N
N

N

HAL

open science

Modeling and specification of Web services composition
using UML-S
Christophe Dumez, Ahmed Nait-Sidi-Moh, Jaafar Gaber, Maxime Wack

» To cite this version:

Christophe Dumez, Ahmed Nait-Sidi-Moh, Jaafar Gaber, Maxime Wack. Modeling and specification
of Web services composition using UML-S. 4th international conference on Next Generation Web
Services Practices (NWeSP’08), Oct 2008, Seoul, South Korea. pp.15-20, 10.1109/NWeSP.2008.17 .

hal-00334447

HAL Id: hal-00334447
https://hal.science/hal-00334447
Submitted on 26 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00334447
https://hal.archives-ouvertes.fr

4th International Conference on Next Generation Web Services Practices

Modeling and specification of Web services composition using UML-S

C. Dumez, A. Nait-sidi-moh, J. Gaber and M. Wack
SeT Laboratory, Belfort, France
{christophe.dumez, ahmed.nait, gaber, maxime.wack } @utbm.fr

Abstract

As Web services composition arouses a growing inter-
est, most research works address implementation and ex-
ecution issues. Therefore, many composition languages
(BPEL, XLANG, WSFL, WSCI, to name a few of them) have
been proposed in the past few years. However, a weak-
ness of these languages is that they are difficult to use in
early stages of development, such as specification. In this
paper, an extension to UML 2.0 called ”UML-S: UML for
Services” is introduced. UML-S allows for a Model Driven
Engineering (MDE) of Web services and their interactions.

1. Introduction

Many companies are now using the Web as a platform
to communicate with their partners. The Web and its tech-
nologies allows them to provide Web services to individuals
as well as other businesses.

The main challenges in the Web services paradigm are
their discovery and their composition. In other words, one
must be able to find a suitable Web service for a given
task. This process is called the discovery [18, 19]. The
second challenge is the one that is addressed in this paper.
It is known as Web services composition [4, 10]. In Web
services composition, already defined services are used to-
gether to achieve a larger task, resulting in a new composite
and value-added Web service. To accomplish this purpose,
a common approach is to allow the Web services to interact
in a scenario through the use of messaging mechanisms.

Although a lot of research works deal with Web services
interactions, most of them address language, implementa-
tion or application issues, neglecting early stages of the de-
velopment process, such as specification. To address this
issue, an extension to UML 2.0 called "UML-S: UML for
Services” is introduced. UML-S allows for modeling Web
services as well as their interactions.

The Unified Modeling Language (UML) has been de-
fined by the Object Management Group (OMG) [2] to ex-

978-0-7695-3455-8/08 $25.00 © 2008 IEEE
DOI 10.1109/NWeSP.2008.17

press graphically system development models.

UML-S enables the developers to build composite Web
services by following the principles of the Model-Driven
Architecture (MDA). As a consequence, it is possible to
generate platform-specific code from high-level UML-S
models.

This paper is structured as follows. Section 2 provides
a survey of existing approaches to model Web services in-
teractions. In section 3, the requirements for a good Web
services composition modeling language are put forward.
UML-S is then presented in details in section 4. After that, a
case study is provided in section 5 to observe UML-S in ac-
tion. Finally, section 6 draws the conclusions and presents
future work.

2. Related Work

The Business Process Management Initiative (BPMI)
has developed the Business Process Modeling Notation
(BPMN). This notation is particularly useful to visualize
BPEL processes. BPMN [23] is now maintained by the
OMG. Unfortunately, one could reproach to BPMN its lack
of formalism, as explained by Wohed et at. in [24]. Al-
though BPMN is an interesting solution, we preferred to
extend UML 2.0 to achieve the same purpose. Indeed,
UML was already used as a Process Modeling Language
(PML) [9, 13, 16]. As a matter of fact, UML has some very
interesting features as a PML.: it is standard, graphical, pop-
ular and it contains several diagrams which allows to model
different views of a system.

UML was already considered to describe Web services
composition. In [20], an approach using UML activity di-
agrams to do so was presented by Skogan et al. They pro-
vide a way to model the coordination and the sequencing of
the interactions between Web services. They also explain
how UML activity diagrams can be converted into BPEL [1]
or in WorkSCo [3]. However, in this approach, methods
input/output and data transformation are modeled in notes
(i.e. comments) on the side of the workflow, which can get
quite confusing when the composition flow gets complex.

