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Refined Instrumental Variable Methods for Identification of
Hammerstein Continuous-time Box–Jenkins Models

V. Laurain∗, M. Gilson∗, H. Garnier∗, P.C. Young∗∗

Abstract— This article presents instrumental variable meth-
ods for direct continuous-time estimation of a Hammerstein
model. The non-linear function is a sum of known basis
functions and the linear part is a Box–Jenkins model. Although
the presented algorithm is not statistically optimal, thispaper
further shows the performance of the presented algorithms
and the advantages of continuous-time estimation on relevant
simulations.

I. INTRODUCTION

The need for non-linear identification grows as the studied
system complexity increases and non-linear models apply in
many fields [13]. Many different approaches were developed
to deal with black-box model identification, whether they
are non parametric, using Volterra series approach [10],
semi-parametric using neural network methods and support
vector machine classification [15], [8], or parametric such
as state dependent parameters [23] or extended Kalman
filter [4]. Other references can be found ine.g. [7]. Semi-
parametric approaches, even if performing efficiently, lack
the possibility of giving ana posteriori physical represen-
tation of the studied system. On the other hand, transfer
function models provide a generic approach to data-based
modelling of linear systems, encompass both discrete-time
and continuous-time applications and are in an ideal form
to interpret serial, parallel connections of sub-systems which
often have a physical significance.

Hammerstein block diagram model is widely represented
for modelling non-linear systems [5], [3], [18]. The non-
linear block can be represented as a piecewise linear function
[2] or as a sum of basis functions [14], [6]. The available
methods are often designed for discrete-time (DT) model
estimation and usually, extended least squares are used to
minimize a prediction error [5].

Even if acquired data are sampled, the underlying dynamic
of a real system is continuous. Therefore, direct continuous-
time model identification methods regained interest in the
recent years [9]. A survey by Rao and Unbehauen [17]
shows that CT model identification methods applied to
Hammerstein models are poorly represented in literature, and
to the best of our knowledge, no method uses instrumental
variable (IV) techniques to handle Hammerstein CT model
identification. Instrumental variables have the advantageof
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Fig. 1. Hammerstein block representation

producing an unbiased estimation independently on the noise
model assumed with an acceptable variance in parameter
estimation in many practical cases. Moreover, an optimal
choice of these instruments leads to a minimal variance
estimator [19], [22].

Therefore, the main contribution of this paper is to present
IV estimation methods for Hammerstein CT models where
the non-linear function is a sum of known basis functions
γ1, γ2, . . . , γl given as:

ū(t) =

l
∑

i=1

αiγi(u(t)). (1)

The proposed algorithms are based on the multi-input
single-output refined instrumental variable for CT systems
(MISO RIVC) first introduced by Young and Jakeman [26]
and recently extended to handle the case of Box–Jenkins
models [24], [25], [12].

II. PROBLEM DESCRIPTION

Consider the Hammerstein system represented in Figure 1
and assume that both input and output signals,u(t) andy(t)
are uniformly sampled at a constant sampling timeTs overN
samples. Notice first that this Hammerstein system produces
the same input-output data for any pair(βf(u), Go(p)

β
).

Therefore, to get a unique parametrization, one of the gains
of f(u) or Go(p) has to be fixed [5], [1]. Hence, the first
coefficient of the functionf(.) equals1, i.e. α1 = 1 in
(1). Moreover, ū(t) in (1) is an internal variable and is
actually not directly accessible. The Hammerstein systemS,
is described by the following input-output relationship:

S











x(t) =
∑l

i=1 Go,i(p)γi(u(t))

ξ(tk) = Ho(q)e(tk),

y(tk) = x(tk) + ξ(tk),

(2)

where

Go,i(p) =
Bo,i(p)

Ao(p)
=

αiBo(p)

Ao(p)
. (3)



Bo(p) andAo(p) are polynomials in differential operatorp
(pix(t) = dix(t)

dti ) of respective degreenb andna (na ≥ nb).
The method presented is based on the identification of a
Box–Jenkins model, where the linear and the noise models
are not constrained to have common polynomials. Given
the discrete-time, sampled nature of the data, an obvious
assumption is that the model of the basic dynamic system
is in CT, differential equation form while the coloured noise
associated with the sampled output measurementy(tk) has
rational spectral density and can be represented by a discrete-
time autoregressive moving average ARMA model ([27],
[28]):

ξ(tk) = Ho(q)e(tk) =
Co(q

−1)

Do(q−1)
e(tk) (4)

whereCo(q
−1) andDo(q

−1) are polynomials in shift opera-
tor q−1 (q−rx(tk) = x(tk−r)) with respective degreenc and
nd. e(tk) is a zero-mean, normally distributed, discrete-time
white noise sequence:e(tk) ∼ N (0, σ2

e). Consequently, the
Hammerstein model estimation problem can be treated under
the previous assumptions using a MISO RIVC algorithm
where all inputs have a common denominatorAo(p) and
Bo,i(p) = αiBo(p). This method will be called Hammerstein
RIVC (HRIVC).

