
HAL Id: hal-00334435
https://hal.science/hal-00334435v1

Preprint submitted on 26 Oct 2008 (v1), last revised 21 Jan 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

General Session Types
Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, Luca

Padovani

To cite this version:
Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, Luca Padovani. General Session
Types. 2008. �hal-00334435v1�

https://hal.science/hal-00334435v1
https://hal.archives-ouvertes.fr

General Session Types

Giuseppe Castagna1 Mariangiola Dezani-Ciancaglini2 Elena Giachino1,2 Luca Padovani3

1PPS (CNRS) - Université Denis Diderot - Paris, France
2Dipartimento di Informatica - Università degli Studi di Torino - Torino, Italy

3Istituto di Scienze e Tecnologie dell’Informazione - Università degli Studi di Urbino - Urbino, Italy

Abstract. We present a streamlined theory of session types based
on a simple yet general and expressive formalism whose main fea-
tures are semantically characterized and where each design choice
is semantically justified. We formally define the semantics of ses-
sion types and use it to define the subsessioning relation. We give
a coinductive characterization of subsessioning and describe algo-
rithms to decide all the key relations defined in the article. We then
apply the theory to statically ensure progress for a simple π-based
process calculus, give examples, and discuss related work.

1. Introduction

In distributed systems the communication between two points of-
ten consists of a conversation held on a channel and described by a
protocol. Typical type systems for process algebras associate each
channel with the type of messages exchanged through the chan-
nel. This practice either results in excessively strict requirements
or it undermines the benefits of static typing by associating chan-
nels with less precise types. To obviate this problem Honda et al.
introduced session types [17, 18].

Session types are used to type special channels through which
several messages (of possibly different types) may be exchanged
in sequence according to a given protocol. Such a session channel
can be seen as a client-service connection, and the session type
describes which actions the processes may perform through this
channel and the order in which they are executed. We can thus
assimilate the set of session types associated with the channels used
by a process to a behavioural type of the process.

The current design of session types is somewhat ad hoc inso-
far as it heavily depends on programming primitives of the host
language session types are used within. This hinders the adoption
of session types in the existing general purpose languages unless
these languages are extended by communication, synchronization
and flow primitives specific to session types.

For these reasons we redesign session types to meet the follow-
ing three criteria:

Language transparency. The introduction of session types must
be transparently possible for every language that is able to emit sig-
nals: the introduction of session types must only imply the addition
of new signals but not of new language primitives.

Type-checking independence. The (type-)checking of session
composition must only rely on the existing language constructions:
the description of how services are offered and served should spring
from the analysis of the combination of the existing language prim-
itives and not by the introduction of particular primitives whose
goal is to handle the flow of the sessions.

Compositionality. Session types must be able to cope with pos-
sible ambiguities that may arise when creating new processes by
composing existing ones. For instance this may happen if we create

a new process by composing two processes that offer some com-
mon signals, which raises the problem of how these signals are
successively served (this is a problem akin to the disambiguation
of multiple inheritance in object-oriented languages). Also, unre-
lated sessions/services may be given the same name (e.g. the name
“search” is likely to be used for unrelated services) and the de-
clared behaviour must allow the system to disambiguate their use.

Most importantly we do not want to pile up features in a bloated
syntax but we want to define a clean formalism with a clear seman-
tics: such a redesign is the ambitious goal of this work. How shall
we proceed? We will start from scratch and design session types by
taking into account what in our opinion is the ideal usage scenario
of session types. In particular:

Three modalities of interaction. In our ideal scenario the only
requirement for a programming language to use session types is
that it must be able to emit a signal belonging to one of the follow-
ing three classes corresponding to different modalities of interac-
tion and then continue the flow of its computation. The classes are:
(i) session communication where we find two signals u!(e) and
u?(x : t) respectively to send the value of the expression e on the
channel u and to receive on it a value of the type t and bind it to a
variable x; (ii) session delegation: if we want to have higher-order
session, then we need a signal u!Lu′M to delegate over a channel u
the continuation of the session started on (channel) u′ and a signal
u?Lz : ηM to receive on u the delegation of a session whose protocol
is described by η and bind it to the variable x; (iii) session con-
nection, where we find signals of the form connect c(z) by which
a process manifests its will to initiate a session of name c—using
the local name z—that will implement the behaviour described by
the session type associated to c. Ultimately we require the host lan-

guage to handle five new signals.1

Three modalities of composition. Session types must describe
how these signals are offered at a given point and how each signal
is then served. For what concerns the way signals are offered by
some service we can think of three different ways in which this
may happen: (1) a packet of signals are offered in parallel which
means that a client must handle all these signals to successfully
interact with the service; (2) these packets are offered in sets,
which means that the service gives the client the choice of on
which packet to continue the session; (3) these sets are offered
in a mutually exclusive way which means that the service will
internally choose how to continue the session and the client must
be ready to handle whatever choice the service has done. The
way each signal emission is performed must be determined by

1 These signals are new with respect to the host language: they are instead
pretty standard in the session type literature, though they are usually accom-
panied by other signals that explicitly handle the flow.

1 2008/7/20

the type-checker according to the semantics of the host language
composition primitives in which the emission occurs.

In this work we will drop the first modality, which corresponds
to true concurrency, and handle parallel offers of signals via the
interleaving of the signals. Therefore our session types will de-
scribe services that offer mutually exclusive sets of signals (each
set corresponding to an internal choice of the service) among which
the client is asked to choose (corresponding to an external choice
proposed to the client). To comply with the criterion of “type-
checking independence”, it is the task of the (session-)type-checker
to analyse a process and infer the way (together or mutually exclu-
sively) the process offers signals at each step.

Dynamic selection of the behaviour based on the received values.
We want to provide a fine-grained description of the flow of a
session. For example a service can ask on a session channel a
Boolean whose value will determine the way the interaction will
pursue (e.g. think of a check-box to require an invoice of some
on-line payment transaction). We want session types to be able to
express the precise dependency between the received value and
the continuation (e.g., “if I receive true, then will do this, if I
receive false, then will do that” rather than the less precise “when
I receive a Boolean, then will do this or that”). We want to be able
to follow the flow also when we program services by composing
components that emit on the same session common sets of values:
so session types must be able to describe situations such as “if I
receive something of this type and/or that type, then will do this, if
I receive something not of that type, then will do that”.

In order to implement such a fine-grained description of the
computation flow, the types appearing in signals will be Boolean
combinations of the types of the host language as well as single-
ton types (the latter, to handle value-level branching and to encode
current definitions of session types present in the literature, where
labels are the values used for branching). So we will consider sig-
nals such as, for instance, u?(x : (Bool∨ Int∧¬0)) corresponding
to the reception on u of either a Boolean value or of a non-null

integer.2

Substitutability. New services must be obtained by assembling
existing ones. Session types are designed to limit composition so
that all assemblages are sound (no type mismatch in communica-
tions) and stuck free (no session deadlock). But of course they must
not be rigid and must allow, within the constraint of soundness and
stuck freedom, maximum reuse. Therefore it is necessary to define
a type hierarchy that allows the programmer to use/replace services
of a more precise type where services of a less precise type are ex-
pected. In particular we want to be able to upgrade a service to a
new one that offers its clients more choices and/or has a more de-
terministic execution (by reducing the range of its internal choices).
All of this must be obtained transparently for existing clients.

In this work we show how to fulfil all these requirements and design
a theory of session types that can be applied to our ideal usage sce-
nario allowing flexible composition and substitutability of services,
yet ensuring soundness and stuck freedom for all interactions.

Outline of the presentation: After outlining our contribution
and discussing related work we start the formal study in Section 2,
devoted to session types. We formally define their syntax (§2.1)
and semantics where we introduce the pivotal definition of dual-
ity and use it to give a semantic and quite intuitive characterization
of subsessioning (§2.2). Subsessioning is required for defining the

2 Of course the ability of the type-checking system to performing such a
fine-grained analysis of the flow will heavily depend on the definition of
the branching primitives present in the host language but our session types
must not preclude this possibility.

subtyping relation (§2.3), but its semantic characterization is hard
to work with and gives little intuition about the properties it enjoys.
Thus we devise a coinductive characterization of subsessioning and
prove that it is equivalent to the semantic one (§2.4). We describe
some interesting subsessioning relations (§2.5) which allow us to
rewrite session types in an equivalent normal form. The normal
form is at the heart of the algorithmic characterizations of all the
given relations (§2.6). In Section 3 we apply our theory of general
session types to a minimal process calculus describing interacting
services. We devise the language syntax (§3.1), its operational se-
mantics (§3.2), and a typing discipline which enforces the progress
property for well-typed processes (§3.3). A conclusion closes our
presentation. The Appendices contain the long proofs and the algo-
rithmic subsessioning simplification rules.

1.1 Contributions and related work

There exist several related works both in general concurrency the-
ory and more specifically in the rich literature on session types (see
[21] and the references in there).

For what concerns the latter our work heavily borrows ideas and
solutions from the literature of session types: for instance, the three
classes of signals we outlined before are standard in all works on
session types we are aware of (again, refer to [21] for references),
while many of the typing techniques we use in Section 3.3 are bor-
rowed from other works [15, 10]. Our contribution is the definition
of a clean and semantically grounded general theory for session
types. We claim that we singled out a minimal set of features to de-
fine session types, insofar as the addition of any further constructor
(such as a parallel composition or labelled synchronization) would
restrict the programming language to which the framework could
be applied, while the removal of any of them would jeopardize its
generality. As we said the three kinds of signals we use are more
or less present in all the works on session types, but the point is
that they are always accompanied by other signals (e.g. labelled
choices), constructors (e.g. parallel composition) or features (e.g.
choices based on object classes) that tailor the type system to a re-
stricted class of languages. Our aim and ambition is to synthesise
the essential features of the session type literature and develop their
minimal, and therefore general, theory. We already argued about
the minimality of the actions (signals) described by our session
types. Similarly we will argue why the two choices of composi-
tion of session types (internal and external choice) we included in
our theory seem to be minimal ingredients of any general theory of
session types. Our study focuses on the type theory that we want to
be generally applicable to a large class of languages: the definition
of a process calculus given at the end of the presentation plays a
marginal role in this work and it is given as a instance of possible
application of the theory. We hope and believe that the framework
and techniques defined here may become a boilerplate of solutions
for session types.

Subtyping for session types is studied in [15, 14] where the def-
inition of the subtyping relation is driven by the observation that
one can always safely replace a session by another that externally
offers more choices and internally can make less choices. Since in
the cited works choices are driven by labels, it turns out that exter-
nal and internal choices have the same subtyping relation as record
and variant types respectively. Here we work with more general
choices which are based on the arguments of the communications

rather than on labels:3 when a session offers an output it will be
able to synchronize only with the branches of a choice that accept
that output. This policy was first considered in [11] for an object-
oriented calculus. While the resulting subtyping relation is driven

3 In our system label-based choices are a special cases in which the branches
of a choice are selected on singleton types.

2 2008/7/20

by the same principles as stated above, our new setting yields a
richer and more general subtyping relation where a single or a set
of choice branches may subsume another set of branches. Another
difference is that in the cited works the subtyping relation is defined
coinductively and axiomatically while here we characterize the re-
lation semantically, and this better shows the underlying intuition.

Our approach to session type semantics is akin to the testing
approach to process semantics [8]: the notion of “passing a test”
is embodied in our notion of duality, and subsessioning is the
preorder induced by comparing the duals of two session types. In
particular, two session types are equivalent if they have the same set
of duals. Unlike the standard testing theories, our notion of duality
is symmetric (in the spirit of the session types literature).

With respect to concurrency theory we introduce an original
treatment of output signals, by implementing a form of partial
asynchrony. This treatment is similar to the one proposed by Castel-
lani and Hennessy [7] for asynchronous CCS, where outputs cannot
be blocked even if they guard external choices (we call this property
“output irrevocability”). However, in our setting output signals are
allowed to have a continuation. Thus the order of actions specified
by a session type must be strictly followed (equivalence of session
types modulo permutation of consecutive outputs is left for future
work). Technically, this corresponds to be able to observe inputs
even in the presence of (partial) asynchrony.

From a technical viewpoint in this work we introduce several
novelties. We devise a new labelled transition system for session
descriptors in which actions represent values rather than types, we
give a semantic characterization of the subsessioning relation in
terms of a set-theoretic interpretation of session descriptors. The
same interpretation is used to give semantics to a complete set of
Boolean operators for session descriptors. A labelled transition sys-
tem for session types is also proposed in [1], where a type system
ensuring progress for the CaSPiS calculus [2] is designed. The pro-
cess language mixes and synthesizes several techniques that are
scattered all over the literature. In particular it borrows the type-
based dynamic selection of external choices and the technique of
tagged channels from [4] and the use of polarized channels to en-
sure subject reduction from [15]; its typing discipline improves ex-
isting stack-based typing techniques [12], by sparing redundancies
and resulting in very compact and, we believe, relatively readable
rules.

2. Session types

2.1 Type syntax

As we said in the introduction we want to add to some host lan-
guage the following signals: u!(e), u?(x : t), u!LuM, u?Lz : ηM, and
connect c(z). Then we associate every channel—c, z, or u—with
a prescription of its behaviour, a session type or a session descrip-
tor, so as to ensure that, whenever a session is started, it carries on
soundly interacting until it terminates.4 The behavioural prescrip-
tions characterize all the possible conversations that may take place
on channels and have the form prescribed by the metavariable η for
session descriptors and begin.η for session types in Table 1.

Two different kinds of communication can take place on chan-
nels: a channel is used either (i) to send/receive some value of type
t (signals u!(.) and u?(.)) or (ii) to “delegate”/“resume” some open
session to a different process (signals u!L.M and u?L.M). In the be-
havioural type of a channel we use ?t and !t to denote that the (pro-
cess using the) channel will respectively wait for and send some
value of type t, and use ?η and !η (actually, ?χ and !χ, see later on)
to denote that the (process that uses the) channel will respectively

4 Since sessions may be nested, termination will be ensured under the
hypothesis that every subsession of a started session will eventually start
and terminate as well (see Theorem 3.6).

(types) t ::= · · · | begin.η | ¬t | t ∧ t | t ∨ t | v

(descriptors) η ::= end | α.η | η ⊕ η | η + η

(actions) α ::= !t | ?t | !χ | ?χ

(sieves) χ ::= η | ¬χ | χ ∧ χ | χ ∨ χ

Table 1. Type syntax

wait for and send some channel which already started a conversa-
tion and will continue it according to the behaviour described by
the session descriptor η. In particular, a descriptor α.η states that
the (process using the) channel will perform one of the communi-
cation actions α described above and then will behave according
to η; a descriptor end states that the session on the channel has
successfully ended; a descriptor η1 ⊕ η2 states that the (process
that uses that) channel will internally choose to behave according
to either η1 or η2; a descriptor η1 + η2 states that the (process that
uses that) channel gives to the communicating partner the choice to
behave according to either η1 or η2. In what follows we adopt the
convention that the prefix operator has precedence over the choice
operators and we will use parentheses for enforcing precedence.
For instance, (!t.η) + end and !t.η + end denote the same session
descriptor, which is different from !t.(η + end). Types t are inher-
ited from the host language (this is stressed in Table 1 by the dots in
the production for types), to which we add singleton types (denoted
by a value v, the only one they contain), Boolean combinators (i.e.
∨, ∧, and ¬), and session types of the form begin.η which classify
yet-to-be-opened session channels whose conversation follows the
descriptor η. The interest of session types is that they can be used
to type higher-order communications in which session channels are
communicated over other channels; session types will also extend
the type system of the host language which can thus use session
channels as first class values.

The importance of Boolean combinators for types is shown by
the following example where we assume Int be a subtype of Real:

?Real.!Int.end + ?Int.!Bool.end (1)

The session descriptor above declares that if a process (that uses
a channel with that behaviour) receives a real number, then it will
answer by sending an integer, while if it receives an integer it will
answer by sending a Boolean. A partner process establishing a
conversation on such a channel knows that if it sends a real that
is not an integer, then it should be ready to receive an integer while
if it sends an integer, then it must be ready to receive an integer or
a Boolean value (notice how the type of the argument drives the
selection of the external choice). That is, its conversation will be
represented by the following descriptor (t \ s stands for t ∧ ¬s):

!(Real \ Int).?Int.end + !Int.?(Bool ∨ Int).end (2)

We see that Boolean combinators immediately arise when describ-
ing the behaviour of an interacting process. They are also useful
when considering equivalences. For instance, it is intuitively clear
that (1) is equivalent to

?(Real \ Int).!Int.end + ?Int.!(Bool ∨ Int).end (3)

But the crucial role of Boolean combinators can be shown by
slightly modifying (1) so that it performs only input actions:

?Real.?Int.end + ?Int.?Bool.end (4)

In this case the descriptor declares that after receiving an integer
it will either wait for another integer or for a Boolean value. If
an interacting process sends an integer, then in order to be sure
that the conversation will not be stuck it must next send a value
that is both an integer and a Boolean. Since there is no such a

3 2008/7/20

value, the only way to successfully interact with (4) is to make
sure that interacting processes will only send reals that are not
integers: !(Real \ Int).!Int.end. In conclusion, the only way to
describe the sessions that can successfully interact with (4) is to use
negation (for the sake of completeness note that (4) is equivalent to
?(Real\ Int).?Int.end+?Int.?(Bool∧ Int).end which is equivalent
to ?(Real \ Int).?Int.end since the right summand of the previous
choice can never successfully complete a conversation). A similar
discussion can be done for delegation, that is, when actions are
over session descriptors, rather than types. This is why we added
Boolean combinations of session descriptors too (we dub them sie-
ves) and actions have the form ?χ and !χ rather than ?η and !η.

