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DYNAMICS OF VORTICES FOR THE COMPLEX
GINZBURG-LANDAU EQUATION

EVELYNE MIOT

Abstract. We study a complex Ginzburg-Landau equation in
the plane, which has the form of a Gross-Pitaevskii equation with
some dissipation added. We focus on the regime corresponding to
well-prepared unitary vortices and derive their asymptotic motion
law.
2000 Mathematics Subject Classification: 35B20,35B40,35Q40,82D55.
Keywords: Complex Ginzburg-Landau equation, Vortex dynamics.

1. Introduction

In this paper, we study the dynamics of vortices for a complex
Ginzburg-Landau equation on the plane, namely

δ

| log ε|
∂tuε + αi∂tuε = ∆uε +

1

ε2
uε(1− |uε|2) (CGL)ε

where uε : R+ × R2 → R2 is a complex valued map. Here δ, α and
ε denote positive real parameters, and we will mainly focus on the
asymptotics as ε tends to zero while δ and α are kept fixed. Up to
a change of scale, we may further assume that α = 1, and we set
kε = δ

| log ε| . The complex Ginzburg-Landau equation (CGL)ε reduces

to the Gross-Pitaevskii equation when δ = 0 and to the parabolic
Ginzburg-Landau equation when α = 0. Both the Gross-Pitaevskii
and the Ginzburg-Landau equations have been widely investigated in
the regime which we will consider (see e.g. [8, 17, 14, 4] for the Gross-
Pitaevskii equation and [11, 18, 6] and references therein for the para-
bolic Ginzburg-Landau equation). Typical functions uε in this regime
are given explicitely by

u∗ε(ai, di) :=
l∏

i=1

uε,di
(z − ai) =

l∏
i=1

f1,di

(
|z − ai|

ε

)(
z − ai

|z − ai|

)di

,

where the points ai ∈ R2, di = ±1, and the functions f1,di
: R+ 7→ [0, 1]

which satisfy f1,di
(0) = 0, f1,di

(+∞) = 1 are in some sense optimal
profiles. The points ai are called the vortices of the fields uε and the
di their degrees. This class of functions uε is of course not invariant
by any of the flows corresponding to these equations, but not far from
it1, and it is in particular possible to define notions of point vortices

Date: September 29, 2008.
1see the notion of well-preparedness in Section 1.2
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for solutions of (CGL)ε , at least in an asymptotic way as ε → 0, and
to study their dynamics. This dynamics is eventually governed by a
system of ordinary differential equations, at least before collisions.

Two relevant quantities in the study of vortex dynamics are the
Ginzburg-Landau energy

Eε(u) =

∫
R2

eε(u) dx =

∫
R2

|∇u|2

2
+

(1− |u|2)2

4ε2
dx,

through its energy density eε(u), and the Jacobian

Ju =
1

2
curl(u×∇u)

through its primitive j(u) = u × ∇u. In the regime which we will
consider, one has

eε(uε)

| log ε|
dx ⇀ π

l∑
i=1

δai
and Juε dx ⇀ π

l∑
i=1

diδai

as ε→ 0, which describes asymptotically the positions and the degrees
of the vortices. The quantity eε(uε) was especially used in the study of
the parabolic Ginzburg-Landau equation while j(uε) was used in the
study of the Gross-Pitaevskii equation. Here, we will rely on both of
them.

In the case of the domain being the entire plane R2, which we con-
sider here, the reference fields uε(ai, di) have infinite Ginzburg-Landau
energy Eε whenever d =

∑
di 6= 0. In [7], a notion of renormalized

energy2 for such data was introduced in order to solve the Cauchy
problem for the Gross-Pitaevskii equation. This notion was later used
in [4] in order to study the dynamics of vortices for the Gross-Pitaevskii
equation in the plane. Our definition of well-prepared data below and
part of the subsequent analysis is borrowed from [4].

The complex Ginzburg-Landau equation (CGL)ε , either in the plane
or in the real line, has been vastly considered in the literature, espe-
cially as a model for amplitude oscillation in weakly nonlinear systems
undergoing a Hopf bifurcation (see e.g. [2] for a survey paper). The
mathematical analysis of vortices for (CGL)ε was first sketched in [17],
where it was presented as an alternative approach (a regularized ver-
sion) for the study of the Gross-Pitaevskii equation. We believe how-
ever that the conclusion regarding the dynamics of vortices for (CGL)ε

in [17] is erroneous, and that Theorem 2 yields the corrected version.

After the completion of this work we were informed that Spirn,
Kurzke, Melcher and Moser [15] independently obtained similar results
concerning the dynamics of vortices for (CGL)ε in bounded, simply
connected domains.

2not to be merged with the notion in [3].
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1.1. Renormalized energy and Cauchy Problem. As mentioned
in the introduction, for d =

∑
di 6= 0 the Ginzburg-Landau energy of

u∗ε(ai, di) is infinite. It can actually be computed that∫
R2

|∇|u∗ε(ai, di)||2

2
+

(1− |u∗ε(ai, di)|2)2

4ε2
dz < +∞,

whereas as |z| → +∞,

|∇u∗ε(ai, di)|2(z) ∼
d2

|z|2
,

so that ∫
R2

|∇u∗ε(ai, di)|2

2
= +∞.

The renormalized energy introduced in [7] is obtained by substracting
the diverging part of the gradient at infinity. More precisely, given a
smooth map Ud such that

Ud =

(
z

|z|

)d

on R2 \B(0, 1),

we have as |z| → +∞
|∇u∗ε(ai, di)|2 ∼ |∇Ud|2

and one may define

Eε,Ud
(u∗ε(ai, di)) := lim

R→+∞

∫
B(R)

eε(u
∗
ε(ai, di))−

|∇Ud|2

2
< +∞. (1)

This definition extends to a larger class of functions, and is a useful
ingredient in solving the Cauchy problem. Following [7], we define

V = {U ∈ L∞(R2,C), ∇kU ∈ L2, ∀k ≥ 2, (1− |U |2) ∈ L2, ∇|U | ∈ L2}.
In particular, the space V contains all the maps u∗ε as well as the ref-
erence maps Ud. We state below and prove in the Appendix global
well-posedness in the class V +H1(R2)3.

Theorem 1. Let u0 = U + w0 be in V + H1(R2). Then there ex-
ists a unique global solution u(t) to (CGL)ε such that u(t) ∈ {U} +
H1(R2). If we write u(t) = U + w(t), then w is the unique solution in
C0(R+, H

1(R2)) to{
(kε + i)∂tw = ∆w + fU(w)
w(0) = w0,

(2)

where

fU(w) = ∆U +
1

ε2
(U + w)(1− |U + w|2).

3In [10], the Cauchy problem in local spaces is investigated for a more general
class of complex Ginzburg-Landau equations.
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In addition, w satisfies

w ∈ L1
loc(R+, H

2(R2)) ∩ L∞loc(R∗
+, L

∞(R2)), ∂tw ∈ L1
loc(R+, L

2(R2))

and
w ∈ C∞(R∗

+, C
∞(R2)).

Finally, the functional Eε,U(u) := Eε,U(w) defined by

Eε,U(u) =

∫
R2

|∇w|2

2
−
∫

R2

∆U · w +

∫
R2

(1− |U + w|2)2

4ε2

satisfies

d

dt
Eε,U(u) = −kε

∫
R2

|∂tw|2 dx, ∀t ≥ 0.

As a matter of fact, it follows from an integration by part that if
u ∈ {U} + H1(R2) is as in Theorem 1 and if U satisfies in addition
|∇U(x)| ≤ C√

|x|
, then

Eε,U(u(t)) ≡ Eε,U(u(t)) = lim
R→+∞

∫
B(R)

(eε(u(t))−
|∇U |2

2
) dx.

The functions u∗ε(ai, di) are not H1 perturbations one of the other,
even for fixed d =

∑
di, unless some algebraic relations involving the

ai’s and di’s hold. In order to handle a class of functions containing
them all, it is useful to introduce the following equivalence relation on
the set V :

∀U,U ′ ∈ V , U ∼ U ′ iff

deg∞(U) = deg∞(U ′) and |∇U |2 − |∇U ′|2 ∈ L1(R2).

Denoting by [U ] the corresponding equivalence class of U , we ob-
serve that for any configuration (ai, di) such that

∑
di = d, we have

u∗ε(ai, di) ∈ [Ud]. Therefore the space [Ud] + H1(R2) contains in par-
ticular all H1 perturbations of all reference maps u∗ε of degree d at
infinity.

For a map u in [Ud] +H1(R2), we may now define

Eε,[Ud](u) := lim
R→+∞

∫
B(R)

eε(u)−
|∇Ud|2

2
,

which is a finite quantity. Moreover, for any solution u = u(t) ∈
C0([Ud] +H1(R2)), we infer from Theorem 1 that

d

dt
Eε,[Ud](u) =

d

dt
Eε,U(u) = −kε

∫
R2

|∂tu|2.

The dissipation of Eε,[Ud](u(t)) is therefore exactly the same as the dis-
sipation for the usual Ginzburg-Landau energy in the case of bounded,
simply connected domains.
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1.2. Statement of the result. In the sequel, An denotes the annulus
B(2n+1) \B(2n) for n ∈ N, so that R2 = B(2n0) ∪ (∪n≥n0An).

