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Abstract

Digital image correlation is a photomechanical technique utilized to measure dis-

placement fields. Although the method has been used successfully in a variety of

applications, there is a need for guidelines to choose correlation parameters and for

an understanding of their link with the analyzed texture and their effect on the

uncertainty of measured quantities. In this paper, two criteria are proposed from a

texture study to evaluate the best compromise between measurement uncertainty

and spatial resolution prior to any mechanical test. These criteria are then validated

on a priori uncertainty evaluations with different textures, and on a real experiment

when comparing image correlation results with strain gauge data.

Preprint submitted to Elsevier Preprint 23 October 2008



Key words: digital image correlation, texture, optimization

1 Introduction

The measurement of 2D or 3D surface motions in an image sequence can be

performed by pattern matching of various “markers” [1]. An image is repre-

sented by a gray level matrix. During a mechanical test, the intensity map

is advected by a displacement field to be determined. The measurement of

the displacement is an ill-posed problem [2] since it can only be determined

along the direction of the intensity gradient. This shows that the property of

the underlying texture influences the performance of the measurement tech-

nique. One of the most popular matching procedure aims at maximizing the

cross-correlation function [3,4] by seeking, for example, piece-wise constant

displacements in interrogation windows.

Two types of situations arise in practice. First, the natural texture is suffi-

cient to use a correlation algorithm. For example, the deformation of mineral

wool samples can be analyzed with no special preparation [5]. Similarly, the

roughness of a ceramic sample can be sufficient to study displacement fields

in a notched beam [6]. Alternatively, artificial markers can be deposited on

the surface of interest to create a random texture, e.g.,a black and white layer

can be sprayed [7]. In both situations, there is a need for the characterization

the “quality” of the texture when correlation techniques are to be used and

one wants to assess the displacement and/or strain uncertainties.

To evaluate the performance of a correlation algorithm, purely artificial pat-
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terns can be simulated. For instance, Sutton et al. [8] use a decreasing exponen-

tial function as a model for the intensity pattern. The generation of black dots

on a white background can also be described by using a Poisson-point process

and the picture is the result of the union of all the generated dots [9]. Charac-

teristic properties of this type of texture are easy to derive in terms of average

intensity and two-point correlation properties [9,10]. For speckles, statistical

models have also been proposed to characterize the pattern observed from the

diffraction phenomenon [11–15]. The advantage of these texture models is that

they can be used to evaluate precisely the performance of a correlation algo-

rithm since the displacement can be applied to each pattern with numerical

accuracy. However, the previous models are idealizations of practical textures

that can take very different patterns.

When performing experiments, the random texture has not always the de-

sired features and the user may wonder whether the correlation technique will

yield robust results. An a priori analysis of the texture is desirable before per-

forming the actual experiment. Under these circumstances, a texture analysis

is helpful and artificial motions can only be applied artificially by gray level

interpolation (e.g., linear, spline [8]) or by Fourier transform by using the

shift-modulation property [16]. An alternative route consists in acquiring a

set of pictures of the same surface and computing the corresponding uncer-

tainties. This procedure characterizes the resolution of the technique [17] and

does not necessarily yield the largest sub-pixel uncertainty levels as will be

shown.

In this paper, three different ways of analyzing a texture are proposed when a

correlation technique is used to determine 2D displacement fields. The present

goal is to estimate the sub-pixel displacement errors of a correlation code, and
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the effect on strain uncertainties. Section 2 recalls the basics of the digital

image correlation algorithm used herein, and introduces the method used to

analyze the texture. Then, two criteria are established (Section 3), tested

on thirty one different textures and validated on an experimental application

with strain gauge measurements to compare results (Section 4). An alternative

approach is proposed leaving more freedom to the user, which is also more time

consuming.

2 Displacement measurement by image correlation: The role of the

texture

To determine a displacement field, one uses two pictures (one corresponding

to the reference state, and the other one of the deformed state of a surface).

One considers a set of windows in the reference picture (i.e., a square region

of N ×N pixels) that will be referred to as Zone Of Interest (ZOI), and their

corresponding positions are sought in the “deformed” picture. In the following,

it is assumed that the separation between neighboring ZOI centers is constant

and equal to ∆P (this parameter characterizes the “measurement mesh”).