We want both types and session descriptors to be recursively
definable. This is important for types since it allows us to represent
recursive data structures (e.g., DTDs) while for session descriptors
it allows us to represent services that provide an unbounded number
of interactions such as (the service whose behaviour is the solution
of the equation) η = end + ?Int.η which describes a session that
accepts as many integers as wished by the interacting process. In
order to support recursive terms, we resort to a technique already
used in [13, 6] where instead of introducing an explicit finite syntax
for recursive terms, we directly work with possibly infinite regular
term trees that satisfy some contractivity conditions; these condi-
tions ensure that terms are semantically meaningful. This yields to
the following definition for our types:

DEFINITION 2.1 (Types). The types of our system are the possibly
infinite regular trees coinductively generated by the productions in
Figure 1 that satisfy the following conditions:

1. on every infinite branch of a type there are infinitely many
occurrences of “begin”;

2. on every infinite branch of a session descriptor there are in-
finitely many occurrences of “.” (the prefix constructor);

3. for every subterm of the form α.η, the tree α.η is not a subtree
of α.

The first two conditions are contractivity restrictions that rule out
meaningless terms such as (the solutions of the equations) t = t∨ t
or η = η⊕η; technically they say that the binary relation ⊲ defined
by t1 ∨ t2 ⊲ ti, t1 ∧ t2 ⊲ ti, ¬t ⊲ t, χ1 ∨ χ2 ⊲ χi, χ1 ∧ χ2 ⊲ χi,
¬χ ⊲ χ, η1 + η2 ⊲ ηi, η1 ⊕ η2 ⊲ ηi is Noetherian (that is, strongly
normalizing), which gives an induction principle on terms that we
will use without any further explicit reference to the relation ⊲.
The third condition states that recursion cannot escape prefixes
and thus it rules out terms such as η = ?η.end; this restriction
generalizes the typing technique used in all works on (recursive)
session types that forbids delegation of a channel over itself [18, 21]
(strictly speaking we disallow types that in the cited works are
not inhabited by any program) while, technically, it allows us to
stratify the definition of the subtyping and subsessioning relations,
stratification used in the proof of Theorem 2.6.

We do not specify any particular property for the types of the
host language. Of course, if the host language has some type con-
structors (e.g. products, arrows, etc.) the first contractivity condi-
tion can be relaxed to requiring that on every infinite branch there
are infinitely many occurrences of type constructors. The only con-
dition that we impose on the host language is on values (thus those
of the host language as well) which must satisfy the following
strong disjunction property for unions:

⊢ v : t1 ∨ t2 ⇐⇒ ⊢ v : t1 or ⊢ v : t2 (5)

This condition may be restrictive only in the case that the host lan-
guage already provides a union type combinator since, otherwise,
it can be easily enforced by requiring that every session channel is
associated with exactly one (most specific, because of subtyping)
session type.

Henceforward, we will use t to range over types, θ and η to
range over session descriptors, χ to range over sieves, ψ to range
over all of them, and often omit the word “session” when speaking
of session descriptors. We reserve v for values, whose definition
and typing is left unspecified: we assume as understood that values
for a session type begin.η are channels explicitly associated with or
tagged by that type (or, because of subtyping, by a begin.η′ subtype
of begin.η: more about that later on).

As we already hinted in the introduction we do not include in
our session descriptors a construct for parallel composition (as for
instance it is done in [19, 3]). Indeed while we think that inter-
nal and external choices are necessary to safely approximating the
behaviour of a generic session (a general service must be able to
offer some choices to a client and, according to the interaction with
the client, make some internal choices that determine the prose-
cution of the session), we reckon that the introduction of paral-
lel composition would limit the application of our theory to fewer
programming languages. The reason is that session interaction is a
two-parties synchronization, therefore it can mostly be simulated
by internal and external choices via some expansion laws. If ses-
sion atomic synchronization involved more than two parties, then
this would no longer be true. By not introducing a parallel compo-
sition we let different type systems to use different expansion laws
and thus type different kinds of parallel composition of processes
(interleaving, restricted parallelism, asymmetric parallelism, and so
on): if we added a parallel composition to our types we would thus
fix its semantics and limit the application of our theory only to cal-
culi/languages in which the parallel composition of processes had
a matching semantics. In this respect we completely embrace the
conclusions of [16].

The intuitive semantics of session descriptors we outlined above
is formalized in the following section.

2.2 Type and session semantics

The semantics of both session descriptors and types—and more
generally most of the constructions of this work—crucially relies
on the notion of duality. In this section we first informally define
duality to devise a somewhat informal denotational semantics for
types and descriptors, then we give the formal definition of duality
in terms of a labelled transition system for descriptors.

2.2.1 Set-theoretic interpretations

In the previous section we argued that a complete set of Boolean
combinators must be used if we want to describe the set of partners
that safely interact with a given descriptor. Since we want the se-
mantics of Boolean combinators to be intuitive and easy to under-
stand we base their definition on a set-theoretic interpretation. In
particular, we interpret every type constructor as the set of its val-
ues and the Boolean combinators as the corresponding set-theoretic
operations. In other terms, we seek for an interpretation of types
J.K such that JtK = {v | ⊢ v : t} and that Jt ∧ sK = JtK ∩ JsK,
Jt∨sK = JtK∪JsK, and J¬tK = V \JtK (where V denotes the set of
all values). The same interpretation can then be used to define the
subtyping relation (denoted by “<:”). That is

t <: s
def⇐⇒ JtK ⊆ JsK

The technical machinery to define an interpretation with such prop-
erties and solve the several problems its definition raises (e.g. the
circularity between the subtyping relation and the typing of values)
already exists and can be found in the work on Semantic Subtyp-
ing [13]: we take it for granted and no longer bother about it if not
for session types that are dealt with in Section 2.3. The interpreta-
tion of types justifies the use we do henceforward of the notation
v ∈ t to denote that v has type t.

4 2008/7/20

The next problem is to give a set-theoretic interpretation to ses-
sion descriptors, as we have Boolean combinations on them too.
This interpretation is not required to be precise or mathematically
meaningful but only to ensure that conversations do not get stuck.
To this aim, rather than giving the set of values (or whatever they
would be, since session descriptors classify just “chunks” of con-
versation) contained in a descriptor, it suffices to characterize all
the possible behaviours common to all channels that implement a
session. In other terms, the semantics of a session descriptor can
be characterized by the set of partners with whom the interaction
will never get stuck (a sort of realizability semantics). This is cap-
tured by the notion of duality: two session descriptors η and θ are
dual if any conversation between two channels which follow re-
spectively the prescriptions of η and θ will never get stuck. So, for
instance, the descriptor (1) in the previous section is dual to the de-
scriptor (2). But !Int.?(Bool∨ Int).end is dual to (1), too. Note also
that some session descriptors have no dual, e.g. ?(Bool∧ Int).end,
since no process can send a value that is both a Boolean and an
integer (the intersection is empty). Such descriptors constitute a
pathological case, since no conversation can take place on chan-
nels conforming to them. Thus we will focus our attention on de-
scriptors for which at least a dual exists, and that we dub viable
descriptors. We write η ⋊⋉ θ if η and θ are dual (clearly, duality is
a symmetric relation). Then, we can define the interpretation of a
descriptor as the set of its duals: JηK = {θ | η ⋊⋉ θ}; extend it set-
theoretically to sieves: Jχ∧χ′K = JχK∩Jχ′K, Jχ∨χ′K = JχK∪Jχ′K,
J¬χK = S \ JχK (where S denotes the set of all viable descrip-
tors); and use it to semantically define the subsieving (and subses-
sioning) relation (denoted by “≤”):

χ ≤ χ′ def⇐⇒ JχK ⊆ Jχ′K (6)

Duality plays a central role also in defining the semantics of
types. Indeed we said that the semantics of a type constructor is
the set of its values, hence we have to define the values of the
type constructor begin.η. As we hinted in Section 2.1 we can
take as a value of a session type a channel tagged by that type
or by a subtype. Therefore to define values we need to determine
when a session type is subtype of another, that is, when we can
safely use a channel of some session type where a channel of
different type is expected. The intuition is that a channel of the
smaller type must be less “tolerant” than the one it replaces, that
is it must accept the same or less inputs and return the same or
more outputs. Since it “can offer less and do more” it will also
be more demanding with its duals, so it will have a set of duals
smaller than or equal to the duals of the one it replaces, as less
descriptors will comply with the extra requirements it imposes. So
the intuition—that we formalize by equation (11) in Section 2.3—
is that begin.η <: begin.η′ if and only if η ≤ η′. Since we
want our types to satisfy the strong disjunction property (5), then
channels must be tagged by types of the form begin.η (and not, say,
begin.η ∨ begin.η′), which yields the following interpretation for

session types: Jbegin.ηK = {cbegin.η′ | η′ ≤ η}, that is

Jbegin.ηK = {cbegin.η′ | ∀θ, θ ⋊⋉ η′ ⇒ θ ⋊⋉ η} (7)

The next step is to formally define the duality relation for which we
have to characterize the observables of the session descriptors.

2.2.2 Semantics of session descriptors

The formal semantics of a descriptor can be given by resorting to
the labelled transition system (LTS) defined by the rules in Table 2
plus the symmetric of rules (TR2-TR6). In the table µ ranges over
actions of the form !v, or ?v, or !η, or ?η, or X.

Rules (TR1-TR4) are straightforward: end emits a “tick” (TR1);
an internal choice silently decides the behaviour it will successively
follow (TR2); an external choice either performs an internal silent

(TR1)

end
X−→ end

(TR2)

η ⊕ η′ −→ η

(TR3)

η −→ η′

η + η′′ −→ η′ + η′′

(TR4)

η
µ−→ η′

η + η′′
µ−→ η′

(TR5)

η
!v−→

η + η′ −→ η

(TR6)

η
!η′′

−→
η + η′ −→ η

(TR7)

v ∈ t

?t.η
?v−→ η

(TR8)

v ∈ t

!t.η
!v−→ η

(TR9)

η ∈ χ

?χ.η′
?η−→ η′

(TR10)

η ∈ χ

!χ.η′
!η−→ η′

Table 2. Labelled transition system for session descriptors.

move (TR3) or it emits a signal µ that it offers as a possible choice
to the interacting partner (TR4). Note that internal moves in one
branch of an external choice do not preempt the behaviour of the
other branch. This is typical of process languages with two distinct
choice operators, such as CCS without τ ’s [9].

The remaining rules are somewhat less common. Rules (TR7-
TR8) state that the synchronization is performed on single values
(strictly speaking, on singleton types) rather than on types. This
is closer to what happens in practice, since !t.η indicates that the
descriptor is ready to emit some value of type t (TR8), while ?t.η
indicates that the descriptor is ready to accept any value of type
t (TR7). While this approach is reminiscent of the so-called early
semantics in process algebras [20] (but note that here it is applied
at type level rather than at process level), there is a technical reason
to use values rather than types, which we explain after defining the
subsessioning relation.

Rules (TR9-TR10) follow the same idea as (TR7-TR8), and state
that actions on descriptors emit a more precise information than
what they declare. To understand this point we need to give some
more details. First note that a session descriptor η, despite it is
usually called “session type” in the literature, is not a “real” type
since it does not type any value. Session descriptors do not classify
values but, rather, they keep track of the residual conversation that
is allowed on a given session channel (whose “real” type is of
the form begin.η). Therefore we cannot directly apply the same
technique as for rules (TR7-TR8) since there does not exist any
value for session descriptors. To mimic the behaviour of rules
(TR7-TR8) we resort to the informal semantics we described in
Section 2.2.1 where a type is interpreted as the set of its values and
a descriptor—actually, a sieve—as the set of its duals: therefore, as
an action on a type emits the same action on its values, so an action
on a sieve emits the same action on its duals, where we use η ∈ χ
to denote that η ∈ JχK.5

Rules (TR5-TR6) state that outputs are irrevocable. This is a
characteristic peculiar to our system and is reminiscent of Castel-
lani and Hennessy’s treatment of external choices in the asyn-
chronous CCS [7]. Roughly speaking, imagine a process offering
two different outputs in an external choice. Then we can think of
two possible implementations for such a choice. In one case the
choice is an abstraction for a simple handshaking protocol that the
communicating processes engage in order to decide which value is
exchanged. This implementation does not fit very well a distributed
scenario where processes are loosely coupled and communication
latency may be important. In the second—and in our opinion closer

5 Rules (TR7-TR10) hide a circularity since both values and duals are de-
fined in terms of the duality relation we are defining. Theorem 2.6 in Sec-
tion 2.2.3 shows that this circularity is only apparent.

5 2008/7/20

to practice—case, the sender process autonomously decides which
value to send. Rules (TR5-TR6) state that the decision is irrevocable
in the sense that the sender cannot revoke its output and try with the
other one. This behaviour is obtained by rules (TR5-TR6) by assim-
ilating an external choice over output actions to an internal choice
in which the process silently decides to send some particular value.
In this respect the symmetry of input and output actions in rules
(TR7-TR8)—but the same holds for (TR9-TR10) as well—may be
misleading: we implicitly assumed that when a process waits for a
value of type t it is ready to accept any value of type t (the choice
of the particular value is left to the sender) while when a process
sends a value of type t, it internally decides a particular value of
that type. We will break this symmetry in the formal notion of du-
ality (Definition 2.5) to be defined next.

2.2.3 Duality

The discussion on the labelled transition system suggests that two
dual descriptors can either agree on termination (so both emit X)
or one of the two descriptors autonomously chooses to send an
output that the other descriptor must be ready to receive. In order
to formalise the notion of duality it is then handy to characterise
outputs (when an output action may happen) and inputs (when an
input action must happen). As usual we write =⇒ for the reflexive

and transitive closure of −→; we write
µ

=⇒ for =⇒ µ−→=⇒; we

write η
µ−→ if there exists η′ such that η

µ−→ η′, and similarly for
µ

=⇒; we write η X−→ if there exists no η′ such that η −→ η′.

DEFINITION 2.2 (May and Must Actions). We say that η may
output µ, written η ↓ µ, if there exists η′ such that η =⇒ η′ X−→
and η′

µ−→ and µ is either !v, or !η, or X.
We say that η must input µ, written η ⇓ µ, if η =⇒ η′ X−→

implies η′
µ−→ and µ is either ?v, or ?η, or X.

As usual we write η 6↓ µ if not η ↓ µ and η 6⇓ µ if not η ⇓ µ.

Intuitively η ↓ µ states that for a particular internal choice η
will offer an output µ as an option, while η ⇓ µ states that the input
µ will be offered whatever internal choice η will do. For example
!Int.end ⊕ end ↓ !3 and !Int.end ⊕ end ↓ X; on the other hand
we have !Int.end + end 6↓ X, since !Int.end + end X−→ end.
Similarly we have ?Int.end⊕?Real.end ⇓ ?3 because the action ?3
is always guaranteed independently of the internal choice, whereas

?Int.end ⊕ ?Real.end 6⇓ ?
√

2 because ?Int.end ⊕ ?Real.end −→
?Int.end and ?Int.end 6⇓ ?

√
2.

The previous definition induces two notions of convergence.
Clearly convergence is a necessary condition for a session descrip-
tor to have a dual.

DEFINITION 2.3 (May and Must Converge). We say that η may
converge, written η ↓, if for all η′ such that η =⇒ η′ X−→ we
have η′ ↓ µ for some µ. We say that η must converge, written η ⇓,
if η ⇓ µ for some µ. As usual, we use η 6↓ and η 6⇓ to denote their
respective negations.

Note that the two contractivity conditions of Definition 2.1 rule
out behaviours involving infinite sequences of consecutive internal
decisions. Therefore we will only consider strongly convergent
processes, namely processes for which there does not exist an
infinite sequence of −→ reductions.

The labelled transition system describes the subjective evolu-
tion of a session descriptor from the point of view of the process
that uses a communication channel having that (residual) type. The
last notion we need allows us to specify the evolution of a ses-
sion descriptor from the dual point of view of the process at the
other end of the communication channel. For example, we have

?Real.!Int.end + ?Int.!Bool.end
?3−→ !Bool.end (the process re-

ceiving the integer value 3 knows that it has taken the right branch

and now will send a Boolean value). However, the process sending
the integer value 3 on the other end of the communication channel
does not know whether the receiver has taken the left or the right
branch, and both branches are actually possible. From the point of
view of the sender, it is as if the receiver will behave according to
the session descriptor !Int.end⊕ !Bool.end, which accounts for all
of the possible states in which the receiver can be. The objective
evolution of a session descriptor after an action µ is defined next.

DEFINITION 2.4 (Successor). Let η
µ

=⇒. The successor of η after

µ, written η〈µ〉, is defined as: η〈µ〉 = ⊕{η′ | η µ
=⇒ η′}.

For example, we have (?Real.!Int.end+?Int.!Bool.end)〈?3〉 =
!Int.end⊕!Bool.end but (?Real.!Int.end+?Int.!Bool.end)〈?

√
2〉 =

!Int.end. Note that η〈µ〉 is well defined because there is always a

finite number of residual η′ such that η
µ

=⇒ η′. This is a direct
consequence of the contractivity conditions on session descriptors.

We now have all the ingredients for formally defining duality.

DEFINITION 2.5 (Duality). Let the dual of a label µ, written µ, be

defined by: (i) X = X; (ii) †v = †v; (iii) †η = †η; where ! = ?
and ? = !. Then η1 ⋊⋉ η2 is the largest relation between session
descriptors such that one of the following condition holds:

1. η1 ⇓ X and η2 ⇓ X;

2. η1 ↓ and η1 ↓ µ implies η2 ⇓ µ and η1〈µ〉 ⋊⋉ η2〈µ〉;
3. η2 ↓ and η2 ↓ µ implies η1 ⇓ µ and η1〈µ〉 ⋊⋉ η2〈µ〉.