Definition 1. Let a1, . . . , al be l distinct points in R2, di ∈ {−1,+1}
for i = 1, . . . , l and set d =

∑
di. Let (uε)0<ε<1 be a family of maps

in [Ud] + H1(R2). We say that (uε)0<ε<1 is well-prepared with respect
to the configuration (ai, di) if there exist R = 2n0 > max |ai| and a
constant K0 > 0 such that4

lim
ε→0

‖Juε − π
l∑

i=1

diδai
‖W 1,∞

0 (B(R))∗ = 0, (WP1)

sup
0<ε<1

Eε(uε, An) ≤ K0 ∀n ≥ n0, (WP2)

and

lim
ε→0

(
Eε,[Ud](uε)− Eε,[Ud](u

∗
ε(ai, di))

)
= 0. (WP3)

We can now state our main theorem as follows

Theorem 2. Let (u0
ε)0<ε<1 in [Ud]+H

1(R2) be a family of well-prepared
initial data with respect to the configuration (a0

i , di) with di = ±1, and
let (uε(t))0<ε<1 in C(R+, [Ud] +H1(R2)) be the corresponding solution
of (CGL)ε . Let {ai(t)}{i=1,...,l} denote the solution of the ordinary
differential equationπȧi(t) = Ci

(
δdiI2 − J2

)
∇ai

W, Ci =
−di

1 + δ2

ai(0) = ai, i = 1, . . . , l
(3)

where

I2 =

(
1 0
0 1

)
, J2 =

(
0 −1
1 0

)
and W is the Kirchhoff-Onsager functional defined by

W (ai, di) = −π
∑
i6=j

didj log |ai − aj|.

We denote by [0, T ∗) its maximal interval of existence. Then, for every
t ∈ [0, T ∗), the family (uε(t))0<ε<1 is well-prepared with respect to the
configuration (ai(t), di).

2. Evolution formula for uε

In this section, we recall or derive a number of evolution formulae
involving quantities related to uε which we introduce now.

4Here, Eε(u, B) ≡
∫

B
eε(u).
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2.1. Notations. Throughout this article, we identify R2 and C. Given
x = (x1, x2) ∈ R2, we set x⊥ = (−x2, x1), which in complex notations
reads x⊥ = ix. For z and z′ ∈ C, z · z′ = Re(zz′) denotes the scalar
product and z × z′ = z⊥ · z′ = −Im(zz′) the exterior product of z and
z′ in R2. For a map u : R2 → C, we denote by

j(u) = u×∇u = iu · ∇u = u⊥ · ∇u
the linear momentum and

J(u) = ∂1u× ∂2u = det(∇u)
the Jacobian of u. For u ∈ H1

loc(R2), it can be checked that J(u) =
1
2
curlj(u) in the distribution sense. On the set where u does not vanish,

we have for k = 1, 2

∂ku = ∂ku ·
u

|u|
u

|u|
+ ∂ku ·

iu

|u|
iu

|u|
.

This yields

∂ku = ∂k|u|
u

|u|
+
jk(u)

|u|
u⊥

|u|
, (2.1)

hence we have

∂ku · ∂lu = ∂k|u|∂l|u|+
jk(u)jl(u)

|u|2
(2.2)

and it follows that

|∇u|2 = |∇|u||2 +
|j(u)|2

|u|2
. (2.3)

The Hopf differential of u is defined as

ω(u) = |∂1u|2 − |∂2u|2 − 2i∂1u · ∂2u = 4∂zu∂zu.

It follows from (2.2) that ω(u) may be rewritten in terms of the com-
ponents of ∇|u| and j(u) as

ω(u) = ∂1|u|2 − ∂2|u|2 − 2i ∂1|u|∂2|u|

+
1

|u|2
(
j2
1(u)− j2

2(u)− 2i j1(u)j2(u)
)
.

(2.4)

We recall that the Ginzburg-Landau energy density is defined by

eε(u) =
|∇u|2

2
+

(1− |u|2)2

4ε2
=
|∇u|2

2
+ V (u),

and we set

µε(u) =
eε(u)

| log ε|
.

In view of (2.3), we then have

eε(u) = eε(|u|) +
|j(u)|2

|u|2
. (2.5)
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Finally, we write the right-hand side in (CGL)ε as

∇E(u) = ∇Eε(u) = ∆u+
1

ε2
u(1− |u|2).

2.2. Evolution formulae involving the Jacobian and the energy
density. For a smooth map u in space-time, direct computations by
integration by part yield for the energy

d

dt

∫
R2

eε(u)ϕdx = −
∫

R2

∂tu·∇E(u)ϕdx

−
∫

R2

∇ϕ · (∂tu · ∇u) dx
(2.6)

and for the Jacobian

d

dt

∫
R2

J(u)χdx = −
∫

R2

∇⊥χ · (∂tu
⊥ · ∇u) dx, (2.7)

where χ, ϕ ∈ D(R2).

Also, for any vector field ~X ∈ C1(R2,C) we have (see e.g. [5])∫
R2

~X · (∇E(u) · ∇u) dx = 2

∫
R2

Re
(
ω(u)

∂ ~X

∂z

)
dz −

∫
R2

V (u)∇ · ~X dx.

In particular, the choice of ~X = ∇ϕ or ~X = ∇⊥χ = i∇χ leads to∫
R2

∇ϕ · (∇E(u) · ∇u) dx = 2

∫
R2

Re
(
ω(u)

∂2ϕ

∂z2

)
dz −

∫
R2

V (u)∆ϕdx

and ∫
R2

∇⊥χ · (∇E(u) · ∇u) dx = −2

∫
R2

Im
(
ω(u)

∂2χ

∂z2

)
dz. (2.8)

We next consider a solution u of (CGL)ε , which is smooth in view
of Theorem 1. In this case, ∇E(u) and ∂tu are related by

∂tu =
1

αε

∇E(u) = βε∇E(u), (2.9)

where αε =
δ

| log ε|
+ i = kε + i. Using (2.9) in (2.6) and (2.7), we

obtain

d

dt

∫
R2

eε(u)ϕdx = − δ

| log ε|

∫
R2

|∂tu|2ϕdx−
∫

R2

∇ϕ · (βε∇E(u) · ∇u) dx

and

d

dt

∫
R2

J(u)χdx = −
∫

R2

∇⊥χ · (iβε∇E(u) · ∇u) dx.
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In order to get rid of the terms of the form

∫
R2

~X · (i∇E(u) · ∇u), we

compute

d

dt

∫
R2

(bJ(u)χ− aeε(u)ϕ)

where βε = a+ ib. This yields

d

dt

∫
R2

bJ(u)χ− aeε(u)ϕ = (b2 + a2)

∫
R2

∇⊥χ · (∇E · ∇u) + akε

∫
R2

|∂tu|2 dx

+

∫
R2

(∇ϕ−∇⊥χ) · (a(a+ ib)∇E · ∇u).

Since a =
kε

k2
ε + 1

and b =
−1

k2
ε + 1

, we can multiply (2.10) by k2
ε + 1.

Using finally (2.8), we obtain

Proposition 1. Let u solve (CGL)ε . Then for all ϕ, χ ∈ D(R2),

d

dt

∫
R2

J(u)χ+ kεeε(u)ϕ = −k2
ε

∫
R2

|∂tu|2ϕ+ 2

∫
R2

Im
(
ω(u)

∂2χ

∂z2

)
+Rε(t, ϕ, χ, u),

where the remainder Rε is defined by

Rε(t, ϕ, χ, u) = −kε

∫
R2

(∇ϕ−∇⊥χ) · (βε∇E(u) · ∇u)

or equivalently

Rε(t, ϕ, χ, u) = −kε

∫
R2

(∇ϕ−∇⊥χ) · (∂tu · ∇u).

Proposition 1 allows to derive formally the motion law for the vor-
tices. Indeed, assume that we have

Juε(t) → π
l∑

i=1

diδai(t),

µε(uε)(t) → π
l∑

i=1

δai(t)

and uε(t) is close in some sense to u∗ε(ai(t), di), and therefore to u∗(ai(t), di),
where

u∗(ai, di) =
l∏

i=1

(
z − ai

|z − ai|

)di

.

We use Proposition 1 with u formally replaced by u∗(ai(t), di) and with
choices of test functions ϕ and χ which are localized and affine near
each point ai(t) and satisfy ∇ϕ = ∇⊥χ there, so that both terms
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k2
ε

∫
R2 |∂tu|2ϕ and Rε(t, ϕ, χ, uε) vanish in the limit ε → 0. Using the

formula (see [4])

2

∫
R2

Im

(
ω
(
u∗(ai(t), di)

)∂2χ

∂z2

)
= −π

∑
j 6=i

didj
(ai − aj)

⊥

|ai − aj|2
· ∇χ(ai),

we then obtain that for each i

πdiȧi(t) · ∇χ(ai) + δπȧi(t) · ∇ϕ(ai) = −π
∑
j 6=i

didj
(ai − aj)

⊥

|ai − aj|2
· ∇χ(ai).

Taking into account the fact that ∇ϕ(ai) = ∇⊥χ(ai), we infer that

π
(
diȧi(t)− δȧi

⊥(t)
)
· ∇χ(ai) = −π

∑
j 6=i

didj
(ai − aj)

⊥

|ai − aj|2
· ∇χ(ai),

which yields the ODE (3).

In Section 4 and 5, in order to give a rigorous meaning to the previous
computations, we will prove the convergence of the Jacobians and of
the energy densities to the weighted sum of dirac masses mentioned
above, and then show that both the energy dissipation k2

ε

∫
R2 |∂tu|2ϕ

and the remainder Rε(t, ϕ, χ, uε) vanish asymptotically when ε tends
to zero. Finally, we will establish a control of ω(u∗(ai), di) − ω(uε) or
equivalently of ω(u∗ε(ai), di)− ω(uε) in L1

loc(R2/{ai(t)}).

3. Some results on the renormalized energy

In this section, we study the link between the energy Eε,[Ud] and the
usual Ginzburg-Landau energy on large balls. This may be achieved
for maps having uniform bounded energy on large annuli by defining a
degree at infinity.

3.1. Energy at infinity and topological degree at infinity. Let
A be the annulus B(2)/B(1). We define

Td = {u ∈ H1(A) s.t. ∃B ⊂ B(u), |B| ≥ 3

4
, ∀r ∈ B, deg(u, ∂B(r)) = d}

and

EΛ
ε = {u ∈ H1(A) s.t. Eε(u,A) < Λ}.

The topological sector of degree d is then defined as

SΛ
d,ε = EΛ

ε ∩ Td.

The following Theorem was proved in [1].

