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QUADRATIC FUNCTORS ON POINTED CATEGORIES

MANFRED HARTL & CHRISTINE VESPA

Abstract. We study polynomial functors of degree 2, called quadratic, with values in
the category of abelian groups Ab, and whose source category is an arbitrary category
C with null object such that all objects are colimits of copies of a generating object
E which is small and regular projective; this includes all pointed algebraic varieties.
More specifically, we are interested in such quadratic functors F from C to Ab which
preserve filtered colimits and suitable coequalizers; one may take reflexive ones if C is
Mal’cev and Barr exact.

A functorial equivalence is established between such functors F : C → Ab and
certain minimal algebraic data which we call quadratic C-modules: these involve the
values on E of the cross-effects of F and certain structure maps generalizing the second
Hopf invariant and the Whitehead product.

Applying this general result to the case where E is a cogroup these data take a
particularly simple form. This application extends results of Baues and Pirashvili
obtained for C being the category of groups or of modules over some ring; here qua-
dratic C-modules are equivalent with abelian square groups or quadratic R-modules,
respectively.

Mathematics Subject Classification: 18D; 18A25; 55U

Keywords : polynomial functors; quadratic functors; algebraic theory

In their fundamental work on homology of spaces thereafter linked to their names [8]
Eilenberg and MacLane introduced cross-effects and polynomial functors (see section 1
for definitions). Since then, these functors proved to play a crucial role in unstable ho-
motopy theory; and during the last decade, homological algebra of polynomial functors
turned out to be a powerful tool at the crossroad of various fields, such as algebraic
K-theory, generic representation theory or cohomology of general linear groups.

In this paper we determine polynomial functors of degree 2, called quadratic, F : T →
Ab where Ab is the category of abelian groups and T is a pointed algebraic theory, i.e.
a category T with null object such that all objects are finite coproducts of a generating
object E. We then extend our results to determine “good” quadratic functors on an
arbitrary pointed category C with sums and with a small regular projective generating
object E, see section 6.5 for definitions; here for brevity we say that a functor is good if
it preserves filtered colimits and suitable coequalizers. We point out that one may take
C to be any algebraic variety, with E being the free object of rank 1.

To give a topological example, the homotopy category of finite one-point unions
∨n
i=1X of copies of a given space X is a pointed algebraic theory, and metastable

homotopy groups on such a category are examples of quadratic functors if X is a sus-
pension. This was one of the motivations for Baues and Pirashvili [1], [4] to study
quadratic functors on several particular types of algebraic theories.

In the cited papers, and also in work of the same authors with Dreckmann and Fran-
jou on polynomial functors of higher degree [2], a functorial equivalence is established
between polynomial functors on T and certain minimal algebraic data: these consist of
the values of the cross-effects of the corresponding functor on the generating object E,
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and of certain maps relating them. For example, quadratic functors from the category
of free groups of finite rank to the category of groups correspond to diagrams

(Me
H
−→Mee

P
−→Me)

called square groups, where Me is a group, Mee an abelian group, H a quadratic map and
P a homomorphism (satisfying certain relations), see [4]. Those functors taking values
in Ab hereby correspond to square groups for which H is linear, i.e. a homomorphism.
Similarly, given a ring R, quadratic functors from the category of finitely generated free
R-modules to Ab correspond to diagrams of the same type called quadratic R-modules,
but where Me is an abelian group endowed with a quadratic action of R, Mee is an
R⊗R-module, and H and P are homomorphisms compatible with the actions of R, see
[1]. As a last example, quadratic functors from the category of finite pointed sets to Ab
correspond to diagrams

(Mee
T
−→ Mee

P
−→ Me)

containing no operator H but an involution T of Mee instead, see [20].
In this paper (Theorem 7.1) we show that quadratic functors from an arbitrary

pointed theory T to Ab (and good quadratic functors on a category C as above) are
functorially equivalent with diagrams

M = (T11(cr2U)(E,E)⊗Λ Me
Ĥ
−→ Mee

T
−→ Mee

P
−→ Me)

which we call quadratic T -modules (resp. C-modules), where T11(cr2U) is the bilineariza-
tion of the second cross-effect cr2 of the reduced standard projective functor U : T → Ab
associated with E, Λ is the reduced monoid ring of T (E,E), Me and Mee are modules

over Λ and Λ ⊗ Λ, resp., the map T is an involution of Mee, and Ĥ and P are ho-
momorphisms compatible with these structures, see Definition 5.3 for details. Just as
the maps H and P above, the maps Ĥ and P can be viewed as algebraic generaliza-
tions of the second Hopf invariant and the Whitehead product, cf. [1]. In the quadratic
C-module associated with a quadratic functor F : T → Ab we have Me = F (E) and
Mee = (cr2F )(E,E).

Quadratic T -modules can be described as modules over a certain ringoid R with
two objects; this follows from an alternative approach to our original one which was
suggested to us by T. Pirashvili: we determine a pair of projective generators of the
abelian category Quad(T , Ab) of quadratic functors from T to Ab, compute the maps
between them by using a Yoneda lemma for polynomial functors, thus providing the
ringoid R, and deduce an equivalence of Quad(T , Ab) with the category of R-modules
from the Gabriel-Popescu theorem.

We then extend the correspondance between quadratic functors and quadratic T -
modules to categories C with sums and a small regular projective generator, in particular
to the algebraic variety C = Model(T ) of models (or algebras) of the theory T ; here
T identifies with the full sub-category of free objects of finite rank in C. For example,
the category of groups and the category of algebras over a reduced operad are algebraic
varieties.

Such an extension of quadratic functor theory from an algebraic theory to its category
of models was established in [4], in the case where Model(T ) is the category Gr of
groups. This is achieved by introducing a quadratic tensor product G ⊗M ∈ Gr for a
group G and a square group M . We generalize this device to arbitrary categories C as
above, by constructing a quadratic tensor product − ⊗M : C → Ab for any quadratic
C-module M , and by studying its properties: we compute its effect on E (in fact,
E ⊗M ∼= Me) and its cross-effect (Theorem 6.27), and show that it preserves filtered
colimits and suitable coequalizers (Theorem 6.24).



QUADRATIC FUNCTORS ON POINTED CATEGORIES 3

A particularly interesting case arises when E has a cogroup structure in T ; note that
this holds when T is the category of finitely generated free algebras over an operad, or
the homotopy category of finite one-point unions of a suspension. In this cogroup case
our above data simplify considerably; notably, the map Ĥ splits into two maps

Me
H1−→ Mee

H2←− T11(cr2T (E,−))(E,E)⊗Λ coker(P )

the first of which generalizes the map H in the cited examples above, while the second
one was not visible in these special cases where it is either trivial or determined by the
remaining structure. For example, when T is the category of finitely generated free
groups, H2 is equivalent to the map ∆ = H1PH1−2H1 in [4]. Moreover, the involution
T here is determined by the remaining structure as T = H1P − 1.

Summarizing we may say that in the general cogroup case a quadratic T -module is a
square group (H1, P ) enriched by suitable actions of Λ and Λ⊗Λ and by an additional
structure map H2.

Our result shows that in order to model polynomial functors F : T → Ab, it is not
sufficient to just add structure maps of the type H and P between the various cross-
effects of F as is suggested by the special cases treated in the literature: the more
complicated domain of the map Ĥ (and its decomposition into two maps in the cogroup

case) destroys this ideal picture. On the other hand, the map Ĥ has the interesting
structure of a morphism of symmetric Λ⊗ Λ-modules which had not become apparent
so far.

