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Abstract

In this paper we present an adaptive method for graphic
symbol representation based on shape contexts. The pro-
posed descriptor is invariant under classical geometric
transforms (rotation, scale) and based on interest points.
To reduce the complexity of matching a symbol to a large
set of candidates we use the popular vector model for infor-
mation retrieval. In this way, on the set of shape descriptors
we build a visual vocabulary where each symbol is retrieved
on visual words. Experimental results on complex and oc-
cluded symbols show that the approach is very promising.

1. Introduction

Symbol retrieval in technical documents is still a hot
challenge in the document analysis community and shape
representation for symbol recognition has been the subject
of much research. Extensive surveys of shape analysis can
be found in [6, 9]. The choice of a particular representa-
tion scheme is usually driven by the need to cope with re-
quirements such as robustness against noise, stability with
respect to small distortions, invariance to common geomet-
rical transformations or tolerance to occlusions. Usually,
two classes of feature descriptors are encountered: those
that work on a shape as a whole (called region-based de-
scriptors) and those that work on the contours of the shape
(called contour-based descriptors). Usual contour-based de-
scriptors include Fourier descriptors [13, 21] which have
been widely used. Region-based descriptors take into ac-
count all the pixels within a shape and common methods
are based on moment theory [3, 12].

To retrieve similar objects a measure of similarity is de-
fined between feature descriptors which measures the dis-
tance between them. However, a similarity comparison is
not often simple and more transformations are required to

achieve that. Moreover, the size of the descriptor is often
high with redundant information and this introduces a high
complexity when searching similar objects into large col-
lections of documents.

This paper is a part of an ongoing work tackling this
problem. It is based on previous works of shape recognition
and image retrieval [4,16]. The overall approach is outlined
in figure 1. First, we introduce a Shape Context descriptor
computed on Interest Points (SCIP). We have adapted the
shape context [4]. More precisely, we extract on each sym-
bol interest points and, on a neighbourhood (a local context)
of these points, we compute a descriptor. The use of shape
descriptor is motivated by the nature of documents which
are most often in grey scale, or in binary. Hence, a shape
descriptor is well-suited to capture information in such doc-
uments. We have chosen shape context for its performance
on partially occluded objects [4] and symbols appear, after
a segmentation step, also partially occluded when they are
embedded into a graphical document.

Secondly, shape context descriptors are clustered to build
a visual vocabulary which is a kind of abstraction process.
Each centroid cluster is considered as a visual word and
shape context descriptors in the same cluster share sim-
ilar shape information, regardless the symbol where the
point of interest has been extracted. Finally, each symbol
is described by visual words and matched against a symbol
query. The approach is similar to [16] where an efficient re-
trieval is achieved using inverted files based on text vector
model and frequency weightings.

This paper is organized as follows. In section 2, we de-
scribe an adapative method for graphic symbol representa-
tion based on shape contexts. The symbol retrieval system
using the vector model is introduced in section 3. In section
4, we present the adaptability of our method for graphic
symbols. Experimental evaluations on the GREC database
are given. Finally, we conclude and give perspectives to our
work (section 5).
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Figure 1. Symbol retrieval system

2. Shape Context for Interest Points (SCIP)

In this section, we present an adaptive solution for
graphic symbol representation based on shape contexts.
The computed descriptors are invariant under rotation and
scaling. As shape contexts contain rich information about
the local geometry of object, the proposed solution allows
us to keep only useful information.

2.1. Shape context recall

The shape context of a point pi belonging to the contour
of an object is determined by the distribution of contour
points in the surroundings of pi [4],. It is a bivariate his-
togram hi of the relative coordinates of the contour points.