The intuition behind the above definition is that a dual must
accept every input that its partner may output, or they must both
agree on termination. Conditions (2) and (3) are the same require-
ment, and both of them are needed to ensure symmetry of du-
ality. For example, we have ?Real.!Int.end + ?Int.!Bool.end ⋊⋉

!Int.?(Int ∨ Bool).end, but ?Real.!Int.end + ?Int.!Bool.end 6⋊⋉
!Int.?Int.end because the descriptor on the right is not sure that its
partner will answer with an integer. However ?Real.!Int.end +
?Int.!Bool.end ⋊⋉ !(Real \ Int).?Int.end. As another example,
we have ?Int.end ⊕ ?Real.end ⋊⋉ !Int.end because ?Int.end ⊕
?Real.end ⇓ ?v for every v ∈ Int, however ?Int.end⊕?Real.end 6⋊⋉
!
√

2.end because ?Int.end ⊕ ?Real.end 6⇓ ?
√

2.
The reader may have observed that there is a circularity in the

definitions of duality and of the labelled transition system. This
is evident in rules (TR7-TR8) since the rules emit a dual of the
sieve; that is, the relation η ∈ χ is defined in terms of JχK whose
definition is given in terms of the duality relation. Less evident is
the circularity of rules (TR9-TR10), where it resides in the fact that
these rules emit values of a given type; if this type has the form

begin.η, then its values are all the channels of the form cbegin.η′

such that θ ⋊⋉ η′ implies θ ⋊⋉ η for all θ (cf. equation (7)): so also
the definition of the relation v ∈ t depends on that of duality. The
following theorem proves that this circularity is not one.

THEOREM 2.6 (Well-foundness). The definitions of η ∈ χ, v ∈ t
and η ⋊⋉ η′ are well founded.

PROOF. Thanks to condition 3 of Definition 2.1 recursion cannot
enter descriptor prefixes (the condition that α.η is not a subtree of
α). Therefore it is relatively easy to stratify the previous definitions.
In particular let us define a weight as follows: a type has weight 0
if it does not contain session types; a descriptor has weight 0 if it
contains just possibly empty sums of end; a type has weight i + 1
if the session types occurring in it are on descriptors of weight at
most i; a descriptor is of weight i+ 1 if the prefixes occurring in it
are of weight at most i (here is where the condition 3 ensures that
this definition is well founded for all session types). Next we define

a weight for each relation we introduced so far: each η
µ−→ η′

and η −→ η′ has weight 0 if it uses only axioms (i.e. (TR1) and

6 2008/7/20

(TR2)) and has weight i + 1 if it is proved by using relations of
weight at most i; η〈µ〉 has weight i if it is defined by reductions of
weight at most i (we consider the successor as a binary relation);
may/must actions/convergences relations and the duality relation
all have weight i if they are proved by using relations of weight at
most i. Finally, let us first define v ∈ t to be of weight 0 if t is of
weight 0; then notice that both η ∈ χ and v ∈ t for t of weight
at least 1 (cf. equation (7)) are defined in terms of duality: we then
assign to each of them the greatest weight of the duality relations
used in their definition.

Using this weight it is easy to check that the definitions in this
section are well founded. �
A corollary of this theorem is that the definitions of subsessioning
η ≤ η′ and subsieving χ ≤ χ′ (the former being a special case
of the latter) given by the equation (6) in Section 2.2.1 are well
founded as well.

The notion of duality is also a useful tool for better understand-
ing the semantics of session descriptors. Let us revisit part of the
LTS in the light of duality:

Output of values. Rules (TR7-TR8) in Section 2.2 state that a
descriptor is ready to respectively input and output some value of
type t. The use of single values in labels may appear at first look
surprising, as one would expect to see labels pretty similar to the
fired actions. If we stated, say, that ?t.η emits ?t and !t.η emits !t
(or, to be more liberal, ?t′ and !t′ with t′ <: t), then we would
obtain quite a different semantics. In particular, it would no longer
be possible to prove the following equations (where “=” denotes
the equality induced by the relation ≤):

?(t1 ∨ t2).η = ?t1.η + ?t2.η (8)

!(t1 ∨ t2).η = !t1.η + !t2.η (9)

!(t1 ∨ t2).η = !t1.η ⊕ !t2.η (10)

In particular, the righthand-sided descriptors would no longer be
smaller than the lefthand-sided ones. Consider for example an
instance of (9) where we take t1 ≡ Int and t2 ≡ Bool (here and
henceforward we use “≡” to denote syntactic equality). It is clear
that the two descriptors in the equation share the same set of duals
(that is, they have the same semantics): the duals of both descriptors
are descriptors that accept both an integer and a Boolean and then
are dual of η. With the current definition of the LTS this holds true:
whatever signal the lefthand descriptor emits will be matched by
every dual of the righthand since, in both cases, these signals will
be on values of type Int∨Bool. Here is where the strong disjunction
property on union types (5) is used: the lefthand descriptor cannot
emit a value that is neither an Int nor Bool. If the transition system
had emitted types rather than values, then the duals of the righthand
descriptor would not be able to match the signal !(Int∨Bool) since
each summand of the righthand descriptor could at most emit Int
or Bool. We could have introduced some extra definition of sets of
emitted signals and saturated these sets with unions for internal and
external sums, but the current solution avoids all this clutter.

A similar reasoning holds for rules (TR9-TR10) because of the
disjunction property we are going to prove next.

Internal choices, intersections, and disjoint unions. Using the
definition of duality it is easy to see that Jη ⊕ η′K = Jη ∧ η′K since
the duals of an internal choice must comply with both possible
choices and thus be duals of both of them. Using this property it is
easy to prove that sieves satisfy a disjunction property even stronger
than the one for types, as the disjunction holds not only for single
elements but for all the subsets of a union:

PROPOSITION 2.7. θ ≤ χ1 ∨ χ2 ⇐⇒ θ ≤ χ1 or θ ≤ χ2.

PROOF. Suppose that (⇒) does not hold (the converse is trivial).
Then there exists a descriptor η1 dual of θ, such that η1 ∈ χ1 and

η1 6∈ χ2, and a descriptor η2 dual of θ, such that η2 6∈ χ1 and
η2 ∈ χ2. Now consider η1 ⊕ η2: since the semantics of an internal
choice is the intersection of the duals of the choices, and θ is dual
of both η1 and η2, then θ is dual of η1 ⊕ η2. But for the same
reason we deduce that η1 ⊕ η2 6∈ χ1 and η1 ⊕ η2 6∈ χ2, and thus
η1 ⊕ η2 6∈ χ1 ∨ χ2 by definition, yielding a contradiction. �

This property plays a crucial role in proving decidability of ≤.

Irrevocable outputs. By making external choices on output ac-
tions behave as internal ones, rules (TR5-TR6) state that outputs
are irrevocable. This design choice was already explained in Sec-
tion 2.2. In terms of duality, this choice corresponds to decid-
ing whether, say, the external choices !Int.end+?Bool.end and
?Int.end+!Bool.end are to be considered as dual. In our setting
the answer is negative as we consider that outputs may be asyn-
chronously emitted even for external choices, therefore the two
partners can get stuck if both decide to emit their outputs. This be-
haviour is a direct consequence of rules (TR5-TR6). As we discuss
in the conclusion of this presentation, this is not the only reason-
able answer. For instance, we could suppose that in a case such as
the above one, the two partners perform some form of handshake to
decide which one will perform the output; in that case rules (TR5-
TR6) should be removed. We chose not to do so since the “irrevo-
cable inputs” solution seems better fit a wide area network usage
scenario.

2.3 Subtyping

Now that we have defined the duality relation, and therefore sub-
sessioning, we can also formally define the subtyping relation.
The types defined in Section 2.1 include three type combinators
(union, intersection, and negation), one type constructor begin.η,
plus other basic types and type constructors that we left unspec-
ified (typically, real, bool, ×, . . .). We define the subtyping rela-
tion semantically using the technique defined in [13] and outlined
in Section 2.2.1, according to which types are interpreted as the
set of their values, type combinators are interpreted as the corre-
sponding set-theoretic operations, and subtyping is interpreted as
set containment. As a consequence, testing a subtyping relation
is equivalent to testing whether a type is empty, since by simple
set-theoretic transformations we have that t1 <: t2 if and only if
t1 ∧ ¬t2 <: ∅ (where we use ∅ to denote the empty type, that is
the type that has no value). Again by simple set-theoretic manip-
ulations, every type can be rewritten in disjunctive normal form,
that is a union of intersections of types. Furthermore, since type
constructors are pairwise disjoint (there is no value that has both
a session type and, say, a product type—or whatever type con-
structor is inherited from the host language), then these intersec-
tions are uniform since they intersect either a given type construc-
tor, or its negation (see [5, 13] for details). In conclusion, in or-
der to define our subtyping relation all we need is to decide when
W

k∈K(
V

i∈Ik
begin.ηi ∧

V

j∈Jk
¬begin.ηj) <: ∅. Since a union

of sets is empty if and only if every set in the union is empty, by
applying the usual De Morgan laws we can reduce this problem to
deciding the inclusion

V

i∈I begin.ηi <:
W

j∈J begin.ηj .

As regards session channels, we notice that a value has type
(begin.η)∧ (begin.η′) if and only if it has type begin.(η⊕ η′). By
the strong disjunction property on union types (5) a session channel
is in the union of begin.η types if it is in a particular begin.η of
this union. Therefore the semantic subtyping relation for the types
of Section 2.1 is completely defined by (the semantic subtyping
framework of [13] and) the following equation

^

i∈I

begin.ηi <:
_

j∈J

begin.ηj ⇐⇒ ∃j ∈ J :
M

i∈I

ηi ≤ ηj (11)

7 2008/7/20

The equation above may be better understood by inspecting the
special case when I and J are singletons:

begin.η1 <: begin.η2 ⇐⇒ η1 ≤ η2

For instance we have that ?Int.end ≤ ?Real.end since every
descriptor that is dual of ?Int.end is also dual of ?Real.end. Sim-
ilarly begin.?Int.end <: begin.?Real.end since if a process that
uses a channel of type begin.?Real.end is well typed, then the pro-
cess obtained by replacing this channel for a different one of type
begin.?Int.end is well typed as well: it will receive an integer num-
ber where a real number is expected.

2.4 Coinductive characterizations

The subsessioning relation defined in terms of duality embeds the
notion of safe substitutability because of its very definition, but
it gives little insight on the properties enjoyed by ≤. This is a
common problem of every semantically defined preorder relation
based on tests, such as the well-known testing preorders [8] (the set
of duals of a descriptor can be assimilated to the set of its successful
tests). In order to gain some intuition over ≤ and to obtain a useful
tool that will help us studying its properties we will now provide an
alternative coinductive characterization. Before doing so, we need
to characterize first the class of descriptors that admit at least one
dual descriptor. Recall that η is viable if there exists η′ such that
η ⋊⋉ η′. Any non-viable descriptor is the least element of ≤, which
henceforward will be denoted by ⊥.

DEFINITION 2.8 (Coinductive Viability). η⋊⋉ is the largest predi-
cate over descriptors such that either

1. η ↓ and η ↓ µ implies η〈µ〉⋊⋉ for every µ, or

2. there exists µ such that η ⇓ µ and η〈µ〉⋊⋉ .

The definition provides us with a correct and complete charac-
terization of viable descriptors, as stated in the next proposition,
which is proved in Appendix A.2.

PROPOSITION 2.9. η⋊⋉ if and only if η is viable.

We can now read the statement of Definition 2.8 in the light of
the result of the above proposition: Definition 2.8 explains that a
descriptor is viable if either (1) it emits an output action regardless
of its internal state and every successor after every possible output
action is viable too or (2) it guarantees at least one input action such
that the corresponding successor is viable too.

DEFINITION 2.10 (Coinductive Subsession). η ≦ η′ is the largest

relation between session descriptors such that η⋊⋉ implies η′⋊⋉ and

1. η′ 6⇓ and η′ ↓ µ imply η ↓ µ with η〈µ〉 ≦ η′〈µ〉, and

2. η ⇓ µ and η〈µ〉⋊⋉ imply η′ ⇓ µ with η〈µ〉 ≦ η′〈µ〉, and

3. η ↓ and η′ ⇓ imply η ↓ X and η′ ⇓ X.

The definition states that any viable descriptor η may be a sub-
session of η′ only if η′ is also viable. This is obvious since we want
the duals of η to be duals of η′ as well. Furthermore, condition (1)
requires that any output action emitted by the larger descriptor must
also be emitted by the smaller descriptor, and the respective contin-
uations must be similarly related. This can be explained by noticing
that a descriptor dual of η in principle will be able to properly han-
dle only the outputs emitted by η; thus in order to be also dual of η′

it must also cope with η′ outputs, which must thus be included in
those of η, hence the condition. The requirement η′ 6⇓ makes sure
that η′ really emits some output actions. Without this condition we
would have ?Int.end 6≦ ?Int.end + end as the descriptor on the
r.h.s. emits X which is not emitted by the l.h.s. However, it is trivial
to see that ?Int.end ≤ ?Int.end + end. Condition (2) requires that
any input action guaranteed by the smaller descriptor must also be

guaranteed by the larger descriptor. Again this can be explained by
noticing that a descriptor dual of ηmay rely on the capability of η of
receiving a particular value/descriptor in order to continue the inter-
action without error. Hence, any guarantee provided by the smaller
descriptor η must be present in the larger descriptor η′ as well. The
additional condition η〈µ〉⋊⋉ considers only guaranteed input actions
that have a viable dual, for a guaranteed input action with a non-
viable dual is practically useless. Without such condition we would
have, for instance, that ?Int.!∅.end + ?Bool.end 6≤ ?Bool.end, be-
cause the descriptor on the l.h.s. guarantees the action ?3 which is
not guaranteed by the descriptor of the r.h.s. of 6≤. It is clear how-
ever that in this case the subsessioning relation must hold since the
l.h.s. and r.h.s. have the same set of duals. Finally, condition (3)
captures the special case in which a descriptor emitting output ac-
tions (η ↓) is smaller than a descriptor guaranteeing input actions
(η′ ⇓). This occurs only when η may internally decide to terminate
(η ↓ X) and η′ guarantees termination (η′ ⇓ X). In this case, every
dual of η must be ready to terminate and to receive any output ac-
tion emitted by η, hence it will also be dual of η′ which guarantees
termination but does not emit any output action.

We end this subsection by stating that the coinductive and the
semantic definitions of subsessioning coincide, so from now on we
will use ≤ to denote both. The proof of this theorem is the content
of A.3.

THEOREM 2.11. η1 ≦ η2 ⇐⇒ η1 ≤ η2.

2.5 Properties of the subsession relation

Table 3 shows some relevant rules regarding ≤ . Aside from pro-
viding further insight on the properties of ≤, these rules are also
used in the following for proving the existence of the normal forms
for session descriptors and the correctness of the algorithms. In the
table we write ∅ to denote either ∅ (the empty type) or ⊥ (the least
sieve) according to the context.

Rules (E1–E8) state the fundamental properties of the external
choice operator. Rules (E1–E4) are trivial being the usual idempo-
tency, commutativity, associativity and distributivity laws of exter-
nal choices. Rule (E5) shows that an external choice may actually
hide an internal choice if it combines descriptors having a common
prefix. This is a well-known axiom in the testing theories [8] and
it also shows that the external choice does not coincide with the
set-theoretic union operator (the internal choice, on the other hand,
does coincides with the set-theoretic intersection). Rule (E6) shows
the interaction between input actions (over types) and the external
choice operator: the value received from the channel is chosen ex-
ternally, it cannot be negotiated by the receiver. Rule (E7) is similar
to rule (E6), except that it deals with sieves. Rule (E8) states that
⊥ is the neutral element of the external choice.

Rules (I1–I9) state the fundamental properties of the inter-
nal choice operator. Rules (I1–I4) are similar to rules (E1–E4).
Rule (I5) is the distributivity law of the prefix operator over the
internal choice (the same law does not hold for the external choice
operator). Rule (I6) shows the interaction between input actions
over types and the internal choice operator. A dual of the descriptor
on the l.h.s. of = does not know whether the descriptor is ready to
receive a value of type t or of type s. Thus, the only possibility is
to send a value that has both types. As a consequence, if t and s
are disjoint types, namely if t ∧ s = ∅, then both descriptors are ⊥
(see rule (B1) below). Rule (I7) is similar to rule (I6), except that it
deals with sieves. A dual of the descriptor on the l.h.s. of = does not
know whether the descriptor is ready to receive a descriptor θ such
that θ is dual of χ or such that θ is dual of χ′. Thus, the only possi-
bility is to send a descriptor that is dual of both θ and θ′. Rule (I8)
states that ⊥ is the absorbing element of the internal choice.