We finally note that along our way, we need to provide plenty of auxiliary material
which might be of independent interest: we consider and use bilinearization of bifunc-
tors, give more explicit descriptions of the linearization and quadratization of a functor,
compute them in a number of cases, in particular for diagonalizable functors, and intro-
duce a notion of quadratic map from a morphism set of a pointed category with finite
sums to an abelian group which generalizes the notion of quadratic map from a group
to an abelian group in the sense of Passi [17] or the first author [12], and allows to
characterize quadratic functors in terms of their effect on morphism sets.

In subsequent work we plan to extend our results to quadratic functors with values in
the category of all groups where the situation is much more intricate for several reasons.
We also expect that our approach generalizes to polynomial functors of higher degree.
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1. Polynomial functors

1.1. Generalities on polynomial functors and bifunctors. Throughout this pa-
per, C denotes a pointed category (i.e. having a null object denoted by 0) with finite
coproducts denoted by ∨. Let Gr and Ab denote the categories of groups and abelian
groups, resp. We begin by giving a definition and basic properties of the cross-effect
and of polynomial functors from C to Gr, generalizing those given in [4] for linear and
quadratic functors and those given by Eilenberg and Mac Lane in the case of functors
from an abelian category to Ab [8].

In the sequel, D denotes one of the categories Gr or Ab. We consider functors from C
to D. In particular, for E a fixed object of C we define the universal functor UE : C → Ab
as follows. For a set S, let Z[S] denote the free abelian group with basis S. Since for
all X ∈ C, C(E,X) is pointed with basepoint the zero map, we can define a subfunctor

Z[0] of Z[C(E,−)] by Z[0](X) = Z[{E
0
−→ X}] for X ∈ C.

Definition 1.1. The universal functor UE : C → Ab relative to E is the quotient of
Z[C(E,−)] by the subfunctor Z[0].

Note that UE is the reduced standard projective functor associated with E.
To keep notation simple we write f also for the equivalence class in UE(X) of an

element f of C(E,X), and we often omit the subscript E in UE .
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Let F : C → D be a functor. We often note f∗ = F (f) for a morphism f in C. For
objects X1, . . . , Xn of C and 1 ≤ k ≤ n let

Xk

in
k−→ X1 ∨ . . . ∨Xn

rn
k−→ Xk

be the canonical injection and retraction, resp., the latter being defined by rnk i
n
k = 1Xk

and rnk i
n
p = 0 if p 6= k.

Definition 1.2. The n-th cross-effect of F is a functor crnF : C×n → D (or a multi-
functor) defined inductively by

cr1F (X) = ker(F (0) : F (X)→ F (0))

cr2F (X, Y ) = ker((F (r2
1), F (r2

2))
t : F (X ∨ Y )→ F (X)× F (Y ))

and, for n ≥ 3, by

crnF (X1, . . . , Xn) = cr2(crn−1(−, X3, . . . , Xn))(X1, X2).

In other words, to define the n-th cross-effect of F we consider the (n − 1)-st cross-
effect, we fix the n − 2 last variables and we consider the second cross-effect of this
functor. One often writes F (X1 | . . . | Xn) = crnF (X1, . . . , Xn).

Note that F (X) ≃ cr1F (X) ⋊ F (0) as F (0) : F (0) → F (X) is a natural section of
F (0) : F (X)→ F (0). Moreover, one easily checks by induction that crnF (X1, . . . , Xn)
is a subgroup of F (X1 ∨ . . . ∨Xn).

In this paper we are mainly interested in reduced functors F : C → D, that is satisfying
F (0) = 0. We denote by Func∗(C,D) the category of reduced functors F : C → D.

There is an alternative description of cross-effects for reduced functors. To state this
let rn12...(k−1)(k+1)...n : X1∨. . .∨Xn → X1∨. . .∨X̂k∨. . .∨Xn be the map whose restriction
to Xi is its canonical injection for i 6= k and is the zero map if i = k.

Proposition 1.3. Let F : C → D be a functor. Then the n-th cross-effect
crnF (X1, . . . , Xn) is equal to the kernel of the natural homomorphism

n
∏

k=1

F (rn12...(k−1)(k+1)...n) : F (X1 ∨ . . . ∨Xn) −−→

n
∏

k=1

F (X1 ∨ . . . ∨ X̂k ∨ . . . ∨Xn).

As a consequence, we see that crnF (X1, . . . , Xn) actually is a normal subgroup of
F (X1∨. . .∨Xn). Moreover, it follows that crnF (X1, . . . , Xn) is symmetric inX1, . . . , Xn.
Finally, we see that the functor crn is multi-reduced, i.e., crnF (X1, . . . , Xn) vanishes if
one of the Xk is the zero object since then F (rn12...(k−1)(k+1)...n) is an isomorphism.

The importance of cross-effects comes from the following property of functors with
values in Ab.

Proposition 1.4. Let F : C → Ab be a reduced functor. Then there is a natural
decomposition

F (X1 ∨ . . . ∨Xn) ≃
n

⊕

k=1

⊕

1≤i1<...<ik≤n

crkF (Xi1 , . . . , Xik).

The cross-effects have the following crucial property.

Proposition 1.5. The functor crn : Func(C,D)→ Func(C×n,D) is exact for all n ≥ 1.

Proof. For n = 1 it is a consequence of the natural decomposition F (X) ≃ cr1F (X) ⋊

F (0). For n = 2 this follows from the snake-lemma. For higher n use induction. �

Definition 1.6. A functor F : C → D is said to be polynomial of degree lower or equal
to n if crn+1F = 0. Such a functor is called linear if n = 1 and is called quadratic if
n = 2. We denote by Func(C,D)≤n the full subcategory of Func(C,D) consisting of
polynomial functors of degree lower or equal to n.
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The category Func(C,D)≤n has the following fundamental property which is an im-
mediate consequence of Proposition 1.5.

Proposition 1.7. The category Func(C,D)≤n is thick i.e. closed under quotients, sub-
objects and extensions.

This is an immediate consequence of Proposition 1.5.
Throughout this paper we denote by ∆n

C : C → C×n the diagonal functor. For n = 2
we write ∆C instead of ∆2

C.

Definition 1.8. For F ∈ Func(C,D) and X ∈ C, we denote by SFn the natural trans-
formation SFn : (crnF )∆n

C → F given by the composition

crnF (X, . . . , X)
inc
−→ F (∨ni=1X)

F (∇n)
−−−→ F (X)

where ∇n : ∨ni=1X → X is the folding map.

Note that the image of SFn is normal in F (X); in fact, crnF (X, . . . , X) is normal in
F (∨ni=1X), and F (∇n) is surjective admitting F (in1) as a section. This fact is used in
the following:

Definition 1.9. For F ∈ Func(C,D) the n−Taylorisation functor Tn : Func(C,D)→

Func(C,D)≤n is defined by: TnF = coker((crn+1F )∆n+1
C

SF
n+1
−−−→ F ). We call T1 the

linearization functor and T2 the quadratization functor.

Let Un : Func(C,D)≤n → Func(C,D) denote the forgetful (i.e. inclusion) functor.