A shape is represented by a discrete set of points
sampled from its internal and external contours C =
{p1, p2, .., pn}, pi ∈ R2 where n is the number of contour
points on the shape. For a point pi, the relative coordinates
of remaining n-1 points are calculated to build its histogram
hi. These relative coordinates are the coordinates of points
in log-polar coordinate system using pi as the origin.

q = (logrq, θq), ∀q �= pi ∧ q ∈ C (1)

where rq is the distance from q to pi and, θq is the angle
formed between vector −→piq and horizontal axis. The shape
context (hi) of point pi is defined by (2):

hi(l) = #{q �= pi : (q − pi) ∈ bin(l)}, l = 1, L (2)

hi(l) is the number of contour points in the lth bin bin(l).
Therefore, an object O is described as a set of shape con-
texts associated with the contour points.

O ≡ {hi|pi ∈ C} (3)

However, the shape context described above is not invari-
ant under scaling and rotation. To achieve scale invariance,
all radial distances are normalized by the mean distance α

between the n2 point pairs in the shape [4]. For rotation in-
variance, the authors proposed to use the tangent vector at
each point as the positive x-axis instead of absolute axis for
computing the associated shape context.

2.2. Shape context vs. SCIP

Shape context is an extremely rich descriptor, the shape
context of a point contains important information in the sur-
rounding. In this perspective, the description of an object
using shape contexts of all contour points represents a big
set with redundant elements. However, there are many stud-
ies that show that an object can be efficiently detected from
its keypoints [1, 5, 8, 10, 16]. Hence, in our context, we re-
tain only the shape contexts of characteristic points in the
symbols known as interest points.

Interest point detection: many methods for detecting in-
terest points have been proposed [14, 18]. We have cho-
sen DoG (Difference-of-Gaussian) keypoints detector that
is introduced in [8] for our experiments though other detec-
tors (Harris-Laplace, Hessan-Laplace, ...) are possible. The
interest points in an image are considered as the extrema
in a scale-space pyramid built with DoG filters (see (4)).
In the evaluation by Mikolajczyk and al. [11], SIFT (Scale
Invariant Feature Transform) descriptor calculated at key-
points detected by DoG detector outperforms others. In
addition, as the DoG operator is a close approximation
of the Laplacian-of-Gaussian function, consequently, most
of the detected points are nearby the junctions of object
model [18] which play a important role in distinguishing
one model from another.

D(x, y, δ) = (G(x, y, kδ) − G(x, y, δ)) ∗ I(x, y) (4)

Computing shape contexts of interest points (SCIP):
Now, suppose IP = {P1, P2, .., PN} is the set of interest
points and C = {q1, q2, .., qn} is the set containing con-
tour points of object. Each point in IP is considered as
the reference point to compute its shape context. We would
like that the descriptor is invariant under scaling and rota-
tion, thus the relative coordinates of contour points must be
normalized. However, the interest points are rarely contour
points [18] eg. IP � C, the tangent vector (as proposed
in [4]) is not a practical parameter used for normalizing.
Instead of using it, we choose the dominant orientation of
interest point as the positive x-axis. Therefore, each interest
point Pi is represented by its coordinates and the dominant
orientation is:

Pi = {xi, yi, �ei} (5)

The relative log-polar coordinates of contour points qj ∈ C
in (1) are rewritten as follows:

qPi

j = (log(rij), θij) (6)
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Figure 2. Relative coordinates of qj

where Pi is the reference point, rij is the distance normal-

ized from qj to Pi and θij =<
−−→
Piqj , �ei > (see figure 2).

The shape context of reference point Pi is the same as
defined in (2). It is a histogram of L-bins, as in [4], five
bins for log(r) over the range 0.125α to 2α and 12 equally
spaced radial bins (i.e. L = 60) are used. An object O now
is described by a set of shape contexts of interest points Pi.

O ≡ {hi|Pi ∈ IP} (7)

3. Symbol retrieval

In [4], the distance between two shapes is measured as
the symmetric sum of shape context matching costs over
best matching points. This causes the complexity problem
when searching the similary object from a large set of can-
didates. In this section, we introduce an exploitation of text
retrieval technique for symbol indexing and retrieval. The
objective is to reduce the complexity of on-line matchings
thanks to the information pre-computed in the off-line step.
The approach is similar to [16] where an efficient retrieval
is achieved using a vector retrieval model including an in-
verted file systems based on a visual vocabulary.