Theorem 3. For all Λ > 0, there exists εΛ > 0 such that for every
0 < ε < εΛ, we have

EΛ
ε =

⋃
d∈Z

SΛ
d,ε.
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In the sequel of this section, we fix Λ > Λd = πd2 log(2) and we set

Sd(Λ) ≡ SΛ
d,εΛ

,

so that in particular the map Ud belongs to Sd(Λ).
Let u ∈ [Ud] +H1(R2) and for k ∈ N, set uk : z ∈ A 7→ u(2kz). By

scaling, we find that for every 0 < ε < εΛ, the map uk belongs to EΛ
εΛ

for k ≥ k(ε) sufficiently large and therefore to some topological sector
SΛ

d(k),ε. Thanks to the uniform bound for the energy Eε(uk, A) for large
k, this degree is necessarily identically equal to d.

Proposition 2 ([4], Corollary 3.1). Let d ∈ Z and Λ > Λd. For any
u ∈ [Ud] + H1(R2), there exists an integer n ∈ N∗ such that for all
k ≥ n, the map uk : z ∈ A 7→ u(2kz) belongs to the topological sector
Sd. We denote by n(u,Λ) the smallest integer having this property.
The map u 7→ n(u) = n(u,Λ) is continuous.

We first have the following

Lemma 1. Let Λ > Λd be given. Let u ∈ [Ud] + H1(R2) and assume
that there exists n0 ∈ N∗ such that for all n ≥ n0,

EεΛ
(u,An) < Λ.

Then we have n(u,Λ) ≤ n0.

The definition of n(u) allows to obtain a lower bound for Eε,[Ud] on
annuli.

Lemma 2 ([4], Lemma 3.1). Let d ∈ Z and u ∈ [Ud] +H1(R2). Then,
for any k ≥ n(u), we have for ε < εΛ∫

Ak

[eε(u)−
|∇Ud|2

2
] ≥ −C2−2kε2.

Lemma 3 below provides an upper bound for the Ginzburg-Landau
energy on sufficiently large balls in terms of the excess energy Eε,[Ud](u)−
Eε,[Ud](u

∗
ε). This will enable us to rely on results holding for the Ginzburg-

Landau functional in bounded domains in the proof of Theorem 2.

Lemma 3 ([4], Lemma 3.2). Let d ∈ Z, u ∈ [Ud]+H
1(R2), a1, . . . , al ∈

R2 and d1, . . . , dl ∈ Z∗ such that d =
∑
di. Then, for k ≥ 1 +

max{log1 |a1|, . . . , log2 |al|, n(u)} and R = 2k we have∫
B(R)

eε(u)− eε(u
∗
ε(ai, di)) ≤ Eε,[Ud](u)− Eε,[Ud](u

∗
ε(ai, di)) +

C

R
,

where C depends only on l and d.
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3.2. Explicit identities for the reference map u∗ε. We present here
an account of some classical identities for the energy of u∗ε, which are
borrowed from [4].

In the sequel, we consider a configuration (ai, di) with di ∈ Z∗ and
we set d =

∑
di. We begin with an explicit expansion near each vortex

aj.

Lemma 4. For j ∈ {1, . . . , l} and 0 < ε < 1,∫
B(aj ,r)

eε(u
∗
ε(ai, di)) = πd2

j log(
r

ε
) + γ(|dj|) +O(

r

ra

)2 +O(
ε

r
)2

where γ(|dj|) is some universal constant.

On the other hand, u∗ε(ai, di) behaves as u∗(ai, di) away from the
vortices, so its energy on ΩR,r = B(R) \ ∪B(aj, r) is close to the en-
ergy of u∗(ai, di) on ΩR,r which we can compute explicitely (see [3]).
Combining the previous expansions, we obtain

Proposition 3. Let

ra =
1

8
min
i6=j

{|ai − aj|}, Ra = max{|ai|}.

Then for R > Ra + 1,we have as ε→ 0∫
B(R)

eε(u
∗
ε(ai, di)) = π

l∑
i=1

d2
i | log ε|+W (ai, di) +

l∑
i=1

γ(|di|)

+πd2 logR +O(
Ra

R
) + oε(1).

We observe that as R → +∞, we have π log2R ∼
∫

B(R)
|∇Ud|2

2
. This

yields the following expansion for the renormalized energy

Corollary 1. When ε→ 0, the following holds

Eε,[Ud](u
∗
ε(ai, di)) = π

l∑
i=1

d2
i | log ε|+W (ai, di)

+
l∑

i=1

γ(|di|)−
∫

B(1)

|∇Ud|2

2
+ oε(1).

Concerning the energy on annuli, we finally quote the following result

Lemma 5. For R > Ra, we have∫
B(2R)/B(R)

eε(u
∗
ε(ai, di)) = πd2 log 2 +O

(Ra

R

)
or, in view of the properties of Ud at infinity,∫

B(2R)/B(R)

eε(u
∗
ε(ai, di)) =

∫
B(2R)/B(R)

|∇Ud|2

2
+O

(Ra

R

)
.
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4. Coercivity

In this section, we supplement some results from [4] and [13] with
estimates which we will later need. These results establish precise
estimates in various norms for maps u being close to u∗ε(ai, di) in terms
of the excess energy with respect to the configuration (ai, di). For a
map u ∈ [Ud]+H1(R2) and a given configuration (ai, di) with di = ±1,
we define this excess energy Σε as

Σε = Σε(ai, di) = Eε,[Ud](u)− Eε,[Ud](u
∗
ε(ai, di)).

We also set

ra =
1

8
min
i6=j

{|ai − aj|}, Ra = max
i=1,...,l

{|ai|}.

Theorem 4. Let r ≤ ra and 2n0 = R0 > Ra such that ∪l
i=1B(ai, r) ⊂

B(R0). Then there exist ε0 and η0 depending only on l, r, ra, Ra, R0

satisfying the following property. For all u ∈ [Ud] +H1(R2) such that

η = ‖Ju− π

l∑
i=1

diδai
‖W 1,∞

0 (B(R))∗ ≤ η0 (4.1)

and
2n(u) ≤ R0, (4.2)

then for ε ≤ ε0 we have∫
B(R0)\∪B(ai,r)

eε(|u|) +
1

8

∣∣∣j(u)|u|
− j(u∗(ai, di))

∣∣∣2 ≤ Σε + C(η, ε,
1

R0

),

(4.3)

where C is a continuous function on R3 vanishing at the origin. Fur-
thermore, there exist points bi ∈ B(ai, r/2) such that

‖Ju− π
l∑

i=1

diδbi
‖W 1,∞

0 (B(R0))∗ ≤ f(R0,Σε)ε| log ε| (4.4)

and

‖µε(u)− π
l∑

i=1

δbi
‖W 1,∞

0 (B(R0))∗ ≤
g(R0, r, ra,Σε)

| log ε|
, (4.5)

where f and g are continuous functions on R2 and R4.

Proof. Except for the energy concentration (4.5), each of the other
statements are already proved in Theorem 6.1 of [4]. We first infer from
(4.1) that for all i ‖Ju − πdiδai

‖W 1,∞
0 (B(ai,r))∗

≤ η0. If η0 is sufficiently

small with respect to r this gives in view of Theorem 3 in [13] Ki
0 ≥

C(r), where Ki
0 is the local excess energy near the vortex i defined by

Ki
0 =

∫
B(ai,r)

eε(u)− π log( r
ε
). It follows that∫

B(ai,r)

eε(u) ≤
∫

B(R0)

eε(u)− π(l − 1)| log ε| − C(r).
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On the other hand, since n(u) ≤ n0, we have according to Lemma 3
and Proposition 3∫

B(R0)

eε(u) ≤
∫

B(R0)

eε(u
∗
ε(ai, di)) + Σε +

C

R0

≤ πl| log ε|+ Σε + C.

This first implies that Ki
0 ≤ C + Σε. Also, replacing r by 3r/4 we see

that
∫

B(R0)\∪B(ai,3r/4)
µε(u) ≤ (C + Σε)| log ε|−1, where C only depends

on R0, r, ra, Ra.
Now, according to Theorem 2’ in [13], the energy density µε(u) on

B(ai, r) concentrates at the point bi ∈ B(ai, r/2) where J(uε) concen-
trates. From Theorem 3.2.1 in [9] and the estimate for Ki

0 it follows
that

‖µε(u)− πδbi
‖W 1,∞

0 (B(ai,r))∗
≤ f(Σε, C)

| log ε|
.

Combining the above and the upper bound for the energy density
outside the vortex balls finally yields (4.5). �

5. Convergence to Lipschitz vortex paths

In this section, we establish compactness for the Jacobians and the
energy densities under weaker assumptions on the initial excess energy.
Instead of assuming that this excess energy vanishes initially, we only
require that it is uniformly bounded with respect to ε.

Theorem 5. Let (a0
i , di) with di = ±1 be a configuration of vortices.

Let R = 2n0 and (u0
ε)0<ε<1 in [Ud] +H1(R2) such that

lim
ε→0

‖Juε − π
l∑

i=1

diδa0
i
‖W 1,∞

0 (B(R))∗ = 0, (WP1)

sup
0<ε<1

Eε(uε, An) ≤ K0, ∀n ≥ n0, (WP2)

and

sup
0<ε<1

(
Eε,[Ud](uε)− Eε,[Ud](u

∗
ε(ai, di))

)
≤ K1. (WP3′)

Then there exist R′ = 2n1 and T > 0 depending only on K1, R, ra and
Ra, a sequence εk → 0 and l Lipschitz paths bi : [0, T ] → R2 starting
from a0

i such that

sup
t∈[0,T ]

‖Juεk
(t)− π

l∑
i=1

diδbi(t)‖W 1,∞
0 (B(R′))∗ → 0, k → +∞ (5.1)

and

sup
t∈[0,T ]

‖µεk
(uεk

)(t)− π

l∑
i=1

δbi(t)‖W 1,∞(B(R′))∗ → 0, k → +∞. (5.2)
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Moreover, there exist a constant C0 > 0 depending only on ra, R,K1

and K0 and a constant C1 > 0 depending on ra, R and K1 such that
for all t ∈ [0, T ] and for k ∈ N,

Eεk
(uεk

(t), An) ≤ C0, ∀n ≥ n1 (5.3)

and

Eεk,[Ud] (uεk
(t))− Eεk,[Ud]

(
u∗εk

(bi(t), di)
)
≤ C1. (5.4)

Proof. The proof is very similar to the proof of Theorem 4 in [4]. In
the sequel, C will stand for a constant depending only on ra, R,Ra and
K1.