A. Refined IV for Hammerstein CT Models

The model set to be estimated, denoted asM with system
(G) and noise (H) models parameterized independently, then
takes the form,

M : {Gi(p, ρ), H(q, η)}, i = 1 . . . l (5)

whereρ and η are parameter vectors that characterise the
system and noise model, respectively. In particular, the
system model is formulated in CT terms:

G : Gi(p, ρ) =
Bi(p, ρ)

A(p, ρ)
,

=
αi(b0p

nb + b1p
nb−1 + · · · + bnb

)

pna + a1pna−1 · · · + ana

, (6)

with i = 1 . . . l. The associated model parameters are stacked
columnwise in the parameter vector,

ρ =











a
α1b

...
αlb











∈ R
nρ , a =











a1

a2

...
ana











∈ R
na , b =











b0

b1

...
bnb











∈ R
nb+1,

(7)
with nρ = na+l(nb+1) while the noise model is in discrete-
time form

H : H(q, η) =
C(q−1, η)

D(q−1, η)
=

1 + c1q
−1 + · · · + cnc

q−nc

1 + d1q−1 + · · · + dnd
q−nd

(8)
where the associated model parameters are stacked column-
wise in the parameter vector,

η =
[

c1 · · · cnc
d1 · · · dnd

]T
∈ R

nc+nd (9)

Consequently, the noise transfer function takes the usual
ARMA model form:

ξ(tk) =
C(q−1, η)

D(q−1, η)
e(tk). (10)

More formally, there exists the following decomposition
of the parameter vectorθ for the whole hybrid model,

θ =

(

ρ

η

)

(11)

such that the model can be written in the form

y(tk) =
1

A(p, ρ)

l
∑

i=1

Bi(p, ρ)γi(u(tk)) +
C(q−1, η)

D(q−1, η)
e(tk),

with Bi(p, ρ) = αiB(p, ρ). The HRIVC method derives
from the RIV algorithm for DT systems. This was evolved by
converting the maximum likelihood estimation equations toa
pseudo-linear form involving optimal prefilters [21], [26]. A
similar analysis can be utilised in the present situation since
the problem is very similar, in both algebraic and statistical
terms.

Following the usualprediction error minimisationap-
proach in the present hybrid situation, a suitable error func-
tion ε(tk), at kth sampling instant, is given as:

ε(tk) =
D(q−1, η)

C(q−1, η)

{

y(tk) −
l
∑

i=1

Bi(p, ρ)

A(p, ρ)
γi(u(tk))

}

(12)
which can be written as

ε(tk) =
D(q−1, η)

C(q−1, η)

{

1

A(p, ρ)

[

A(p, ρ)y(tk)−

l
∑

i=1

Bi(p, ρ)γi(u(tk))

]}

, (13)

where the DT prefilterD(q−1, η)/C(q−1, η) will be recog-
nised as the inverse of the ARMA(nc,nd) noise model.
However, since the polynomial operators commute in this
linear case, (13) can be considered in the alternative form,
by using for sake of clarityui(t) = γi(u(t)):

ε(tk) = A(p, ρ)yf(tk) −
l
∑

i=1

Bi(p, ρ)uif(tk) (14)

whereyf(tk) anduif(tk) represent thesampledoutputs of the
complete CT and DT prefiltering operation, involving the CT
filtering operations using the filter (see [25], [24]):

fc(p, ρ) =
1

A(p, ρ)
, (15)

as well as DT filtering operations, using the inverse noise
model filter:

fd(q
−1, η) =

D(q−1, η)

C(q−1, η)
. (16)

Therefore, from (14), the associated linear-in-the-parameters
model then takes the form [25]:

y
(na)
f (tk) = ϕT

f (tk)ρ + ς(tk) (17)



where

ϕf(tk) =











−yf
u1f
...

ulf











, yf =











y
(na−1)
f (tk)

y
(na−2)
f (tk)

...
yf(t)











,

uif =











u
(nb)
if (tk)

u
(nb−1)
if (tk)

...
uif(tk)











,

v(n)(tk) is thenth time derivative ofv(t) sampled at thekth
sampling instant andς(tk) = A(p, ρ)ξ(tk).