3.1. Visual vocabulary construction

First, the SCIP descriptors of each symbol in the
database are determined as described in section 2.2 where
a descriptor is a L-vector. Next, similar descriptors are re-
grouped into clusters by a clustering technique. Each clus-
ter is considered as a visual word identified by the centroid
of descriptors associated and these all descriptors use the
visual word as its representer. To facilitate the clustering
problem, we used k-means method for current tests. The
number of clusters is chosen experimentally and the dis-
tance function used is the cosinus distance.

A symbol is now described by visual words and can be
treated as a text document. In figure 3 we show an example
of clusters corresponding to three different visual words.

Figure 3. Example of cluster corresponding
to three visual words.

3.2. Symbol retrieval using vector model

The vector model is maybe the most popular model
among the research community in information retrieval. It
is expected to outperform the other classic models with gen-
eral collection [2]. In this model, the document is repre-
sented as a vector of word frequencies and furthermore, it
is usually described by vector of weighted term frequencies
whose each component provides the balance of two factors:
term-frequency (tf factor) and inverse document frequency
term (idf factor). The tf factor shows how well that term de-
scribes the documents contents, and the idf factor measures
the term’s importance degree for distinguishing a relevant
document from non-relevant one in the database.

Each SCIP descriptor of symbol j is matched with the
nearest cluster detected in the previous section. It means
that this SCIP descriptor is now considered as a visual word
existing in symbol j, and this symbol is now considered as a
document. In the next sections, the terms “document” and
“symbol” refer to the same thing.

Now, we can apply the model vector to index the sym-
bols. A symbol corresponds to a document, and a visual
word corresponds to a term in model vector. Thus, a sym-
bol j is represented by a tf-idf vector �sj :

�sj = {w1,j , w2,j , .., wK,j} (8)

where K is the volume of vocabulary, and wi,j is the
weighted frequency of word i in document j:

wi,j = tfi,j ∗ idfi, i = 1, K

tfi,j =
freqi,j

maxlfreql,j

idfi = log
N

ni

where freqi,j is the appearance frequence of word i in doc-
ument j, N is the total number of documents in the database
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and ni is the number of documents in which the word i ap-
pears. tfi,j is defined as the normalized term frequency.

Retrieval
The tf-ifd vector �sq of the query symbol is computed in a

similar way: computing the SCIP descriptors, then match-
ing these descriptors with visual words and finally, deter-
mining the tf-idf vector corresponding to the query symbol.
The degree of similarity of the query and a symbol in the
database is quantified by their correlation. This correlation
is measured by the cosinus distance between two vector �sj

and �sq .

sim(sq, sj) =
�sj • �sq

|�sj | × |�sq| (9)

The degrees of similarity between the query symbol and
symbols in the database will be sorted in order to form a
ranking list.

4. Experimental results

Since the objective of our system is the same objective of
any retrieval system, i.e. to retrieve symbols in rank order
with regard to the query, we use the most popular measure to
evaluate the retrieval effectiveness: precision-recall curves
[2, 7, 11, 15, 17,20].

Recall is the fraction of the relevant symbols which have
been retrieved.

Recall =
|Ra|
|R|

Precision is the fraction of the retrieved symbols which
is relevant.

Precision =
|Ra|
|A|

where A is the retrieved symbols, Ra is the relevant symbols
retrieved, Ra ⊆ A, and R is the relevant symbols existing
in the database.

As a data set, we choose a test set of GREC1. It contains
300 images divided into two subsets. One is the model set
which contains 50 different symbols according to 50 classes
(set A), the other (set B) is a set of 250 occurences of 50
symbols classes obtained by the linear transformations (ro-
tation et scaling) on each element of A. The occurences
numbers of each class are not equal, the maximum number
is 10 and the minimum is one. We choose set B (250 im-
ages) as the ground-truth set. Descriptors extracted from set
B are used for building a visual vocabulary and each sym-
bol of B will be then indexed as a document in the database.
We chose experimentally K = 200 for k-means clustering,
i.e. the vocabulary has 200 visual words.