Proposition 1.10. The n−Taylorisation functor Tn : Func(C,D)→ (Func(C,D))≤n is
a left adjoint to Un. The unit of the adjunction is the natural epimorphism tn : F → TnF
which is an isomorphism if F is polynomial of degree ≤ n.

Thus, we obtain the diagram:

F
tn+1

zzuuu
uu

uu
uu

u

tn
��

tn−1

$$II
II

II
II

II

. . . // Tn+1F
qn+1 // TnF

qn // Tn−1F
qn−1 // . . . // T1F // T0F = 0.

Since the cross-effect cr2F of a functor is a bifunctor we need some general definitions
and facts about bifunctors.

Definition 1.11. A bifunctor B : C × C → D is said to be bireduced if for all X ∈ C,
B(X, 0) = B(0, X) = 0. We denote by BiFunc∗,∗(C × C,D) the category of bireduced
bifunctors from C × C to D.

A bireduced bifunctor B : C ×C → D is said to be bipolynomial of bidegree ≤ (n,m) if
for all X ∈ C the functors B(−, X), B(X,−) : C → D are polynomial of degree ≤ n and
≤ m respectively. We denote by BiFunc∗,∗(C ×C,D)≤(n,m) the category of bipolynomial
bifunctors of bidegree ≤ (n,m).

Proposition 1.12. The category BiFunc∗,∗(C × C,D)≤(n,m) is thick.

Definition 1.13. Let B : C × C → D be a bireduced bifunctor and n,m ≥ 1. Then the
bifunctor Tn,mB : C × C → D is defined by Tn,mB(X, Y ) = B(X, Y )/N1N2 where

N1 = im(S
B(−,Y )
n+1 : crn+1B(−, Y )(X, . . . , X)→ B(X, Y )),

N2 = im(S
B(X,−)
m+1 : crm+1B(X,−)(Y, . . . , Y )→ B(X, Y )).

For (n,m) = (1, 1) we call T1,1B the bilinearization of B.

Let Un,m : (BiFunc∗,∗(C×C,D))≤(n,m) → BiFunc∗,∗(C×C,D) be the forgetful functor.
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Proposition 1.14. The (n,m)−Taylorisation functor

Tn,m : BiFunc∗,∗(C × C, Ab)→ BiFunc∗,∗(C × C, Ab)≤(n,m)

is a left adjoint to Un,m. The unit of this adjunction is given by the natural epimorphism
tn,m : B → Tn,mB.

Notation. For brevity we will often write T11 and t11 instead of T1,1 and t1,1, resp., and
x̄ instead of t1(x) or t11(x) for x ∈ F (X) or x ∈ B(X, Y ), resp.

Example 1.15. For reduced functors F,G : C → Ab define the bifunctor F ⊠ G :
C × C → Ab by (F ⊠G)(X, Y ) = F (X)⊗ F (Y ). Then there is a natural isomorphism

Tn,m(F ⊠G) ≃ TnF ⊠ TmG.

This is immediate from right-exactness of the tensor product. In the following propo-
sition we give another characterization of the quadratization functor which is useful in
the sequel. This requires some notations: in the diagram

(1.15.1)

F (X1 ∨ . . . ∨Xn)
((rn

12...(k−1)(k+1)...n
)∗,(rn

k
)∗)t

// F (X1 ∨ . . . ∨ X̂k ∨ . . . ∨Xn)⊕ F (Xk)

((in
12...(k−1)(k+1)...n

)∗,(ink )∗)

ss

the map in12...(k−1)(k+1)...n is the obvious injection.

Considering the kernel of ((rn12...(k−1)(k+1)...n)∗, (r
n
k )∗)

t we obtain the maps:

(1.15.2) F (X1 ∨ . . . ∨ X̂k ∨ . . . ∨Xn|Xk)
� �

ιn
(12...(k−1)(k+1)...n,k)

// F (X1 ∨ . . . ∨Xn).

ρn
(12...(k−1)(k+1)...n,k)

ss

where ρn(12...(k−1)(k+1)...n,k) is the retraction induced by the section ((in12...(k−1)(k+1)...n)∗, (i
n
k)∗)

of ((rn12...(k−1)(k+1)...n)∗, (r
n
k )∗)

t.
¿From now on, we only consider functors on C with values in Ab.

1.2. Algebraic theories and polynomial functors. When C is an algebraic theory,
the polynomial functors from C to Ab of degree n have the crucial property that they
are determined by their values on n objects of C.

Recollections on algebraic theories. We here recall and discuss the definition of a
pointed algebraic theory used in this paper and many others by Baues, Jibladze and
Pirashvili.

Definition 1.16. A pointed (algebraic) theory T is a pointed category T with an object
E such that any object of T is isomorphic to a finite sum of copies of E. In particu-
lar, for any object E of C we denote by 〈E〉C the theory generated by E, i.e. the full
subcategory of C consisting of the objects E∨n = E ∨ . . . ∨ E (n times), n ≥ 0, with
E∨0 = 0.

Note that this definition of an algebraic theory is dual to the classical one as being
a category encoding algebraic operations, see [5]. Thus a model of a theory T in our
sense is a contravariant functor from T to the category of sets transforming coproducts
into products. The advantage of this definition is that here T identifies with a full
subcategory of its category of models, namely the category of free models of T of
finite rank [5]. This allows the quadratic functors we construct in section 5, from data
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depending only on T , to be naturally defined on the whole category of models of T ;
indeed, on all of C in the more general case where T = 〈E〉C.

Polynomial functors on algebraic theories. The following property of polynomial
functors is crucial in the sequel.

Proposition 1.17. Let F,G : C → Ab be two reduced polynomial functors of degree
lower or equal to n and φ : F → G be a natural transformation of functors. If C = 〈E〉C,
the following statements are equivalent:

(1) φ is a natural isomorphism;
(2) ∀k ≤ n, φE∨k is an isomorphism;
(3) φE∨n is an isomorphism;
(4) ∀k such that 1 ≤ k ≤ n, crk(φ)E,...,E is an isomorphism.

Proof. Clearly (1) ⇒ (2) ⇒ (3). The implication (3) ⇒ (4) is a consequence of the
natural decomposition given in Proposition 1.4. To prove (4) ⇒ (1), let p ∈ N and
m = min(p, n). Proposition 1.4 provides a natural decomposition:

F (X1 ∨ . . . ∨Xp) ≃

p
⊕

k=1

⊕

1≤i1<...<ik≤p

crkF (Xi1, . . . , Xik)

≃
m

⊕

k=1

⊕

1≤i1<...<ik≤p

crkF (Xi1, . . . , Xik)

since F is supposed to be polynomial of degree n. Using the analogous decomposition
for G(X1 ∨ . . . ∨Xp) we have:

φX1∨...∨Xp
≃

m
⊕

k=1

⊕

1≤i1<...<ik≤p

crk(φ)Xi1
,...,Xik

.

For X1 = . . . = Xp = E we deduce that φE∨p is an isomorphism. �

Proposition 1.17 implies the following analogue for bipolynomial bifunctors.

Corollary 1.18. If C = 〈E〉C, for B,D : C × C → Ab two bipolynomial bifunctors of
bidegree lower or equal to (n,m) and φ : B → D a natural transformation of functors.
Then φ is an natural equivalence if and only if φ(E∨k,E∨l) is an isomorphism for all k ≤ n
and l ≤ m.