2.1 Correlation procedure

The displacement of a ZOI in the deformed picture with respect to that in

the reference picture is a two-dimensional shift of an intensity signal digitized

by, say, a CCD or CMOS camera. To estimate a shift between two signals,

one of the standard approach utilizes a correlation function. One considers

signals g(x) that are merely perturbations of a shifted copy f(x−u) of some
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reference signal f(x)

g(x) = f(x − u) + b(x) (1)

where u is an unknown displacement (here assumed to be uniform over the

ZOI) and b(x) a random noise. To evaluate u, one minimizes the norm of the

difference between f(x−U ) and g(x) with respect to a trial displacement U

Umin‖g − f(. − U )‖2 (2)

If one chooses the usual quadratic norm ‖f‖2 =
∫

f 2(x)dx, the previous min-

imization problem is equivalent to maximizing the quantity h(U )

h(U ) = (g ⋆ f)(U ) =
∫

g(x)f(x − U )dx (3)

where ⋆ denotes the cross-correlation product. Furthermore, when b is a white

noise, the previous estimate is optimal. The computation of a cross-correlation

is performed either in the original space, or in Fourier space, by using a fast

Fourier transform (FFT)

g ⋆ f = NFFT−1(FFT[g] · FFT[f ]) (4)

where the complex conjugate is overlined, and N2 is the number of samples

in the Fourier transform (to use “fast” algorithms [18], it is required that

N = 2n pixels, where n is an integer). This condition may be relaxed by

using zero-padding or neutral padding techniques [19]. In the sequel, it will be

assumed that the ZOI size ℓ is characterized by the integer ℓ = 2n.
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2.2 Ultimate performance

Let us evaluate the sensitivity vector of a correlation technique. As a first

approximation, small displacements U are sought, and one can consider a

first order Taylor expansion of g in Equation (1) with respect to U

g(x) ≈ f(x) − U .∇f(x) (5)

which shows that the sensitivity vector of digital correlation is ∇f and that

the displacement evaluation is a priori an ill-posed problem since only dis-

placements along the gradient vector can be detected. It is partially solved

by a regularization over small zones, e.g.,the ZOIs defined earlier, themselves

defining the spatial resolution for a displacement measurement (i.e., the min-

imum distance to have independent measurements). Furthermore, contrary to

other optical techniques such as moiré interferometry, the sensitivity varies

from zone to zone since it is directly related to the texture of the region of

interest. This result explains why a texture analysis is useful to evaluate ac-

tual performances of a digital image correlation software. The sensitivity S(n)

associated to each displacement direction n is given by

S(n) =
1

n.∇f
(6)

and its maximum value is denoted by Smax. Equation (5) also shows that the

smallest measurable displacement is obtained for the smallest picture differ-

ence (i.e., one gray level) and the highest sensitivity. It scales as

Umin ∝ Smax (7)
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where Smax is the inverse of the maximum picture gradient. This value has to

be corrected for to account for noise associated to the image formation and

acquisition process as well as the fact that the CCD sensor does not cover the

whole pixel surface. It is expected that the actual estimate is greater than the

theoretical value. In practice, 1/Smax is only a fraction of the dynamic range

and not all ZOIs achieve this value. Consequently, the practical discrimination

threshold is a quantity that strongly depends on the texture, in particular

its standard deviation. By considering a uniform distribution of gray levels

ranging from 0 to Gmax, the maximum gradient is related to the standard

deviation σ by

Smax =
1

Gmax

=
1√
12σ

(8)

so that, for the sake of simplicity, the standard deviation of the gray level

distribution will be considered in the texture analysis.

To evaluate sub-pixel displacements, the cross-correlation function is interpo-

lated. For instance, bi-parabolic interpolation can be used and a one hundredth

pixel standard uncertainty [17] is achieved [8,16] for 8-bit pictures. To be con-

sistent with the present approach, the interpolation and correlation product

will be considered in the next section to introduce texture criteria to deter-

mine the performance in terms of displacements (and strains) measured by

image correlation.

3 Texture analysis

In practice, a very large variety of pictures is handled when using image cor-

relation techniques. The image “quality” is one key parameter for evaluating
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the performances of a digital image correlation (DIC) technique. Yet, other

experimental parameters influence the quality of a picture such as:

• performances of CCD or CMOS sensors (e.g., digitization, read-out noise,

black current noise, photon noise [20]);

• position and intensity of the light source with respect to the specimen and

the camera.