1http://www.cvc.uab.es/grec2003/SymRecContest/

Set A plays is the set of test queries. Since the max-
imum number of relevant documents for each query is 10,
we are only interested in the first ten documents ranked. The
precision (Pr) and recall (Rr) values are calculated at each
cut-off value r = 1, 10. We performed experiments with 50
queries in A, and took the averages of Pr and Rk for all re-
quests at each value of r. The two highest curves in figure 4
are the average precision-recall curves determined from 50
queries for two values of SCIP descriptor dimension: L = 36
and 60. Some retrieval results are also shown in figure 5. As
indicated in figure 4, we can obtain the results with a high
precision (80%) while recall value reaches 70%. The worst
precision degree is achieved (44%) when r = 10. That is,
the precision and recall values are computed from the first
10 symbols retrieved but the number of correct symbols in
database for each query is not always 10. So, the query for
which the total number of relevant documents correspond-
ing in the database is smaller than the number of documents
retrieved, the average precision is negatively affected.

Figure 4. Retrieval effectiveness with SCIP
(dimension L = 36, 60) and SIFT descriptors

Figure 6. Retrieval effectiveness with SCIP
and R-signature

As evaluated in [11], SIFT descriptor is the best one in
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Figure 5. Retrieval exemples. The queries symbols are in the first column; other columns the nearest
matches. The number of relevant symbols for each query in the database is respectively 7, 4, 3 , 5,
4, 1, 4, 5, 7, 3.

general case. Thus, we also verified the effectiveness of our
descriptor when SIFT and another classical descriptor (R-
signature [19]) are used (see figures 4 and 6). The aim is not
to make a comparison between two descriptors, but to show
that SIFT descriptor is not adapted to graphic symbols. In
addition, we can remark that the results are quite similar
with the R-signature. However, we will show below that
SCIP is more robust when the goal is to retrieve incomplete
symbols.

We also evaluated the system performance with other
smaller values of L, i.e. smaller dimension of SCIP descrip-
tor vector. The objective is to know how well the descriptor
captures the local information and if the interest points are
strong enough to describe a symbol. In this perspective,
instead of using five bins for log(r) to compute the shape
contexts over the range 0.125α to 2α, we chose three bins
over the range 0.125α to α, the descriptor dimension is 36
(L = 36). Figure 4 shows retrieval effectiveness of the sys-
tem with L = 36, 60. We found that there is no significative

difference. This proves that the interest points with its de-
scriptors can well represent the symbol.

In order to verify the adaptability of descriptors and vec-
tor model to search incomplete symbols, we tried to get
the responses of our system and the R-signature for some
queries describing incomplete symbols (see figures 7 and
8).

This test indicates that the system construction strategy
allows retrieval of symbols that approximate the query. This
is an advantage for us to build in the future a retrieval system
for symbols embedded into graphical documents.

5. Future works and conclusions

We have presented an adaptive solution to describe
graphic symbols (SCIP descriptors) and a symbol retrieval
system using the classic vector model. The SCIP descriptor
is simple and invariant under rotation and scaling, it pro-
vides a good representation of local geometry at each as-
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sociated keypoint. This solution is well adapted to graphic
symbols. Using SCIP descriptors, we can reduce the com-
plexity of symbol representation compared with shape con-
texts. In addition, building a visual vocabulary and using
vector model technique allows us to reduce the complexity
of matching.

The experimental results are promising but should be
considered as preliminaries. When we describe a symbol by
SCIP if the number of interest points is very small, the rep-
resentation vector of that symbol does not guarantee a good
description for the visual vocabulary construction and the
matching. So, one of our future works should be a solution
to add “automatically” points when the representation is too
poor. Moreover, this work is the first part of a system that
will not only retrieve isolated symbols but also symbols em-
bedded into graphical documents. Future works will also be
devoted to define a method for indexing and spotting sym-
bols in a large collection of graphical documents.
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Figure 7. Results retrieved for incomplete symbols with SCIP

Figure 8. Results retrieved for incomplete symbols with R-signature
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