1.3. Symmetric bifunctors. In this section we emphasize a supplementary structure
on the cross-effect.

Definition 1.19. A symmetric bifunctor from C to Ab is a pair (B, T ) where B :
C × C → Ab is a bifunctor and T : B → B ◦ V is a natural isomorphism.

Cross-effects are natural examples of symmetric bifunctors, as follows. For X, Y ∈ C
denote by τX,Y : X ∨ Y → Y ∨X the canonical switch.

Proposition 1.20. Let F : C → Ab be a functor. Then there are symmetric bifunctors
(cr2F, T

F ) and (T11(cr2F ), T̄ F ) where

T FX,Y : (cr2F )(X, Y )→ (cr2F )(Y,X) and T̄ FX,Y : T11(cr2F )(X, Y )→ T11(cr2F )(Y,X)

are given by

T FX,Y = (ι2(1,2))
−1F (τX,Y )(ι2(1,2)) and T̄ FX,Y = T11(T

F ),

noting that T11((cr2F ) ◦ V ) = T11(cr2F ) ◦ V . �
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2. Study of the (bi-)linearization and quadratization functors

2.1. (Bi)-linearization and the identity functor of the category of groups. The
following calculations are needed in section 7. Recall the following fact:

Lemma 2.1 ([4] Lemma 1.6). For F : C → Gr a reduced linear functor, F (X) is an
abelian group for X ∈ C.

For a group G and a, b ∈ G let [a, b] = aba−1b−1 and let Gab = G/[G,G] denote the
abelianization of G.

Proposition 2.2. Let IdGr : Gr → Gr be the identity functor. There is a natural
isomorphism of functors Gr → Gr

Γ1 : T1(IdGr)(G)
≃
←− Gab

such that for g ∈ G, one has Γ1(ḡ) = t1(g).

Proof. The map Γ1 is welldefined by Lemma 2.1. The natural homomorphism ab :
G → Gab factors through t1 followed by a map ab : T1(IdGr)(G) → Gab since the
abelianization functor G 7→ Gab is linear. It is straightforward to check that ab is the
inverse of Γ1. �

We note that this result generalizes to a natural isomorphism TnIdGr(G) ∼= G/γn+1(G)
where γn(G) is the n-th term of the lower central series of G; this observation is the
starting point of forthcoming work on nilpotent categories.

Proposition 2.3. Let IdGr : Gr → Gr be the identity functor. There is a natural
isomorphism of bifunctors Gr ×Gr → Ab

Γ11 : T11cr2(IdGr)(G,H)
≃
←− Gab ⊗Hab

such that for g ∈ G, h ∈ H one has Γ11(ḡ ⊗ h̄) = t11([i
2
1g, i

2
2h]).

Proof. Write G∗ = G\{1}, and for a set E let L(E) denote the free group with basis E.
It is wellknown that there is an isomorphism

σ : L(G∗ ×H∗)
≃
−→ cr2(IdGr)(G,H)

such that σ(g, h) = [i21g, i
2
2h], see [16]. Let B : Gr × Gr → Gr denote the bifunctor

given by B(G,H) = L(G × H)/N ≃ L(G∗ × H∗) where N is the normal subgroup
generated by G × {1} ∪ {1} × H . Let π : L(G × H) → B(G,H) be the canonical
projection. The natural homomorphism Γ′

11 : B(G,H) → Gab ⊗ Hab sending (g, h) to
ḡ ⊗ h̄ factors through t11 followed by a map Γ̄′

11 : T11B(G,H) → Gab ⊗ Hab since the
bifunctor sending (G,H) to Gab ⊗ Hab is bilinear. So it remains to show that Γ̄′

11 is
an isomorphism. For this it suffices to check that the map b : G × H → T11B(G,H)
sending (g, h) to t11π(g, h) is bilinear, thus providing an inverse of Γ̄′

11. To show that b
is linear in h consider the map B(IdG,∇

2) : B(G,H ∨H)→ B(G,H). One has

x = π((g, h1h2)(g, h2)
−1(g, h1)

−1) = B(IdG,∇
2)(y)

with y = π ((g, i21(h1)i
2
2(h2))(g, i

2
2(h2))

−1(g, i21(h1))
−1). But

B(IdG, r
2
1)(y) = π((g, h1)(g, 1)−1(g, h1)

−1) = 1

and

B(IdG, r
2
2)(y) = π((g, h2)(g, h2)

−1(g, 1)−1) = 1,

whence y ∈ B(G,−)(H | H). Thus x ∈ im(S
B(G,−)
2 ), whence t11(x) = 1. Thus b is

linear in h. Similarly one shows that b is linear in g, as desired.
�
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2.2. Linearization and quadratization of diagonalizable functors. Recall that a
reduced functor F : C → D is called diagonalizable if there exists a bireduced bifunctor
B : C × C → D such that F = B∆C.

Proposition 2.4. The linearization of a diagonalizable functor F is trivial.

Proof. The section B(i21, i
2
2) of the map B∆C(∇

2) : B(X ∨ X,X ∨ X) → B(X,X)
takes values in cr2(B∆C)(X,X) since B(r2

k, r
2
k)B(i21, i

2
2) = 0 for k = 1, 2. Hence SF2 is

surjective and T1F = 0. �

We need to related the quadratization of a functor to the bilinearization of its cross-
effect. Let F : C → Ab be a reduced functor. Consider the natural map of bifunctors:

cr2(t2) : cr2(F )→ cr2(T2F ).

Since T11 is the left adjoint of the forgetful functor U : (BiFunc∗(C, Ab))≤(1,1) →
BiFunc∗(C, Ab) we obtain that cr2(t2) factors through the unit map t11 : cr2(F ) →
T11(cr2(F )), thus providing a canonical morphism of bifunctors:

(2.4.1) cr2(t2) : T11(cr2(F ))→ cr2(T2F ).

The following theorem is special case of a more general result in [10].

Theorem 2.5. The morphism cr2(t2) : T11(cr2(F )) → cr2(T2F ) is an isomorphism of
bifunctors.

Lemma 2.6. If B : C × C → Ab is a bilinear bireduced bifunctor then B∆C : C → Ab is
a quadratic functor.

Proof. For X, Y ∈ C we have:

B∆C(X ∨ Y ) = B(X ∨ Y,X ∨ Y ) = B(X,X)⊕ B(Y, Y )⊕ B(X, Y )⊕ B(Y,X)

= B∆C(X)⊕B∆C(Y )⊕ B(X, Y )⊕ B(Y,X)

where the second equality follows from the bilinearity of B. We deduce that cr2(B∆C)
(X, Y ) = B(X, Y )⊕ B(Y,X) which is a bilinear functor. So B∆C is quadratic. �

Proposition 2.7. For a bireduced bifunctor B : C × C → Ab we have:

T2(B∆) = (T11B)∆.

Proof. Consider the natural map of functors

∆∗t11 : B∆→ (T11B)∆

where (T11B)∆ is a quadratic functor by Lemma 2.6. Hence ∆∗t11 factors through the

quotient map: t2 : B∆ // // T2B∆ thus providing a canonical morphism f : T2(B∆)→

(T11B)∆ making the following diagram commutative:

B∆
t2

// //

∆∗t11

(( ((
T2(B∆)

f
// (T11B)∆.

