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Refined Instrumental Variable Methods for Identification of
Hammerstein Continuous-time Box-Jenkins Models

V. Laurair®, M. Gilsor*, H. Garniet, P.C. Young*

Abstract— This article presents instrumental variable meth- etk H,(q)
ods for direct continuous-time estimation of a Hammerstein °
model. The non-linear function is a sum of known basis
functions and the linear part is a Box—Jenkins model. Althogh &(tk)
the presented algorithm is not statistically optimal, thispaper ¢ alt 2(t N
further shows the performance of the presented algorithms M» () ®) Go(p) ® / ( k);d./ y(ts)

and the advantages of continuous-time estimation on relewa
simulations.

Fig. 1. Hammerstein block representation

. INTRODUCTION

The need for non-linear identification grows as the studied ) ) o )
system complexity increases and non-linear models apply pyoducing an unbla_sed estimation |ndeper_1dently_ on theenois
many fields [13]. Many different approaches were developg@#odel assumed with an acceptable variance in parameter
to deal with black-box model identification, whether theyeStimation in many practical cases. Moreover, an optimal
are non parametric, using Volterra series approach [1cgh0|ce of these instruments leads to a minimal variance
semi-parametric using neural network methods and supp&gtimator [19], [22]. o _ _
vector machine classification [15], [8], or parametric such The_refor_e, the main contribution of th_ls paper is to present
as state dependent parameters [23] or extended Kalmbf estimation methods for Hammerstein CT models where
filter [4]. Other references can be found éng. [7]. Semi- the non-linear function is a sum of known basis functions

parametric approaches, even if performing efficientlyklacY1>72;-- -, giveén as.

the possibility of giving ana posteriori physical represen- !

tation of the studied system. On the other hand, transfer a(t) = Zam(U(t))~ (1)
function models provide a generic approach to data-based P

modelling of linear systems, encompass both discrete-time
and continuous-time applications and are in an ideal forr&

to interpret serial, parallel connections of sub-systerhikv (MISO RIVC) first introduced by Young and Jakeman [26]

often have a physical significance. L nd recently extended to handle the case of Box-Jenkins
Hammerstein block diagram model is widely representeﬁ1odels [24], [25], [12]

for modelling non-linear systems [5], [3], [18]. The non-
linear block can be represented as a piecewise linear tmcti [I. PROBLEM DESCRIPTION

[2] or as a sum of basis functions [14], [6]. The available consider the Hammerstein system represented in Figure 1
me_thod.s are often designed for discrete-time (DT) mod@ing assume that both input and output signals) andy(t)
estimation and usually, extended least squares are usedaf@ yniformly sampled at a constant sampling tifg@ver N'

minimize a prediction error [S]. samples. Notice first that this Hammerstein system Froduces
Even if acquired data are sampled, the underlying dynamige same input-output data for any pdiff(u) Goﬁp))_

The proposed algorithms are based on the multi-input
ngle-output refined instrumental variable for CT systems

)

of a real system is continuous. Therefore, direct contistouTherefore, to get a unique parametrization, one of the gains
time model identification methods regained interest in thg ¢(,) or G,(p) has to be fixed [5], [1]. Hence, the first
recent years [9]. A survey by Rao and Unbehauen [1qoefficient of the functionf(.) equalsl, i.e. a; = 1 in
shows that CT model identification methods applied tQ1). Moreover,a(t) in (1) is an internal variable and is
Hammerstein models are poorly represented in literatme, agctually not directly accessible. The Hammerstein sysfem

to the best of our knowledge, no method uses instrumen{gl described by the following input-output relationship:
variable (V) techniques to handle Hammerstein CT model

identification. Instrumental variables have the advantafge

2(t) = X', Goi(p)vi(u(t))
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B,(p) and A,(p) are polynomials in differential operatpr Consequently, the noise transfer function takes the usual

(piz(t) = L2010y of respective degree;, andn, (n, > n,). ARMA model form:
The method presented is based on the identification of a Clqg~t,m)

Box—Jenkins model, where the linear and the noise models §tk) = D(g~',m) elia) (0

are not constrained to have common polynomials. Given . .
. . . More formally, there exists the following decomposition
the discrete-time, sampled nature of the data, an obviou .
the parameter vectd for the whole hybrid model,

assumption is that the model of the basic dynamic syste

is in CT, differential equation form while the coloured mmis o— (P (11)

associated with the sampled output measuremént) has T \n

r_atlonal spectral d_ensny and can be represented by atbscresuch that the model can be written in the form

time autoregressive moving average ARMA model ([27], .