Chunming Gao et al. also presentin [11] a non-graphical

IEEE
computer
psouety

way to model Web services composition with some mobil-
ity and time constraint. To do so, they introduce Discrete
Time Mobile Ambient calculus (DTMA), an extension to
the formal model called Mobile ambients calculus [5]. Us-
ing DTMA, they focus on modeling BPEL operations. Due
to their non-graphical nature, languages such as DTMA are
less user-friendly than graphical like UML.

Another approach to Web services composition model-
ing was proposed by De Castro et al in [6]. In their work,
they make use of the behavior modeling method of MIDAS,
a Model-Driven Architecture (MDA) framework [14]. MI-
DAS is a model-driven methodology for the development of
Web Information Systems (WIS) based on the MDA [21],
proposed by the OMG [2]. They introduced Web services
composition through UML activity diagrams in their paper.
However, the model is not detailed as much as necessary
to allow code generation as BPEL. Some features could
also be added such as data transformation and flow control
mechanisms.

In [12], Hamadi et al. put forwards Petri nets [17]
based algebra for composing Web services. Petri nets are
a well-known process modeling technique. The pros of us-
ing such Petri net based algebra is that it allows the veri-
fication of properties and the detection of inconsistencies.
However, Web services need to be expressed using algebra
constructs before being translated into a Petri net represen-
tation, adding consequently another necessary stage in the
process.

UML-S transformation rules from WSDL 2.0 and to
WS-BPEL 2.0 were provided in [8]. UML-S activity dia-
grams verification and validation using Petri nets was also
detailed in [15].

3. Web services composition model require-
ments

In this part, we state what the requirements for a good
Web services composition modeling language. First of all,
it is better to extends an already existing, well-known stan-
dard if it is adapted instead of coming up with a new model.
UML modeling language is the de facto industry standard.
Therefore it is a good candidate to be extended for Web
services composition modeling. Moreover, UML is widely
used and its graphical models are easily understandable.

The modeling language should allow to represent Web
services interfaces as well as the dynamism induced by their
composition. UML class diagram is particularly adapted to
represent interfaces. Additionally, UML activity diagram is
a excellent candidate to model Web services composition,
due to its strength to represent the dynamic.

A good modeling language can also be judged by its sim-
plicity and its clarity. Graphical languages such as UML are
known for being user-friendly.

Finally, it is worth noting that a composite Web service
simply calls other services and makes them interact. There-
fore, there is not a lot of programming involved compared
to usual Web services. As a consequence, a composite Web
service’s code can be generated in its totality from high-
level graphical models such as UML’s.

4. UML-S: UML for Services

The main contribution of this paperis "UML-S: UML for
Services”, an extension to UML 2.0 that allows for model-
ing Web services as well as their interactions. In UML-S,
both class diagrams and activity diagrams are used to model
and specify respectively Web services and their interactions.

In part 4.1, we present UML-S extended class diagram.
After that, the activity diagram proposal is detailed in part
4.2.

4.1. UML-S class diagram

In UML, the class diagram is a static-structure diagram
describing a software system. It models the system’s classes
as well as their attributes and methods. The relationships
between the classes are also represented.

To model Web services’ interfaces, UML-S makes the
analogy between a class and a Web service. Indeed, both
are similar in the way that their name and methods are
described. Moreover, Web services’” methods can handle
complex objects that can also be represented using UML
classes. To distinguish a Web service from an usual UML
class, UML-S adds a < WebService>>> stereotype to classes
corresponding to Web services.

It is worth noting that UML-S class diagrams can di-
rectly be generated from the Web services’ interface de-
scription file in WSDL language (see Figure 1). Indeed, this
class diagram is a user-friendly way to represent the Web
services’ WSDLs. Both the WSDL file of a Web service and
its UML-S class diagram contain its name, its methods and
the complex types involved. In the WSDL file, the complex
types used by the Web service are expressed using XML
schema. The specifier imports the Web services he wants to
compose from their WSDL’s URL (e.g. from an UDDI reg-
istry). Once imported, he obtains a class diagram presenting
all the Web services and the complex data types involved.
Once this is done, he should add the classes correspond-
ing to the composite Web service he wants to create. This
model should contain at least a class with a < WebService>>
stereotype defining the composite Web service’s interface.
If methods from this new service return complex data types
or take them as parameters, then the specifier should define
classes for those too. In the case that the composite Web ser-
vice uses the same complex data type as another imported