To prove that f is an isomorphism first note that f is an epimorphism since ∆∗t11
is. To prove that f is a monomorphism it is sufficient to construct a map: α :
(T11B)∆ → T2B∆ such that αft2 = t2 since t2 is epimorphic. For X ∈ C, the
map: B(i1, i2) : B(X,X) → B(X ∨ X,X ∨ X) = B∆(X ∨ X) induces a map β :
B(X,X) → cr2(B∆)(X,X) such that ι2(1,2)β = B(i1, i2) since B(r1, r1)B(i1, i2) =
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B(r2, r2)B(i1, i2) = 0 as B is bireduced.. We consider the map αX : T11B(X,X) →
T2(B∆)(X) given by the following composition:

T11B(X,X)
T11(β)

// (T11cr2(B∆))(X,X)
cr2(t2)(X,X)// cr2(T2B∆)(X,X)

ι2
(1,2) // T2(B∆)(X ∨X)

T2(B∆)(∇)
��

T2(B∆)(X)

where cr2(t2) is the canonical morphism of bifunctors given in 2.4.1.

By naturality of t11, t2 and by definition of cr2(t2) we get the following commutative
diagram:

B(X,X)
(t11)(X,X) //

β

��

T11B(X,X)

T11(β)
��

cr2(B∆)(X,X)
(t11)(X,X) //

ι2
(1,2)

�� cr2(t2)(X,X) ++WWWWWWWWWWWWWWWWWWW
(T11cr2(B∆))(X,X)

cr2(t2)(X,X)

��
B∆(X ∨X)

B∆(∇)
�� (t2)X∨X ++WWWWWWWWWWWWWWWWWWWW

cr2(T2(B∆))(X,X)

ι2
(1,2)

��
B∆(X) = B(X,X)

(t2)X ++WWWWWWWWWWWWWWWWWWWW
T2(B∆)(X ∨X)

T2(B∆)(∇)
��

T2(B∆)(X).

Consequently, we obtain:

(α)X ◦ fX ◦ (t2)X = (α)X ◦ (∆∗t11)X

= (α)X ◦ (t11)(X,X)

= (t2)X ◦B∆(∇)ι2(1,2)β by the previous commutative diagram

= (t2)XB(∇,∇)B(i1, i2)

= (t2)X since ∇i1 = ∇i2 = IdX.

�

2.3. Generalized quadratic maps. We introduce the notions of cross-effect and
quadraticity of maps from morphisms sets of C to abelian groups, generalizing Passi’s
notion of quadratic (more generally polynomial) maps between abelian groups. The
quadratization functor T2 turns out to provide universal quadratic maps in this sense,
and allows to characterize quadratic functors from C to Ab as being functors whose
restriction to each morphism set is a quadratic map.

We start by recalling some elementary facts on polynomial maps between groups. Let
f : G→ A be a function from a group G to an abelian goup A such that f(1) = 0. Let

Then f is said to be polynomial of degree ≤ n if its Z-linear extension f̄ : Z[G]→ A
to the group ring Z[G] of G annihilates the n+1-st power In+1(G) of the augmentation
ideal I(G) of Z[G], or equivalently, if its restriction to I(G) factors through the natural

projection I(G) // // Pn(G) := I(G)/In+1(G) , see [17]. This property can be charac-

terized by using cross-effects of maps [11]; in particular, f is quadratic, i.e. polynomial
of degree ≤ 2, iff its cross effect df : G × G → A, df(a, b) = f(ab) − f(a) − f(b), is a
bilinear map, see also [12].
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Now we generalize this situation, thereby exchanging the definition of a quadratic
map via P2(G) with its characterization in terms of the cross-effect, as follows. Let
X, Y ∈ C, A ∈ Ab and ϕ : C(X, Y )→ A an arbitrary normalized function,which means
that f(0) = 0.

Definition 2.8. The second cross-effect of ϕ is the homomorphism of groups

cr2(ϕ) : UX(Y | Y )→ A

defined as follows. Let ˜cr2(ϕ) : UX(Y ∨ Y )→ A given by ˜cr2(ϕ)(ξ) = ϕ(∇ξ)−ϕ(r1ξ)−
ϕ(r2ξ) for ξ ∈ C(X, Y ∨ Y ). Now let cr2(ϕ) = ˜cr2(ϕ)ι2(1,2).

Definition 2.9. For a bifunctor B : C × C → Ab and a homomorphism of groups ψ :
B(Y, Y )→ A we say that ψ is bilinear if ψ factors through t11 : B(Y, Y )→ (T11B)(Y, Y ).
Now ϕ is said to be quadratic if its cross-effect cr2(ϕ) is bilinear.

A universal quadratic map is provided by the quadratization functor T2; this fact
is needed in Lemma 5.14 below. To state this, let ϕ : UX(Y ) → A be the Z-linear
extension of ϕ.

Proposition 2.10. The map ϕ : C(X, Y ) → A is quadratic if and only if ϕ factors

through t2 : UX(Y ) // // T2UX(Y ) .

Remark 2.11. The above definitions and Proposition indeed formally generalizes the
situation for quadratic maps between groups recalled at the beginning of the paragraph.
To see this, take C = Gr, X = Z and Y = G. Using the isomorphism of functors UZ

∼= I
in section 8.1 below, and Propositions 2.7, 8.5 and and 2.3 one gets an isomorphism of
functors Ξ′ : T2UZ

∼= P2 = I/I3 such that Ξ′(t2a) = a−1+ I3(G) for a ∈ G. This shows

that for a map G = Gr(Z, G)
ϕ // A , the map ϕ factors through t2 iff it is polynomial

of degree ≤ 2 in Passi’s sense. On the other hand, it can be deduced from Proposition
8.7 that cr2(ϕ) is bilinear in the sense of Definition 2.9 iff its group theoretic cross-effect
dϕ is a bilinear map in the usual sense. Thus Proposition 2.10 here is equivalent with
the characterization of polynomial maps of degree ≤ 2 by the bilinearity of their cross
effect.

Remark 2.12. It is well known that a functor F : A → B between additive categories A
and B is polynomial of degree ≤ n iff for all objects A,B ∈ A the map F : A(A,B)→
B(FA, FB) is polynomial of degree ≤ n in the sense of Passi [17]; we point out that
the latter notion can be described in terms of cross-effects of maps [11]. In degree
n = 2, our notion of quadratic map above allows to generalize this fact to functors
F : C → B, as follows: let Z[C] be the ringoid with the same objects as C and morphisms
Z[C](X, Y ) = Z[C(X, Y )] = UX(Y ); similarly, let PnC be the quotient ringoid of Z[C]
where PnC(X, Y ) = TnUX(Y ); this category is introduced, in a more general context, by
Johnson and McCarthy in [14]. They prove that F is polynomial of degree ≤ n iff the
natural extension of F to an additive functor F̄ : Z[C]→ B factors through the natural

quotient functor tn : Z[C] // // PnC . Now for n = 2 the latter property is equivalent

with all maps F : C(X, Y ) → B(FX,FY ), X, Y ∈ C, being quadratic, by Proposition
2.10.

In order to prove Proposition 2.10 and also for later use, we need the following
description of quadratization functor from the bilinearization functor.