Rules (B1–B5) characterize non-viable descriptors, namely
those descriptors that have no dual. Rules (B1–B2) deal with com-

8 2008/7/20

(E1) η + η = η
(E2) η + η′ = η′ + η
(E3) η + (η′ + η′′) = (η + η′) + η′′

(E4) η + (η′ ⊕ η′′) = (η + η′) ⊕ (η + η′′)
(E5) α.η + α.η′ = α.(η ⊕ η′)
(E6) ?t.η + ?s.η = ?(t ∨ s).η
(E7) ?χ.η + ?χ′.η = ?(χ ∨ χ′).η
(E8) η + ⊥ = η

(I1) η ⊕ η = η
(I2) η ⊕ η′ = η′ ⊕ η
(I3) η ⊕ (η′ ⊕ η′′) = (η ⊕ η′) ⊕ η′′

(I4) η ⊕ (η′ + η′′) = (η ⊕ η′) + (η ⊕ η′′)
(I5) α.η ⊕ α.η′ = α.(η ⊕ η′)
(I6) ?t.η ⊕ ?s.η′ = ?(t ∧ s).(η ⊕ η′)
(I7) ?χ.η ⊕ ?χ′.η′ = ?(χ ∧ χ′).(η ⊕ η′)
(I8) η ⊕⊥ = ⊥

(B1) ?ψ.η = ⊥ (ψ = ∅)
(B2) !ψ.η = ⊥ (ψ = ∅)
(B3) ?t.η ⊕ ?χ.η′ = ⊥
(B4) ?ψ.η ⊕ !ψ′.η′ = ⊥
(B5) ?ψ.η ⊕ end = ⊥

(O1) !ψ.η + end = !ψ.η (ψ 6= ∅)
(O2) !ψ.η + ?ψ′.η′ = !ψ.η (ψ 6= ∅)
(O3) !ψ.η + !ψ′.η′ = !ψ.η ⊕ !ψ′.η′ (ψ,ψ′ 6= ∅)
(O4) !t.η ⊕ !s.η = !(t ∨ s).η (t, s 6= ∅)
(O5) !χ.η ⊕ !χ′.η = !(χ ∨ χ′).η (χ, χ′ 6= ⊥)

(S1) ?t.η ≤ ?(t ∨ s).η
(S2) ?χ.η ≤ ?(χ ∨ χ′).η
(S3) !(t ∨ s).η ≤ !t.η (t 6= ∅)
(S4) !(χ ∨ χ′).η ≤ !χ.η (χ 6= ⊥)
(S5) η ⊕ η′ ≤ η

Table 3. Remarkable equalities and inequalities.

munications of values from empty types and delegations of sessions
with non-viable descriptors. Since these descriptors are completely
inert (they do not emit any visible action), they are comparable to
the canonical non-viable descriptor ⊥. Rule (B3) states the dis-
junction between values and descriptors: no value is a descriptor,
and no descriptor is a value. Rule (B4) states the directionality of
our communication model. In order to be viable, a descriptor can-
not simultaneously allow both input and output actions. The only
exception to this rule is when the output actions are offered in an
external choice, see rules (O1–O3) below. Rule (B5) is similar to
rule (B4), except that it deals with end and input actions.

Rules (O1–O5) characterize the peculiar properties of output
actions. In every rule the side condition ensures that the output ac-
tion is not inert (see rule (B2) above). Rules (O1–O2) state that
an output action composed in external choice with a end or an in-
put action preempts the alternative action. Rule (O3) states that ex-
ternal and internal choices of output actions are indistinguishable,
since these actions are irrevocable. Rule (O4) shows the interaction
between output actions over types and the internal choice operator:
the value sent over the channel is decided internally by the sender,
it will not be negotiated with the receiver. Rule (O5) is similar to
rule (O4), except that it deals with sieves.

Rules (S1–S2) show the standard covariant property of inputs:
the duals of a session that is capable of receiving values of type
t will also be duals of a session that is capable of receiving more

values. Rule (S2) is similar to rule (S1) except that it deals with
input of descriptors and it can be explained in the same way using
the intuition that sieves stand for the set of their duals. Rules (S3–
S4) complement rules (S1–S2) with dual properties for output
actions, where we have contravariance. Note that in both cases
we need one extra hypothesis, namely that t 6= ∅ and χ 6= ⊥.
This guarantees that the larger descriptor will actually output some
value/descriptor whenever the smaller one does so.

Finally, rule (S5) states that the duals of some session are
also duals of a more deterministic session. In the testing theories
for processes this law characterizes the deadlock sensitive must
preorder.

We conclude this section with two remarks. First of all, the rules
of Table 3 allow us to derive the following decomposition laws:

?t.η + ?s.η′ = ?(t \ s).η + ?(s \ t).η′ + ?(t ∧ s).(η ⊕ η′)

!t.η ⊕ !s.η′ = !(t \ s).η ⊕ !(s \ t).η′ ⊕ !(t ∧ s).(η ⊕ η′)

the latter rule holding when none of the sets t \ s, s \ t, and t ∧ s is
empty. Similar rules can be derived for inputs and outputs of sieves,
as opposed to types. These rules play a fundamental role in all
the algorithms that will follow because they allow us to eventually
rewrite external and internal sums so that every summand of the
sum begins with a prefix that is disjoint from (emits labels that are
not emitted by) the prefix of any other summand.

The second remark concerns the interaction of ≤ with the op-
erators of session descriptors. It is easy to see that ≤ is preserved
by the prefix and the internal choice operators. In the latter case,
this follows from the fact that ⊕ coincides with the intersection
operator in the set-theoretic interpretation of session descriptors.
However, as we have already seen while discussing rule (E5), +
does not correspond to a Boolean operation and this ultimately
makes + quite subtle, as ≤ is not respected by + in general. For
example, by rule (S1) we have ?Int.end ≤ ?Real.end however

?Int.end + ?
√

2.!3.end 6≤ ?Real.end + ?
√

2.!3.end. The reason
is that in widening ?Int.end to ?Real.end we create an interfer-

ence with the term ?
√

2.!3.end because of the guaranteed action

?
√

2. Such interferences are not avoided even when we operate
with = (as opposed to ≤). For instance, according to rule (I6) we

have ?(Int ∨
√

2).end ⊕ ?Int.!3.end = ?Int.(end ⊕ !3.end), but

(?(Int ∨
√

2).end ⊕ ?Int.!3.end) + ?
√

2.!4.end 6= ?Int.(end ⊕
!3.end) + ?

√
2.!4.end. Here the action ?

√
2 is not guaranteed

by ?(Int ∨
√

2).end ⊕ ?Int.!3.end and (I6) tells us that in prac-

tice the capability of ?(Int ∨
√

2).end of receiving
√

2 is use-
less. However, removing this capability may also remove inter-
ferences in the context of an external choice, making (I6) unsafe
in general. Finally, rule (B4) must be used with care within an
external choice because its output capability makes the descrip-
tor on the l.h.s. of = to be observable (it may autonomously
emit an action), whereas ⊥ is totally inert. For instance we have
?Int.end⊕!Int.!∅.end = ⊥ and ⊥+?Bool.!3.end = ?Bool.!3.end,
but (?Int.end ⊕ !Int.!∅.end) + ?Bool.!3.end = (?Int.end +
?Bool.!3.end) ⊕ (!Int.!∅.end + ?Bool.!3.end) = ⊥. Rule (B5)
suffers from a similar problem, which is slightly less severe be-
cause end denotes a terminated descriptor.

2.6 Algorithms

In order to use our type system we must be able to decide the
relations we introduced in the previous sections, namely subsieving
(and subsessioning), subtyping, and duality.

Subsieving. Let us start to show how to decide that a sieve
is smaller than another. Since Boolean combinators have a set-
theoretic interpretation we can apply exactly the same reasoning
we did for types in Section 2.3. Namely, deciding χ ≤ χ′ is equiv-
alent to deciding χ ∧ ¬χ′ ≤ ⊥. The l.h.s. can be rewritten in

9 2008/7/20

disjunctive normal form whose definition for sieves is (we convene
that

W

i∈∅ χi =
P

i∈∅ ηi = ⊥):

DEFINITION 2.12 (Disjunctive normal form). A sieve is in dis-
junctive normal form if it is of the form

W

i∈I

V

j∈J λij where λij

denote descriptor literals, that is either η or ¬η.

Next, we can check emptiness of each element of the union sep-
arately, reducing the problem to checking the following relation:
V

i∈I ηi ≤ W

j∈J ηj . Since this is equivalent to
L

i∈I ηi ≤
W

j∈J ηj , we can apply the strong disjunction property (Propo-

sition 2.7) we stated for descriptors and obtain
^

i∈I

ηi ≤
_

j∈J

ηj ⇐⇒ ∃j∈J :
M

i∈I

ηi ≤ ηj

which is precisely the same problem that has to be solved in order to
decide the subtyping relation (cf. equation (11)). In conclusion, in
order to decide both subsieving and subtyping it suffices to decide
subsessioning.

Subsessioning. To decide whether two descriptors are in subses-
sioning relation we define a normal form for descriptors and, more
generally, sieves (the latter occurring in the prefixes of the former).

DEFINITION 2.13 (Strong normal form). A sieve χ in disjunctive
normal form is in strong normal form if

1. if χ ≡ W

i∈I

V

j∈J λij , then for i ∈ I, j ∈ J , λij is in strong

normal form and
V

j∈J λij 6= ⊥ for all i ∈ I;

2. if χ ≡ ¬η, then η is in strong normal form;

3. otherwise χ is either of the form
L

i∈I !ψi.ηi{ ⊕ end} or
P

i∈I ?ψi.ηi{ + end}, where for all i ∈ I , ψi 6= ∅, ψi and ηi

are in strong normal form and for all i, j ∈ I , i 6= j implies
ψi ∧ ψj = ∅, and end is possibly missing.

The following theorem proves that every sieve can be effectively
transformed in strong normal form. Its proof, which is done by
simultaneous induction with that of Theorem 2.17 later on, is the
content of Appendix A.1.

THEOREM 2.14 (Normalization). For every sieve χ it is possible
effectively to construct χ′ in strong normal form such that χ = χ′.

Finally, to check that two descriptors are in relation we rewrite both
of them in strong normal form, check that neither is ⊥, and then
apply the algorithm whose core rules are given in Table 4.

(END)

end ≤ end

(PREFIX)

η ≤ η′

α.η ≤ α.η′

(MIX-CHOICES)

M

i∈I

ηi ⊕ end ≤
X

j∈J

η′j + end

(EXT-CHOICES)

I ⊆ J ηi ≤ η′i
(∀i∈I)

X

i∈I

ηi ≤
X

j∈J

η′j

(INT-CHOICES)

J ⊆ I ηj ≤ η′j
(∀j∈J)

M

i∈I

ηi ≤
M

j∈J

η′j

Table 4. Algorithmic subsessioning structural rules.

Rule (MIX-CHOICES) states that an internal choice is smaller
than an external one if and only if they both have an end sum-
mand. Rule (EXT-CHOICES) states that it is safe to widen external
choices whereas rule (INT-CHOICES) states that it is safe to nar-
row internal ones. Both rules are used in conjunction with (PRE-
FIX), which states covariance over descriptor continuations. Note
that rule (PREFIX) relates two descriptors only if they have the
same prefix. Therefore before applying (EXT-CHOICES) and (INT-
CHOICES) we have to transform the descriptors so that prefixes on

the two sides that have a non-empty intersection are rewritten in
several summands so as to find the same prefix on both sides: this
is done by the rules in Table 9 in Appendix A.1. These rules per-
form repeated applications of the decomposition laws described in
Section 2.5.

The soundness and completeness of the algorithm need two pre-
liminary results. The first one states that no finite union of session
descriptors covers the whole S . Namely, it is always possible to
find another η having at least one dual descriptor that is not dual of
any of the descriptors in the finite union.

LEMMA 2.15. For every viable sieve of the form
W

i∈I ηi, there

exists a descriptor η such that
W

i∈I ηi ∨ η 6≤ W

i∈I ηi.

PROOF. By induction on the cardinality of I . We just consider
the case for |I| = 1, that is

W

i∈I ηi ≡ η′, the result follows by

straightforward induction. Consider the set {θ | η′ =⇒ θ X−→}.

Now choose any value v such that for all θ in this set θ
!v−→

implies that there exists v′ 6= v such that θ
!v′−→. Note that such

a v always exists because no descriptor can emit infinitely many
singleton types (indeed if from a stable form a session type can
emit just one output value, then this means that the output is on the
singleton containing that value). Then setting η ≡ !v.end proves
the result. �

The second auxiliary result simply states the correctness of rule
(PREFIX) generalized to a finite number of prefixes.

LEMMA 2.16. For allα1, . . . , αn, η, η
′, if η ≤ η′, thenα1. · · ·αn.η ≤

α1. · · ·αn.η
′.

PROOF. By examination of the coinductive characterization of ≤
(Definition 2.10) it is easy to check that the result holds for n = 1.
The whole result follows from a straightforward induction on n. �

THEOREM 2.17 (Soundness and Completeness). The algorithm is
sound and complete with respect to ≤ and it terminates.

Duality. As regards duality, we show how to effectively construct
the canonical dual of a descriptor η, which is defined as the least
descriptor in the set-theoretic interpretation of η. Then checking
duality of two descriptors reduces to computing the canonical dual
of one of the two and then check subsessioning.

Constructing the canonical dual of a descriptor η is straightfor-
ward once η is in strong normal form (which can be effectively
done by Theorem 2.14). Then it just suffices to change every ? into
!, every + into ⊕ and viceversa and coinductively apply this trans-
formation to the continuations leaving end descriptors unchanged.
Regularity ensures that the coinductive transformation terminates
(by using memoization techniques). Showing that the obtained ses-
sion descriptor is the canonical dual of η is a trivial exercise.

3. Process language

In this section we show how to use our theory to type a process
calculus so that well-typed processes satisfy the progress property.

3.1 Syntax

The main design criterion for our process calculus is minimality:
we define the smallest calculus that allows us to use all the charac-
teristics of our session types. Thus we consider a calculus, whose
syntax is given in Table 5, in which processes are single threads
that can just emit (a slight generalisation of) the five signals we
described in the Introduction or be composed by internal and exter-
nal choices. Session conversations take place at the upper level of
systems where processes run in parallel.

10 2008/7/20

R-CONNECT

connect c
begin.η(z).P

c(z:η)−→ P

R-SEND

e ↓ v

k!(e).P
k!(v)−→ P

R-RECEIVE

k?(x : t).P
k?(x:t)−→ P

R-SENDS

k!Lk1M.P
k!Lk1M−→ P

R-RECEIVES

k?Lz : χM.P
k?Lz:χM−→ P

R-EXTCH1

P
ℓ−→ P

′ ℓ 6= τ

P + Q
ℓ−→ P

′

R-EXTCH2

P
τ−→ P

′

P + Q
τ−→ P

′ + Q

R-EXTCH3

P
k!(v)−→

P + Q
τ−→ P

R-EXTCH4

P
k!Lk1M−→

P + Q
τ−→ P

R-INTCH

P ⊕ Q
τ−→ P

Table 6. Process reduction rules.

Processes u!(e).P and u?(x : t).P are communication pro-
cesses. They are used to communicate either values of the host lan-
guage or (yet-to-be-used) session channels (both returned by the
expression e). The latter are either variables—ranged over by x—
or (session type) values. Session values are names (actually, chan-
nel names) tagged by a session type (as explained in Section 2.2.1

we use cbegin.η rather than the less restrictive ct to ensure the strong
disjunction property (5) for union types). Processes u!LuM.P and
u?Lz : χM.P are delegation processes by which a conversation al-
ready started on the channel object of these actions is respectively
delegated and resumed.

Both communication and delegation take place on channels,
ranged over by u. These are either channel variables ranged over

by z, or internal channels, denoted by k or k̃. We say that k and

k̃ are dual and we state that channel duality is an involution, i.e.,
˜̃
k = k. Dual channels represent the two end-points of a session and
they are greyed to stress that such channels occur only at runtime
(they cannot be written by the programmer). The use of two end-
point channels is a technique that we borrow from [15] where they
are called polarized channels.

Besides the idle process denoted by 0, there is connect a(z).P,
the connect process that connects on the name of a and starts a
conversation using the local channel z (whose occurrences inside P
are bound by connect a(z)) and following the prescriptions of the
(session) type of a. Finally, P + P and P ⊕ P denote external and
internal choices, respectively.

Since types are recursive so are processes. Therefore the pro-
cesses of our calculus are possibly infinite regular trees that are
generated by the productions in Table 5 and that satisfy the con-
tractivity condition requiring that on every infinite branch there are
infinitely many applications of the prefixed process. Contractivity
rules out processes of the form, e.g., P = P⊕P and—as for types—
it provides an induction principle based on the Noetherian relation
P1 + P2 ⊲ Pi and P1 ⊕ P2 ⊲ Pi .

We say that u is the subject of u!(e).P, u!Lu′M.P, u?(x : t).P,
and u?Lz : χM.P while e and u′ are the objects of the first two.
A term is subject/object of P + P′, P ⊕ P′, whenever it is the
subject/object of both P and P′.

All forms of interaction (communication, delegation, and con-
nection) happen between two distinct processes that are composed

(prefixes) π ::= u!(e) | u?(x : t) | u!LuM |
u?Lz : χM | connect a(z)

(processes) P,Q ::= 0 | π.P | P ⊕ P | P + P

(channels) u ::= z | k | k̃

(sessions) a ::= x | cbegin.η

(expressions) e ::= a | · · ·
(systems) S,T ::= P | S‖S

Table 5. Syntax of processes and systems

in parallel in systems, ranged over by S,T, and they uncoil accord-
ing to the operational semantics we describe next.

3.2 Operational semantics

According to the reduction semantics described in Table 6, pro-
cesses may emit one of the following labels

ℓ ::= τ | k!(v) | k?(x : t) | k!Lk1M | k?Lz : χM | c(z : η)

that is, either an invisible signal τ corresponding to an internal
choice performed by the process or, roughly, one of the five sig-
nals we discussed in the Introduction. Note that the signal for con-
nection c(z : η) carries a session descriptor: it indicates that the
process is willing to connect on name c and, using a local channel
z, have a conversation described by η.