28)): 1 C 717

128D Cola) t) = o D Bl putu(t) + S el
§(tr) = Holq)e(ty) = e(tk) 4) =1 ’

—1
Dola™) with B;(p, p) = «;B(p, p). The HRIVC method derives
whereC, (¢~ ') and D, (¢~ ) are polynomials in shift opera- from the RIV algorithm for DT systems. This was evolved by
torg—! (¢ "x(tx) = x(tx_,)) with respective degree. and converting the maximum likelihood estimation equationa to
ng. e(ty) is a zero-mean, normally distributed, discrete-timgseudo-linear form involving optimal prefilters [21], [26}
white noise sequencel(t;) ~ N(0,02). Consequently, the similar analysis can be utilised in the present situatiocesi
Hammerstein model estimation problem can be treated undée problem is very similar, in both algebraic and statigtic
the previous assumptions using a MISO RIVC algorithnterms.

where all inputs have a common denominathy(p) and Following the usualprediction error minimisationap-
B,.i(p) = @i B,(p). This method will be called Hammerstein proach in the present hybrid situation, a suitable erroc{fun
RIVC (HRIVC). tion e(t), at kth sampling instant, is given as:
l
A. Refined IV for Hammerstein CT Models D(g',n Bi(p,p
| | £(0) = BT dy ) - 30 2 i)
The model set to be estimated, denotedvdsvith system a5 —

(9) and noise T{) models parameterized independently, then (12)
takes the form, which can be written as

M : {Gl(pvp)’H(Q7n)}7Z:1l (5) E(tk): D(q_l’,r])

1
, Clg~',m) {A(p, P)
where p andn are parameter vectors that characterise the .
system and noise model, respectively. In particular, the ZB’@ P 7»(u(tk))]} (13)

Alp, p)y(tr)—

system model is formulated in CT terms:

G:Gip,p) = Bi(p, p) where the DT prefiltedD(¢~*,1)/C(¢~*,n) will be recog-
ikl ale Alp,p)’ nised as the inverse of the ARMA{n,) noise model.
i (bop™ + bip™ ' + - 4 by,) However, since the polynomial operators commute in this
= e +aipte Lo+ an (6 Jinear case, (13) can be considered in the alternative form,

by using for sake of clarity:;(t) = ~; (u(t)):
with i = 1...[. The associated model parameters are stacked
columnwise in the parameter vector,

l
e(ty) = Pyt (tr) ZBZ p)u(tr) (14)
a ai bo =1

ab N az N b1 — wherey; (¢ ) andu(tx) represent theampledutputs of the

p=| . |€R¥va=] . |eR™, b= .| ERTT, complete CT and DT prefiltering operation, involving the CT
b ' ' filtering operations using the filter (see [25], [24]):
[e7] Ap,, bnb
(7)

with n, = n,+1(ny+1) while the noise model is in discrete- felp,p) = A(p,p)’ (15)
time form

as well as DT filtering operations, using the inverse noise
Clg'n) _ 1+clq*1+ “+¢u.g ™ model filter:

H:H(g,m) = = D(g~"m)
D(gtm)  1+dig '+ +dn,q falg™hm) = ===+ (16)
(8 ( ) Clg~,m)
where the associated model parameters are stacked colun’pﬂerefore from (14), the associated linear-in-the-patens
wise in the parameter vector, model then takes the form [25]:

n=ler o o di oo dn,]T €R"TM(9) u" (t) = o (te)p + s (tx) (17)



where

(na—l)( k)
"Dt

b) tk ]
("b 1)
Uy
Usf tk
(t)

v(™(t;) is thenth time derivative ofu(t

P (tr)

Uit =

sampled at théth

sampling instant and(tx) = A(p, ) (tk)-
Of course none ofA(p,p), Bi(p,p), C(¢~t,n) or
D(q~

Wheref)j(N) is the IV estimate of the system model param-
eter vector at thejth iteration based on the appropriately
prefiltered input/output dat&™ = {u(ty);y(ts)}n_,. if
Go,i € G;, HRIVC provides a consistent estimate under the
conditions: limy —.oc 4 ZillE(pf(tk)gof(tk)T is full col-
umn rank andimy . + Zivzl E@(tx)st(tr) = 0.