Proposition 2.13. For F ∈ Func∗(C,D) and X ∈ C we have:

T2(F ) = coker
(

ker
(

cr2F (X,X)
t11−→ (T11cr2F )(X,X)

)

SF
2−→ F (X)

)

.
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Proof. We have the following commutative diagram

cr3F (X,X,X) = cr2(cr2F (−, X))(X,X) � �
ι2
(1,2) //

S
F (−|X)
2 ++XXXXXXXXXXXXXXXXXXXXXX

cr2F (−, X)(X ∨X) � �
ι3
(12,3) //

F (∇2|1)
��

F (X ∨X ∨X)

F (∇3)
��

cr2F (−, X)(X)
SF

2

//

t1 ** **UUUUUUUUUUUUUUUU
F (X)

T1(cr2F (−, X))(X)

where the right hand square commutes by the following commutative diagram

cr2F (X ∨X,X)

F (∇2|1)

��

� � // F (X ∨X ∨X)
F (∇2∨1)

vvmmmmmmmmmmmm

F (∇3)

��

F (X ∨X)
F (∇2)

((QQQQQQQQQQQQQ

cr2F (X,X)
)
	 ι2

(1,2)

66mmmmmmmmmmmmm

SF
2

// F (X).

By Definition 1.9

T2F (X) = coker(cr3F (X,X,X)
SF

3−→ F (X)) = coker(cr3F (X,X,X)
F (∇3)ι3

(12,3)
ι2
(1,2)

−−−−−−−−−−→ F (X)).

We deduce from the first diagram that

T2F (X) = coker(cr3F (X,X,X)
SF

2 S
F (−|X)
2−−−−−−→ F (X))(2.13.1)

= coker
(

ker
(

cr2F (−, X)(X)
t1−→ T1cr2F (−, X)(X)

)

SF
2−→ F (X)

)

.(2.13.2)

Considering cr2F (X,−) instead of cr2F (−, X), we can write down similar commutative
diagrams which imply

T2F (X) = coker
(

ker
(

cr2F (X,−)(X)
t1−→ T1cr2F (X,−)(X)

)

SF
2−→ F (X)

)

.(2.13.3)

Combining 2.13.2 and 2.13.3 we deduce the result. �

Proof of Proposition 2.10. For ξ ∈ C(E,E ∨E) we have:

cr2(ϕ)ρ2
(1,2)(ξ) = ϕ(∇ξ)− ϕ(r1ξ)− ϕ(r2ξ)− (ϕ(∇i1r1ξ)− ϕ(r1i1r1ξ)− ϕ(r2i1r1ξ))

− (ϕ(∇i2r2ξ)− ϕ(r1i2r2ξ)− ϕ(r2i2r2ξ))

= ϕ(∇ξ)− ϕ(r1ξ)− ϕ(r2ξ)

= ϕ∇(ξ − i1r1ξ − i2r2ξ)

= ϕ∇ι2(1,2)ρ
2
(1,2)(ξ)

= ϕSUX

2 ρ2
(1,2)(ξ).

Hence cr2(ϕ) = ϕSUX

2 .Now, ϕ is quadratic iff cr2(ϕ)Ker(t11) = 0. But cr2(ϕ)Ker(t11) =
ϕSUX

2 Ker(t11) = ϕKer(t2) by Proposition 2.13, whence the assertion. �
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2.4. Explicit description of the (bi-)linearization and quadratization functor.
The general principle of this section is to express the values TnF (X) of the functor TnF
as a cokernel of a map F (X∨(n+1))→ F (X) instead of a map crn+1F (X, . . . , X)→ F (X)
since the elements of crn+1F (X, . . . , X) are more difficult to describe than the elements
of F (X∨(n+1)).

As a particular case of diagrams 1.15.1 and 1.15.2 we have the following split short
exact sequence:

(2.13.4) 0 // F (X|Y ) � �

ι2
(1,2)

// F (X ∨ Y )

ρ2
(1,2)

zz

(r21∗,r
2
2∗)

// F (X)⊕ F (Y )

(i21∗,i
2
2∗)

yy
// 0

which implies that:

(2.13.5) IdF (X∨Y ) = ι2(1,2) ◦ ρ
2
(1,2) + i21∗ ◦ r

2
1∗ + i22∗ ◦ r

2
2∗

so

(2.13.6) Im(ι2(1,2)) = Im(IdF (X∨Y ) − i
2
1∗ ◦ r

2
1∗ − i

2
2∗ ◦ r

2
2∗).

Furthermore, we obtain a natural isomorphism of bifunctors

(2.13.7) F (X|Y ) ≃ F (X ∨ Y )/i21∗F (X) + i22∗F (Y ).

2.4.1. Linearization and bilinearization functors. In the following Proposition we give
an explicit description of the linearization functor T1.

Proposition 2.14. For F ∈ Func∗(C, Ab) and X ∈ C we have:

T1(F )(X) = coker(F (X ∨X)
SF

2 ◦ρ2
(1,2)

−−−−−→ F (X))

so

T1F (X) = F (X)/Im(SF2 ◦ ρ
2
(1,2)) = F (X)/{∇2

∗(x)− r
2
1∗(x)− r

2
2∗(x)| x ∈ F (X ∨X)}

= F (X)/{((1, 1)∗ − (1, 0)∗ − (0, 1)∗)(x)| x ∈ F (X ∨X)}

Proof. The map ρ2
(1,2) is surjective by the short exact sequence 2.13.4, hence

T1(F )(X) = coker(F (X | X)
SF

2−→ F (X)) = coker(F (X ∨X)
SF

2 ◦ρ2
(1,2)

−−−−−→ F (X))

and we have by 2.13.5:

SF2 ◦ ρ
2
(1,2) = F (∇2)ι2(1,2)ρ

2
(1,2) = F (∇2)(Id− i21∗ ◦ r

2
1∗ − i

2
2∗ ◦ r

2
2∗)

= ∇2
∗ − r

2
1∗ − r

2
2∗.

�

Similarly we obtain:

Proposition 2.15. For B ∈ BiFunc∗,∗(C × C, Ab) and X, Y ∈ C we have:

T11B(X, Y ) = coker
(

B(X∨X, Y )⊕B(X, Y ∨Y )
(S

cr2B(−,Y )
2 ◦(ρ2

(1,2)
)1,S

cr2B(X,−)
2 ◦(ρ2

(1,2)
)2)

−−−−−−−−−−−−−−−−−−−−−−−−→ B(X, Y )
)

where (ρ2
(1,2))

1 : B(−, Y )(X∨X)→ cr2B(−, Y )(X,X) and (ρ2
(1,2))

2 : B(X,−)(Y ∨Y )→

cr2B(X,−)(Y, Y ), so

T11B(X, Y ) = B(X, Y )/Im((SF2 ◦ (ρ2
(1,2))

X , SF2 ◦ (ρ2
(1,2))

Y )

= B(X, Y )/{K(x, y) | x ∈ B(X ∨X, Y ), y ∈ B(X, Y ∨ Y )}

where K(x, y) = B(∇2, Id)(x)−B(r2
1, Id)(x)−B(r2

2, Id)(x)+B(Id,∇2)(y)−B(Id, r2
1)(y)−

B(Id, r2
2)(y).
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Recall that for F ∈ Func∗(C, Ab) we have cr2F ∈ BiFunc∗,∗(C × C, Ab), so we can
consider the bilinearization of the bifunctor cr2F .