Rule R-CONNECT states that connection can take place only on
concrete channels (not variables) and it publishes the name c, the
variable z, and the protocol η of the service/conversation offered by
the process. Rules for send and receive are pretty straightforward:
just notice that all subjects are internal channels (so they correspond
to some concrete channels that succeeded a connection: see rule
CONNECTION in Table 7) and only values are communicated (every
expression that is object of a communication is first evaluated).
Rule R-INTCH states that internal choices correspond to silent
moves while the remaining four rules describe the behaviour of
external choices. These propagate internal moves (R-EXTCH2),
offer visible signals for the interacting partner to make a choice (R-
EXTCH1), and state the irrevocability of outputs (R-EXTCH3 and
R-EXTCH4) as the process can silently reduce to any subprocess
that may perform an output. Symmetric rules are omitted.

These signals may synchronize at the system level giving rise to
three different forms of interaction—connection, communication,
and delegation— described in Table 7. The first two rules simply
lift to systems signals emitted at the process level. The remain-
ing three rules give semantics to the three forms of interaction in
which the selection is dynamic. Recall that in our framework ex-
ternal choices are resolved at run-time according to the type of the
communicated value or the descriptor of the delegated session. We
see here that we have a third form of dynamic selection, insofar as
a process may start a session on a channel of a given name only
with processes that declare that on the same name they are willing
to start a dual session. Thus it is possible to have services (material-
ized by session type values) that have the same name (e.g. search)
but implement incompatible contracts: they will never synchronize
together. More precisely rule CONNECTION checks whether two
connection signals on the same name declare dual session descrip-
tors and, if so, it connects them by spawning a fresh (k 6∈ dom(Σ))
internal channel and its dual. The local variables used for the con-
nection are replaced by the internal channel and its dual. The inter-
nal channel names and session descriptors are stored in the session
environment Σ, which contains judgements of the shape k : η. Since
the two interacting partners are given different fresh names k and

k̃ we avoid interference in synchronization, as well as confusion in
session environments.

11 2008/7/20

LIFT

P
ℓ−→ P

′

Σ ⊢ P
ℓ−→ Σ ⊢ P

′

PAR

Σ ⊢ S
ℓ−→ Σ ⊢ S

′

Σ ⊢ S‖T
ℓ−→ Σ ⊢ S

′ ‖T

CONNECTION

Σ ⊢ S
c(z:η)−→ Σ ⊢ S

′
Σ ⊢ T

c(z′:η′)−→ Σ ⊢ T
′ η ⋊⋉ η′ k 6∈ dom(Σ)

Σ ⊢ S‖T
τ−→ Σ, k : η, k̃ : η′ ⊢ S

′[k/z]‖T
′[k̃/z′]

COMMUNICATION

Σ ⊢ S
k!(v)−→ Σ ⊢ S

′
Σ ⊢ T

k̃?(x:t)−→ Σ ⊢ T
′

v ∈ t

Σ, k : η, k̃ : η′ ⊢ S‖T
τ−→ Σ, k : η〈!v〉, k̃ : η′〈?v〉 ⊢ S

′ ‖T
′[v/x]

DELEGATION

Σ ⊢ S
k!Lk′M−→ Σ ⊢ S

′
Σ ⊢ T

k̃?Lz:χM−→ Σ ⊢ T
′

Σ(k′) ≤ χ

Σ, k:η, k̃:η′ ⊢ S‖T
τ−→ Σ, k:η〈!Σ(k̃′)〉, k̃:η′〈?Σ(k̃′)〉 ⊢ S

′ ‖T
′[k

′
/z]

Table 7. System reduction rules.

Communications and delegations take place on internal chan-
nels and only after a connection. In both cases the corresponding
rules in Table 7 check whether the input and output signals are
compatible: in communications, it is checked that the value has the
expected type; in delegations, it is checked that the delegated chan-
nel implements a session matching the input sieve. If the check is
successful, the processes synchronise and the session environment
is updated by computing the successors of the session descriptors
corresponding to the channels on which interaction has occurred.

Finally note that the dynamic checks in these three rules, more
than for soundness, are needed and used to drive the computation,
since external choices are dynamically selected by using the type of
the communicated value, or the descriptor of the delegated session,
or both the name and the session descriptor of a connection request.

We adopt the standard conventions of using
τ

=⇒ to denote
τ−→∗

(i.e., the reflexive and transitive closure of −→) and
ℓ

=⇒ to denote
τ

=⇒ ℓ−→ τ
=⇒.

3.3 Typing

The original motivation for introducing session types [17, 18] was
to ensure that values sent and received in communication protocols
were of appropriate types and that the two partners always agreed
on how to continue the conversation. A type system ensuring also
the progress property, i.e., that a started session cannot get stuck if
the required connections are available, was first proposed in [12].

In the present calculus as in [11] the operational semantics itself
ensures that there cannot be a type mismatch in communications,
since all checks are performed at the moment of the synchronisa-

tion. So for example the system k!(3) ‖ k̃?(x : Bool) is stuck.
Clearly the above system cannot be generated, since a CONNEC-
TION rule can be executed only when the two session descriptors
of the common session channel are dual. We present in this section
a type system which prevents also any deadlock due to the inter-
leaving of two or more sessions.

More precisely we want to ensure that whenever a well-typed
system is stuck (i.e., it cannot perform any internal reduction) it is
because either all its processes have successfully terminated or at
least one of them is on hold on a connection request. This means
that whenever a session is started, if it does not perform any further
connection, then either it eventually successfully terminates, or it
continues to interact (recall that both process and session descrip-
tors may be recursive). More formally:

DEFINITION 3.1 (Progress Property). A system S satisfies the pro-

gress property if ⊢ S
τ

=⇒ Σ ⊢ S
′ τ

X−→ implies that either S
′ does

not contain internal channels or S
′ c(z:η)−→ .

Our process calculus is so close to the syntax of the session de-
scriptors that it is not difficult to imagine how to map a given
channel to its session type. For instance, consider the process
connect ct(z).z!(3).z?(x : Real).(z!(x) ⊕ z!(true)) which opens a
connection on c in which it writes an integer, reads a real, and then
decides whether to send back the received real or a Boolean value.
It is clear that such a process is well typed when t is (a subtype
of) begin.!Int.?Real.(!Real.end ⊕ !Bool.end). However, in order
to ensure the progress property, the way in which a process uses
different sessions must be quite limited. Once a connection is estab-
lished, the process can use the resulting session channel, which we
call current session, according to (combinations of) the following
options:

1. establishing a new connection;

2. performing a communication on the current session;

3. ending the current session by stopping using the corresponding
channel (there is no explicit end in processes, so the end of a
session is reached when its channel is no longer used);

4. delegating on the current session the innermost, not ended, en-

closing session.6 The process stops using the delegated session;

5. receiving a delegated session and using it in the continuation as
the current session.

Such restrictive behaviour corresponds to using sessions as crit-
ical regions that forbid deadlocks on circular waits. Each critical
region is associated with a particular internal channel: it is entered
whenever this channel is received by delegation or started by a con-
nect, it is closed when the channel is delegated or no longer used.
Once a process has entered a critical region all it can do is to com-
municate on the channel associated with the region or to enter a
new critical region. To see why these restrictions are necessary let
us comment a couple of examples of deadlock.

A first simple example of deadlock is given by

connect at1(z1).connect bt2(z2).z2?(x : Int).z1!(3)
‖connect at2(z3).connect bt1(z4).z3?(x : Int).z4!(2)

where t1 ≡ begin.!Int.end and t2 ≡ begin.?Int.end. After two
executions of the CONNECTION rule, both processes starve waiting
for values that are never sent.

More subtle examples of deadlock spring from session delega-
tion, whereby a (sequential) process can receive the dual of a chan-
nel it already owns, making synchronization impossible. Consider

connect at1(z1).connect bt2(z2).z2!Lz1M‖connect at3(z3).
connect bt4(z4).z4?Lz : ?Int.endM.z?(x : Int).z3!(2)

where t1 ≡ begin.?Int.end, t2 ≡ begin.!(?Int.end).end, t3 ≡
begin.!Int.end, t4 ≡ begin.?(?Int.end).end. This phenomenon
may also jeopardise subject reduction, as discussed in [21].

Such problems can be avoided by using the strict usage disci-
pline we described earlier which is enforced by the typing disci-
pline defined in Table 8. The judgements for processes have the
form Γ ⊢ P : ∆ where Γ is a type environment (a mapping from
variables to types) and ∆ is a session stack. The latter is a map-
ping from channels to session descriptors to which identifiers for
ended sessions can be freely added and removed (rules T-WEAK,
T-STRENGTH) and is used to record the session descriptors of the

6 A special case is when the filter is precisely end: in that case the process
can delegate any non active channel.

12 2008/7/20

T-AX

Γ , x : t ⊢ x : t

T-C

Γ ⊢ c
begin.η : begin.η

T-SUB

Γ ⊢ e : t
′

t
′ <: t

Γ ⊢ e : t

T-WEAK

Γ ⊢ P : ∆

Γ ⊢ P : (∆ · u : end)

T-STRENGTH

Γ ⊢ P : (∆ · u : end)

Γ ⊢ P : ∆

T-ZERO

Γ ⊢ 0 : −
T-CONNECT

Γ ⊢ P : (∆ · z : η) Γ ⊢ a : begin.η

Γ ⊢ connect a(z).P : ∆

T-RECEIVE

Γ , x : t ⊢ P : (∆ · u : η)

Γ ⊢ u?(x : t).P : (∆ · u : ?t.η)

T-SEND

Γ ⊢ e : t Γ ⊢ P : (∆ · u : η)

Γ ⊢ u!(e).P : (∆ · u : !t.η)

T-RECEIVES

Γ ⊢ P : (x : η′ · u : η) χ ≤ η′

Γ ⊢ u?Lz : χM.P : (u : ?χ.η)

T-SENDS

Γ ⊢ P : (∆ · u : η) η′ ≤ χ

Γ ⊢ u!Lu′M.P : ((∆ · u′ : η′) · u : !χ.η)

T-INTCH

Γ ⊢ P : (∆ · u : η1) Γ ⊢ Q : (∆ · u : η2)

Γ ⊢ P ⊕ Q : (∆ · u : η1 ⊕ η2)

T-EXTCH

Γ ⊢ P : (∆ · u : η1) Γ ⊢ Q : (∆ · u : η2)

Γ ⊢ P + Q : (∆ · u : η1 + η2)

T-SYS

Γ ⊢ P : ∆

Γ P : set(∆)

T-PAR

Γ S : Λ1 Γ T : Λ2

Γ S‖T : Λ1 ∪ Λ2

Table 8. Typing rules for processes and systems

channels used in P. It is organised as a stack (the rightmost ele-
ment being the top) to keep track of the current session, that is the
most recently created one (i.e., the one associated with the current
critical region). The stack allows us to avoid the first example of
deadlock, by organising sessions as nested critical regions in which
a channel cannot be used unless all nested sessions have been con-
sumed (either because they ended or because they were delegated
to some other process). Actions are allowed only if their subject is
the current session channel, the one on the top of the stack (rules T-
CONNECT, T-SEND, T-RECEIVE, T-SENDS, and T-RECEIVES) and
they are recorded in the conclusion. Similarly, two processes can
be composed only if they share the same active channel (rules T-
INTCH, T-EXTCH). We thus improve the proposal of [12]. In ad-
dition, the rules for communication check that type constraints are
satisfied while sieve constraints are checked by the delegation rules.
The second example of deadlock is avoided by requiring that the
only other internal channel which can occur in a process accepting
a delegation is the channel on which the delegation took place (rule
T-RECEIVE).

The typing discipline is lifted to systems by simply merging all
channel assumptions, disregarding the order in which they appear
(by means of the operator set), and obtaining in this way session
environments, ranged over by Λ. This is realised by the last two
rules in Table 8.

Since evaluation consumes session descriptors and adds fresh
initial channels with their descriptors, we need to introduce a partial
order 2 on session stacks and session environments so that subject
reduction can be formulated as follows.

THEOREM 3.2 (Subject Reduction for Processes). If Γ ⊢ P : ∆

and P
ℓ−→ P′, then Γ ⊢ P′ : ∆

′, where ∆ 2 ∆
′.

THEOREM 3.3 (Subject Reduction for Systems). If Γ S : Λ

and Σ ⊢ S
ℓ−→ Σ

′ ⊢ S
′, then Γ S

′ : Λ
′, where Λ 2 Λ

′.

The definition of 2 together with the proofs of the above theorems
are given in Appendix B.1.

Progress clearly fails for systems which contain free variables
or internal channels that are not properly paired. For this reason
our typing can only assure progress for initial systems defined as
follows:

DEFINITION 3.4 (Initial system). A well-typed system is initial if
it is the parallel composition of closed process where no internal
channel occurs.

The proof of progress depends on the remark that the session
environments in the operational semantics and in the typing of

systems respectively give the objective and subjective views of the
internal channel behaviours. For example consider the system

S = k!(3).k?(x : 2 ∨ 4)‖ k̃?(y : 3).k̃!(2) + k̃?(y′ : 3).k̃!(4).

We get

{k : !3.?(2 ∨ 4).end, k̃ : ?3.!2.end + ?3.!4.end} ⊢ S
τ−→ Σ

′ ⊢ S
′

where Σ
′ = {k : ?(2 ∨ 4).end, k̃ : !2.end ⊕ !4.end} and S

′ =
k?(x : 2 ∨ 4)‖ k̃!(2), while S

′ : {k : ?(2 ∨ 4).end, k̃ : !2.end}.

The descriptor of k̃ in Σ
′ is the internal choice between !2.end and

!4.end, since an observer does not know if the value 3 was received
by the process k̃?(y : 3).k̃!(2) or by the process k̃?(y′ : 3).k̃!(4).

Instead the descriptor of k̃ in the typing of S
′ is !2.end, since the

value 3 was received by the process k̃?(y : 3).k̃!(2).
More precisely the session environments created in the opera-

tional semantics starting from an initial system assigns to internal
channels equal or smaller descriptors than the session environments
used in typing. This is the content of the following lemma which is
a key in the proof of progress.

LEMMA 3.5. If S is initial and ⊢ S
τ

=⇒ Σ ⊢ S
′, and S

′ : Λ,
then Σ(k) ≤ Λ(k) for all k which occur in S

′.

We state now the progress theorem whose proof is the content
of Appendix B.2.

THEOREM 3.6 (Progress). Every initial system satisfies the progress
property.

It is interesting to note that if we disregard the order in the
session stack (i.e., we use session environments in all the rules)
and we allow an arbitrary session stack in the premise of rule T-
RECEIVE, then we get a type system which still enjoys subject
reduction but no longer guarantees progress.

4. Conclusion

In this work we have defined a clean, simple, and general theory
of session types whose features are semantically justified. In order
to achieve this goal, we had to subvert the usual session type
presentations, where the subtyping (and subsession) relations are
introduced first, and then it is shown that they are sound. Here we
have focused on duality as the main characterizing feature, and then
we have semantically defined subtyping and subsessioning in terms
of duality. This is exactly the modus operandi adopted in the testing
theories for behavioural equivalences of processes [8, 9]. In our
case the passing of a test is characterized by the duality relation,

13 2008/7/20

and two session descriptors are equivalent if they pass the same
tests, namely if the corresponding sets of duals are the same.

We believe that the type system satisfies our initial requirements
of simplicity and compositionality: session descriptors boil down
to two kinds of prefixed terms whose actions may be specified by
Boolean operators and two kinds of choices that can be freely inter-
mixed. There is an apparent redundancy in the language of session
descriptors that is due to the presence of two different operators,
the internal sum and the conjunction between sieves, whose set-
theoretic interpretations coincide. However, the two operators play
rather different, but equally essential, roles: the internal choice is
a behavioural operator, whereas sieve conjunction is a pattern op-
erator. We claim that any attempt to unify these two operators, by
merging session descriptors and sieves together, disrupts the whole
theory. The reason is that the notion of duality, which is intrinsi-
cally a behavioural one, does not match well with (most) Boolean
combinators, especially with disjunction (which does not coincide
with the external choice +, as we have seen) and negation (defin-
ing the transition system of a negated session descriptor is puzzling
at least). On the other hand, it is easy to see that sieves and their
Boolean combinators play a fundamental role in the definition of
the strong normal form, which in turn is pivotal to the definition of
all the algorithms presented in Section 2.6. Overall the separation
of behaviours and patterns, which looks embarrassingly natural in
the end (we have been stuck on this point for long), is what al-
lows us to provide semantic characterizations of all the notions in
the formalism. The alternatives to sieves that we considered along
the way all resulted in either syntactical restrictions (like those in
current session types, where different branches must be tagged by
means of disjoint labels) or incompleteness results (the inability of
proving subsessioning for some categories of session descriptors).

There is a whole spectrum of possibilities regarding the commu-
nication model that may underlie the theory. In this work we have
focused on output irrevocability because it closely corresponds to
the communication model adopted by distributed systems in prac-
tice and also because it allows us to draw a closer comparison with
other works on session types, where at every stage of an interaction
only one partner has the floor and no handshaking ever occurs. A
solution at the opposite side of the spectrum involves a handshak-
ing phase before every interaction, to determine a message that the
receiver is capable to handle and that the sender is able to produce,
which is the model adopted in [6]. As expected, as the communi-
cation model gains expressive power, the subsession (subcontract
in [6]) relation gets stricter. For example, while our subsessioning
relation naturally accounts for width subtyping (the extension of
external choices with additional, but unrelated branches), the sub-
contract relation in [6] does so only by means of explicit coercions.
There is also an interesting compromise between these two solu-
tions, consisting in removing rules (TR5) and (TR6) from the transi-
tion relation of session descriptors and leaving the rest unchanged.
In this case the two communicating partners may agree on who is
entitled to send and who is entitled to receive a value, although it
is still not possible to negotiate the specific value exchanged dur-
ing the communication. The impact of this change to the theory is
not trivial (an indication comes from the fact that the normal form
changes radically, since it now makes sense to mix input and out-
put actions in the same descriptor), and we plan to investigate it in
some future work.