<description ...
targetNamespace="..."
xmins=" http://www.w3.0rg/2004/08/wsd|">
<types>
<schema targetNamespace="...">
<element name="sendAmbulanceRequest">
<complexType name="Coord">
<xsd:sequence>
<xsd:element name="x" type="xsd:float"/>
<xsd:element name="y" type="xsd:float"/>
</xsd:sequence>
</complexType>
</element>
<element name="sendAmbulanceRequest"
type="xsd1:Coord"/>
<element name="sendAmbulanceResponse”
type="xsd:boolean"/>
</schema>
</types>
<interface name="Emergency">
<operation name="sendAmbulance"
pattern="http://www.w3.0rg/2004/03/wsdl/in-out">
<input messagelLable ="In"

Coord

x : float

y : float

element="xsd1:sendAmbulanceRequest"/> <<WebService>>
<output messageLable = "Out"
element="xsd1:sendAmbulanceResponse"/> i

</operation>

<linterface>

Emergency

sendAmbulance(location : Coord) : boolean

<service name="EmergencyService"
interface="tns:Emergency">
<endpoint name="EmergencyPort"
address ="http://example.com/Emergency"/>
</endpoint>
</service>
</description>

Figure 1. Class diagram generation from
WSDL 2.0

service, he can simple link the service to the already exist-
ing data type’s class, using a one-way association (from the
service to the class).

4.2. UML-S activity diagram

Although the class diagram is very useful to help visu-
alizing the Web services interfaces and the complex types
involved, it lacks the dynamism implied by Web services in-
teractions. Therefore, UML-S includes the activity diagram
and extends this standard UML model so that it is adapted
in the context of interacting services.

Activity diagrams are particularly adapted to model busi-
ness processes. A business process can be defined as a set
of coordinated tasks, achieving a business goal. In the con-
text of Web services composition, An activity models the
internal behavior of a composite Web service’s method, and
an action (i.e. step of an activity) corresponds to a call to
another Web service, which induces interaction.

To avoid redundancy, UML-S activity diagram does not
require additional modeling for basic input/output match-
ing. Indeed, in UML-S, methods parameters and output are
named and variables with the same name are supposed to
be the same. This simplifies the model presented in [20]
because it is no longer needed to indicate the objects be-
tween the Web service calls and to match them manually.
In the event that data requires transformation between two
web services call, this is handled by transformation notes as
presented later.

UML activity diagram has built-in support for the five

main flow control patterns mentioned by [22] and supported
by most composition languages, namely the sequence (fig-
ure 4), parallel split (figure 3(a)), synchronization (fig-
ure 3(b)), exclusive choice (figure 5(a) where X stereotype
should be replaced by XOR) and simple merge (figure 5(b)
where Y stereotype should be replaced by XOR). The se-
quence enables the developer to execute activities in a given
order, as opposed to the parallel split that is used to execute
them simultaneously. The synchronization joins parallel ex-
ecution paths and waits for all of them to finish before con-
tinuing. The simple merge joins two or more alternative
branches without synchronization. Finally, the last basic
pattern is the exclusive choice (or XOR-Choice) where only
one of several branches gets chosen according to a condi-
tion. Note that all these basic patterns are all supported by
standard UML activity diagram.

Aalst also enumerates more advanced flow control pat-
terns which are supported by UML-S, using stereotypes to
extend original UML. Web services are unreliable, therefore
it can be interesting to contact several similar services and
use only the first response received. The Discriminator (fig-
ure 6 with a discriminator stereotype instead), described by
[12], allows to do so: it waits for one of the incoming par-
allel branches to complete before continuing and “ignores”
the others. The N-out-of-M Join pattern [7] (figure 6) is a
generalization of the discriminator. Instead of waiting for
one branch to complete, it waits for N branches and ignores
the others. The Multi-choice (figure 5(a) where X stereotype
should be replaced by OR) will allow the execution of one
or several branches in parallel, based on a decision. After a
Multi-choice, one can use two different patterns to join the
incoming branches: the Multiple merge (figure 5(b) where Y
stereotype should be replaced by OR) or the Synchronizing
merge (figure 5(b) where Y stereotype should be replaced
by OR/S)) that adds synchronization feature.

