to time, temperature, humidity, mixing

method, etc. Therefore even a simple test like the slump test shows quite a large variability if

environmental conditions and testing are not always the same. Another conclusion from these

data from literature is that BT RHEOM seems to over evaluate the yield stress as well as the

plastic viscosity even for concrete with the same slump. The same conclusion can be drawn from

our study for the yield stress solely as we did not focus on the plastic viscosity. In Figure 9,

comparison between the calibration and the results from B !eetonlab show that the second over

evaluate the yield stress. A second comparison campaign on OC and HPC has been done

between the BT RHEOM and the CEMAGREF-IMG [22]. This work does not show any

tendency of one rheometer to always over estimate Bingham’s parameters as in the first study by

Hu [20]. The relative error stands between 3 and 56% for the yield stress and between 1 and 94%

for the plastic viscosity which points out the great experimental dispersion on the determination

of the two Bingham’s parameters.

Regardless of error due to the 2D assumption, the numerical analysis of the slump test gives

an estimation of the yield stress up to 2, 33 and 32% for OC, HPC and SCC, respectively, which

is within the experimental dispersion. Considering the dispersion, one can use the shear stress

threshold given by Equations (15) and (17) in numerical simulations at least for OC. As for the

plastic viscosity, the lack of experimental data (e.g. snapshots during a slump test) and the

relatively large dispersion between the data found in the literature leave the choice of a proper

predicting formula rather open. We have used throughout this paper the values provided by

Equation (16) in B !eetonlab. Since we are interested in the final stage of the flow of concrete here,

the consequences of a misevaluation of this parameter are not so important (as seen of Figure 9).

4. STUDY OF CONCRETE CASTING}LBOX TEST

The LBOX test is among the standard experiments aimed at measuring concrete workability. It

is a formwork made of wood with a square column in which concrete is placed. The inner

surface in contact with the test material is made of bakelite. A door at the bottom is opened and

the material flows. Measurements consist in recording the arrival time at the end of the

horizontal part and also the profile of the free surface of concrete in the horizontal part.

Usually, vertical reinforcement bars are placed just after the door so that concrete has to flow in

Table VI. Bingham’s parameters output from B!eetonlab.

Viscometer Properties 1 2 3 4 5

BML Slump (cm) 9.0 17.0 21.5 23.0 26.5
t (Pa) 1310 519 0 34 173
Z ðPa sÞ 13 33 170 70 73

BT RHEOM Slump (cm) 12.5 17.0 22.5 23.0 23.5
t (Pa) 1600 1190 306 747 721
Z ðPa sÞ 71 82 354 209 172
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between them. In the present application, those bars have been removed since they cannot be

modelled in a 2D simulation. Figure 10 shows the geometry of the LBOX. In the 2D

computation a unit thickness of material is described.

4.1. Experimental study

We did not perform the Lbox test for OC as we do not expect any flow due to the large yield

stress. For each test we measured the arrival time of the material at the other end of the box and

once the flow was completed we measured in seven different cross sections of the horizontal part

of the LBOX the concrete height. The first cross section is the door section and the six others

follow at a distance of 10, 20, 30, 40, 50 and 57 cm from the door. The furthest section

corresponds to the end of the LBOX. Experimental results are summarized in Table VII.

Due to the hydrostatic pressure generated by concrete, we had some difficulties in opening the

door during experiments identically every time from one test to another. The consequence is that

the variation for the opening time may not be negligible in the computations as we will see next.

0.715 m

0.1 m

0.14 m

0
.1

5
 m

0.2 m

Sliding door

0
.6

 m

Figure 10. Geometry of the LBOX.

Table VII. Experimental results of the Lbox test for each concrete.

Distance (cm) 0 10 20 30 40 50 End Time (s)

SCC Height (cm) 9.5 9.3 9.15 9.0 8.8 8.6 8.5 2.5
HPC Height (cm) 13 9 7.5 6.8 6 4.5 3.5 11
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4.2. Numerical modelling

We used a mesh of four levels and 12� 12 elements at the coarsest level which means 9216

elements overall. The mesh was slightly refined on the left and at the bottom parts of the grid

where material flow takes place (Figure 11). Same as for the slump test computation model, we

used 36 particles per element for the concrete zone and nearby, and 16 particles per element in

the air zone. Boundary conditions were always free-slip including for internal boundaries

defining LBOX walls and door. The only driving force was gravity with a concrete density of

2.45. Due to difficulties encountered during experiments regarding the opening of the door, we

used a moving internal boundary in order to model the door motion upward with a finite

opening time. We recorded the evolution with time of concrete height in the cross sections where

measurements were done. Results are shown in Figures 12 and 13 for SCC and HPC

respectively. We present only results for four cross sections which correspond to the first, third,

fifth and seventh cross section of measurements, respectively, for more clarity of the figures.
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Figure 11. Mesh used in ellipsis for the Lbox problem. For the sake of clarity we show the mesh at level 3.
The actual finest mesh used in this work is obtained by dividing each element in 4.
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Figures 14 and 15 show different snapshots of the SCC flow in the Lbox test for opening times

of 0 and 1 s; respectively, and Figures 16 and 17 show different snapshots of the HPC flow for

the same opening times.