We first consider Λ > K0. Thanks to Lemma 1 and (WP2), there
exists εΛ > 0 such that for all ε < εΛ, we have n(u0

ε) = n(u0
ε,Λ) ≤ n0.

We fix such a Λ and from now on only consider ε < εΛ.

We next introduce R′ = max(R,Ra + ra) and define n1 ≥ n0 as the
smallest integer for which 2n1 ≤ R′. In the remainder of the proof,
we will assume without loss of generality that R′ = 2n1 and we will
write ‖ · ‖ instead of ‖ · ‖W 1,∞

0 (B(R′))∗ . Our aim is to apply Theorem

4 to each uε(t) for the choice r = ra and R0 = R′. Let η0 and ε0 be
the constants provided by Theorem 4 for this choice. First, thanks to
(WP2) and (WP3′) it turns out that the convergence in (WP1) still holds
on the larger ball B(R′) (see the proof of Lemma 7.3 in [4]). Therefore,
since t 7→ Juε(t) ∈ L1(B(R′)) is continuous for each ε, there exists a
time Tε > 0 such that

‖Juε(s)− π
l∑

i=1

diδa0
i
‖ < η0, ∀s ∈ [0, Tε). (5.5)

We take Tε to be the maximum time smaller than T ∗ having this prop-
erty, where T ∗ is defined in Theorem 2.

On the other hand, since t 7→ Eε(uε(t), An) is continuous uniformly
with respect to n and Λ > K0, we infer from (WP2) that there exists
T ′ε > 0 such that for s ∈ [0, T ′ε]

Eε(uε(s), An) < Λ, ∀n ≥ n1,

so according to Lemma 1 we have n(uε(s)) ≤ n1 for s ∈ [0, T ′ε].
We claim that there exists a constant D depending on K1, ra, R and

K0 such that for all s ∈ [0,min(Tε, T
′
ε)),

Eε(uε(s), An) ≤ D, ∀n ≥ n1. (5.6)

Consequently, if we assume from the beginning that

Λ > max(K0, D),

then it follows from Lemma 1 that n(uε(s)) ≤ n1 on [0,min(Tε, T
′
ε)].

Therefore T ′ε > Tε and the topological degrees of the maps uε(t) at
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infinity remain uniformly bounded by n1 as long as their Jacobians
satisfy (5.5).

Proof of (5.6). As in [4], we decompose for each n ≥ n1 Eε(uε(t), An)−
Eε(u

∗
ε(a

0
i , di), An) as

+∞∑
k=n1
k 6=n

(
Eε(u

∗
ε(a

0
i , di), Ak)− Eε(uε(t), Ak)

)
+ Eε

(
u∗ε(a

0
i , di), B(R′)

)
− Eε (uε(s), B(R′))

+ Eε,[Ud] (uε(s))− Eε,[Ud]

(
u∗ε(a

0
i , di)

)
.

We first handle each term of the sum in the right-hand side. In view
of Lemmas 2 and 5, we have for k ≥ n1

Eε(uε(t), Ak) ≥ −Cε22−2k +

∫
Ak

|∇Ud|2

2

≥ Eε(u
∗
ε(a

0
i , di), Ak)− C(Ra)2

−k − Cε22−2k,

so we deduce that
+∞∑

k=n1
k 6=n

(
Eε(u

∗
ε(a

0
i , di), Ak)− Eε(uε(t), Ak)

)
≤ C.

Next, we infer from the definition of Tε and Theorem 3 in [13] that∫
B(a0

i ,ra)
eε(uε(s)) ≥ π| log ε| − C. Observe that R′ is chosen so that

∪B(a0
i , ra) ⊂ B(R′), so this leads to

Eε (uε(s), B(R′)) ≥ πl| log ε| − C.

Using Proposition 3, we thus find

Eε

(
u∗ε(a

0
i , di), B(R′)

)
− Eε (uε(s), B(R′)) ≤ C. (5.7)

Finally, we define Σ0
ε(s) := Eε,[Ud] (uε(s)) − Eε,[Ud] (u

∗
ε(a

0
i , di)). Since

Eε,[Ud] (uε(t)) is non-increasing, we obtain in view of (WP3′)

Σ0
ε(s) ≤ Eε,[Ud](u

0
ε)− Eε,[Ud]

(
u∗ε(a

0
i , di)

)
≤ K1,

and (5.6) follows.

We may now apply Theorem 4 to each uε(t) on [0, Tε]. This provides

points bεi (s) ∈ B(a0
i ,
ra

2
) for 0 ≤ s ≤ Tε. Since Σ0

ε(s) ≤ K1, estimate

(4.3) turns into∫
ΩR′,ra

eε(|uε(s)|) +
1

8

∣∣∣∣j(uε(s))

|uε(s)|
− j(u∗(a0

i , di))

∣∣∣∣2 ≤ C,

where ΩR′,ra = B(R′) \ ∪B(a0
i , ra). Also, we have by (2.4) and (2.5)∫

ΩR′,ra

eε(uε(s)) ≤ C (5.8)
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and

‖ω(uε(s))‖L1(ΩR′,ra
) ≤ C, (5.9)

where C = C(R, ra, K1). For notation convenience, we may now write
µε instead of µε(uε).

In the sequel, given any configuration (ai, di), we denote by H(ai)
the set of functions χ, ϕ ∈ D(R2) such that

χ =
l∑

i=1

χi, ϕ =
l∑

i=1

ϕi,

where for all i

χi, ϕi ∈ D
(
B(ai,

3ra

2
)
)
, ∇ϕi = ∇⊥χi on B(ai, ra)

and χi (hence ϕi) is affine on B(ai, ra) with |∇χi(ai)| = |∇ϕi(ai)| ≤ 1.
By definition of ra such functions χ and ϕ always exist, and we can

moreover estimate their L∞ norms by

‖Dϕ‖∞, ‖Dχ‖∞ ≤ C

ra

, ‖D2ϕ‖∞, ‖D2χ‖∞ ≤ C

r2
a

.

We next establish a control of the remainder terms appearing in
Proposition 1.

Lemma 6. Assume that sup
0<ε<1

Tε = T∗ is finite. Then there exists a

constant C = C(ra, R,K1, T∗) such that∫ Tε

0

∫
R2

|∂tuε|2

| log ε|2
ds ≤ C

| log ε|
and for all χ, ϕ ∈ H(a0

i )∣∣∣∣∫ Tε

0

∫
R2

(∇⊥χ−∇ϕ) · ∂tuε · ∇uε

| log ε|
ds

∣∣∣∣ ≤ C

| log ε| 12
.

Proof. In order to prove the first inequality, we use Theorem 1 and
obtain

δ

| log ε|

∫ Tε

0

∫
R2

|∂tuε|2 =Eε,[Ud]

(
u0

ε

)
− Eε,[Ud] (uε(Tε))

≤K1 + Eε,[Ud]

(
u∗ε(a

0
i , di)

)
− Eε,[Ud] (uε(Tε)) .

Since n(uε(Tε)) ≤ n1 we have by Lemma 3

Eε,[Ud]

(
u∗ε(a

0
i , di)

)
−Eε,[Ud] (uε(Tε))

≤
∫

B(R′)

eε

(
u∗ε(a

0
i , di)

)
−
∫

B(R′)

eε (uε(Tε)) +
C

R′

which is bounded in view of (5.7). It then suffices to divide all terms
by | log ε|.
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For the second assertion, we set ξ = ∇⊥χ−∇ϕ which has compact
support in A = ∪Ai, where Ai = B(a0

i ,
3ra

2
) \ B(a0

i , ra), and we apply
Cauchy-Schwarz inequality. We obtain(∫ Tε

0

∫
R2

(∇⊥χ−∇ϕ) · ∂tuε · ∇uε

| log ε|

)2

≤
(∫ Tε

0

∫
R2

|∂tuε|2

| log ε|2

)
·
(∫ Tε

0

∫
A

|∇uε|2|ξ|2
)
.

Since A ⊂ ΩR′,ra , we infer from (5.8)∫ Tε

0

∫
A

|∇uε|2|ξ|2 ≤ ‖ξ‖2
∞

∫ Tε

0

∫
A

|∇uε|2 ≤ CT∗‖ξ‖2
∞,

and the conclusion finally follows from the first part of the proof. �

We may now establish the following

Lemma 7. There exists T = T (ra, Ra, R,K1) > 0 such that

lim inf
ε→0

Tε ≥ T.

Proof. The first step consists in showing that for (χ, ϕ) ∈ H(a0
i ), for

s, t ∈ [0, Tε] and i = 1, . . . , l we have∣∣〈χi, Juε(t)− Juε(s)〉+ δ〈ϕi, µε(t)− µε(s)〉
∣∣

≤ C|t− s|+ C

| log ε| 12
.

(5.10)

Indeed, we fix i and we invoke Proposition 1 for u ≡ uε and the choice
of test functions (χi, ϕi). Integrating (2.10) on [s, t] yields

|〈χi, Juε(t)−Juε(s)〉+ δ〈ϕi, µε(t)− µε(s)〉| ≤ 2

∫ t

s

∫ ∣∣∣Im(ω(uε)
∂2χi

∂z2

) ∣∣∣
+

∫ t

s

∫ ∣∣∣∣ |∂tuε|2

| log ε|2
ϕi + (∇⊥χi −∇ϕi) ·

∂tuε · ∇uε

| log ε|

∣∣∣∣ ,
where ∂2χi

∂z2 has support in Ci ⊂ ΩR′,ra , and it finally suffices to use (5.9)
and Lemma 6.