UML-S also supports the while loop pattern as presented
in figure 2, which is represented by a standard UML choice
node with a <while>> stereotype.

<<while>>,

loop \ILC”

°

Figure 2. UML-S While

exit

The parallel split is represented using a standard UML
fork node, as depicted by figure 3(a). A sequence is rep-
resented using arrows (transitions) between actions. This
choice is represented in figure 4. A synchronization is rep-

N VA
\ v

(a) Parallel split (b) Synchronization

Figure 3. UML-S split and synchronization

Figure 4. UML-S Sequence

resented using standard UML join node, as shown in figure
3(b). An exclusive choice is represented using the UML
choice node. However, a <XOR>> stereotype is added
to differentiate it from the multi-choice whose stereotype
is KOR>. This design choice is depicted in figure 5(a),
where X can either be replaced by XOR or OR. To join the

< <X>> <<Y>>
(a) Choice (b) Merge

Figure 5. UML-S Choice and Merge patterns

different branches, one can use a simple merge after an ex-
clusive choice. One can also use a multiple merge or a syn-
chronizing merge after a multi-choice. All these merging
nodes use the standard UML choice/junction node but they
are identifiable through their stereotype. This representa-
tion is presented in figure 5(b) where Y can be replaced by
XOR for a simple merge, OR for a multiple merge or OR/S
for a synchronizing merge.

The N-out-of-M join is represented using the standard
UML join node with this additional stereotype: <N-join>>
where N should be replaced by the number of branches
that it should wait for before executing subsequent activ-
ities (see figure 6). If one calls M the number of incom-
ing branches, in the event that N=1, this pseudo-state is
identical to a discriminator and the specifier is encouraged
to use the <discriminator> stereotype instead, for more
clarity. To model calls to Web services (inherent to Web
services composition), UML-S defines an action that has

ooo

—
<<N-join>>

()

Figure 6. UML-S N-out-of-M join

a <invoke>> stereotype. The data required to allow code
generation (which was missing in [6]) is stored using tagged
values of the action. This data includes the Web service
name, its method and its WSDL’s URL. This solution is
similar to the one in [20]; it is visible in actions of figure 8.

In traditional workflow, one can define actions so that
one action’s output matches another’s input. However, this
is more difficult in the context of Web services composi-
tion. Indeed, one often don’t have any control on the Web
services one is trying to compose and they are usually not
made to work out of the box with each other. As a con-
sequence, it is often necessary to make some kind of data
transformation between two Web service calls. For this
particular reason, transformation notes plays a significant
part in Web services composition context. Transformations
are supported in original UML 2.0, they are represented as
notes with a <transformation>> stereotype as presented in
the example in figure 8.

Input and output data for the current Web service method
are represented as objects. Input uses a <receive>> stereo-
type and a <reply>> one for output. The name of the vari-
ables are given as tagged values. These objects are visible
in figure 8. Note that data objects are integrated in the main
flow, which is supported in UML 2.0. We believe that this
notation is clearer than the one proposed in [20] where ob-
jects are on the side of the main flow.

5. Case study

In this part, UML-S modeling language is studied
through an actual application. In this case study, a compos-
ite Emergency service is created by making already existing
Web services interact.

The exact scenario is presented in part 5.1. Then, we
consider its UML-S modeling in part 5.2.

5.1. Web services composition scenario

In this scenario, we have four available Web services
are involved. The Hospital service provides a method
called bookNearestHospital() which takes the location of
the emergency in parameters, book a bed in the nearest
hospital and returns the coordinates of the chosen hospital.

<<WebService>>
ItineraryA

<<WebService>>
ItineraryB

computeltineraryETA(start : Coord,end : Coord) : Time

computeltineraryETA(start : Coord,end : Coord) : Time

<<WebService>>
AmbulanceDispatch

Coord <<WebService>>

sendNearestAmbulance(emerglLoc : Coord,hosp : Coord) : Coord

%

Hospital
x : float

y : float

bookNearestHospital(location : Coord) : Coord|

S

<<WebService>>

Emergency

sendAmbulance(location : Coord) : Time

Figure 7. UML-S class diagram

Hospital booking

<<receive>>

Input {service=Hospital,

—

<<invoke>>

Ambulance dispatch

<<invoke>>
oord,

{location}

{service=AmbulanceDispatch,

wsdi=http://set.utbm. fr/Hospital?WSDL}

hod ion, hospC

Itinerary Computation A

<<invoke>>

{service=ltineraryA,

method=computeltineraryETA(start, end):ETA,
wsdl=http://set.utom.fr/ltineraryA?WSDL}