Applying the previous proposition to cr2F gives us a description of T11cr2F (X, Y ) as a
quotient of cr2F (X, Y ) where the relations are obtained from elements in cr2F (X∨X, Y )
and cr2F (X, Y ∨ Y ). A more manageable description of T11cr2F (X, Y ), as a quotient
of F (X ∨ Y ), is given as follows:

Proposition 2.16. For F ∈ Func∗(C, Ab) and X, Y ∈ C we have:

T11cr2F (X|Y ) = F (X ∨ Y )/{i21∗(x) + i22∗(y) + A(z1) +B(z2), | x ∈ F (X), y ∈ F (Y ),

z1 ∈ F (X ∨X ∨ Y ), z2 ∈ F (X ∨ Y ∨ Y )}

where

A = F (∇2 ∨ Id)− F (r2
1 ∨ Id)− F (r2

2 ∨ Id)

and

B = F (Id ∨∇2)− F (Id ∨ r2
1)− F (Id ∨ r2

2).

Proof. By Proposition 2.14 we have

T1(cr2F (−, Y ))(X) = coker(F (∇2 | Id)− F (r2
1 | Id)− F (r2

2 | Id)).

We obtain the term A from the following commutative diagram where the vertical arrows
are isomorphisms of bifunctors by (2.13.7):

cr2F (−, Y )(X ∨X)

≃

��

F (∇2|Id)−F (r21|Id)−F (r22|Id) // cr2F (−, Y )(X)

≃
��

F ((X ∨X) ∨ Y )/(i312∗F (X ∨X) + i33∗F (Y ))
F (∇2∨Id)−F (r21∨Id)−F (r22∨Id)

// F (X ∨ Y )/(i21∗F (X) + i22∗F (Y )).

Similarly, considering T1(cr2F (X,−))(Y ) we obtain the term B. �

2.4.2. Quadratization functor.

Proposition 2.17. For F ∈ Func∗(C, Ab) and X ∈ C we have:

T2F (X) = F (X)/{(∇3
∗ − (∇2r3

12)∗ − (∇2r3
13)∗ − (∇2r3

23)∗ + r3
1∗ + r3

2∗ + r3
3∗)(x)

| x ∈ F (X ∨X ∨X)}

= F (X)/{((1, 1, 1)∗− (1, 1, 0)∗− (1, 0, 1)∗− (0, 1, 1)∗+(1, 0, 0)∗+(0, 1, 0)∗+(0, 0, 1)∗)(x)

| x ∈ F (X ∨X ∨X)}.

Proof. By the proof of Proposition 2.13 we have

T2F (X) = coker(cr3F (X,X,X)
SF

2 S
cr2F (−,X)
2−−−−−−−−→ F (X)).

By the following commutative diagram:

cr2F (−, X)(X ∨X)
cr2F (∇2,Id)

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYY
cr2(cr2F (−, X))(X)? _

ι2
(1,2)oo

S
cr2F (−,X)
2

��
cr2F (−, X)(X ∨X)

Id−cr2F (i21r
2
1,Id)−cr2F (i22r

2
2,Id)

OO

� _

ι3
(12,3)

��

F (∇2|Id)−F (r21|Id)−F (r22|Id) // cr2F (−, X)(X)
� _

ι2
(1,2)

��

SF
2

((QQQQQQQQQQQQQ

F ((X ∨X) ∨X)

ρ3
(12,3)

PPPP

F (∇2∨Id)−F (r21∨Id)−F (r22∨Id)

// F (X ∨X)
F (∇2)

// // F (X)
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we have

Im(SF2 S
cr2F (−,X)
2 )

= Im(SF2 cr2F (∇2, Id)ι2(1,2))

= Im(SF2 cr2F (∇2, Id)ι2(1,2)ρ
2
(1,2)) since ρ2

(1,2)is surjective

= Im(SF2 cr2F (∇2, Id)(Id− cr2F (i21r
2
1, Id)− cr2F (i22r

2
2, Id))) by 2.13.5

= Im(SF2 (F (∇2 | Id)− F (r2
1 | Id)− F (r2

2 | Id)))
= Im(SF2 (F (∇2 | Id)− F (r2

1 | Id)− F (r2
2 | Id))ρ

3
(12,3)) since ρ3

(12,3)is surjective

= Im(F (∇2)(F (∇2 ∨ Id)− F (r2
1 ∨ Id)− F (r2

2 ∨ Id))ι
2
(1,2)ρ

3
(12,3)).

By the following short exact sequence

0 // F (X ∨X|Y ) � �

ι3
(12,3)

// F (X ∨X ∨ Y )

ρ3
(12,3)

xx

(r312∗,r
3
3∗)

// F (X ∨X)⊕ F (Y )

(i312∗ ,i
3
3∗)

ww
// 0

we obtain:

(F (∇2 ∨ Id)− F (r2
1 ∨ Id)− F (r2

2 ∨ Id))ι
3
(12,3)ρ

3
(12,3)

= (F (∇2 ∨ Id)− F (r2
1 ∨ Id)− F (r2

2 ∨ Id))(Id− i
3
12∗r

3
12∗ − i

3
3∗r

3
3∗)

= F (∇2 ∨ Id)− F (r2
1 ∨ Id)− F (r2

2 ∨ Id)− F (ι21∇
2r3

12) + F (i21r
3
1) + F (i21r

3
2)

−F (i22r
3
3) + F (i22r

3
3) + F (i22r

3
3)

= F (∇2 ∨ Id)− F (r2
1 ∨ Id)− F (r2

2 ∨ Id)− F (ι21∇
2r3

12) + F (i21r
3
1) + F (i21r

3
2) + F (i22r

3
3).

Hence

Im(SF2 S
cr2F (−,X)
2 )

= Im(F (∇2)(F (∇2 ∨ Id)− F (r2
1 ∨ Id)− F (r2

2 ∨ Id)− F (ι21∇
2r3

12)
+F (i21r

3
1) + F (i21r

3
2) + F (i22r

3
3))))

= Im(F (∇3)− F (∇2r3
13)− F (∇2r3

23)− F (∇2r3
12) + F (r3

1) + F (r3
2) + F (r3

3)))

�

3. Equivalence between polynomial functors and modules over
suitable rings

In this section we give a classification of polynomial functors by modules over suitable
rings essentially due to Johnson and McCarthy in [14, 15]. Although this provides a
classification of polynomial functors of all degrees, it is not satisfactory since the rings
that appear are very complicated. So this complete classification does not seem to
be manageable for functors of degree higher than 1. Therefore our aim is to describe
polynomial functors by minimal data, which is achieved for quadratic functors in this
paper.

3.1. Adjunction between reduced functors and Λ-modules. In this section, we
give an adjunction between reduced functors and Λ-modules which is the starting point
of the equivalence between polynomial functors and module categories given in the
sequel. We begin by the following straightforward lemmas.

Lemma 3.1. Composition in C induces a ring structure on Λ := U(E) and a structure
of right Λ-module on U(X) for any X ∈ C.

Lemma 3.2. For F : C → Ab a reduced functor, F (E) is a left Λ-module via

α.x := F (α)(x)

for α ∈ C(E,E) and x ∈ F (E).

So, we can give the following definition.
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Definition 3.3. The functor

S : Func∗(C, Ab)→ Λ-Mod

is defined by S(F ) = F (E) for F ∈ Func∗(C, Ab).

A left adjoint of S is provided in the following definition.

Definition 3.4. The functor

T : Λ-Mod→ Func∗(C, Ab)

is defined by T(M)(X) = U(X)⊗Λ M for M ∈ Λ-Mod.