In a second step, we take advantage of the equality

‖Juε(Tε)− π
l∑

i=1

diδa0
i
‖ ≡ η0.

We set

νi,ε = di
bεi (Tε)− a0

i

|bεi (Tε)− a0
i |
, i = 1, . . . , l

and we define χi,ε, ϕi,ε so that for x ∈ B(a0
i , ra),

χi,ε(x) = νi,ε · x, ϕi,ε(x) = ν⊥i,ε · x,
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and we require additionally that χ =
∑
χi,ε and ϕ =

∑
ϕi,ε belong

to H(a0
i ); we can moreover choose ϕi,ε and χi,ε so that their norms in

C2(B(R)) remain bounded uniformly in ε. As bεi (Tε) ∈ B(a0
i , ra/2), we

have

|di||bεi (Tε)− a0
i | = diχ(bεi (Tε)− a0

i ) + δϕ(bεi (Tε)− a0
i ),

so that

‖π
l∑

i=1

di(δbε
i (Tε) − δa0

i
)‖ = 〈π

l∑
i=1

di(δbε
i (Tε) − δa0

i
), χ〉+ δ〈π

l∑
i=1

(δbε
i (Tε) − δa0

i
), ϕ〉.

On the other hand, we have

‖Juε(Tε)− π

l∑
i=1

diδa0
i
‖ ≤ ‖Juε(Tε)− π

l∑
i=1

diδbε
i (Tε)‖+ ‖π

l∑
i=1

di(δbε
i (Tε) − δa0

i
)‖.

The second term in the right-hand side may be rewritten as

〈π
l∑

i=1

di(δbε
i (Tε) − δa0

i
), χ〉+ δ〈π

l∑
i=1

(δbε
i (Tε) − δa0

i
), ϕ〉 = A+B + C,

where

A = 〈π
l∑

i=1

diδbε
i (Tε) − Juε(Tε), χ〉+ δ〈π

l∑
i=1

δbε
i (Tε) − µε(Tε), ϕ〉

≤ C

(
‖Juε(Tε)−

l∑
i=1

diδbε
i (Tε)‖+ δ‖µε(Tε)−

l∑
i=1

δbε
i (Tε)‖

)
,

B is given by

B = 〈Juε(Tε)− Juε(0), χ〉+ δ〈µε(Tε)− µε(0), ϕ〉

and finally

C = 〈Ju0
ε − π

l∑
i=1

diδa0
i
, χ〉+ δ〈µε(u

0
ε)− π

l∑
i=1

δa0
i
, ϕ〉

≤ C

(
‖Ju0

ε −
l∑

i=1

diδa0
i
‖+ δ‖µε(u

0
ε)−

l∑
i=1

δa0
i
‖

)
.

In view of the bound provided by (5.10) for B, estimates (4.4)- (4.5)
and the fact that Σ0

ε(s) ≤ K1 for 0 ≤ s ≤ Tε, this implies

η0 = ‖Juε(Tε)− π
l∑

i=1

diδa0
i
‖ ≤ C(ε| log ε|+ | log ε|−1 + | log ε|−

1
2 ) + CTε,

and letting ε→ 0 yields the conclusion. Lemma 7 is proved. �
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Proof of Theorem 5 completed.
We consider t, s ∈ [0, T ]. Arguing as in the proof of Lemma 7 (with Tε

and 0 replaced by t and s), we find that for all χ, ϕ belonging to H(a0
i )∣∣∣ l∑

i=1

di

[
χ(bεi (t))− χ(bεi (s))

]
+ δ
[
ϕ(bεi (t))− ϕ(bεi (s))

]∣∣∣
≤ C sup

τ∈[0,T ]

(
‖Juε(τ)−

l∑
i=1

diδbε
i (τ)‖+ δ‖µε(τ)−

l∑
i=1

δbε
i (τ)‖

)
+
∣∣〈Juε(t)− Juε(s), χ〉+ δ〈µε(t)− µε(s), ϕ〉

∣∣,
which is bounded by oε(1) + c|t− s| by (4.4)-(4.5) and (5.10). Consid-
ering successively χ(x) = e1 · x and χ(x) = e2 · x on each B(a0

i , ra), we
obtain

|bεi (t)− bεi (s)| ≤ c|t− s|+ oε(1). (5.11)

Next, using that bεi ∈ B(a0
i , ra) and a standard diagonal argument,

we may construct a sequence (εk) → 0 and paths bi(t) such that bεk
i (t)

converges to bi(t) for all t ∈ Q ∩ [0, T ]. We infer then from (4.4)-
(4.5) that the convergence statements (5.1)-(5.2) in Theorem 5 hold for
these times. Moreover, in view of (5.11) these paths are Lipschitz on
[0, T ] ∩ Q, so that they can be extended in a unique way to Lipschitz
paths (still denoted by bi(t)) on the whole of [0, T ]. We can finally
establish that the convergence (5.1)-(5.2) holds uniformly with respect
to t ∈ [0, T ] by using again (5.11) and (4.4)-(4.5).

Finally, we already know from (5.6) that estimate (5.3) holds for
the full family (uε)ε<εΛ

. In order to show (5.4), we recall first the
uniform bound Eε,[Ud] (uε(t)) − Eε,[Ud] (u

∗
ε(a

0
i , di)) ≤ K1. On the other

hand, Corollary 1 gives

Eε,[Ud]

(
u∗ε(a

0
i , di)

)
− Eε,[Ud] (u

∗
ε(bi(t), di)) = W (a0

i , di)−W (bi(t), di) ≤ C,

since the b′is are continuous and remain separated on [0, T ]. This yields
the bound (5.4) and concludes the proof of Theorem 5. �

As mentioned in the beginning of the proof of Theorem 5, the con-
vergence of the initial data in (WP1) actually holds on every large ball
B(L), L = 2n ≥ R, so that we find the same conclusions when replacing
R by L.

Lemma 8 ([4], Lemma 7.3). There exists a subsequence, still denoted
by εk, such that for all L ≥ 2n1,

ηk := sup
[0,T ]

‖Juεk
(t)− π

l∑
i=1

diδbi(t)‖W 1,∞
0 (B(L))∗ → 0, k → +∞.

For t ∈ [0, T ] and sufficiently large k ∈ N, we may therefore apply
Theorem 4 to uεk

(t) with respect to the configuration (bi(t), di) and
with the choice R0 = L = 2n for each n ≥ n1. We are led to introduce
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the excess energy at time t with respect to the configuration (bi(t), di)
by

Σεk
(t) = Eεk,Ud

(uεk
(t))− Eεk,Ud

(
u∗εk

(bi(t), di)
)
,

which is uniformly bounded on [0, T ] in view of (5.4). Letting first k,
then n tend to +∞, we can get rid of the dependance on R in (4.3).

Lemma 9. For all r ≤ ra/2 and K ≥ 2n1, we have for sufficiently
large k and t, t1, t2 ∈ [0, T ]∫

B(K)\∪B(bi(t),r)

eεk
(|uεk

(t)|) +
1

8

∣∣∣j(uεk
(t))

|uεk
(t)|

− j(u∗(bi(t), di))
∣∣∣2

≤ Σεk
(t) + C(εk, ηk,

1

K
).

Therefore, we have as k → +∞

lim sup
k→+∞

∫ t2

t1

∫
B(K)\∪B(bi(t),r)

eεk
(|uεk

(t)|) +
1

8

∣∣∣j(uεk
)(t)

|uεk
(t)|

− j(u∗(bi(t), di))
∣∣∣2

≤ lim sup
k→+∞

∫ t2

t1

Σεk
(t).

Consequently, it appears that the distance between uεk
(t) and u∗(bi(t), di)

may be asymptotically entirely controlled by lim sup Σεk
(t).

We now define the trajectory set

T = {(t, bi(t)), t ∈ [0, T ], i = 1, . . . , l}
and

G = [0, T ]× R2 \ T .
Thanks to the uniform bounds in L2

loc(G) provided by Lemma 9, we
establish the following

Proposition 4. There exists a subsequence, still denoted εk, such that

j(uεk
)

|uεk
|
⇀ j(u∗(bi(·), di))

weakly in L2
loc(G) as k → +∞.

Proof. Let B be any bounded subset of R2. First, we observe that
according to Lemma 8

curl
(
j(uεk

)
)

= 2Juεk
→ 2π

l∑
i=1

diδbi(·) = curl
(
j(u∗(bi(·), di))

)
(5.12)

in D′([0, T ]×B).

On the other hand, we have

div
(
j(uεk

)
)
→ 0 = div

(
ju∗((bi(·), di))

)
(5.13)

in D′([0, T ]×B).
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Indeed, since uεk
solves (CGL)ε we obtain by considering the exterior

product

kεk
uεk

× ∂tuεk
+ uεk

· ∂tuεk
= uεk

×∆uεk
= div

(
j(uεk

)
)
,

so we are led to

div(juεk
) = kεk

uεk
× ∂tuεk

+
1

2
εk
d

dt

(
|uεk

|2 − 1

εk

)
. (5.14)

Now, applying Lemma 3 to uεk
, we find

sup
[0,T ]

Eεk
(uεk

(t), B) ≤ πl| log ε|+ Σεk
(t) + C ≤ πl| log ε|+ C, (5.15)

where the second inequality is itself a consequence of (5.4). This implies
first that |uεk

| → 1 in L2([0, T ]×B). Moreover, we infer that the second
term in the r.h.s of (5.14) converges to zero in the distribution sense on
[0, T ]×B. For the first one, it suffices to use Cauchy-Schwarz inequality
combined with the L2 bound provided by Lemma 6 and the already
mentioned uniform bounds of |uεk

| in L2
loc.

We then infer from Lemma 8 and (5.15) that j(uεk
) is uniformly

bounded in Lp
loc([0, T ] × R2) for all p < 2. This is e.g. a consequence

of Theorem 3.2.1 in [9] and the remarks that follow. We deduce from
(5.12) and (5.13) that up to a subsequence, we have

j(uεk
) ⇀ j1 = j(u∗(bi(·), di)) +H (5.16)

weakly in Lp
loc([0, T ]× R2), where H is harmonic in x on [0, T ]× R2.