An estimate of the sampled noise siggél;), at thejth
iteration, is obtained by subtracting the sampled output of
the auxiliary model equation (20) from the measured output

y(tk), i.e

E(tr) = y(tn) — 2(te, ). (23)

This estimate provides the basis for the estimation of the
noise model parameter vectey, using in this case the

1 m) is known and only their estimates are availableMATLAB identification toolbox ARMA estimation algo-

Therefore, IV estimation normally involves an iterative (o rithm. The process is iterated until a stopping criterion or

relaxation) algorithm in which, at each iteration, the ‘dux

iary model' used to generate the instrumental variables,

a certain number of iterations is reached. At the end of
dse iterative process, coefficienfs are not directly acces-

well as the associated prefilters, are updated, based on #ikle. They are however deduced from polynonﬁ{p) as
parameter estimates obtained at the previous iteratioh [243;(p, p) = «;B(p, p). The hypothesisy; = 1 guarantees

[25].
B. lterative HRIVC Algorithm

Let us consider thgth iteration where we have access to

the estimate:
(18)

~j—1 f)jfl
o= ()

that By (p, p) = B(p, p) and&; can be computed from:

1 &b
ny 4+ 1 =0 bl,k

(24)

WherelA)iyk is thekth coefficient of polynomial terni; (p, p)

obtained at iterationj — 1. The most important aspect of fori=2...1.
optimal 1V estimation is the definition of the instrumental
variable. It has been shown that this instrument requires tt€. Comments

knowledge of the noise free regressor [19], [22]. Theregfore

in this context, the associated optimal IV vecti(ty), is
then an estimate of the noise-free version of the veetor.)
in (17) and is defined as follows:

—% @E”a—li(tk)

. uy | {ne=2) (4

iltr) = | . | %= f_(“ (19)
Ui Zt(ty)

where the filtered noise-free outpiit(¢,) is obtained from:

The IV optimisation problem can now be stated in the form °

A

p(N) = argmm

l ZCP tr)pr(t) ]
[t
k=1 Q

where||x||? = xTQx andQ = I. This results in the solution
of the IV estimation equations:

2
(21)

N

Pr(t)F () ()" () (22)

k=1

p(N) =

o A simplified version of HRIVC algorithm named
HSRIVC follows the exact same theory for estimation
of Hammerstein CT output-error models. It is mathe-
matically described byC'(¢~1,n/) = C,(¢g7!) = 1
and D(¢%,m?) = D,(¢g~ ') = 1. All previous given
equations remain true, and it suffices to estimateas
6’ = p’. The implementation of HSRIVC is much sim-
pler than HRIVC as there is no model noise estimation
in the algorithm.

o The present paper considers CT model identification.

However, the DT versions of both 1V-based methods

can be easily developed and will be also evaluated in

the next section,

Even if the proposed algorithm performs well, it is not

statistically optimal as discussed in section IlI-C.

IIl. NUMERICAL EXAMPLES

This section presents numerical evaluation of both sug-
gested HRIVC and HSRIVC methods. For all presented
examples, the non-linear block has a polynomial foim,
vi(u(t)) = ui(t), Vi anda(t) = u(t) +0.5u?(t) +0.25u3(¢),
where u(t) follows a uniform distribution with values be-
tween—2 and2. To highlight the performance of CT model
IV-based methods, two simulated systems are consideréd. Al
systems are simulated with a zero order hold on the input.



A. Second-order System

B. Fourth-order System

The linear dynamic block is first a second-order system The aim of this paper is not to compare direct continuous-

described by:
10p + 30
Go(p) = ——

= 25
p*+p+5 (29)

The sampling time equal§; = 0.48s. Based on this
process, two different system$, and S, are defined.S;
is a Hammerstein output error model and therefore

H,(q) = 1.

while S is a Hammerstein Box—Jenkins model with:

1

H,(q) = .
(9) 1—q¢1+0.2¢2

The models considered for estimation are:

b0p+ b1
G ) = 5
X2 P2+ ap 1" a2

Murve § g _ (26)
(¢,m) e ——1
fu(t)) = u(t) + aru?(t) + azu’(t)
for the HRIVC method and
bop+ b
G(p.p) = 52—,
p* +aip+ a2
MHSR[VC H(Qa 77) = 17 (27)

Fu®) = u(t) + aqu?(t) + agud(t)

for HSRIVC.

time and indirect discrete-time model estimation methods.
However, authors show through a chosen example the interest
of using the direct CT methods with respect to the traditiona
DT methods. The linear part of the second system is based
on a benchmark proposed by Rao and Garnier in [16] (see
also [11]). It is a fourth-order, non-minimum phase system
with complex poles. Its transfer function is given by:

B —6400p + 1600
~ ph 4 5p3 +408p2 + 416p + 1600

Go(p) (29)

The sampling frequency is chosen to be about ten times the
bandwidth of the system under study which leads/to=
0.0314s. White noise is added to the output samples. 500
Monte Carlo simulation runs were realized with a SNR of
10dB using the proposed HSRIVC method and its discrete-
time version HSRIV. The models take the forms:

bop + b1
G(p7 p) = 4 3 2 )
p* + a1p® + axp” + azp + aq
MHSRIVC H(Qa 77) = 17

Fu(t)) = u(t) + onu®(t) + azu’(t)

(30)
for HSRIVC and
~ 1 ~ 9 7 3 4~ 4
G(Qa p) = 1f2~?q*jizgq*;ri2agaq’JgTaqlq""
Musriv { H(g,n) =1,
F(ult)) = u(t) + oqu?(t) + apu(t)
(31)

500 Monte Carlo simulation runs with a new noise real-

ization for each run were realized under a signal to nois®

ratio (SNR) of 30dB and 10dB with:

SNR= 20log (%) , (28)

r HSRIV. Figures 2(a) and 3(a) display the magnitude Bode
plots of the DT and CT estimated linear models. It can be
firstly noticed that both models present similar resultddar
frequencies whereas for high frequencies, the CT method
exhibits a superiority in model estimation. Both methods
correctly estimate both resonance peaks. On the other side,

P, being the average power of signal The number of the DT method appears to be less reliable, as for some
samples isN = 2000. Table | exhibits the mean value of realizations, the algorithm did not converge to acceptable
the estimated parameters, their standard deviation and thealues even though the initialization step is the same for
normalised root mean square error (RMSE) defined as: both methods. By only looking at Bode diagram and consid-
ering only realizations which converged, both methods give
Newp 9o _ §.(\\ 2 satisfactory results. However, when looking at non-linear
1 Z 02 — 0, (1)
Neap = 02 '

function estimations (Figures 2(b) and 3(b)), the DT method
hands out results with a very large variance while the CT
. approach delivers a set of estimated functions centeratynea
with ¢; the jth estimated parameter 6f exactly on the true non-linear function. This can be exg@din

Table | shows that the HRIVC and HSRIVC methodsy two facts: the DT version of the Hammerstein model
provide similar, unbiased estimates of the model parametgassuming the appropriate zero order hold) rises the number
with reasonable standard deviations. Results obtainedjusiof parameters to be estimated for the numerator polynomial
the HRIVC algorithm, have standard deviations which arand therefore results in worse estimation. Furthermoréngn
always smaller than the ones produced by HSRIVC. EveldT case, the numerator coefficients are so close to null that a
though, the HSRIVC algorithm based on an output-erramall absolute error produces a large relative error. Edch
model is a reasonable alternative to the full HRIVC algarith &; coefficients, which are directly deduced frdin(see (24)),
based on a Box—Jenkins model. dramatically suffer from this particular situation.

RMSE(§;) = J



TABLE |
ESTIMATION RESULTSFOR DIFFERENTNOISEMODELS

bo b1 ai az o1 o2 d1 d2

system|| SNR method

true value 10 30 1 5 0.5 0.25

mean(f) | 9.9869 | 30.0251| 1.0003 | 4.9996 | 0.5005 | 0.2507
30 HSRIVC std(0) 0.3053 | 0.6984 | 0.0084 | 0.0236 | 0.0113| 0.0116
RMSE 0.0305 | 0.0233 | 0.0084 | 0.0047 | 0.0227 | 0.0464
S mean(f) | 9.9834 | 29.8845| 0.9987 | 4.9960 | 0.5061 | 0.2553
10 HSRIVC std(0) 0.9508 | 2.3145 | 0.0267 | 0.0789 | 0.0359 | 0.0383
RMSE 0.0950 | 0.0772 | 0.0267 | 0.0158 | 0.0728 | 0.1544