wsdl=http:/set.utom.fr/AmbulanceDispatch?WSDL}

<<transformation>>
start=ambuCoord

end=location

<<reply>>
Output

{ETA}

<<invoke>>

{service=ltineraryB,

<<discpmar/
el‘/\

Itinerary Computation B

method=calculateltineraryETA(startX, startY, endX, endY):ETA,

wsdi=http:/set.utbm.fr/tineraryB?WSDL}

startX=ambuCoord.x
I startY=ambuCoord.y
/ endX=location.x

endY=location.y

Figure 8. UML-S activity diagram

Another service is called AmbulanceDispatch and it has a
sendNearestAmbulance(emergLoc, hosp) method that takes
in parameter the location of the emergency and the loca-
tion of the destination hospital. It sends the nearest ambu-
lance to the scene and returns the original coordinates of
the ambulance. The last two services are identical services
from different providers. They are called ItineraryA and
ItineraryB and they both provide a computeltineraryETA()
method. This method computes the best itinerary between
two locations passed as parameters, calculates the estimated
time of arrival to the destination (called ETA from now on)
and returns it.

It is supposed that the specifier wants to compose the
previously stated Web services in order to create a com-
posite service called Emergency. The emergency service
should provide a sendAmbulance() method taking the loca-
tion of the emergency situation as a parameter and returns
the ambulance ETA. The Emergency service should call the
Hospital first in order to book a bed in the nearest hospital.
Then, it should contact the AmbulanceDispatch service in
order to ask an ambulance to bring the victim to the hos-
pital. After that, it should call the two Itinerary services
in parallel to compute the ambulance ETA. The Emergency
service requires only one response from those two Web ser-
vices. Therefore, it will wait for one of them to finish, return
the ETA to the user and ignore the other Web service’s re-
sponse.

5.2. UML-S modeling of the scenario

First of all, the specifier should import the Web services
he wants to compose by providing their WSDL file’s URL.
After that, he should add a <WebService>> class to the
diagram for the composite Web service called Emergency.
Then, he should define the methods provided by this ser-
vice. In this case, it simply has one method with the follow-
ing definition: sendAmbulance(location: Coord): Time. As
one can see, this method handles a complex type called Co-
ord. If the Coord class does not exist, the specifier should
create it. In this case, the Coord class already exists because
it is already used by several imported Web services. There-
fore, he simply needs to add a one-way association from the
Emergency Web service to the already existing Coord class.

The resulting UML-S class diagram for this is presented
in figure 7. The classes that were automatically generated
thanks to the Web services WSDLs are represented with a
white background. The one added by the specifier has a
grey background to differentiate it.

Now that the class diagram was completed, the specifier
need to define the UML-S activity diagram for his new com-
posite service’s method: sendAmbulance(). The framework
is already able to generate part of the activity diagram, that
is to say the initial and final nodes, the Input object with the
location parameter, the Output object with a default output
variable name. The specifier is then advised to rename the
output variable to something more explicit like ETA in this

example.

The resulting activity diagram is presented in figure 8.
Note that the discriminator flow control pattern was used
to wait only for the fastest Itinerary service to complete be-
fore executing the subsequent tasks. The AmbulanceDis-
patch and the Hospital services are called sequencially. Fi-
nally, the Transformation state is used to assign variables
and make basic data type transformations before calling the
Itinerary services.

After that, the framework allows the specifier to gener-
ate code such as BPEL from the UML-S model. No further
programming is required because a composite Web service
simply makes use of already programmed services and al-
lows them interact.

6. Conclusion

Composite Web services building lacks sufficient sup-
port for traditional workflow modeling. Thus, some needs
were identified and UML class diagram and activity dia-
gram were extended to meet these needs.

This paper presents UML-S (UML for Services), a new
UML-based formalism to develop composite Web services
according to MDA principles. UML-S can be used in early
stages of development, to help specify graphically Web ser-
vices interfaces and their interactions. It is then possible
to generate platform-specific code from these high-level
UML-S models.