On the other hand, it follows from the first part of Lemma 9 that
there exists j2 such that, taking subsequences if necessary, j(uεk

)/|uεk
|⇀

j2 weakly in L2
loc(G).

Taking into account the strong convergence |uεk
| → 1 in L2

loc([0, T ]×
R2), we obtain j1 = j2 ∈ L2

loc(G). The second part of Lemma 9 com-
bined with (5.16) then yields

‖H‖L2
loc(G) ≤ lim inf

k→+∞
‖j(uεk

)

|uεk
|
− j(u∗(bi, di))‖L2

loc(G) ≤ CT,

where C depends only on K1, R and ra, so finally ‖H‖L2([0,T ]×R2) ≤
CT . Since H is harmonic in x, we find that H(t, ·) is bounded on R2

for almost every t and therefore is identically zero. We end up with
j1 = j2 = j(u∗(bi(·), di)) in G, and the conclusion follows. �

6. Proof of Theorem 2

In this section, we present the proof of Theorem 2. We let {bi(t)} be
the l Lipschitz paths on [0, T ] provided by Theorem 5 and {ai(t)} be
the unique maximal solution defined on I = [0, T ∗) to (3) with initial
conditions a0

i . Our aim is to show that ai(t) ≡ bi(t) on I. We will first
prove that this holds on [0, T ]. By Rademacher’s Theorem, the time
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derivatives ḃi(t) exist and are bounded almost everywhere on [0, T ].
Without loss of generality, we may assume T < T ∗, so that

|ȧi(t)| ≤ C, |ḃi(t)| ≤ C, a.e. on [0, T ]. (6.1)

Moreover, we may assume, decreasing possibly T , that |ai(t)− bi(t)| ≤
ra/2 for all i. Hence, the trajectories ai(t) remain in B(a0

i , ra) on [0, T ].
We introduce

h(t) =
l∑

i=1

∫ t

0

|ȧi(s)− ḃi(s)| ds, σ(t) =
l∑

i=1

|ai(t)− bi(t)|,

then h is Lipschitz on [0, T ] and for almost every t ∈ [0, T ] we have

h′(t) =
∑l

i=1 |ȧi(t)− ḃi(t)|. Note that since σ is absolutely continuous
and σ(0) = 0, we have for all t ∈ [0, T ]

σ(t) =

∫ t

0

σ′(s) ds ≤ h(t)

therefore it suffices to show that h is identically zero on [0, T ]. This
will be done by mean of Gronwall’s Lemma.

Lemma 10. For all t1, t2, t ∈ [0, T ], we have

lim sup
k→+∞

Σεk
(t) ≤ Ch(t)

and

lim sup
k→+∞

∫ t2

t1

Σεk
(s) ds ≤ C

∫ t2

t1

h(s) ds,

where C only depends on ra, K0, Ra.

Proof. For t ∈ [0, T ], we decompose Σεk
(t) as

Σεk
(t) = Eεk,[Ud] (uεk

(t))− Eεk,[Ud](u
0
εk

) + Σεk
(0)

+ Eεk,[Ud]

(
u∗εk

(a0
i , di)

)
− Eεk,[Ud]

(
u∗εk

(bi(t), di)
)
.

Appealing to Corollary 1 and Theorem 1, we obtain

Σεk
(t) = −δ

∫ t

0

∫
R2

|∂tuεk
|2

| log εk|
+Σεk

(0)+W (a0
i , di)−W (bi(t), di)+oεk

(1).

Using that W is Lipschitz away from zero, we estimate the last term
as follows

W (a0
i , di)−W (bi(t), di) = W (a0

i , di)−W (ai(t), di) +W (ai(t), di)−W (bi(t), di)

≤ −
∫ t

0

l∑
i=1

ȧi(s) · ∇ai
W (s) ds+ Cσ(t).

Since the ai solve the Cauchy problem (3), an explicit computation
gives

ȧi(s) · ∇ai
W (s) =

δ

π
Cidi|∇ai

W |2 = −δπ|ȧi(s)|2,
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so that

Σεk
(t) ≤ Σεk

(0) + δπ

∫ t

0

l∑
i=1

|ȧi(s)|2 ds− δ

∫ t

0

∫
R2

|∂tuεk
|2

| log εk|
+ Cσ(t) + oεk

(1).

We handle next the energy dissipation in the right-hand side. In view of
Lemma 6, we have

∫
[0,T ]×R2 |∂tuεk

|2 ≤ C| log εk|, whileEεk
(uεk

, B(R′)) ≤
πl| log εk|+ C. Applying Corollary 7 in [19] to (uεk

), we obtain

lim inf
k→+∞

∫ t

0

∫
R2

|∂tuεk
|2

| log εk|
≥ π

l∑
i=1

∫ t

0

|ḃi(t)|2 ds. (6.2)

Now, we have thanks to (6.1)

l∑
i=1

∫ t

0

(
|ȧi(s)|2 − |ḃi(s)|2

)
≤ C

l∑
i=1

∫ t

0

|ȧi(s)− ḃi(s)| ds = Ch(t),

whereas Σεk
(0) → 0 by assumption, hence we get

lim sup
k→+∞

Σεk
(t) ≤ C (σ(t) + h(t)) .

Applying Fatou’s Lemma in (6.2) finally also provides the correspond-
ing integral version, and lastly, it suffices to use that σ ≤ h. �

As suggested in the introduction, the map u∗(ai(t), di) solves the
evolution formula given in Proposition 1 in the asymptotics ε→ 0.

Lemma 11. We have for t ∈ [0, T ] and χ, ϕ ∈ H(a0
i )

π
d

dt

l∑
i=1

diχ (ai(t)) + δϕ (ai(t)) = 2

∫
R2

Im

(
ω (u∗(ai(t), di))

∂2χ

∂z2

)
.

Proof. We use the following formula proved in [5], valid for any config-
uration (ai, di) and any test function χ which is affine near the point
vortices .

2

∫
R2

Im

(
ω(u∗(ai(t), di))

∂2χ

∂z2

)
= −π

∑
i6=j

didj
(ai(t)− aj(t))

⊥

|ai(t)− aj(t)|2
· ∇χ(ai(t)).

On the other hand, we compute

d

dt

(
l∑

i=1

diχ(ai) + δϕ(ai)

)
=

l∑
i=1

(
di∇χ(a0

i ) · ȧi(t) + δ∇ϕ(a0
i ) · ȧi(t)

)
=

l∑
i=1

di∇χ(a0
i ) ·
(
ȧi(t)− δdiȧi

⊥(t)
)
,

where the second equality follows from the relation ∇ϕ(a0
i ) = ∇⊥χ(a0

i ).
Next, we deduce from (3)

π
(
ȧi(t)− δdiȧi

⊥(t)
)

= −Ci(1 + δ2d2
i )∇⊥

ai
W = di∇⊥

ai
W,
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and we obtain

π
d

dt

(
l∑

i=1

diχ(ai) + δϕ(ai)

)
=

l∑
i=1

∇χ(ai) · ∇⊥
ai
W

= −π
∑
i6=j

didj
(ai − aj)

⊥

|ai − aj|2
· ∇χ(ai),

which yields the conclusion. �

Lemma 12. Set A = ∪B(a0
i , 2ra) \ B(a0

i , ra) and let t1, t2 ∈ [0, T ].
Then for all ϕ ∈ D(A), we have

lim sup
k→+∞

∣∣∣∣∫ t2

t1

∫
A

(ω (uεk
(s))− ω (u∗(bi(s), di)))ϕ

∣∣∣∣ ≤ C‖ϕ‖∞
∫ t2

t1

h(s) ds.

Proof. We apply the pointwise equality (2.4) to u ≡ uεk
(t) and u∗ ≡

u∗(bi(t), di) for all t. Since |u∗(bi(t), di)| = 1, this gives

ω(u)− ω(u∗) =
2∑

k,l=1

(
ak,l∂l|u|∂k|u|+ bk,l

[jk(u)
|u|

jl(u)

|u|
− jk(u

∗)jl(u
∗)
])
,

where ak,l, bk,l ∈ C. We rewrite the terms involving the components of
j as

jk(u)

|u|
jl(u)

|u|
− jk(u

∗)jl(u
∗) =

(jk(u)
|u|

− jk(u
∗)
)(jl(u)

|u|
− jl(u

∗)
)

+jk(u
∗)
(jl(u)
|u|

− jl(u
∗)
)

+ jl(u
∗)
(jk(u)
|u|

− jk(u
∗)
)
.

We multiply the previous equality by ϕ, integrate on [t1, t2]×A and let k
go to +∞. Using the weak convergence in L2 of j(uεk

) to j(u∗(bi(.), di))
on [0, T ]×A ⊂ G combined with the fact that ju∗(bi(.), di) is bounded
on this set, we deduce

lim sup
k→+∞

∣∣∣ ∫ t2

t1

∫
A

(
ω (uεk

(s))− ω (u∗(bi(s), di))
)
ϕ
∣∣∣

≤ c‖ϕ‖∞ lim sup
k→+∞

∫ t2

t1

∫
A

(
|∇|uεk

||2 +
∣∣∣ juεk

|uεk
|
− ju∗(bi, di)

∣∣∣2).
The conclusion finally follows from Lemmas 9 and 10. �

We are now in position to complete the proof of Theorem 2. We
consider arbitrary χ, ϕ belonging to H(a0

i ), we fix 0 ≤ s ≤ t ≤ T and
we integrate the evolution formula (2.10) on [s, t]. We obtain∫ t

s

d

dτ

∫
R2

Juεk
(τ)χ+ δ

∫
R2

µεk
(τ)ϕ =

∫ t

s

g1
k(τ) +

∫ t

s

g2
k(τ),

where

g1
k(τ) = −δ

∫
R2

|∂tuεk
|2

| log εk|2
+Rεk

(τ, χ, ϕ, uεk
)



25

and

g2
k(τ) = 2

∫
R2

Im
(
ω(uεk

(τ))
∂2χ

∂z2

)
,

which we decompose as

g2
k = 2

∫
R2

Im

([
ω(uεk

)− ω(u∗(bi, di))
]∂2χ

∂z2

)
+ 2

∫
R2

Im

([
ω(u∗(bi, di))− ω(u∗(ai, di))

]∂2χ

∂z2

)
+ 2

∫
R2

Im

(
ω(u∗(ai, di))

∂2χ

∂z2

)
= Ak(τ) +Bk(τ) + Ck(τ).