The image digitization still uses mostly 8-bit encoding sensors. However, CCD

cameras digitizing with 10, 12 or even 16 bits are now available. When using

an 8-bit CCD camera, a pixel can take any value of the 28 dynamic range.

Under a uniform distribution hypothesis, a lower bound to the discrimination

threshold umin is given by (see Equation (7))

Umin =
1

∆Ng

=
1

σ
√

12
(9)

where ∆Ng is the signal range, here equal to the dynamic range 28 and σ

the standard deviation associated with a uniform distribution. For an 8-bit

digitization, a correlation algorithm will not detect displacements less than

2−8 pixel. An estimate of the discrimination threshold for strains ǫmin consists

in considering the minimum displacement variation equal to the discrimination

threshold over a gauge length equal to 2∆P

ǫmin =
Umin

2∆P
(10)

since a displacement gradient is usually computed by either using a centered

difference scheme or enhanced algorithms [21,22], some of them also using a

neighborhood of 8 points in addition to the considered one. For a separation

of 32 pixels, and an 8-bit digitization, a lower bound to the discrimination
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threshold is of the order of 6× 10−5. These ultimate performances may be far

from actual performances due to the quality of the texture. There is there-

fore a need for criteria to help the user choose the best possible correlation

parameters, namely, the ZOI characterized by n, and ∆P .

To obtain the maximum number of independent displacement measurements,

the user wants to determine the lowest possible ZOI size (i.e., the spatial res-

olution of a DIC technique when displacements are sought) associated to the

experiment that is performed. For a displacement measurement, as illustrated

in Figure 1 by any open circle, the spatial resolution corresponds to the ZOI

size, and independently of the separation ∆P . On the left-part of Figure 1, the

separation is equal to the ZOI size whereas on the right-part the separation

represents half the size of the ZOI. By applying an enhanced algorithm [22],

Figure 1 shows that the data used for a strain measurement (i.e., solid circles)

are located in the dashed square area. The corresponding spatial resolution as-

sociated to strain measurements is defined 1 as
√

ℓ2 + (2∆P )2 pixels. Figure 1

illustrates two different cases where the spatial resolution for displacement

measurement is equal to ℓ but on the left-part the strain spatial resolution

is equal to
√

5ℓ and on the right-part to
√

2ℓ due to the choice of different

separations. However, in the last case, the displacement measurements are not

independent.

1 the evaluation of a strain can be considered as the successive application of two

windows, the first one of size ℓ to determine the displacement data, and a second

one of size 2∆P in the present case for the derivation stage
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3.1 A priori criteria

In the following, the separation ∆P will be equal to the ZOI size ℓ in order

to use only independent measurement data. It is proposed to characterize a

pattern by three different quantities. Associated to some of these parame-

ters, criteria are to be defined to guarantee a priori correlation results. The

following choice is made:

• A global information on the gray level distribution of a picture is given

by its histogram. This information is usually checked by the user to avoid

low/high level saturation and to use most of the dynamic range of the cam-

era. Figure 2 shows an example of a gray level distribution for an artificial

texture. Its histogram corresponds to a non-uniform distribution of gray

levels. No significant saturation is observed and most of the dynamic range

of the 8-bit camera is used.

• The previous representation is global (i.e., associated with the whole pic-

ture). A more local quantity relevant to each ZOI is the standard deviation

σZOI of its gray level distribution fZOI. As noted before, a correlation algo-

rithm does not work with a uniform gray level distribution. Consequently,

a first criterion is related to a minimum value σmin of σZOI, or similarly to

a discrimination threshold (see Equation (9)).

• The autocorrelation function of each analyzed ZOI of the picture character-

izes its two-point distribution. A representative “speckle” size (i.e., correla-

tion radius) for each ZOI is sought. In a discrete setting, the autocorrelation

function is defined as

AZOI(I, J) = fZOI ⋆ fZOI(I, J) =
2n

∑

i=1

2n

∑

j=1

f̃ZOI(i, j)f̃ZOI(i + I, j + J) (11)
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where f̃ is the periodic representation of the gray level distribution f of each

ZOI. Figure 3 shows the autocorrelation function of a given 32-pixel ZOI.