The core of our work is the theory of session types. Our claim
of simplicity does not contrast with the relative complexity of the
typing discipline in Section 3.3, which nonetheless improves on
similar proposals [12]. When trying to define a typing discipline
that statically enforces the progress property, session types suffer
from the natural limitation of typing channels rather than whole
processes. In fact, despite our judgements have the form Γ ⊢ P : ∆,

the ∆ is not a type for P but just a mapping from channels to
session descriptors which prescribes the use of channels inside P.
By defining a typing discipline that describes the behavioural type
of processes rather than that of each channel used by processes
we could better catch the mutual dependencies of interactions on
different channels and thus ensure progress without imposing all
the present restrictions (a first step in this direction is done in [10]).
Of course this would correspond also to a paradigm shift, where we
focus on the orchestration of different components rather than on
single conversations. The application of the semantic framework
we have designed to this scenario looks like a challenging, yet
interesting direction for future research.

References

[1] L. Acciai and M. Boreale. A type system for client progress in
a service-oriented calculus. In Concurrency, Graphs and Models,
volume 5065 of LNCS, pages 642–658. Springer, 2008.

[2] M. Boreale, R. Bruni, R. D. Nicola, and M. Loreti. Sessions and
pipelines for structured service programming. In FMOODS’08,
volume 5051 of LNCS, pages 19–38. Springer, 2008.

[3] L. Caires and H. T. Vieira. Typing conversation in the conversation
calculus. Technical report, CITI, 2008.

[4] G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for
the π-calculus. Theor. Comput. Sci., 398(1-3):217–242, 2008.

[5] G. Castagna and A. Frisch. A gentle introduction to semantic
subtyping. In PPDP ’05, pages 198-208, ACM Press (full version)
and ICALP ’05, LNCS n. 3580, pages 30-34, Springer (summary),
2005. Joint ICALP-PPDP keynote talk.

[6] G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for
web services. Extended version of the article included in POPL ’08,
submitted, available on authors’ web pages, 2008.

[7] I. Castellani and M. Hennessy. Testing theories for asynchronous
languages. In FST&TCS ’98, volume 1350 of LNCS, pages 90–101.
Springer, 1998.

[8] R. De Nicola and M. Hennessy. Testing equivalences for processes.
Theor. Comput. Sci, 34:83–133, 1984.

[9] R. De Nicola and M. Hennessy. CCS without τ ’s. In TAPSOFT/-

CAAP’87, volume 249 of LNCS, pages 138–152. Springer, 1987.

[10] M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. On progress
for structured communications. In TGC’07, volume 4912 of LNCS,
pages 257–275. Springer, 2008.

[11] M. Dezani-Ciancaglini, S. Drossopoulou, E. Giachino, and
N. Yoshida. Bounded session types for object-oriented languages. In
FMCO’06, volume 4709 of LNCS, pages 207–245. Springer, 2007.

[12] M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Drossopoulou.
A distributed object oriented language with session types. In TGC’05,
volume 3705 of LNCS, pages 299–318. Springer, 2005.

[13] A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping:
dealing set-theoretically with function, union, intersection, and
negation types. The Journal of ACM, 2008. To appear.

[14] S. Gay. Bounded polymorphism in session types. MSCS, 2008. To
appear.

[15] S. Gay and M. Hole. Subtyping for session types in the pi-calculus.
Acta Informatica, 42(2/3):191–225, 2005.

[16] M. Hennessy and A. Ingólfsdóttir. A theory of communicating pro-
cesses with value-passing. In ICALP’90, volume 443 of LNCS.
Springer, 1990.

[17] K. Honda. Types for dyadic interaction. In CONCUR’93, volume
715 of LNCS, pages 509–523. Springer, 1993.

[18] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming. In
ES’98, volume 1381 of LNCS. Springer, 1998.

14 2008/7/20

[19] A. Igarashi and N. Kobayashi. A generic type system for the pi-
calculus. Theor. Comput. Sci, 311(1-3):121–163, 2004.

[20] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile
processes. Theor. Comput. Sci., 114(1):149–171, 1993.

[21] N. Yoshida and V. T. Vasconcelos. Language primitives and
type disciplines for structured communication-based programming
revisited. In SecRet’06, volume 171(4) of ENTCS, pages 73–93.
Elsevier, 2007.

A. Proofs of Section 2

We will first prove Theorems 2.14 and 2.17 by simultaneous induc-
tion and then Proposition 2.9 and Theorem 2.11 since the latest two
proofs use the strong normal forms of sieves. Notice that this does
not introduce circularity since the first proof is independent from
Proposition 2.9 and Theorem 2.11.

A.1 Proof of Theorems 2.14 and 2.17

We prove both this theorem and Theorem 2.14 by simultaneous
induction. More precisely we consider the weight defined in the
proof of Theorem 2.6. Then we prove:

1. Each sieve χ can be effectively transformed into an equivalent
strong normal form whose weight is smaller than or equal to the
weight of χ.

2. χ 6≤ χ′ is decidable.

First of all notice that by classical set theoretic transformations
it is possible to put every sieve in disjunctive normal form. This can
be effectively done by the regularity of the trees. So let us assume
that all the sieves we use in this proof are in disjunctive normal
form.

Base case. The base case for weight 0 is when both χ and χ′ are
possibly empty sums of end’s. The normal form of all such sieves
is end (which can be obtained by rules (E1) and (I1) of Table 3)
and χ 6≤ χ′ is easily decidable.

Inductive case. Let us now study the inductive case, and there-
fore suppose the two properties hold for sieves of strictly smaller
weight. For the sake of the presentation we prove the two points
one after the other, although we should do the proof of the two
properties—in this order—for each case.

Thus let us start proving the point 1 by performing a case
analysis on the form of χ.

If χ ≡ W

i∈I

V

j∈J λij where |I| > 1, then we have to dis-

card all the intersections that are bottom, that is all
V

j∈J λij = ⊥.

Whether each of these intersections is equivalent to bottom can be
effectively decided by induction hypothesis thanks to the point 2
of the theorem. The normal form is then obtained by coinductively
applying the transformation on all remaining literals, which is pos-
sible thanks to the induction hypothesis.

If χ ≡ V

j∈J λj where at least one literal is not negated.

The normal form is either ⊥, or it is obtained by a coinductive
application of the transformation. The latter is always possible
thanks to the induction hypothesis. Thus all it remains to prove is
that we can decide whether χ is ⊥. Since we cannot directly use
the induction hypothesis (as we should apply it to the whole sieve),
let us separate negated literals from positive ones. That is, define
J = P ∪N , such that χ ≡ V

p∈P ηp ∧ V

n∈N ¬ηn. Then χ 6≤ ⊥
if and only if

L

p∈P ηp 6≤ W

n∈N ηn, if and only if—by the strong

disjunction property for descriptors—
L

p∈P ηp 6≤ ηn holds for all

n ∈ N . This can be decided by induction hypothesis using the
point 2 of the theorem.

If χ ≡ V

j∈J ¬ηj . As above, let us first show that it is possible

to decide that χ 6≤ ⊥, that is whether ¬W

j∈J ηj 6≤ ⊥. This is

always true for Lemma 2.15, therefore we can coinductively apply
the transformation by induction hypothesis.

All the coinductive transformations above terminate by the reg-
ularity of our sieves. Furthermore it is easy to see that they do not
increase the weight of the sieves.

If χ ≡ η, and the descriptor is prefixed then we check that its
prefix is not ∅ (which can be done by induction hypothesis) and
possibly coinductively apply the transformation on its continuation.

Otherwise we will do the following transformations:

1. get rid of every subterm of the form ?ψ.η and !ψ.η such that
ψ = ∅ by means of rules (B1), (B2), (E8), and (I8);

2. get internal choices of external choices of prefixed descriptors
and end using (E4);

3. get internal choices of:

• external choices of input descriptors and possibly of end

• output descriptors

• possibly end

by applying the rules (O1), (O2), and (O3) inside the external
choices. I.e. we obtain a descriptor of the shape:

M

J∈K

(
X

j∈J

?ψj .ηj{ + end}) ⊕
M

h∈H

!ψh.ηh{ ⊕ end} (12)

4. we have the following cases:

(a) K = ∅.

(b) H = ∅. Then (12) is equivalent to:
X

j1∈J1

· · ·
X

jk∈Jk

?(ψj1 ∧ · · · ∧ ψjk
).(ηj1⊕· · ·⊕ηjk

){+end}

(13)
where K = {J1, . . . , Jk} and ψj1 ∧ · · · ∧ ψjk

6= ∅ and
end is present only if it occurs in all the external choices of
(12).

(c) K,H 6= ∅ and end is present in all external choices. Then
(12) is equivalent to

η =
M

h∈H

!ψh.ηh ⊕ end (14)

(d) K,H 6= ∅, at least one external choice has no end subterm.
Then (12) is equivalent to ⊥.

5. in cases (4a) and (4c) we can obtain an internal choice of
outputs and possibly end such that if !ψ and !ψ′ are two top
level prefixes we have ψ ∧ ψ′ = ∅ by applying rules (O4),
(O5), and (I5).

6. in case (4b) we obtain an external choice of inputs and possibly
end such that if ?ψ and ?ψ′ are two top level prefixes we have
ψ ∧ ψ′ = ∅ by applying rules (E5), (E6), and (E7).

7. we convert any χ occurring in a top level prefix in strong normal
form (this can be effectively done by the induction hypothesis).

8. we coinductively apply the algorithm to every continuation of
every top level guarded descriptor of the (internal or external)
choice.

Note that the coinductive application of the algorithm terminates
by the regularity of our descriptors. All it remains to prove is that
the passage from step (3.) to step (4.) is is sound, that is it yields an
equivalent descriptor.

For case (4a) this is trivial.
For case (4b) we have that equation (12) becomes an internal

choice of external choices of inputs. Let us examine the set of duals
of (12). Since we only have inputs then we have to check which

15 2008/7/20

[R-EX-SPLIT]
X

i∈I

?ψi.ηi{ + end} ≤
X

j∈J\{k}

?ψ′
j .η

′
j + ?(ψ′

k \ ψh).η′k + ?ψh.η
′
k{ + end}

X

i∈I

?ψi.ηi{ + end} ≤
X

j∈J

?ψ′
j .η

′
j{ + end}

„

ψh ⊑ ψ′
k

ψh 6= ψ′
k

«

[L-EX-SPLIT]
X

i∈I\{h}

?ψi.ηi + ?(ψh \ ψ′
k).ηh + ?ψ′

k.ηh{ + end} ≤
X

j∈J

?ψ′
j .η

′
j{ + end}

X

i∈I

?ψi.ηi{ + end} ≤
X

j∈J

?ψ′
j .η

′
j{ + end}

„

ψ′
k
⊑ ψh

ψh 6= ψ′
k

«

[LR-EX-SPLIT]
X

i∈I\{h}

?ψi.ηi + ?(ψh \ ψ′
k).ηh + ?ψ′

k.ηh{ + end} ≤
X

j∈J\{k}

?ψ′
j .η

′
j + ?(ψ′

k \ ψh).η′k + ?ψh.η
′
k{ + end}

X

i∈I

?ψi.ηi{ + end} ≤
X

j∈J

?ψ′
j .η

′
j{ + end}

0

@

ψ′
k
∧ψh 6= ∅

ψ′
k
∧ψh 6= ψ′

k
ψ′

k
∧ψh 6= ψh

1

A

[R-IN-SPLIT]
M

i∈I

!ψi.ηi{ ⊕ end} ≤
M

j∈J\{k}

!ψ′
j .η

′
j ⊕ !(ψ′

k \ ψh).η′k ⊕ !ψh.η
′
k{ ⊕ end}

M

i∈I

!ψi.ηi{ ⊕ end} ≤
M

j∈J

!ψ′
j .η

′
j{ ⊕ end}

„

ψh ⊑ ψ′
k

ψh 6= ψ′
k

«

[L-IN-SPLIT]
M

i∈I\{h}

!ψi.ηi ⊕ !(ψh \ ψ′
k).ηh ⊕ !ψ′

k.ηh{ ⊕ end} ≤
M

j∈J

!ψ′
j .η

′
j{ ⊕ end}

M

i∈I

!ψi.ηi{ ⊕ end} ≤
M

j∈J

!ψ′
j .η

′
j{ ⊕ end}

„

ψ′
k
⊑ ψh

ψh 6= ψ′
k

«

[LR-IN-SPLIT]
M

i∈I\{h}

!ψi.ηi ⊕ !(ψh \ ψ′
k).ηh ⊕ !ψ′

k.ηh{ ⊕ end} ≤
M

j∈J\{k}

!ψ′
j .η

′
j ⊕ !(ψ′

k \ ψh).η′k ⊕ !ψh.η
′
k{ ⊕ end}

M

i∈I

!ψi.ηi{ ⊕ end} ≤
M

j∈J

!ψ′
j .η

′
j{ ⊕ end}

0

@

ψ′
k
∧ψh 6= ∅

ψ′
k
∧ψh 6= ψ′

k
ψ′

k
∧ψh 6= ψh

1

A

Table 9. Algorithmic subsessioning simplification rules. In these rules we use ⊑ to denote either ≤ or <:, curly braces to denote optional
end summands, and suppose that all operators are uniformly applied either on types or on sieves.

inputs are guaranteed. These are exactly all the inputs that are
guaranteed by all the summands of the internal choice, that is those
that are emitted by all prefixes, and thus by their intersection. The
continuation of this intersection is then obtained by the definition
of successor yielding the descriptor (13).

In case (4c) by the irrevocability of outputs we have to check
which outputs are offered in order to characterise the set of duals of
(12). It is easy to see that (12) and (14) offer the same outputs and
they both offer end.

In case (4d) (12) is not viable since it does not converge and
therefore it is equivalent to ⊥.

Let us pass to the proof of point 2, that is show that it is possible
to decide whether χ 6≤ χ′ holds. Thanks to point 1 we can suppose
that both χ and χ′ are in strong normal form.

We proceed by case analysis on the form of χ and χ′ by starting
with the simplest cases first.

Case
W

i∈I

V

j∈J λij 6≤ W

h∈H

V

k∈K λ′
hk such that |I| > 1.

We can split the union on the left, and reduce this problem
to check whether there exists i ∈ I such that

V

j∈J λij 6≤

W

h∈H

V

k∈K λ′
hk, which can be checked by induction hypothe-

sis.
Case

V

j∈J λj 6≤ W

h∈H

V

k∈K λ′
hk such that |H| > 1. By

applying classical set-theoretic distribution laws, this problem can
be reduced to

V

j∈J λj 6≤ V

h∈H

W

k∈K λ′
hk. We can now split the

intersection on the right and reduce it to check whether there exists
h ∈ H such that

V

j∈J λj 6≤ W

k∈K λ′
hk. The result follows by

induction hypothesis.
Case

V

j∈J λj 6≤ W

k∈K λ′
k. Let us highlight negative and

positive literals:
V

p∈PJ
θp ∧ V

n∈NJ
¬ηn 6≤ V

p∈PK
θp ∧ V

n∈NK
¬ηn.

By simple set-theoretic manipulations this is equivalent to check
whether

V

p∈PJ∪PK
θp 6≤ W

n∈NJ∪NK
ηn. Since intersection is

equivalent to internal choice this is reduced to checking whether
L

p∈PJ∪PK
θp 6≤ W

n∈NJ∪NK
ηn which by strong disjunction

is equivalent to prove that
L

p∈PJ∪PK
θp 6≤ ηn holds for all

n ∈ NJ ∪NK . The result follows by induction hypothesis.
Case η 6≤ η′. This is the last remaining case and also the most

difficult one. We can feed η and η′ to the algorithmic rules of
Table 4. So to prove this case we have to prove that these rules

16 2008/7/20

are sound and complete with respect to the semantic definition of
subtyping.

Soundness. For soundness, let us prove the point by induction
on the Noetherian measure defined in Section 2.1. More precisely
for each rule of Tables 4 and 9 we must prove that the set of duals
of the lhs of its conclusion is included in the set of duals of the
rhs. Let us proceed by a case analysis on the last rule applied in the
deduction of η ≤ η′.

Case [END] and [MIX-CHOICES]. The result follows by a direct
application of the definition of duality.

Case [EXT-CHOICES]. By induction hypothesis for all i ∈ I
the set of duals of ηi is contained in the set of duals of η′i. We
have two subcases. (i) Case |I| > 1: since both descriptors are
in strong normal form, then they can only emit input signals or a
tick; thus for these choices we can apply only the rules TR3 and
TR4; this implies that the signals emitted by each descriptor in the
conclusion are exactly the same as those of their subcomponents.
The result follows by the definition of duality. (ii) Case |I| = 1:
then there are three subcases. Either the lhs of the conclusion emits
an input, and then we proceed as in the case before; or it is an end,
but then one of the summands of the rhs is also end, and the result
follows from the definition of duality as both must ensure X; or it
is of the form !ψ.η′′, but then also |J | = 1 and therefore this rule
does not apply ([PREFIX] should be used instead).

Case [INT-CHOICES]. Similar to the previous case.
Case [*-SPLIT] Notice that by rules I5-I7 and E5-E7 the corre-

sponding session descriptors at the premise and at the conclusion
of each rule have exactly the same set of duals, whence the result.