true value 10 30 1 5 0.5 0.25 -1 0.2
mean(f) | 9.9957 | 29.8760| 1.0001 | 4.9991 | 0.5026 | 0.2523
HSRIVC std(0) 0.3670 | 1.5660 | 0.0170| 0.0436 | 0.0201| 0.0180
RMSE 0.0367 | 0.0523 | 0.0169| 0.0087 | 0.0405| 0.0723
30 mean(f) | 9.9906 | 30.0172| 1.0006 | 5.0020 | 0.5008 | 0.2506 | -1.0002 | 0.2005
HRIVC std(0) 0.2497 | 0.8954 | 0.0119| 0.0265| 0.0118| 0.0115| 0.0219 | 0.0223
RMSE 0.0250 | 0.0298 | 0.0119| 0.0053 | 0.0236 | 0.0460| 0.0218 | 0.1112
So mean(0) | 10.0882| 29.6146 | 1.0010 | 4.9814 | 0.5080 | 0.2604
HSRIVC std(0) 1.0764 | 4.4585 | 0.0517| 0.1291 | 0.0610 | 0.0542
RMSE 0.1079 | 0.1490 | 0.0517 | 0.0261 | 0.1230| 0.2208
10 mean(f) | 10.049 | 30.0277| 0.9998 | 4.9980 | 0.5015| 0.2522 | -0.9997 | 0.1994
HRIVC std(0) 0.7861 | 2.8278 | 0.0379| 0.0871 | 0.0369 | 0.0366 | 0.0227 | 0.0219
RMSE 0.0787 | 0.0942 | 0.0378| 0.0174 | 0.0738 | 0.1466 | 0.0227 | 0.1096

C. Discussions as the sum of known basis functions. The performance and

It can be noticed that results present a higher paramefg@nsistency for both HSRIVC and HRIVC methods have
variance than for a linear model estimation problem. Thigeen highlighted. Finally, some advantages of using the
comes mainly from the redundancy of tip) parameters sugge_sted CT method with respect to its DT version have
contained in@ and by the higher number of estimategP€en illustrated.
parameters: when the Hammerstein model relies on only
ne + 1 — 1 + n, parameters, the proposed algorithm needs
to estimaten, + [(nb + 1) parameters. Hence, even if not [1] E-W. Bai. A blind approach to the Hammerstein-Wiener mlod

: : - : identification. Automatica 38, Issue 6:967-979, 2002.
optlmal, this algonthm can pmduce a very gOOd Startlng[2] E-W. Bai. Identification of linear systems with hard iripnonlin-

value for statistically optimal prediction error methoHgw- earities of known structure Automatica 38, Issue 5:853-860, May
ever, the low variance in estimated parameters makes it an 2002.

: : ; : ] E-W. Bai and K-S. Chan. Identification of an additive naehlr system
interesting method for practical data. An alternative Rp/ a and its applications in generalized Hammerstein mod&lgomatica

proach that can handle other types of nonlinearity, inclgdi 44, Issue 2:430—-436, February 2008.
nonlinear terms in variables other than the input, is 'state[4] C. Bohn and H. Unbehauen. The application of matrix défdial

) : : calculus for the derivation of simplified expressions in appmate
dependent parameter (SDP) estimation (e.g. [20])‘ Here, non-linear filtering algorithms Automatica 36, Issue 10:1553-1560,

the parameters in the nonlinear function are estimated by a october 2000.
nonlinear, iterative optimization procedure in which th&/R  [5] F. Ding and T. Chen. Identification of Hammerstein noeén

estimation algorithm is incorporated to estimate the linea ~ SRVAX systems. Automatica 41, Issue 9:1475-1489, September

TF parameters, based on the nonlinearly transformed inpufe} F. ping, Y. Shi, and T. Chen. Auxiliary model-based leagtiares
Although computationally less efficient, this is statiatig identification methods for Hammerstein output-error systeSystems

;i ; & Control Letters 56, Issue 5:373-380, 2007.
more efficient than the method proposed in the present papﬁ'}] G. B. Giannakis and E. Serpedin. A bibliography on noedinsystem

Some further research about introducing constraint todavoi™ * jgentification. Signal Processing81, Issue 3:533-580, March 2001.
the parameters redundancy might be therefore relevant.  [8] I. Goethals, K. Pelckmans, J. A. K. Suykens, and B. De Moor
Identification of MIMO Hammerstein models using least sgsar
IV. CONCLUSION support vector machinesAutomatica 41, Issue 7:1263-1272, July
2005.
The theory of multi-input single-output refined instrumen- [9] H. Garnier and L. Wang (Eds). Identification of continuous-time
tal variable for CT systems has been applied to a non line models from sampled dat&pringer-Verlag, London, March 2008.

r
. . . 10] Z. Q. Lang, S. A. Billings, R. Yue, and J. Li. Output frezpcy
Hammerstein model Composed of a linear dynamlc CT Box- response function of nonlinear volterra systemstomatica 43, Issue

Jenkins transfer function and a non-linear function defined 5:805-816, May 2007.
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