In order to realize the model-driven vision of MDA, it
is required to provide transformations rules between high-
level UML-S models and low-level XML code such as
BPEL. Therefore, development issues will be addressed in
future work and a fully functional UML-S framework is un-
der development.

7. Acknowledgments

This work is supported by the EU project ASSET (Ad-
vanced Safety and Driver Support for Essential Road Trans-
port, 2008-2011).

References

[1] Business process execution language (bpel), oasis,.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.
Object management group (omg). http://www.omg.org.
Workflow with separation of concerns (worksco).
http://worksco.sf.net.

M. Bakhouya and J. Gaber. Service composition approaches
for ubiquitous and pervasive computing environments: A
survey. Agent Systems in Electronic Business, Ed. Eldon Li
and Soe-Tsyr Yuan, IGI Global, (978-1-59904-588-7):323—
350, 2007.

(2]
(3]

(4]

20

(5]
(6]

(8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

(23]

[24]

L. Cadelli and A. Gordon. Mobile ambients. FOSSACS’9S,
LNCS, 1378:140-155, 1998.

V. D. Castro, E. Marcos, and M. L. Sanz. A model driven
method for service composition modelling: a case study.
International Journal of Web Engineering and Technology,
2(4):335-353, 2006.

M. Dumas and A. H. ter Hofstede. Uml activity diagrams
as a workflow specification language. *UML* 2001 — The
Unified Modeling Language Modeling Languages Concepts
and Tools, 2185:76, 2001.

C. Dumez, A. Nait-Sidi-Moh, J. Gaber, and M. Wack.
Model-driven engineering of composite web services using
uml-s. Submitted to the 10th International Conference on
Information Integration and Web-based Applications & Ser-
vices (iiWAS2008), July 2008.

H. Eriksson and M. Penker. Business modeling with uml.
Wiley Computing Publishing, 2000.

D. Fensel and C. Bussler. The web service modeling frame-
work wsmf. Electronic Commerce Research and Applica-
tions, 1(2):113, 2002.

C. Gao, Y. Li, and H. Chen. Services composition modeling
with mobility and time. services, 00:316-323, 2007.

R. Hamadi and B. Benatallah. A petri net-based model
for web service composition. In ADC ’03: Proceedings of
the 14th Australasian database conference, pages 191-200,
2003.

D. jager, A. Schleicher, and B. Westfechtel. Using uml for

software process modeling. In LNCS 1687. Springer, 1999.
E. Marcos, P. Caceres, B. Vela, and J. M. Cavero. Midas/bd:
A methodological framework for web database design. Con-
ceptual Modeling for New Information Systems Technolo-
gies, 2465:227, 2006.

A. Nait-Sidi-Moh, C. Dumez, J. Gaber, and M. Wack. Petri
net based verification and validation of uml-s models. Sub-

mitted to Web Intelligence (WI’08), july 2008.
E. D. Nitto, L. Lavazza, M. Schiavoni, E. Tracanella, and

M. Trombetta. Deriving executable process descriptions
from uml. Proceedings of the 24th International Conference

on Software Engineering, pages 155-165, 2002.

J. Peterson. Petri Net Theory and the Modeling of Systems.
Prentice Hall, Englewood Cliffs, 1981.

S. Ran. A model for web services discovery with qos. SIGe-
com Exch., 4(1):1-10, 2003.

C. Schmidt and M. Parashar. A peer-to-peer approach to
web service discovery. World Wide Web, 7(2):211, 2004.

D. Skogan, R. Groenmo, and I. Solheim. Web service com-
position in uml. In Proceedings. Eighth IEEE International
Enterprise Distributed Object Computing Conference, 2004.
EDOC 2004., pages 47-57, 2004.

R. Soley. Model driven architecture,
http://www.omg.com/mda, 2001.

W. van der Aalst. Don’t go with the flow: Web services
composition standards exposed. [EEE Intelligent Systems,
18:72-76, 2003.

S. A. White. Business process modeling notation (bpmn),

v1.1. http://www.omg.org/spec/BPMN/1.1, 2008.
P. Wohed, W. van der Aalst, M. Dumas, A. ter Hofstede,

and N. Russell. On the suitability of bpmn for business pro-
cess modelling. Process Models and Languages, Springer,
4102/2006:161-176, 2006.

white paper.