We next substitute the formula given by Lemma 11 for Ck in the pre-
vious equalities. Setting

fk,χ,ϕ(τ) =

∫
R2

Juεk
(τ)χ+δ

∫
R2

µεk
(τ)ϕ−π

l∑
i=1

(
diχ(ai(τ))+δϕ(ai(τ))

)
,

we obtain

fk,χ,ϕ(t)− fk,χ,ϕ(s) =

∫ t

s

gk
1 +

∫ t

s

Ak +

∫ t

s

Bk.

Lemma 6 with Tε = T first gives |
∫ t

s
gk
1(τ) dτ | ≤ C| log εk|−

1
2 for all k.

Moreover, it follows from Lemma 12 and the fact that supp ∂2χ
∂z2 ⊂ A

that

lim sup
k→+∞

∣∣∣ ∫ t

s

Ak(τ) dτ
∣∣∣ ≤ C

∫ t

s

h(τ) dτ.

Finally, we infer from the regularity of ω(u∗) away from the vortices
that ∫ t

s

|Bk(τ)| dτ ≤ C

∫ t

s

σ(τ) dτ ≤ C

∫ t

s

h(τ) dτ.

Letting k go to +∞, we finally deduce from the convergence statements
in Theorem 5 that for 0 ≤ s ≤ t ≤ T ,

|fχ,ϕ(t)− fχ,ϕ(s)| ≤ C

∫ t

s

h(τ) dτ, (6.3)

where fχ,ϕ is defined by

fχ,ϕ = π

l∑
i=1

[
di

(
χ(bi)− χ(ai)

)
+ δ
(
ϕ(bi)− ϕ(ai)

)]
.

Here the constant C depends only on χ, ϕ and the initial conditions.

We now fix a time t ∈ [0, T ] at which all the vortices bi have a time
derivative. Since the ai are C1, it follows that fχ,ϕ is differentiable at
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t with time derivative given by

f ′χ,ϕ(t) = π
l∑

i=1

(
di∇χ(a0

i ) + δ∇⊥χ(a0
i )
)
·
(
ḃi(t)− ȧi(t)

)
.

Dividing by t− s in (6.3) and letting s→ t gives then∣∣∣π l∑
i=1

(
di∇χ(a0

i ) + δ∇⊥χ(a0
i )
)
·
(
ḃi(t)− ȧi(t)

)∣∣∣ ≤ C h(t).

So, considering in particular χ, ϕ ∈ H(a0
i ) such that χ and ϕ vanish

near each point a0
i except for one, we obtain for all i = 1, . . . , l∣∣∣π(di∇χ(a0

i ) + δ∇⊥χ(a0
i )
)
·
(
ḃi(t)− ȧi(t)

)∣∣∣ ≤ C h(t).

Choosing then successively χ(x) = x1 and χ(x) = x2 near a0
i we end

up with |ḃi(t)− ȧi(t)| ≤ Ch(t), and it follows by summation

h′(t) ≤ Ch(t) a.e. t ∈ [0, T ].

Since h(0) = 0, this implies that h = 0 on [0, T ], and hence σ = 0
on [0, T ]. Applying Lemma 10, we infer that lim supk→+∞ Σεk

(t) ≤ 0.
Besides, Lemma 3 yields for all L ≥ 2n1

lim inf
k→+∞

Σεk
(t) ≥ lim inf

k→+∞

(∫
B(L)

eεk
(uεk

(t))− eεk

(
u∗εk

(ai(t), di)
) )

− C

L

≥ −C
L
,

where the second inequality is a consequence of the convergence of Ja-
cobians on B(L) stated in Lemma 8 (see [13, 17]). Letting L tend to
+∞, we obtain lim infk→+∞ Σεk

(t) ≥ 0, so we deduce from (5.3) that
(uεk

(t))k∈N is well-prepared with respect to the configuration (ai(t), di).
By uniqueness of the limit, this finally holds for the full family (uε(t))0<ε<1

on [0, T ].
In conclusion, we observe that in our definition T only depends on

K1, ra and max(R,Ra + ra), so that we can extend our results to the
whole of [0, T ∗) by repeating the previous arguments.

Appendix

We present here the proof of Theorem 1. We omit the dependence
on ε and rewrite (2) in the following way{

∂tw = (a+ ib)
(
∆w + fU0(w)

)
,

w(0) = w0 ∈ H1(R2),
(CGL)

where

fU0(w) = ∆U0 + (U0 + w)(1− |U0 + w|2),
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a is positive and b ∈ R. We denote by S = S(t, x) the semi-group
operator associated to the corresponding homogeneous linear equation.
Every solution to (CGL) satisfies the Duhamel formula

w(t, ·) = S(t, ·) ∗ w0 +

∫ t

0

(
S(t− s, ·) ∗ gU0(w(s), ·)

)
ds,

where gU0 = (a+ ib)fU0 . The kernel S is explicitly given by

S(t, x) =
1

4π(a+ ib)t
exp(

−|x|2

4(a+ ib)t
).

Since a is positive, S decays at infinity like the standard heat Kernel.
This will enable us to show that (CGL) enjoys the same smoothing
properties as the parabolic Ginzburg-Landau equation. In particular,
we have for all 1 ≤ r ≤ +∞ and for all t > 0

‖S(t, ·)‖Lr(R2) ≤
1

t1−
1
r

(a)

and concerning the space derivatives of S(t),

‖DkS(t, ·)‖Lr(R2) ≤
C(a, b)

t
|k|
2

+1− 1
r

. (b)

We will often use Young’s inequality that gives for f ∈ Lp(R2) and
g ∈ Lq(R2) ‖f ∗ g‖Lr(R2) ≤ ‖f‖Lp(R2)‖g‖Lq(R2), where 1+ 1

r
= 1

p
+ 1

q
. We

first state local well-posedness for (CGL).

Proposition A.1. Let w0 ∈ H1(R2). Then there exists a positive time
T ∗ depending on ‖w0‖H1 and a unique solution w ∈ C0([0, T ∗), H1(R2))
to (CGL).

Proof. We intend to apply the fixed point theorem to the map ψ : w ∈
H1(R2) 7→ ψ(w), where

ψ(w)(t) = S(t) ∗ w0 +

∫ t

0

S(t− s) ∗ gU0(w(s)) ds.

To this aim, we introduce R = ‖w0‖H1(R2) and for T > 0

B(T,R) = {w ∈ L∞([0, T ], H1(R2)) s.t. ‖w‖L∞(H1) ≤ 3R}.
We next show that we can choose T = T (R) so that ψ maps B(T (R), R)
into itself and is a contraction on this ball.

For T > 0, we let w ∈ B(T,R) and expand fU0(w). Using that
H1(R2) is continuously embedded in Lp(R2) for all 2 ≤ p < +∞ and
the fact that U0 belongs to V , it can be shown that 5

‖fU0‖L∞([0,T ],L2) ≤ C(U0, R), (c)

and for w1, w2 ∈ B(T,R)

‖fU0(w1)− fU0(w2)‖L∞([0,T ],L2) ≤ C(U0, R)‖w1 − w2‖L∞([0,T ],H1). (d)

5see Lemma 1 in [7].
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We next apply Young’s inequality to obtain

‖ψ(w)(t)‖H1 ≤ ‖ψ(w)(t)‖L2 + ‖∇ψ(w)(t)‖L2

≤ 2‖S(t)‖L1‖w0‖H1 +

∫ t

0

‖S(t− s) +∇S(t− s)‖L1‖gU0(s)‖L2 ds

≤ 2‖w0‖H1 + C

∫ t

0

(
1 + (t− s)−

1
2

)
‖gU0(w(s))‖L2 ds,

where the last inequality is a consequence of (a) and (b) with the choice
r = 1. This yields according to (c) and (d)

sup
t∈[0,T ]

‖ψ(w)(t)‖H1 ≤ 2‖w0‖H1 + C(U0, R)(T +
√
T )

and similarly,

sup
t∈[0,T ]

‖ψ(w1)(t)−ψ(w2)(t)‖H1 ≤ C ′(U0, R)(T+
√
T ) sup

t∈[0,T ]

‖w1(t)−w2(t)‖H1 .

The conclusion follows by choosing T = T (R) sufficiently small so that

2‖w0‖H1 + C(U0, R)(T +
√
T ) ≤ 3R and C ′(U0, R)(T +

√
T ) < 1. �

We next show additional regularity for a solution to (CGL).

Lemma A.1. Let w ∈ C0([0, T ], H1(R2)) be a solution to (CGL).
Then w belongs to L1

loc([0, T ], H2(R2)) ∩ C0((0, T ], H2(R2)) and there-
fore to L1

loc([0, T ], L∞(R2)).

Proof. We first differentiate fU0(w) and use Lemma 2 in [7] which
states by mean of various Sobolev embeddings, Hölder and Gagliardo-
Nirenberg inequalities that

∂ifU0(w) = g1(w) + g2(w) ∈ L∞([0, T ], L2(R2)) + L∞([0, T ], Lr(R2))

for all 1 < r < 2. Moreover, we have

sup
s∈[0,T ]

‖g1(w)(s)‖L2(R2) + ‖g2(w)(s)‖Lr(R2) ≤ C(U0, A(T ), r),

whereA(T ) = sups∈[0,T ] ‖w(s)‖H1(R2). Next, differentiating twice Duhamel
formula gives

∂ijw(t) = ∂jS(t) ∗ ∂iw0 +

∫ t

0

∂jS(t− s) ∗ ∂ifU0(s) ds,

so taking into account the decomposition ∂ifU0 = g1 + g2 we get

‖∂ijw(t)‖L2 ≤ ‖∇S(t)‖L1‖∇w0‖L2 +

∫ t

0

‖∇S(t− s)‖L1‖g1(s)‖L2 ds

+

∫ t

0

‖∇S(t− s)‖Lα‖g2(s)‖Lr ds,
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where α is chosen so that 1 + 1
2

= 1
α

+ 1
r
. This finally yields in view of

(b)

‖∂ijw(t)‖L2 ≤ C

t
1
2

‖w0‖H1 + C(U0, A(T ), r)

∫ t

0

(
(t− s)−

1
2 + (t− s)−

1
2
−1+ 1

α

)
ds.