Of course none ofA(p, ρ), Bi(p, ρ), C(q−1, η) or
D(q−1, η) is known and only their estimates are available.
Therefore, IV estimation normally involves an iterative (or
relaxation) algorithm in which, at each iteration, the ‘auxil-
iary model’ used to generate the instrumental variables, as
well as the associated prefilters, are updated, based on the
parameter estimates obtained at the previous iteration [24],
[25].

B. Iterative HRIVC Algorithm

Let us consider thejth iteration where we have access to
the estimate:

θ̂
j−1

=

(

ρ̂j−1

η̂
j−1

)

(18)

obtained at iterationj − 1. The most important aspect of
optimal IV estimation is the definition of the instrumental
variable. It has been shown that this instrument requires the
knowledge of the noise free regressor [19], [22]. Therefore,
in this context, the associated optimal IV vectorϕ̂f(tk), is
then an estimate of the noise-free version of the vectorϕf(tk)
in (17) and is defined as follows:

ϕ̂f(tk) =











−x̂f

u1f
...

ulf











, x̂f =











x̂
(na−1)
f (tk)

x̂
(na−2)
f (tk)

...
x̂f(tk)











(19)

where the filtered noise-free outputx̂f(tk) is obtained from:

x̂(t, ρ̂j−1) =
l
∑

i=1

Gi(p, ρ̂j−1)ui(t). (20)

The IV optimisation problem can now be stated in the form

ρ̂j(N) = argmin
ρ

∥

∥

∥

∥

∥

[

1

N

N
∑

k=1

ϕ̂f(tk)ϕf(tk)T

]

−

[

1

N

N
∑

k=1

ϕ̂f(tk)y
(na)
f (tk)

]∥

∥

∥

∥

∥

2

Q

(21)

where‖x‖2 = xTQx andQ = I. This results in the solution
of the IV estimation equations:

ρ̂
j(N) =

[

N
∑

k=1

ϕ̂f(tk)ϕT
f (tk)

]−1
N
∑

k=1

ϕ̂f(tk)y
(na)
f (tk) (22)

whereρ̂
j(N) is the IV estimate of the system model param-

eter vector at thejth iteration based on the appropriately
prefiltered input/output dataZN = {u(tk); y(tk)}N

k=1. if
G0,i ∈ Gi, HRIVC provides a consistent estimate under the
conditions: limN→∞

1
N

∑N

t=1 Eϕ̂f(tk)ϕf(tk)T is full col-
umn rank andlimN→∞

1
N

∑N

t=1 Eϕ̂f(tk)ςf(tk) = 0.
An estimate of the sampled noise signalξ(tk), at thejth

iteration, is obtained by subtracting the sampled output of
the auxiliary model equation (20) from the measured output
y(tk), i.e.:

ξ̂(tk) = y(tk) − x̂(tk, ρ̂j−1). (23)

This estimate provides the basis for the estimation of the
noise model parameter vectorηj , using in this case the
MATLAB identification toolbox ARMA estimation algo-
rithm. The process is iterated until a stopping criterion or
a certain number of iterations is reached. At the end of
the iterative process, coefficientŝαi are not directly acces-
sible. They are however deduced from polynomialB̂i(p) as
Bi(p, ρ) = αiB(p, ρ). The hypothesisα1 = 1 guarantees
that B̂1(p, ρ) = B̂(p, ρ) and α̂i can be computed from:

α̂i =
1

nb + 1

nb
∑

k=0

b̂i,k

b̂1,k

, (24)

whereb̂i,k is thekth coefficient of polynomial term̂Bi(p, ρ)
for i = 2 . . . l.

C. Comments

• A simplified version of HRIVC algorithm named
HSRIVC follows the exact same theory for estimation
of Hammerstein CT output-error models. It is mathe-
matically described by,C(q−1, ηj) = Co(q

−1) = 1
and D(q−1, ηj) = Do(q

−1) = 1. All previous given
equations remain true, and it suffices to estimateρj as
θj = ρj . The implementation of HSRIVC is much sim-
pler than HRIVC as there is no model noise estimation
in the algorithm.

• The present paper considers CT model identification.
However, the DT versions of both IV-based methods
can be easily developed and will be also evaluated in
the next section,

• Even if the proposed algorithm performs well, it is not
statistically optimal as discussed in section III-C.