Case [PREFIX]. This is the hard case since we cannot use the
induction hypothesis as the Noetherian measure may increase. We
are in the case where we have deduced α.θ ≤ α.θ′ from θ ≤ θ′.
So let us consider the deduction for θ ≤ θ′ and explore it upwards
from the root. By the regularity of our descriptors we have just two
possible cases: either we traverse a finite (and possibly null) number
of applications of the PREFIX rule and arrive to the application
of a different rule, or we traverse an again finite (and possibly
null) number of applications of the PREFIX rule and arrive to the
judgment θ ≤ θ′. The latter case is straightforward because it
means that θ ≡ θ′, therefore the result holds for reflexivity. In the
former case instead we perform a case analysis on the rule we have
reached, apply the same reasoning as above for the corresponding
case and deduce the result by Lemma 2.16.

Completeness. For completeness let us prove this point by in-
duction on the Noetherian measure defined in Section 2.1. Suppose
that the result holds for descriptors of smaller measure and let us
prove for the general case. Imagine by contradiction that the result
does not hold for the general case. Then there exist η and η′ such
that all the duals of η are also duals of η′ but for which the algo-
rithm answers no. Therefore there exists at least one rule that fails.
Since we did not put any constraint on η and η′, then we can con-
sider without loss of generality that it is the last one and that all the
preceding applications of the rules hold. Let us then perform a case
analysis on this rule:

Case [END]. This is the base case and vacuously holds since it
cannot fail.

Case [PREFIX]. This is another base case and vacuously holds
since it cannot fail (if it fails it is because the premise failed, but
this contradicts the fact that the PREFIX rule is the last one to have
failed).

Case [MIX-CHOICES]. The last base case. It may have failed
because one (or both) of the two end’s is absent, but this contradicts
our hypothesis: if it is the rhs end that is missing then end is a dual
of the first but not of the second; if it is the lhs end that is missing
then I is not empty (otherwise the rule would not fail), but then
since the types are in strong normal form a dual of ηi cannot be

dual of the lhs, since both of them ensure an input. It may have also
failed because the internal choice is on the right and the external
one is on the left (strictly speaking this is not a failure of this rule
but it is the only case in which no rule applies), but then it is easy
to build a dual for the lhs which is not dual for the rhs.

Case [EXT-CHOICES]. If this failed it is because there exists
i ∈ I such that for all j ∈ J , ηi 6≤ ηj . By induction hypothesis
since the algorithm is complete, then there exists θ that is dual of
ηi but it is not dual of any ηj . By definition θ is dual of

P

i∈I ηi

but not of
P

j∈J ηj , contradiction.

Case [INT-CHOICE]. Similar to the previous case.
Case [*-SPLIT]. These rules never fail since they can always be

applied.

A.2 Proof of Proposition 2.9

(⇒) By Theorem 2.14 we may assume that η is in strong normal
form. We define a function · such that η ⋊⋉ η. Regularity of η is a
direct consequence of the regularity of η.

Assume η ≡ P

i∈I ?ψi.ηi{ + end}, where the end subterm

may be missing. Then η⋊⋉ must be justified by condition (1) of
Definition 2.8, namely there exists µ such that η ⇓ µ and η〈µ〉⋊⋉ .
If µ = X, then we conclude immediately by taking η = end. If
µ 6= X, then there exists k ∈ I such that ?ψk.ηk ⇓ µ and η〈µ〉⋊⋉ .
Because η is in disjoint normal form we have ?ψi.ηi ⇓ µ′ implies
η〈µ′〉 = ηi for every µ′. Hence we conclude by taking η = !ψk.ηk.

Assume η ≡ L

i∈I !ψi.ηi{ ⊕ end}, where the end subterm

may be missing. Then η⋊⋉ must be justified by condition (2) of
Definition 2.8, namely for every i ∈ I we have !ψi.ηi ↓ µ
for some µ and η⋊⋉

i since η〈µ〉 = ηi. We conclude by taking
η =

P

i∈I ?ψi.ηi + end.
The proof that η ⋊⋉ η is trivial.
(⇐) It is sufficient to show that the relation

R = {η | ∃η′ : η ⋊⋉ η′}
is a coinductive viability. Let η ∈ R. Then there exists η′ such that
η ⋊⋉ η′. We reason by cases on the justification of η ⋊⋉ η′ according
to Definition 2.5.

Assume η ⋊⋉ η′ is justified by condition (1) of Definition 2.5.
Then η ⇓ X and η′ ⇓ X. Hence condition (2) of Definition 2.8 is
satisfied (note that end ∈ R by definition of R).

Assume η ⋊⋉ η′ is justified by condition (2) of Definition 2.5.
Then η ↓ and η ↓ µ implies η′ ⇓ µ and η〈µ〉 ⋊⋉ η′〈µ〉. By defini-
tion of R we have η〈µ〉 ∈ R, hence condition (1) of Definition 2.8
is satisfied.

Assume η ⋊⋉ η′ is justified by condition (3) of Definition 2.5.
Then η′ ↓ and η′ ↓ µ implies η ⇓ µ and η〈µ〉 ⋊⋉ η′〈µ〉.
By definition of R we have η〈µ〉 ∈ R, hence condition (1) of
Definition 2.8 is satisfied.

A.3 Proof of Theorem 2.11

(⇒) Assume η1 ≦ η2 and η⋊⋉

1 . By Proposition 2.9 we have that η1
is viable. Let η ⋊⋉ η1. It is sufficient to show that

C = {(η′, η′2) | ∃η′1 : η′ ⋊⋉ η′1 ∧ η′1 ≦ η′2}
is a duality relation, since (η, η2) ∈ C by definition of C . Let
(η′, η′2) ∈ C . Then there exists η′1 such that η′ ⋊⋉ η′1 and η′1 ≦ η′2.
We reason by cases on the justification of η′ ⋊⋉ η′1 for showing that
η′ and η′2 satisfy at least one of the conditions of Definition 2.5.
Assume that η′ ⋊⋉ η′1 is justified by condition (1) of Definition 2.5.
Then η′ ⇓ X and η′1 ⇓ X. From η′1 ≦ η′2 we derive η′2 ⇓ X
hence we conclude by condition (1) of Definition 2.5. Assume that
η′ ⋊⋉ η′1 is justified by condition (2) of Definition 2.5. Then η′ ↓
and η′ ↓ µ implies η′1 ⇓ µ and η′〈µ〉 ⋊⋉ η′1〈µ〉. From η′1 ≦ η′2 we
derive η′2 ⇓ µ and η′1〈µ〉 ≦ η′2〈µ〉 hence (η′〈µ〉, η′2〈µ〉) ∈ C by
definition of C and we conclude by condition (2) of Definition 2.5.

17 2008/7/20

Assume that η′ ⋊⋉ η′1 is justified by condition (3) of Definition 2.5.
Then η′1 ↓ and η′1 ↓ µ implies η′ ⇓ µ and η′〈µ〉 ⋊⋉ η′1〈µ〉.
We distinguish two subcases: if η′2 ⇓ then η′1 ↓ X and η2 ⇓ X
hence we derive η′ ⇓ X and we conclude by condition (1) of
Definition 2.5; if not η′2 ⇓, then assume η′2 ↓ µ. From η′1 ≦ η′2 we
derive η′1 ↓ µ and η′1〈µ〉 ≦ η′2〈µ〉 hence (η′〈µ〉, η′2〈µ〉) ∈ C by
definition of C and we conclude by condition (3) of Definition 2.5.

(⇐) It is sufficient to show that the relation

R = {(η, η′) | ∀θ : θ ⋊⋉ η ⇒ θ ⋊⋉ η′}
is a coinductive subsession. Let (η, η′) ∈ R and assume η⋊⋉ for
otherwise there is nothing to prove. By Theorem 2.14 we may as-
sume that both η and η′ are in strong normal form. By Proposi-
tion 2.9 there exists θ such that θ ⋊⋉ η. By definition of R we
deduce that θ ⋊⋉ η′, hence η′⋊⋉ again by Proposition 2.9. We reason
by cases on the structure of η and η′.

Assume η ≡ P

i∈I ?ψi.ηi{+end} and η′ ≡ P

j∈J ?ψj .ηj{+
end}. Condition (1) of Definition 2.10 is trivially satisfied since
η′ ⇓. As regards condition (2) of Definition 2.10, assume η ⇓ µ
and η〈µ〉⋊⋉ . If µ = X, then η′ ⇓ X for otherwise end ⋊⋉ η and
end 6⋊⋉ η′ which is absurd by definition of R. If µ 6= X, then there

exists i ∈ I such that ?ψi.ηi ⇓ µ and η⋊⋉

i . Suppose by contradiction
that η′ 6⇓ µ and consider θ ≡ !ψi.θi where θi is an arbitrary dual of

ηi (it exists from the hypothesis η⋊⋉

i and by Proposition 2.9). Then
θ ⋊⋉ η but θ 6⋊⋉ η′ which is absurd. Hence there exists j ∈ J such
that ?ψj .ηj ⇓ µ. By definition of duality we deduce θi ⋊⋉ ηi and
θi ⋊⋉ ηj , hence (ηi, ηj) ∈ R since θi is arbitrary. We conclude
by observing that η〈µ〉 = ηi and η′〈µ〉 = ηj . Condition (3) of
Definition 2.10 is trivially satisfied since η ⇓.

Assume η ≡ L

i∈I !ψi.ηi{ ⊕ end} and η′ ≡ L

j∈J !ψj .ηj{ ⊕
end} and η′ 6⇓. As regards condition (1) of Definition 2.10, for
every i ∈ I let θi be an arbitrary session descriptor such that θi ⋊⋉

ηi (these descriptors exist because η⋊⋉). Let θ ≡ P

i∈I ?ψi.θi{ +
end} where the end subterm is present only if it is present also in
η. Assume η′ ↓ µ. Then there exists j ∈ J such that !ψj .ηj ↓ µ.
Suppose contradiction that η 6↓ µ. Then θ ⋊⋉ η but θ 6⋊⋉ η′, which
is absurd. Hence there exists i ∈ I such that !ψi.ηi ↓ µ. We derive
(ηi, ηj) ∈ R since θi is arbitrary. We conclude by observing that
η〈µ〉 = ηi and η′〈µ〉 = ηj . Condition (3) of Definition 2.10 is
trivially satisfied since η′ 6⇓.

Assume η ≡ L

i∈I !ψi.ηi{⊕ end} and η′ ≡ P

j∈J ?ψj .ηj{+
end} and η 6⇓. Condition (1) and (2) of Definition 2.10 are trivially
satisfied since η 6⇓ and η′ ⇓. As regards condition (3) of Defini-
tion 2.10, for every i ∈ I let θi be an arbitrary session descrip-
tor such that θi ⋊⋉ ηi (these descriptors exist because η⋊⋉). Let
θ ≡ P

i∈I ?ψi.θi{ + end} where the end subterm is present only

if it is present also in η. Assume by contradiction η 6↓ X or η′ 6⇓ X.
Then θ ⋊⋉ η but θ 6⋊⋉ η′, which is absurd. We conclude η ↓ X and
η′ ⇓ X.

B. Proofs of Section 3

B.1 Proof of Subject Reduction

The core of a session stack (core(∆)) is the stack obtained by
removing all ended channels. This is sound by the typing rule T-
STRENGTH. The core of a session environment is defined similarly.

DEFINITION B.1 (Core).

core(∆) =

(

(core(∆′) · u : η) if ∆ = (∆′ · u : η) and η 6= end

core(∆′) if ∆ = (∆′ · u : end)

core(Λ) = {u : η | u : η ∈ Λ & η 6= end}

The partial order relation 2 between session stacks and session
environments takes into account their evolution due to process and
system reductions.

DEFINITION B.2. ∆ 2 ∆
′ is the smallest partial order relation

such that:

1. core(∆′) = (∆ · u : η), or

2. core(∆′) = (∆′′ · u : η′), core(∆) = (∆′′ · u : η), and either

η
µ−→ η′ or η −→ η′, or

3. core(∆′) = (∆′′ · u : η), core(∆) = ((∆′′ · u′ : η′) · u :!χ.η)
and η′ ≤ χ, or

4. core(∆′) = (x : η′ · u : η), core(∆) = (u :?χ.η) and χ ≤ η′.

DEFINITION B.3. Λ 2 Λ
′ is the smallest partial order relation

such that:

1. core(Λ′) = Λ ∪ {u : η}, or

2. core(Λ′) = Λ
′′∪{u : η′}, core(Λ) = Λ

′′∪{u : η}, and either

η
µ−→ η′ or η −→ η′, or

3. core(Λ′) = Λ
′′ ∪ {u : η}, core(Λ) = Λ

′′ ∪ {u′ : η′, u :!χ.η}
and η′ ≤ χ, or

4. core(Λ′) = x : η′∪{u : η}, core(Λ) = {u :?χ.η} and χ ≤ η′.

It is easy to verify that 2 agrees with the mapping set and with
union of session environments.

PROPOSITION B.4. 1. If ∆ 2 ∆
′, then set(∆) 2 set(∆′).

2. If Λ1 2 Λ
′
1 and Λ2 2 Λ

′
2, then Λ1 ∪ Λ2 2 Λ

′
1 ∪ Λ

′
2.

As usual generation and substitution lemmas are the key of our
subject reduction proof.

LEMMA B.5 (Generation Lemma for Processes). 1. If Γ ⊢ 0 :
∆, then core(∆) = −.

2. If Γ ⊢ connect a(z).P : ∆, then Γ ⊢ P : (∆ · z : η) and
Γ ⊢ a : begin.η.

3. If Γ ⊢ u?(x : t).P : ∆, then core(∆) = (∆′ · u :?t.η) and
Γ , x : t ⊢ P : (∆′ · u : η).

4. If Γ ⊢ u!(e).P : ∆, then core(∆) = (∆′ · u :!t.η) and Γ ⊢ e : t
and Γ ⊢ P : (∆′ · u : η).

5. If Γ ⊢ u?Lz : χM.P : ∆, then core(∆) = (u :?χ.η) and
Γ ⊢ P : (z : η′ · u : η) and χ ≤ η′.

6. If Γ ⊢ u!Lu′M.P : ∆, then core(∆) = ((∆′ · u′ : η′) · u :!χ.η)
and Γ ⊢ P : (∆′ · u : η) and η′ ≤ χ.

7. If Γ ⊢ P + Q : ∆, then either core(∆) = (∆′ ·u : η1 + η2) and
Γ ⊢ P : (∆′ · u : η1), and Γ ⊢ Q : (∆′ · u : η2) or core(∆) = −
and Γ ⊢ P : −, and Γ ⊢ Q : −.

8. If Γ ⊢ P ⊕ Q : ∆, then either core(∆) = (∆′ ·u : η1 ⊕ η2) and
Γ ⊢ P : (∆′ · u : η1), and Γ ⊢ Q : ∆

′, u : η2 or core(∆) = −
and Γ ⊢ P : −, and Γ ⊢ Q : −.

LEMMA B.6 (Generation Lemma for Systems). 1. If Γ P : Λ,
then there exists ∆ such that Λ = set(∆) and Γ ⊢ P : ∆.

2. If Γ S ‖ T : Λ, then there exist Λ1 and Λ2 such that
Λ = Λ1 ∪ Λ2 and Γ S : Λ1 and Γ T : Λ2.

LEMMA B.7 (Substitution). 1. If Γ , x : t S : Λ and ⊢ v : t,
then Γ S[v/x] : Λ.

2. If Γ S : Λ, z : η, then Γ S[k/z] : Λ, k : η.

The following lemma relates the one step reductions of pro-
cesses with labels different from τ with the changes of the session
stacks.

LEMMA B.8. Let Γ ⊢ P : ∆, then

1. If P
c(z:η)−→ P′, then Γ ⊢ P′ : (∆ · z : η).

18 2008/7/20

2. If P
k?(x:t)−→ P′, then Γ , x : t ⊢ P′ : ∆

′ and core(∆) = (∆′′ · k :
?t.η {+ θ}) and ∆

′ = (∆′′ · k : η).

3. If P
k!(v)−→ P′ , then Γ ⊢ P′ : ∆

′ and core(∆) = (∆′′ · k :
!t.η {+ θ}) and ∆

′ = (∆′′ · k : η).

4. If P
k?Lz:χM−→ P′, then Γ ⊢ P′ : ∆

′ and core(∆) = (k :
?χ.η {+ θ}) and ∆

′ = (z : η0 · k : η) and χ ≤ η0.

5. If P
k!Lk1M−→ P′, then Γ ⊢ P′ : ∆

′ and core(∆) = ((∆′′ · k1 :
η1) · k :!χ.η {+ θ}) and η1 ≤ χ and ∆

′ = (∆′′ · k : η).

PROOF. By cases on
ℓ−→ using Lemma B.5. �

THEOREM 3.2 (Subject Reduction for Processes) If Γ ⊢ P : ∆

and P
ℓ−→ P′, then Γ

′ ⊢ P′ : ∆
′, where ∆ 2 ∆

′.

PROOF. The proof is by induction and by cases on
ℓ−→. For

external and internal choices we only consider the first cases of
Lemma B.5(7) and (8), since for the second cases the proof is
similar and simpler.

Case R-CONNECT. Easy from Lemma B.8(1) and Definition B.2(1).

Case R-SEND. Easy from Lemma B.8(3), and Definition B.2(1)
and (2).

Case R-RECEIVE. Easy from Lemma B.8(3) and Definition B.2(1)
and (2).

Case R-SENDS. Easy from Lemma B.8(5), and Definition B.2(3).