One can see that the final stage, once concrete has reached static equilibrium, is very much

dependent on the opening conditions in the LBOX test. Practically, it is quite difficult to

measure the duration of the opening of the door in the experiments. An opening time of 1 s

seems to be a quite realistic value from an experimental point of view.

We present in Table VIII the numerical results concerning HPC and SCC. The time at which

concrete reaches the box end and the height of concrete in several cross sections for the final

stage are provided. Same as for the slump test, the plastic viscosities of the two concretes

provided by the software B !eetonlab have been used in the computations. Comparisons with

Table VII show a good agreement for the recorded heights of concrete. The flow time is quite

well estimated within 15% for HPC. Regarding SCC, the flow time is so small that the

experimental relative error on the duration of the concrete flow is very large.

5. CONCLUSIONS

We have presented in this paper a numerical model aimed at simulating concrete flow in

formworks. This is a first step towards the development of a 3D simulation tool. Attention has
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Figure 12. Evolution in time of concrete height in four different cross sections for SCC flow: (1) for the
door cross section; (2) and (3) at a distance of 20 and 40 cm; respectively; and (4) for the end section.

Curves with a ð 0 Þ correspond to a door opening time of 1 s and others to 0 s:
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Figure 13. Evolution in time of concrete height in four different cross sections for HPC flow: (1) for the
door cross section; (2) and (3) at a distance of 20 and 40 cm; respectively; and (4) for the end section.

Curves with a ð 0 Þ correspond to an door opening time of 1 s and others to 0 s:

(a)

(d)(c)

(b)

Figure 14. Different snapshots of the Lbox test on SCC at time: (a) 0 s; (b) 0:28 s; (c) 0:85 s; and (d) 31:9 s
with an instantaneous door opening. Crosses represent experimental measurements.
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(a)

(d)(c)

(b)

Figure 15. Different snapshots of the Lbox test on SCC at time: (a) 0 s; (b) 0:45 s; (c) 0:85 s; and (d) 7:63 s
with a door opening time of 1 s: Crosses represent experimental measurements.

(a)

(d)(c)

(b)

Figure 16. Different snapshots of the Lbox test on HPC at time: (a) 0 s; (b) 0:49 s; (c) 4:89 s; and (d) 49:5 s
with an instantaneous door opening. Crosses represent experimental measurements.
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been focused first on the rheology of concrete. The simple Bingham’s model has been chosen

and the model parameters have been calibrated for several concretes, quite different from a

rheological point of view. The shear stress threshold in the Bingham’s model can be calibrated

from a slump test and a quite consistent prediction is provided with empirical formula available

in a concrete formulation software at least for OC. The plastic viscosity, however, needs a

rheometer to be measured. We found that, according to the literature, the measurement of this

model parameter is still very much dependent on the testing apparatus employed and a proper,

objective experiment remains to be devised. Inverse analysis using the present simulation tool

might be also envisioned.

Simulations on the LBOX experiment, in which a 2D flow is reproduced, are close to the

experiments. Again, since the plastic viscosity has not been obtained from experiments, we used

(a)

(d)(c)

(b)

Figure 17. Different snapshots of the Lbox test on HPC at time: (a) 0 s; (b) 0:66 s; (c) 2:81 s; and (d) 47:3 s
with a door opening time of 1 s: Crosses represent experimental measurements.

Table VIII. Numerical results of the Lbox test for each concrete.

Distance (cm) 0 20 40 End Time (s)

SCC Height (cm) 10.5 9.8 7.6 8.1 1.1
Error (%) 9.5 7.1 13.6 4.7 56

HPC Height (cm) 13.1 10 7.1 1.8 12.5
Error (%) 0.8 33.3 18.3 48.6 13.6
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the value provided by the concrete formulation software and compared the final stages of the

concrete flow only.

This study mainly shows that one can use the FEMLIP to model concrete flow with an

homogeneous approach. Several simplifying assumptions have been made. The boundary

conditions between the formworks and concrete are assumed to be perfect, without friction.

Sensitivity analyses have been performed which show that friction is not very important,

compared to the influence of the dispersion in the experimental determination of the plastic flow

especially. In the LBOX test errors may also be due to the wall effect in the perpendicular

direction of the plane of study. Indeed the width of the LBOX is not large enough to neglect wall

effects. 3D computations and simulations of concrete flow viewed as a heterogeneous fluid are

currently in progress in order to assess these assumptions and to provide tools which are capable

detecting possible segregation and blocking of aggregates during casting of concrete.
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