III. N UMERICAL EXAMPLES

This section presents numerical evaluation of both sug-
gested HRIVC and HSRIVC methods. For all presented
examples, the non-linear block has a polynomial form,i.e.
γi(u(t)) = ui(t), ∀i andū(t) = u(t)+0.5u2(t)+0.25u3(t),
where u(t) follows a uniform distribution with values be-
tween−2 and2. To highlight the performance of CT model
IV-based methods, two simulated systems are considered. All
systems are simulated with a zero order hold on the input.



A. Second-order System

The linear dynamic block is first a second-order system
described by:

Go(p) =
10p + 30

p2 + p + 5
. (25)

The sampling time equalsTs = 0.48s. Based on this
process, two different systemsS1 and S2 are defined.S1

is a Hammerstein output error model and therefore

Ho(q) = 1.

while S2 is a Hammerstein Box–Jenkins model with:

Ho(q) =
1

1 − q−1 + 0.2q−2
.

The models considered for estimation are:

MHRIVC



















G(p, ρ) =
b0p + b1

p2 + a1p + a2
,

H(q, η) =
1

1 + d1q−1 + d2q−2
,

f(u(t)) = u(t) + α1u
2(t) + α2u

3(t)

(26)

for the HRIVC method and

MHSRIVC















G(p, ρ) =
b0p + b1

p2 + a1p + a2
,

H(q, η) = 1,

f(u(t)) = u(t) + α1u
2(t) + α2u

3(t)

(27)

for HSRIVC.
500 Monte Carlo simulation runs with a new noise real-

ization for each run were realized under a signal to noise
ratio (SNR) of 30dB and 10dB with:

SNR= 20log

(

Pe

Px

)

, (28)

Pg being the average power of signalg. The number of
samples isN = 2000. Table I exhibits the mean value of
the estimated parameters, their standard deviation and their
normalised root mean square error (RMSE) defined as:

RMSE(θ̂j) =

√

√

√

√

1

Nexp

Nexp
∑

i=1

(

θo
j − θ̂j(i)

θo
j

)2

,

with θ̂j the jth estimated parameter ofθ.
Table I shows that the HRIVC and HSRIVC methods

provide similar, unbiased estimates of the model parameters
with reasonable standard deviations. Results obtained using
the HRIVC algorithm, have standard deviations which are
always smaller than the ones produced by HSRIVC. Even
though, the HSRIVC algorithm based on an output-error
model is a reasonable alternative to the full HRIVC algorithm
based on a Box–Jenkins model.

B. Fourth-order System

The aim of this paper is not to compare direct continuous-
time and indirect discrete-time model estimation methods.
However, authors show through a chosen example the interest
of using the direct CT methods with respect to the traditional
DT methods. The linear part of the second system is based
on a benchmark proposed by Rao and Garnier in [16] (see
also [11]). It is a fourth-order, non-minimum phase system
with complex poles. Its transfer function is given by:

Go(p) =
−6400p + 1600

p4 + 5p3 + 408p2 + 416p + 1600
. (29)

The sampling frequency is chosen to be about ten times the
bandwidth of the system under study which leads toTs =
0.0314s. White noise is added to the output samples. 500
Monte Carlo simulation runs were realized with a SNR of
10dB using the proposed HSRIVC method and its discrete-
time version HSRIV. The models take the forms:

MHSRIV C















G(p, ρ) =
bop + b1

p4 + a1p3 + a2p2 + a3p + a4
,

H(q, η) = 1,

f(u(t)) = u(t) + α1u
2(t) + α2u

3(t)

(30)

for HSRIVC and

MHSRIV











G(q, ρ) = b̃0q−1+b̃1q−2+b̃2q−3+b̃3q−4

1+ã1q−1+ã2q−2+ã3q−3+ã4q−4 ,

H(q, η) = 1,

f(u(t)) = u(t) + α1u
2(t) + α2u

3(t)