Case R-RECEIVES. Easy from Lemma B.8(4), and Definition B.2(4).

Case R-EXTCH1. We have that

P
ℓ−→ P

′ ℓ 6= τ

P + Q
ℓ−→ P

′
and Γ ⊢ P + Q : ∆.

From Lemma B.5(7), we have that core(∆) = (∆′ ·k : η1 + η2)
and Γ ⊢ P : (∆′ · k : η1), and Γ ⊢ Q : (∆′ · k : η2).

By induction hypothesis on P
ℓ−→ P′ we get Γ

′ ⊢ P′ : ∆
′′,

where (∆′ · k : η1) 2 ∆
′′. By Definition B.2(2), we have that

(∆′ · k : η1 + η2) 2 (∆′ · k : η1) and by transitivity ∆ 2 ∆
′′.

Case R-EXTCH2. We have that

P
τ−→ P

′

P + Q
τ−→ P

′ + Q
and Γ ⊢ P + Q : ∆.

From Lemma B.5(7), we have that core(∆) = (∆′ ·k : η1 + η2)
and Γ ⊢ P : (∆′ · k : η1), and Γ ⊢ Q : (∆′ · k : η2). By

induction hypothesis on P
τ−→ P′ we get Γ ⊢ P′ : ∆

′′ where
(∆′ · k : η1) 2 ∆

′′. But since P becomes P′ by a τ action, then
we know by rules R-EXTCH2, R-EXTCH3, R-EXTCH4 and R-
INTCH that P is either an internal or an external choice, then
by Lemmas B.5(8) and B.5(7) we get ∆

′′ = (∆′ · k : η′1), for
some η′1 such that η1 −→ η′1. By typing rule T-EXTCH we get
Γ ⊢ P′ + Q : (∆′ ·k : η′1 + η2) and by the descriptor transition
rule (TR3) we get η1 + η2 −→ η′1 + η2. We conclude since
∆ 2 (∆′ · k : η′1 + η2) by Definition B.2(2).

Case R-EXTCH3. We have that

P
k!(v)−→

P + Q
τ−→ P

and Γ ⊢ P + Q : ∆.

From Lemma B.5(7), we have that core(∆) = (∆′ ·k : η1 + η2)
and Γ ⊢ P : (∆′ · k : η1), and Γ ⊢ Q : (∆′ · k : η2). By
Definition B.2(2), we have that ∆ 2 (∆′ · k : η1).

Case R-EXTCH4. We have that

P
k!Lk1M−→

P + Q
τ−→ P

and Γ ⊢ P + Q : ∆.

From Lemma B.5(7), we have that core(∆) = (∆′ ·k : η1 + η2)
and Γ ⊢ P : (∆′ · k : η1), and Γ ⊢ Q : (∆′ · k : η2). By
Definition B.2(2), we have that ∆ 2 (∆′ · k : η1).

Case R-INTCH. We have that

P ⊕ Q
τ−→ P and Γ ⊢ P ⊕ Q : ∆.

From Lemma B.5(8), we have that core(∆) = (∆′ ·k : η1 ⊕ η2)
and Γ ⊢ P : (∆′ · k : η1), and Γ ⊢ Q : (∆′ · k : η2). By
Definition B.2(2), we have that ∆ 2 (∆′ · k : η1).

�
We can lift the relations between reductions of processes and

changes of session stacks shown in Lemma B.8 to relations be-
tween reductions of systems and changes of session environments.
More precisely we can easily prove the following lemma:

LEMMA B.9. Let ℓ 6= τ .

1. If Σ ⊢ S
ℓ−→ Σ

′ ⊢ S
′, then there are T, T

′ and P such that

S = T ‖P ‖T
′ and S

′ = T ‖P′ ‖T
′ and P

ℓ−→ P′, where one
or both T, T

′ can be missing.

2. If Σ ⊢ S ‖ P ‖T
ℓ−→ Σ

′ ⊢ S ‖ P′ ‖T and Γ S ‖ P ‖T : Λ,
then there are Λ

′, ∆ and ∆
′ such that Λ = Λ

′ ∪ set(∆),
Γ S ‖ P ‖ T : Λ

′ ∪ set(∆′), and ∆
′ depends on ∆ and ℓ

as in Lemma B.8.

THEOREM 3.3 (Subject Reduction for Systems) If Γ S : Λ and

Σ ⊢ S
ℓ−→ Σ

′ ⊢ S
′, then Γ S

′ : Λ
′, where Λ 2 Λ

′.

PROOF. The proof is by induction and by cases on
ℓ−→.

Case LIFT. The result follows from Theorem 3.2, Lemma B.6(1)
and Proposition B.4(1).

Case CONNECTION. We have that Γ S‖T : Λ and

Σ ⊢ S
c(z:η)−→ Σ ⊢ S

′

Σ ⊢ T
c(z′:η′)−→ Σ ⊢ T

′ η ⋊⋉ η′ k 6∈ dom(Σ)

Σ ⊢ S‖T
τ−→ Σ, k : η, k̃ : η′ ⊢ S

′[k/z]‖T
′[k̃/z′]

From Lemma B.6(2), we get that there exist Λ1 and Λ2 such
that Λ = Λ1 ∪ Λ2 and Γ S : Λ1 and Γ T : Λ2. By
Lemmas B.9 and B.8(1) we have that Γ S

′ : Λ1, z : η,
and Γ T

′ : Λ2, z
′ : η′. From Lemma B.7(2), we have that

Γ S
′[k/z] : Λ1, k : η and Γ T

′[k̃/z′] : Λ2, k̃ : η′. Applying

typing rule T-PAR we get Γ S
′[k/z] ‖ T

′[k̃/z′] : Λ
′, where

Λ
′ = Λ1 ∪Λ2 ∪ {k : η, k̃ : η′}. We conclude since Λ 2 Λ

′ by
Definition B.3(1).

Case COMMUNICATION. We have that Γ S‖T : Λ and

Σ ⊢ S
k!(v)−→ Σ ⊢ S

′
Σ ⊢ T

k̃?(x:t)−→ Σ ⊢ T
′ ⊢ v : t

Σ, k : η, k̃ : η′ ⊢ S‖T
τ−→ Σ, k : η〈!v〉, k̃ : η′〈?v〉 ⊢ S

′ ‖T
′[v/x]

From Lemma B.6(2), we get that there exist Λ1 and Λ2 such
that Λ = Λ1 ∪ Λ2 and Γ S : Λ1 and Γ T : Λ2. By
induction hypothesis on S and T and Lemmas B.9 and B.8(3)
and (2) we have that Γ S

′ : Λ
′
1, and Γ , x : t T

′ : Λ
′
2,

where Λ1 2 Λ
′
1 and Λ2 2 Λ

′
2. From Lemma B.7(1), we have

that Γ T
′[v/x] : Λ

′
2. Applying typing rule T-PAR we get

Γ S
′ ‖T

′[v/x] : Λ
′
1 ∪ Λ

′
2. We conclude since Λ 2 Λ

′
1 ∪ Λ

′
2

by Proposition B.4(2).

19 2008/7/20

Case DELEGATION. We have that Γ S‖T : Λ and

Σ ⊢ S
k!Lk1M−→ Σ ⊢ S

′

Σ ⊢ T
k̃?Lz:χM−→ Σ ⊢ T

′
Σ(k1) ≤ χ

Σ, k : η, k̃ : η′ ⊢ S‖T
τ−→ Σ

′ ⊢ S
′ ‖T

′[k1/z]

where Σ
′ = Σ, k : η〈!Σ(k̃1)〉, k̃ : η′〈?Σ(k̃1)〉.

From Lemma B.6(2), we get that there exist Λ1 and Λ2 such
that Λ = Λ1 ∪ Λ2 and Γ S : Λ1 and Γ T : Λ2.
By induction hypothesis on S and T and from Lemmas B.9
and B.8(5) and (4) we have that Γ S

′ : Λ
′
1, and Γ T

′ :
Λ

′
2, z : η0, where Λ1 2 Λ

′
1 and Λ2 2 Λ

′
2 and χ ≤ η0.

From Lemma B.7(2), we have that Γ T
′[k1/z] : Λ

′
2, k1 : η0.

Applying typing rule T-PAR we get Γ S
′ ‖ T

′[k1/z] : Λ
′,

where Λ
′ = Λ

′
1 ∪ Λ

′
2 ∪ {k1 : η0}. We conclude since Λ 2 Λ

′

by Definition B.3(1) and Proposition B.4(2).

Case PAR. By straightforward induction.

�

B.2 Proof of Progress

The key of our progress proof is the natural correspondence be-
tween labels of the LTS for processes and typing assumptions on
internal channels in a fixed session environment.

DEFINITION B.10 (Agreement). The agreement between the la-
bel ℓ and the assumption k : η via the session environment Σ (no-
tation ℓ⋉Σ k : η) is the smallest relation such that Σ(k) ≤ η and:

v ∈ t implies k!(v) ⋉Σ k : !t.η k?(x : t) ⋉Σ k : ?t.η

Σ(k′) ≤ χ implies k!Lk′M ⋉Σ k : !χ.η′ k?Lz : χM ⋉Σ k : ?χ.η′

ℓ⋉Σ k : η implies ℓ⋉Σ k : η ⊕ η′

ℓ⋉Σ k : η implies ℓ⋉Σ k : η + η′.

LEMMA B.11. If Γ ⊢ P : ∆ and core(∆) = (∆ · k : η), then either

P
c(z:η)
=⇒ or P

ℓ
=⇒ and ℓ⋉Σ k : η for all Σ such that Σ(k) ≤ η and

ℓ = k!Lk′M implies Σ(k′) ≤ ∆(k′).

PROOF. The last applied rule in a derivation for P can only be
one of the rules T-SEND, T-RECEIVE, T-SENDS, T-RECEIVES, T-
CONNECT, T-EXTCH, T-INTCH. In the first four cases P must be
a communication process on channel k. In the fifth case P must
be a connect process. In the last two cases the result follows by
induction. �

The agreement between labels and typing assumptions is ex-
ploited in the following lemma: it assure that the parallel of pro-
cesses offering labels which agree with dual assumptions always
reduce in the current session environment.

LEMMA B.12. Let P and Q be such that P
ℓ

=⇒ and ℓ ⋉Σ k : η,

Q
ℓ′

=⇒ and ℓ′ ⋉Σ k̃ : θ, and η ⋊⋉ θ. Then Σ ⊢ P‖Q
τ−→.

PROOF. Because of Definition B.10 and the duality between η and
θ we have only to consider the following cases:

1. P
k!(v)
=⇒ and Q

k̃?(x:t)
=⇒ and v ∈ t.

In this case P
τ

=⇒ k!(e).P′, and Q
τ

=⇒ k̃?(x : η).Q′ {+ Q′′}
and we conclude by the reduction rules LIFT and COMMUNI-
CATION.

2. P
k!Lk1M
=⇒ and Q

k̃?Lz:χM
=⇒ and Σ(k1) ≤ χ.

In this case P
τ

=⇒ k!Lk1M.P
′, and Q

τ
=⇒ k̃?Lz : χM.Q′ {+ Q′′}

and we conclude by the reduction rules LIFT and DELEGATION.

�

We can show that starting from an initial system we only get
coherent session environments, i.e., session environments in which
dual internal channel are mapped to dual session descriptors.

DEFINITION B.13 (Coherent session environment). A session en-
vironment is coherent if whenever it contains k : η it contains also

k̃ : η′ ∈ Λ with η ⋊⋉ η′.

LEMMA B.14. If S is initial and ⊢ S
τ

=⇒ Σ ⊢ P1 ‖ . . .‖Pn, then
⊢ Pi : ∆i for 1 ≤ i ≤ n imply:

1. dom(core(∆i)) only contain internal channels;

2. no dom(core(∆i)) contains an internal channel and its dual;

3.
S

1≤i≤n set(core(∆i)) and Σ are coherent.

PROOF. By induction on
τ

=⇒ using Lemmas B.8 and B.9.
If S is an initial system, then it is a parallel composition of sums

of connect (z). Then S satisfies banally the three conditions above.
Let S

′ be the system obtained from S after a finite sequence of
reductions, in which the three conditions above hold, and S

′ can
still perform a τ action. If we can apply rule CONNECTION we
get a system which still satisfies the conditions because this rules
pushes in both session environments the assumptions k : η and

k̃ : η′, for some fresh k and with η ⋊⋉ η′. If we can apply rules
COMMUNICATION or DELEGATION we get a system which still
satisfies the conditions because the successors of dual sessions are
still dual sessions by definition of duality. �

We restate here Lemma 3.5 by taking advantage of the definition
of core. Indeed S : Λ with S closed implies that the set of
internal channels which occur in S is the domain of core(Λ).

LEMMA 3.5 If S is initial and ⊢ S
τ

=⇒ Σ ⊢ S
′, and S

′ : Λ,
then Σ(k) ≤ Λ(k) for all k ∈ dom(core(Λ)).

PROOF. By induction and by cases on
τ

=⇒. The more interesting
case is that of rule DELEGATION with S‖T : Λ and:

Σ ⊢ S
k!Lk1M−→ Σ ⊢ S

′
Σ ⊢ T

k̃?Lz:χM−→ Σ ⊢ T
′

Σ(k1) ≤ χ

Σ, k : η, k̃ : η′ ⊢ S‖T
τ−→ Σ

′ ⊢ S
′ ‖T

′[k1/z]

where Σ
′ = Σ, k : η〈!Σ(k̃1)〉, k̃ : η′〈?Σ(k̃1)〉. Note that Σ

′(k) =
Σ(k)〈!Σ(k̃1)〉, Σ

′(k̃) = Σ(k̃)〈?Σ(k̃1)〉 and Σ
′(k1) = Σ(k1). Let

 S
′ ‖ T

′[k1/z] : Λ
′. By Lemmas B.9 and B.8(5) and (4) we get

Λ(k) = !χ′.Λ′(k) {+θ′}, Λ(k̃) = ?χ.Λ′(k̃) {+θ}, χ ≤ Λ
′(k1)

and Λ(k1) ≤ χ′. By induction Σ(k) ≤ Λ(k), Σ(k̃) ≤ Λ(k̃),
and Σ(k1) ≤ Λ(k1). We get Σ

′(k1) ≤ Λ
′(k1) from Σ

′(k1) =
Σ(k1) ≤ χ ≤ Λ

′(k1). From Σ(k1) ≤ Λ(k1) and Λ(k1) ≤
χ′ and the coherence of Σ we derive that Σ(k̃1) is dual of χ′

and therefore Λ(k)〈!Σ(k̃1)〉 ≤ Λ
′(k). From Σ(k) ≤ Λ(k) we

have Σ(k)〈!Σ(k̃1)〉 ≤ Λ(k)〈!Σ(k̃1)〉 and so we conclude Σ
′(k) ≤

Λ
′(k). Similarly from Σ(k1) ≤ χ we derive that Σ(k̃1) is dual

of χ and therefore Λ(k̃)〈?Σ(k̃1)〉 ≤ Λ
′(k̃). From Σ(k̃) ≤ Λ(k̃)

we have Σ(k̃)〈?Σ(k̃1)〉 ≤ Λ(k̃)〈?Σ(k̃1)〉 and so we conclude

Σ
′(k̃) ≤ Λ

′(k̃). �

The last technical tool we use is to index the internal channels
with increasing indexes according to their order of creation.

LEMMA B.15. If S is initial and ⊢ S
τ

=⇒ Σ ⊢ P1 ‖ . . . ‖ Pn,
and the fresh internal channels take successive numbers according
to the order of creation, then Γi ⊢ Pi : ∆i implies that the indexes
of internal channels in ∆i are decreasing for 1 ≤ i ≤ n.

PROOF. By induction on
τ

=⇒ using Lemma B.8 and B.9. Notice
that the only rule which adds channels to a possibly non empty
stack is CONNECTION and this rule adds the internal channels with
the maximum index. �

20 2008/7/20

THEOREM 3.6 (Progress) Every initial system satisfies the progress
property.

PROOF. Let S be initial and ⊢ S
τ

=⇒ Σ ⊢ P1 ‖ . . . ‖Pn, where
⊢ Pi : ∆i. It is easy to verify that P1 ‖ . . . ‖ Pn : Λ, where

Λ =
S

1≤i≤n set(core(∆i)). Assume the fresh internal channels

take successive numbers according to the order of creation and j
be the maximal index of the internal channel which occur in Λ. By
Lemma B.14(2) there are l, l′ such that kj ∈ dom(core(∆l)) and

k̃j ∈ dom(core(∆l′)). By Lemma B.15, kj and k̃j must be the top
of ∆l and ∆l′ , respectively. Note that by Lemma 3.5 Σ satisfies the
conditions of Lemma B.11 for ∆l and ∆l′ . Therefore at least one of
the following alternatives holds:

1. Pl

c(z:η)
=⇒ and ⊢ Pl′

c′(z′:η′)
=⇒ ;

2. Pl

c(z:η)
=⇒ and Pl′

ℓ
=⇒ and ℓ⋉Σ k̃j : ∆l′(k̃j);

3. Pl
ℓ

=⇒ and ℓ⋉Σ kj : ∆l(kj) and Pl′
c(z:η)
=⇒ ;

4. Pl
ℓ

=⇒ and ℓ⋉Σkj : ∆l(kj) and Pl′
ℓ′

=⇒ and ℓ′⋉Σk̃j : ∆l′(k̃j).

In the last case the coherence of Λ (assured by Lemma B.14(3))

implies the duality between ∆l(kj) and ∆l′(k̃j). Therefore Σ ⊢
Pl ‖Pl′

τ−→ by Lemma B.12. �

21 2008/7/20