The DC component of the ZOI has been removed, and the autocorrelation

function has been normalized by its maximum value reached when I = 0

and J = 0. The (normalized) autocorrelation function ÂZOI is interpolated

as

ÂZOI(x, y) ≈ 1 − (ax2 + 2bxy + cy2) (12)

where a, b, c are identified by considering the 8 nearest points to the origin,

x and y are the continuous coordinates around the maximum point located

at the origin. Two correlation radii R1 and R2 are corresponding to the

principal axes of the ellipse defined as the intersection of the interpolated

autocorrelation function with the zero height plane




























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R−2
1 = a+c

2
+

√

(

a−c
2

)2

+ b2

R−2
2 = a+c

2
−

√

(

a−c
2

)2

+ b2

(13)

The ratio between the two principal radii is a measure of the texture anisotropy [19]

and the half-sum R is used to evaluate an average correlation radius of any

considered ZOI. A second criterion is related to the comparison of the corre-

lation radius R and the ZOI size. A value ρ = R/ℓ corresponds to a fraction

of the ZOI size and a maximum value ρmax is introduced.

The limit values of the last two criteria (i.e., σmin and ρmax) are determined

in the following analysis.
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3.2 Choice and validation of critical values

As discussed in Section 2, digital image correlation cannot be used with a

homogeneous distribution of gray levels. Let us still consider a uniform gray

level distribution, i.e., all gray levels have the same probability to be present

in the ZOI, the standard deviation in this case is equal to

σZOI =
∆NZOI√

12
(14)

where ∆NZOI denotes the dynamic range of a ZOI. In many applications, a

0.05-pixel discrimination threshold is acceptable. Consequently, for each ZOI

of the studied picture, the gray level standard deviation must be greater than

6 gray levels (see Equation (9))

σmin = 6 gray levels (15)

For more severe applications, this value has to be increased, and also when

greater than 8-bit dynamic ranges are used.

To apply digital image correlation to a given window, it is preferable that

at least one speckle (i.e., a black or white dot) and its neighborhood (i.e., a

white or black zone) belong to any ZOI. Consequently, for each ZOI, the ratio

between the correlation radius related to the ZOI size must not be greater

than 0.25

ρmax = 0.25 (16)

The following points can be underlined. First, this type of approach allows

one to choose a ZOI size that is the most fundamental parameter of a DIC
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technique. Each new picture is analyzed independently of previous results. If a

natural texture is considered, the user then knows whether it is acceptable in

terms of “quality” for a DIC algorithm. Conversely, when an artificial pattern

is created, the user has a way of characterizing its overall properties. If the

result is not satisfactory, the pattern may be recreated again. Second, it is an

a priori analysis. Third, there is a need to relate the critical values associated

with the texture to the performance of a DIC code in terms of displacement

and strain uncertainties associated to a spatial resolution.

3.3 Performance evaluation and texture analysis

The aim of this study is to evaluate the standard displacement and strain un-

certainties, i.e., “the parameter that characterizes the dispersion of the quan-

tity values that are being attributed to a measurand, based on the information

used. The parameter may be, for example, a standard deviation called standard

measurement uncertainty” [17]. In practice, the discrimination threshold is less

than the standard displacement uncertainty, thus the latter will be assessed.

Furthermore, the actual value of the prescribed displacement is not always

easy to evaluate. However, fluctuations can be measured and therefore the

standard measurement uncertainty is one key quantity to assess the overall

performance associated to a given picture.

3.3.1 Description of a test case

The texture analysis is related to a picture taken from a tensile test on a single

fiber with an aluminum coating itself embedded in an epoxy resin [23]. A 50-

mm lens allows one to monitor a 13× 9 mm surface (Figure 4) where a black
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and white artificial texture was created. The picture was taken by an 8-bit

CCD camera whose resolution is 768× 576 pixels. The correlation parameters

are chosen by following the previous a priori texture analysis. Four different

steps are performed as illustrated in Figure4:

• a rigid body motion is artificially applied to this picture. Ten images are

created with displacement increments of 0.1 pixel. Two different algorithms

are used. The first one is a pixel by pixel interpolation algorithm that

linearly interpolates the gray level. The second one uses FFTs and the

shift/modulation property. No significant differences between the two meth-

ods are observed;