Since 1
2
+ 1− 1

α
= 1

r
< 1, we conclude that the right-hand side is finite,

so that ∂ijw(t) ∈ L2(R2). �

Lemma A.1 enables to show that the renormalized energy is non-
increasing and to establish a control of the growth of ‖w(t)‖H1(R2). For
equation (CGL), this energy is given by

EU0(w)(t) =

∫
R2

|∇w|2

2
−
∫

R2

∆U0 · w +

∫
R2

(1− |U0 + w|2)2

4
.

It is well-defined and continuous in time for w ∈ C0(H1(R2)).

Lemma A.2. Let w ∈ C0([0, T ), H1(R2)) be a solution to (CGL).
Then for all t ∈ (0, T ) we have

d

dt
EU0(w)(t) ≤ 0.

Moreover, there exists C depending only on ‖w0‖H1 and U0 such that

‖w(t)‖H1 ≤ ‖w0‖H1 exp(Ct), ∀t ∈ [0, T ). (e)

Proof. We infer from equation (CGL) and Lemma A.1 that ∂tw belongs
to L∞loc((0, T ], L2(R2)), so that we may compute

d

dt
EU0(w(t)) =

∫
R2

∇w · ∇∂tw −∆U0 · ∂tw − ∂tw · (U0 + w)(1− |U0 + w|2)

= −
∫

R2

∂tw · (∆w + fU0(w))

= −
∫

R2

∂tw · (
1

a+ ib
∂tw) =

−a
a2 + b2

∫
R2

|∂tw|2 ≤ 0.

We now turn to (e). We compute for t ∈ (0, T )

1

2

d

dt
‖w(t)‖2

L2(R2) =

∫
R2

w · ∂tw =

∫
R2

w · [(a+ ib)∆w] +

∫
R2

w · [(a+ ib)fU0(w)]

= −a
∫

R2

|∇w|2 +

∫
R2

w · (a+ ib)∆U0

+

∫
R2

w · [(a+ ib)(U0 + w)(1− |U0 + w|2)].

We then split the last term in the previous equality as∫
R2

w · [(a+ ib)(U0 + w)(1− |U0 + w|2)] =

∫
R2

w · [(a+ ib)U0(1− |U0 + w|2)]

+ a

∫
R2

|w|2(1− |U0 + w|2).
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The second term in the r.h.s. is clearly bounded by a‖w(t)‖L2(R2).
Using Cauchy-Schwarz inequality for the first one, we obtain∫

R2

w · [(a+ ib)(U0 + w)(1− |U0 + w|2)] ≤ C(U0)‖w(t)‖L2V (t)
1
2 + a‖w(t)‖2

L2 ,

where V (t) =
∫

R2(1− |U0 + w(t)|2)2. We are led to

d

dt
‖w(t)‖2

L2(R2) ≤ C(U0)(‖w(t)‖2
L2 + 1 + V (t)). (f)

On the other hand, Cauchy-Schwarz inequality gives

EU0(w)(t) ≥
∫

R2

|∇w|2

2
dx− C(U0)‖w(t)‖L2 +

V (t)

4
,

which yields, since EU0 is non-increasing,

V (t)

4
+

∫
R2

|∇w|2

2
≤ EU0(w0) + C(U0)‖w(t)‖L2 . (g)

We infer from (f) and (g)

‖w(t)‖L2 ≤ (1 + ‖w0‖H1) exp(Ct)

and finally deduce (e) by using (g) once more. �

Lemma A.2 provides global well-posedness for (CGL).

Proposition A.2. Let w0 ∈ H1(R2). Then there exists a unique and
global solution w ∈ C0(R+, H

1(R2)) to (CGL).

Proof. Let w ∈ C0([0, T ∗), H1(R2)) be the unique maximal solution
with initial condition w0. If T ∗ is finite, we have according to (e)

lim sup
t→T ∗

‖w(t)‖H1(R2) ≤ C(U0, T
∗, w0) < +∞,

so that we can extend w to a solution w on [0, T ∗ + δ]. This yields a
contradiction. �

We conclude this section with the following

Proposition A.3. Let w ∈ C0(R+, H
1(R2)) be the solution to (CGL).

Then we have w ∈ C∞(R∗
+, C

∞(R2)).

Proof. We proceed in several steps.

Step 1 Let p ≥ 2 and v ∈ Hp(R2). Then DkfU0(v) ∈ L2(R2) +L
4
3 (R2)

for all |k| ≤ p.

Proof of Step 1. We may assume in view of the proof of Lemma A.1
that |k| ≥ 2. We decompose fU0(v) as fU0(v) = ∆U0 + hU0(v), where

hU0(v) = (U0 + v)(1− |U0 + v|2).
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Since U0 ∈ V , it suffices to show that DkhU0(v) ∈ L2(R2) + L
4
3 (R2).

Applying Leibniz’s formula to hU0(v), we obtain

DkhU0(v) =
∑
m≤k

(
k

m

)
Dk−m(U0 + v)Dm(1− |U0 + v|2)

= Dk(U0 + v)

−
∑
m≤k
n≤m

(
k

m

)(
m

n

)
Dk−m(U0 + v)Dn(U0 + v) ·Dm−n(U0 + v).

Since 2 ≤ |k| ≤ p, v ∈ Hp(R2) and U0 ∈ V , we clearly haveDk(U0+v) ∈
L2(R2).

For the second term in the right-hand side, we write each product
inside the sum as

Da(U0 + v)Db(U0 + v) ·Dc(U0 + v)

with |a|+ |b|+ |c| = |k| ≥ 2, and we examine all cases. We observe that
Da(v + U0) belongs to H1(R2) whenever 1 ≤ |a| ≤ p− 1 and hence to
L4(R2), whereas Da(v + U0) belongs to L2(R2) for 2 ≤ |a| ≤ p. Since
on the other hand U0 + v ∈ L∞, we finally obtain

Da(U0 + v)Db(U0 + v) ·Dc(U0 + v) ∈ L2(R2) + L
4
3 (R2),

which yields the conclusion.

We now turn to the regularity in space for a solution to (CGL).

Step 2 Let w ∈ C0(R+, H
1(R2)) be the solution to (CGL). Then for

all p ≥ 1 we have w ∈ C0(R∗
+, H

p(R2)).

Proof of Step 2. We proceed by induction on p. The case p = 2
has already been treated in Lemma A.1. Let us thus assume that
w ∈ C0(R∗

+, H
p(R2)) for some p ≥ 2. For |k| ≤ p + 1, we differentiate

w(t) and we find

Dkw(t) = Dk(S(t) ∗ w0) +Dk

∫ t

0

S(t− s) ∗ gU0(s) ds

which we rewrite as

Dkw(t) = DkS(t) ∗ w0 +

∫ t/2

0

(DkS(t− s)) ∗ gU0(s) ds

+

∫ t

t/2

DmS(t− s) ∗Dk−mgU0(s) ds,

where m is a multi-index so that |m| = 1.
First, it follows from (b) that t 7→ DkS(t) ∗ w0 ∈ C0(R∗

+, L
2(R2)).

Next, arguing that gU0 ∈ C0(R+, L
2(R2)) and using (b) with r = 1, we
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find∥∥∥∫ t/2

0

(DkS(t− s)) ∗ gU0(s) ds
∥∥∥

L2
≤ C

∫ t/2

0

ds

(t− s)
|k|
2

≤ C

t
|k|
2
−1
.

On the other hand, since |k−m| = |k|− 1 ≤ p and since by assump-
tion w(s) ∈ Hp(R2), Step 1 provides the decomposition

Dk−mgU0(s) = d1(s) + d2(s)

where d1 belongs to C0(R∗
+, L

2(R2)) and d2 to C0(R∗
+, L

4
3 (R2)). It

follows from (b) that∥∥∥∫ t

t/2

DmS(t− s) ∗Dk−mgU0(s) ds
∥∥∥

L2
≤
∫ t

t/2

‖∇S(t− s)‖L1‖d1(s)‖L2 ds

+

∫ t

t/2

‖∇S(t− s)‖Lr‖d2(s)‖
L

4
3
ds

≤ C(t)

∫ t

t/2

(
(t− s)−

1
2 + (t− s)−

1
2
−1+ 1

r

)
ds,

where r satisfies 1+ 1
2

= 1
r
+ 3

4
. The last term is finite since 1

2
+1− 1

r
=

3
4
< 1, so we infer that w ∈ C0(R∗

+, H
p+1(R2)), as we wanted.

Step 3 Let w ∈ C0(R+, H
1(R2)) be the solution to (CGL). Then we

have w ∈ Ck(R∗
+, C

l(R2)) for all k, l ∈ N.

Proof of Step 3. For fixed k, l ∈ N, we show by induction on 0 ≤ j ≤ k
that w ∈ Cj(R∗

+, C
l+2k−2j(R2)).

This holds for j = 0 according to Step 2 and to Sobolev embeddings.
We assume next that w ∈ Cj(R∗

+, C
l+2k−2j(R2)) for some 0 ≤ j ≤ k−1,

and it follows that

∆w, fU0(w) ∈ Cj(R∗
+, C

l+2k−2j−2(R2)).

So, going finally back to equation (CGL), we obtain

w ∈ Cj+1(R∗
+, C

l+2k−2j−2(R2)).

This concludes the proof of Proposition A.3.
�
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