(31)

for HSRIV. Figures 2(a) and 3(a) display the magnitude Bode
plots of the DT and CT estimated linear models. It can be
firstly noticed that both models present similar results forlow
frequencies whereas for high frequencies, the CT method
exhibits a superiority in model estimation. Both methods
correctly estimate both resonance peaks. On the other side,
the DT method appears to be less reliable, as for some
realizations, the algorithm did not converge to acceptable
values even though the initialization step is the same for
both methods. By only looking at Bode diagram and consid-
ering only realizations which converged, both methods give
satisfactory results. However, when looking at non-linear
function estimations (Figures 2(b) and 3(b)), the DT method
hands out results with a very large variance while the CT
approach delivers a set of estimated functions centered nearly
exactly on the true non-linear function. This can be explained
by two facts: the DT version of the Hammerstein model
(assuming the appropriate zero order hold) rises the number
of parameters to be estimated for the numerator polynomial
and therefore results in worse estimation. Furthermore, inthe
DT case, the numerator coefficients are so close to null that a
small absolute error produces a large relative error. Estimated
α̂i coefficients, which are directly deduced from̂B (see (24)),
dramatically suffer from this particular situation.



TABLE I

ESTIMATION RESULTSFOR DIFFERENTNOISEMODELS

b0 b1 a1 a2 α1 α2 d1 d2

system SNR method
true value 10 30 1 5 0.5 0.25
mean(θ̂) 9.9869 30.0251 1.0003 4.9996 0.5005 0.2507

30 HSRIVC std(θ̂) 0.3053 0.6984 0.0084 0.0236 0.0113 0.0116
RMSE 0.0305 0.0233 0.0084 0.0047 0.0227 0.0464

S1 mean(θ̂) 9.9834 29.8845 0.9987 4.9960 0.5061 0.2553
10 HSRIVC std(θ̂) 0.9508 2.3145 0.0267 0.0789 0.0359 0.0383

RMSE 0.0950 0.0772 0.0267 0.0158 0.0728 0.1544

true value 10 30 1 5 0.5 0.25 -1 0.2
mean(θ̂) 9.9957 29.8760 1.0001 4.9991 0.5026 0.2523

HSRIVC std(θ̂) 0.3670 1.5660 0.0170 0.0436 0.0201 0.0180
RMSE 0.0367 0.0523 0.0169 0.0087 0.0405 0.0723

30 mean(θ̂) 9.9906 30.0172 1.0006 5.0020 0.5008 0.2506 -1.0002 0.2005
HRIVC std(θ̂) 0.2497 0.8954 0.0119 0.0265 0.0118 0.0115 0.0219 0.0223

RMSE 0.0250 0.0298 0.0119 0.0053 0.0236 0.0460 0.0218 0.1112
S2 mean(θ̂) 10.0882 29.6146 1.0010 4.9814 0.5080 0.2604

HSRIVC std(θ̂) 1.0764 4.4585 0.0517 0.1291 0.0610 0.0542
RMSE 0.1079 0.1490 0.0517 0.0261 0.1230 0.2208

10 mean(θ̂) 10.049 30.0277 0.9998 4.9980 0.5015 0.2522 -0.9997 0.1994
HRIVC std(θ̂) 0.7861 2.8278 0.0379 0.0871 0.0369 0.0366 0.0227 0.0219

RMSE 0.0787 0.0942 0.0378 0.0174 0.0738 0.1466 0.0227 0.1096

C. Discussions

It can be noticed that results present a higher parameter
variance than for a linear model estimation problem. This
comes mainly from the redundancy of theB(p) parameters
contained inθ and by the higher number of estimated
parameters: when the Hammerstein model relies on only
na + l − 1 + nb parameters, the proposed algorithm needs
to estimatena + l(nb + 1) parameters. Hence, even if not
optimal, this algorithm can produce a very good starting
value for statistically optimal prediction error methods.How-
ever, the low variance in estimated parameters makes it an
interesting method for practical data. An alternative RIV ap-
proach that can handle other types of nonlinearity, including
nonlinear terms in variables other than the input, is ’state-
dependent parameter’ (SDP) estimation (e.g. [20]). Here,
the parameters in the nonlinear function are estimated by a
nonlinear, iterative optimization procedure in which the RIV
estimation algorithm is incorporated to estimate the linear
TF parameters, based on the nonlinearly transformed input.
Although computationally less efficient, this is statistically
more efficient than the method proposed in the present paper.
Some further research about introducing constraint to avoid
the parameters redundancy might be therefore relevant.

IV. CONCLUSION

The theory of multi-input single-output refined instrumen-
tal variable for CT systems has been applied to a non linear
Hammerstein model composed of a linear dynamic CT Box-
Jenkins transfer function and a non-linear function defined

as the sum of known basis functions. The performance and
consistency for both HSRIVC and HRIVC methods have
been highlighted. Finally, some advantages of using the
suggested CT method with respect to its DT version have
been illustrated.
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