• the eleven-image sequence is analyzed with a DIC software to evaluate the

displacements for each image (here CORRELILMT [5]);

• Once all pictures have been analyzed, the mean displacement error and the

corresponding standard uncertainty are determined (Figure 5). The stan-

dard displacement uncertainty is evaluated as the mean of the standard

uncertainties for the analyzed sequence. For a given ZOI size, the maxi-

mum uncertainty is reached when the prescribed displacement is equal to

0.5 pixel. In this case, the information between each ZOI in the reference

and deformed pictures is the most biased. It is worth noting that if suc-

cessive pictures of the undeformed state are taken, it is virtually impossible

to evaluate the maximum correlation errors since they are not achieved for

very small displacements but for 0.5 pixel;

• For strains, the same eleven pictures are used. It is expected that no strains

should be observed since only rigid body motions are prescribed. The same

procedure as for displacements is performed and the mean error and the

standard strain uncertainty are calculated from strain fields as shown in

Figure 5. By using this procedure, the derivation algorithm to get the strain
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field is tested too, here the one proposed by Geers et al. [22]. The use of

another derivation scheme and another spatial resolution would change the

strain performance. In terms of uncertainty, the same overall tendency as

for displacements is observed. In particular the maximum value is reached

when the prescribed displacement is equal to 0.5 pixel. These results suggest

that a fast uncertainty evaluation only needs one uncertainty estimate for

a 0.5-pixel displacement and the corresponding average is approximately

equal to half of the latter.

It has to be noted that even if this procedure uses real pictures, all “experimen-

tal” noise that exists during an experiment is avoided (e.g.,lighting, vibrations,

texture variations due to strain). If this uncertainty study is applied for dif-

ferent ZOI sizes, it is possible to compare the different performances. In the

present case, the texture analysis (Figure4) of the picture shown in Figure 2

indicates that a 64-pixel ZOI is the appropriate interrogation window size for

the DIC procedure used herein. According to the uncertainty study, for all

ZOI sizes reported in Figure 6, the standard displacement uncertainty for the

optimized parameter is about of 3.6 × 10−3 pixel and the standard strain un-

certainty is of the order of 5 × 10−5. Performance comparisons can be made

between different ZOI sizes and, in this case, the optimized parameter gives

two times better results than with a 32-pixel ZOI size.

Last, when studying the uncertainties versus the ZOI size, one shows that there

exists a trade off between displacement (and strain) uncertainties and their

associated spatial resolution. Figure 6-b shows the displacement uncertainty

for different ZOI sizes. If the ZOI size increases, the spatial resolution is de-

graded, i.e., fewer independent measurement points are obtained. This trend

can be described by a power law fit relating the displacement uncertainty σU
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to the ZOI size ℓ

σU =
Aα+1

ℓα
(17)

where A is a constant equal to 1.1 pixels in the present case (see Figure 6-b)

and α = 1.3 the corresponding power. The same trend is observed for strains.

In the present case, the separation ∆P is equal to the ZOI size ℓ = 2n pixels.

Figure 6-d shows the change in the mean strain uncertainties with the ZOI size

when the displacement range varies between 0 and 1 pixel. A power law with

an exponent β of the order of 2.2 is obtained for the mean strain uncertainty

σǫ as a function of ℓ

σǫ =
Bβ

2ℓβ
(18)

with B = 0.9 pixel. This last result shows that the two uncertainties can be

related by (see Equation (10) for a similar result in terms of discrimination

threshold)

σǫ = C
σU

2∆P
(19)

since α + 1 ≈ β. In the present case, the constant C is of the order of 0.6

(i.e., CAα+1 ≈ Bβ).

3.3.2 Statistical study

The previous analysis is performed on a set of images obtained when analyz-

ing a mechanical test. A statistical study is carried out by using 31 different

8-bit textures. Among these 31 images, 27 are artificial textures observed

with classical lenses, one is a natural texture observed with classical lens, one
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is an artificial texture observed with a far-field microscope, two are natural

textures observed with a far-field microscope. The correlation parameters are

determined by using the critical values chosen before. Standard strain and dis-

placement uncertainties are evaluated and a histogram is plotted in Figure 7.

¿From the standard displacement uncertainty histogram, it is concluded that

the mean value is about 1.2×10−2 pixel and the associated standard deviation

is about 4.9 × 10−3 pixel. In the present case, a Gaussian fit is reasonable as

shown in a normal probability plot in Figure 7. From the standard strain

uncertainty histogram, the mean value is ca. 2.6 × 10−4 and the associated

standard deviation is about 1.6 × 10−4. Again, a Gaussian description seems

reasonable. Among the four last textures, one gives better results than the

average, two slightly worse and the last one exactly the average value. Even

if these four images represent only 13% of the population, their results are

not different from the overall population. Consequently, the type of texture

(i.e., artificial or natural) and observation scale (i.e., classical lens vs. far-field

microscope) are second order parameters compared with the property of the

textures studied herein.

When using the texture criteria proposed herein, three cases occur, either the

gray level standard deviation (i.e., two cases among the 31 studied) is the

limiting factor, or the correlation radius ratio (i.e., 17 out of 31) is the only

limitation, or both of them are limits (i.e., 12 out of 31). Table 1 shows a com-

parison between standard uncertainties and mean errors for each group quoted

above and relates them to average values. Concerning the performance of each

of the three groups compared to the average for both strain and displacement

standard uncertainties, the first one has a better performance, the second one

a slightly better one too, and the third one a slightly worse performance. The

17



choice of the ZOI size given by the texture analysis yields sufficiently good re-

sults for most applications. It can be considered that by using this procedure

the average performances described above can be reached.

4 Tensile test on an aluminum alloy with strain gauges

In this section, the critical values are tested when analyzing a tensile test per-

formed on a 2024 aluminum alloy specimen. Strains deduced from displace-

ment measurements are compared with strain gauge data. A special setup is

used to avoid spurious flexure [24]. A far-field microscope monitors a 4 mm2

surface (Figure 3). The measurements obtained by digital image correlation

are shown to be sufficient to determine the elastic properties of the alloy with

a conventional analysis or with the so-called constitutive equation error tech-

nique [25].

¿From the reference image, a texture study is performed to choose the ZOI

size with the proposed texture criteria. The results are shown in Figure 8.

The gray level histogram shows a good distribution without any saturation.

A large part of the gray level range is used. The gray level standard deviation

criterion validates the 32-pixel size but the correlation radius requires the ZOI

size to be augmented to 64 pixels. As for the a priori uncertainty study, the

separation ∆P is equal to the ZOI size so that each measurement “point”

is completely independent of the other ones. Strains are again computed by

using the procedure proposed by Geers et al. [22].

Let us compare the gauges and the digital image correlation results when the

ZOI size recommended by the texture analysis (i.e., 64 pixels) is used. In the

present case, the region of interest for the correlation calculation is identical
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to the gauge size so that a direct comparison can be made. The mean strain

error, representing the difference between digital image correlation results for

a 64-pixel ZOI size and the gauge data (longitudinal and transverse strains),

is less than 5 × 10−5. In Figure 10, different ZOI sizes are tested and the

corresponding mean strain errors are evaluated when all the 21 load levels are

considered. Except for ZOI size of 8 pixels, mean strain errors are less than

10−4.

The results in terms of experimentally observed standard strain uncertainty

(i.e., 3.4 × 10−4, see Table 2) may appear disappointing in comparison with

the average value obtained with the previous texture analyses (i.e., 2.6 ×

10−4Table 1) since a 30% difference is found. However, the correct order of

magnitude is found and this is directly related to the fact that the present

procedure does not account for all experimental uncertainties (e.g.,associated

with the image acquisition process on top of the correlation algorithm itself).

Even if the actual performances are (slightly) underestimated, the texture

analysis is a simple tool to evaluate a priori and very quickly the texture

properties.

One question remains, is the a priori numerical analysis an adapted tool for

evaluating the performance of a correlation algorithm prior to performing an

experiment? Figure 10 shows the answer. The experimentally determined and

a priori evaluated standard strain uncertainties for each ZOI size in both lon-

gitudinal and transverse directions are compared. In a log-log plot, a very

good power law fit is obtained with an exponent of −1.5 for any strain un-

der scrutiny. There is only a multiplicative offset by a factor of the order of

1.3. It is therefore concluded that the a priori uncertainty study is validated

and is therefore an appropriate way of evaluating the overall performance of

19



a DIC algorithm. Furthermore, the a priori uncertainty study is particularly

adapted to help the user choose the correlation parameters. For this proce-

dure, which only needs one single (reference) image shifted by an amount of

0.5 pixel, the user evaluates the displacement and strain errors and standard

uncertainties. The texture analysis, which is faster, allows one to choose corre-

lation parameters associated to average performances. It is likely to be easier

to use for unexperienced users. More experienced users will want to know more

precisely, in each particular case, the standard measurement uncertainties.

5 Conclusion

A texture analysis has been developed and tested in this paper to choose cor-

relation parameters of a DIC code. Two criteria are proposed and are related

to the standard deviation of the gray level distribution in each interrogation

window, and a representative “speckle” size (i.e., correlation radius). When

critical parameters are chosen (e.g.,a minimum standard deviation of 6 gray

levels, and a maximum correlation radius equal to one quarter of the ZOI

size), an average value of standard displacement uncertainty of 1.2 × 10−2

pixel is obtained for 31 different textures. The corresponding average value of

the standard strain uncertainty is equal to 1.6 × 10−4.

If the user wants a more accurate estimate of the performances, a displacement

is artificially prescribed to a picture. Steps of 0.1 pixel are applied from 0 to 1

pixel. The standard displacement and strain uncertainties are calculated. The

overall performance is then given by the mean value of the two uncertainty

functions. It can be noted that with the present correlation algorithm, the

mean uncertainties are equal to one half of the maximum value corresponding
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to a 0.5-pixel displacement. This result is obtained systematically so that a

practical way only consists in considering only one displacement level (i.e., 0.5

pixel) to get the sought result. With this simplified approach, the computation

time is reduced by one order of magnitude.

The texture analysis has been tested when analyzing a tensile test on an

aluminum alloy where digital image correlation results have been compared

to strain gauge measurements. With the two above criteria, the proposed

choice of correlation parameters gives good results and validates the present

approach. Furthermore, the present analysis also shows that the a priori es-

timates of standard strain uncertainties are in good agreement with values

obtained in the analyzed experiment when considering the strain gauge re-

sults as reference data. It is therefore recommended to use this last approach

that quantifies a priori the performance of a correlation algorithm for differ-

ent correlation parameters, for example the ones obtained from the texture

analysis.
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Table 1

Mean values • and standard deviations • of the standard displacement σu and

strain σǫ uncertainties related to the criterion(a) that is(are) satisfied to choose the

correlation parameters for the 31 analyzed pictures.
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Fig. 1. Spatial resolution for strain and displacement measurements with a correla-

tion software. In both cases, the spatial resolution is ℓ = 2n pixels for displacements.
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(a) or 2n pixels (b).
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Fig. 7. Standard uncertainty results for 31 images using the ZOI parameter deter-

mined by the texture analysis. Histograms and corresponding normal probability

plot for standard displacement (a, b) and strain (c, d) uncertainties.
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Fig. 8. -a-Texture analysis of the considered picture. -b-Corresponding gray level

histogram. -c-Maximum dimensionless correlation radius ρmax vs. ZOI size ℓ.

-d-Minimum gray level standard deviation σmin vs. ZOI size ℓ.
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Fig. 9. Mean strain errors between digital image correlation evaluations and strain

gauge results for different ZOI sizes.

38



�✂✁☎✄ ✆

�✝✁✞✄ ✟

�✂✁☎✄ ✠

�✝✁ �✝✁✡✁

☛✌☞✎✍✑✏ ✒✓✍✔✏✕☛✗✖✞☛✓✘ ✙✛✚☎✏ ✚
✜✛✢✎☞☎✜✗✍✑✏ ✣✤✜✥✖✛✦✧☛✓✘✝✍★✜✡✚☎✩✎✘ ✦

✪ ✫
✬✭
✮ ✬✯
✮ ✰
✫ ✯
✬✱ ✭
✲✭
✳✴✯
✫
✬✱ ✭
✫ ✵

✶✸✷✺✹✡✻✽✼ ✾✗✿❁❀❃❂❄✼ ❅✓✿❇❆ ✻✓❈

Fig. 10. Comparison between experimentally determined and a priori evaluated

standard strain uncertainties for the picture of Fig. 3. The solid and dashed lines a

power law fits.
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