Proposition 3.5. The functor T is a left adjoint of S.
The unit of this adjunction is the canonical isomorphism

uM : M
∼=
→ Λ⊗Λ M = ST(M) for M ∈ Λ-Mod.

The co-unit is

(u′F )X : TS(F )(X) = U(X)⊗Λ F (E)→ F (X),

where (u′F )X(f ⊗ x) = F (f)(x) for f ∈ C(E,X), and x ∈ F (E).

We consider u′F as a first order approximation of F ; if F is polynomial of degree n
then u′F may be reduced to a morphism

u′F : Tn(TS(F ))→ F.

This turns out to be an isomorphism for n = 1 but is not for n > 1. So our approach
to polynomial functors consists of inductively improving the approximation u′F in order
to get an isomorphism again, by taking into account higher and higher cross-effects.

3.2. Classification of linear functors. Let Lin(C, Ab) denote the category of linear
reduced functors from C to Ab. In this section we show that if C is a pointed theory
then the category Lin(C, Ab) is equivalent to the category of modules over a suitable
ring.

We begin by providing a number of equivalent characterizations of linear functors.

Lemma 3.6. Let F : C → Ab be a reduced functor. Then the following conditions are
equivalent

(1) F is linear;
(2) SF2 = 0 where SF2 : cr2(F )∆C → F is defined in Definition 1.8;
(3) For X, Y ∈ C one has

1F (X∨Y ) = i21∗r
2
1∗ + i22∗r

2
2∗;

(4) For X, Y ∈ C and ξ ∈ C(X, Y ∨ Y ) one has

F (∇2 ξ) = F (r2
1 ξ) + F (r2

2 ξ).

Proof. By definition, F is linear if cr2(F ) = 0. Since SF2 : cr2(F )∆C → F we have
SF2 = 0. Conversely, if SF2 = 0, by Proposition 1.10, F ≃ T1F so F is linear and we
proved that (1)⇔ (2).

By the short exact sequence (2.13.4) we have (1)⇔ (3).
By Proposition 1.9, F is linear if and only if F ≃ T1F , so by Proposition 2.14 this

is equivalent to, ∀y ∈ F (Y ∨ Y ): F (∇2)(y) = F (r2
1)(y) + F (r2

2)(y). Applying the last
equality to y = F (ξ)(x) ∈ F (Y ∨ Y ) where ξ ∈ C(X, Y ∨ Y ) and x ∈ F (X), we obtain
(1)⇔ (4). �

Proposition 3.7. The abelian group Λ := (T1U)(E) is a ring and T1U(X) has a right
Λ-module structure such that t1 is Λ-equivariant (i.e. for λ ∈ Λ and x ∈ U(X), t1(xλ) =
t1(x)t1(λ).)
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Proof. For f ∈ C(E,E) the relation (SU2 )Ecr2U(f, f) = U(f)(SU2 )E shows that Im((SU2 )E)
is a left ideal of Λ, and we deduce from the following commutative diagram that
Ker(t1) = Im((SU2 )E) is a right ideal, too:

U(E)
α∗

//

t1
��

U(E)

t1
��

T1U(E)
T1(α∗)

// T1U(E)

where α : E → E. Consequently Λ is a ring.
For X ∈ C, T1U(X) is a right Λ-module via

t1(f).t1(α) = t1(fα)

for f ∈ C(E,X) and α ∈ C(E,E); this is welldefined again by naturality of SU2 . �

Lemma 3.8. For F : C → Ab a linear reduced functor, F (E) is a left Λ-module via

α.x := F (α)(x)

for α ∈ C(E,E) and x ∈ F (E).

Proof. By Proposition 2.14 we have

Λ = Λ/{∇2ξ − r2
1ξ − r

2
2ξ | ξ ∈ C(E,E ∨ E)}.

But

(∇2ξ − r2
1ξ − r

2
2ξ).x = ∇2ξ.x− r2

1ξ.x− r
2
2ξ.x = F (∇2ξ)(x)− F (r2

1ξ)(x)− F (r2
2ξ)(x)

= (F (∇2ξ)− F (r2
1ξ)− F (r2

2ξ))(x) = 0

by Lemma 3.6 (4).
�

This leads to the following definition.

Definition 3.9. The functor

S1 : Lin(C, Ab)→ Λ−Mod

is defined by S1(F ) = F (E) for F ∈ Lin(C, Ab).

Definition 3.10. The functor

T1 : Λ−Mod→ Lin(C, Ab)

is defined by T1(M)(X) = T1U(X)⊗Λ M for M ∈ Λ−Mod.

The following proposition connects the functors S1 and T1.

Proposition 3.11. The functor T1 is the left adjoint of S1.
The unit of this adjunction is the canonical isomorphism

uM : M
∼=
→ Λ⊗Λ M = S1T1(M) for M ∈ Λ−Mod.

The co-unit is

(u′F )X : T1S1(F )(X) = T1U(X)⊗Λ F (E)→ F (X),

where (u′F )X(t1(f)⊗ x) = F (f)(x) for f ∈ C(E,X), and x ∈ F (E).

A classification of linear functors is now given as follows:

Theorem 3.12. If C = 〈E〉C then the functors S1 and T1 form a pair of adjoint equiv-
alences.
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Proof. It remains to show that the counit is an isomorphism. For F ∈ Lin(C, Ab) the
source and target functors of u′F are linear, so it suffices by Proposition 1.17 to prove
that (u′F )E : Λ ⊗Λ F (E) → F (E) is an isomorphism. We have (u′F )E(t1(f) ⊗ x) =
F (f)(x) = t1(f).x so (u′F )E coincides with the canonical isomorphism. �

3.3. Classification of polynomial functors of arbitrary degree. Theorem 3.12
can be generalized to polynomial functors of arbitrary degree; this can be deduced from
a more general result of Johnson and McCarthy on polynomial functors with values in
categories of chain complexes [14, 15], by identifying the category Ab with the category
of chain complexes concentrated in a given degree.

Theorem 3.13. Suppose that C = 〈E〉C. Then the group TnUE∨n(E∨n) has a ring
structure induced by composition in C, and there is an equivalence of categories

Sn : Func(C, Ab)≤n → TnUE∨n(E∨n)−Mod

given by Sn(F ) = F (E).

This result generalizes a similar one for additive categories C due to Pirashvili [19]. A
simple direct proof of Theorem 3.13 is given in [10]. Further study of polynomial functors
could thus be based on this theorem in analyzing the - very complicated - structure of
the rings TnU(E) and their representations; instead, we follow the basic idea of the work
of Baues and Pirashvili: according to Proposition 1.17 a polynomial functor F of degree
n is determined by the values of its cross-effects crk(F ) on (E, . . . , E), 1 ≤ k ≤ n; so we
seek for minimal extra structure relating them so as to make the correspondance between
polynomial functors and these enriched cross-effects into a functorial equivalence.

Inspired by the paper [18] we observe:

Theorem 3.14. [18] For C = 〈E〉C, the family of functors {TnUE∨k , k ∈ {1, . . . , n}} is
a family of small projective generators of the category Func(C, Ab)≤n.

This follows from the following proposition together with Proposition 1.4.

Proposition 3.15 (Yoneda lemma for polynomial functors). Let C be a pointed cat-
egory, F : C → Ab a polynomial functor of degree lower or equal to n. Then for
X ∈ Ob(C) we have an isomorphism:

Y : HomFunc(C,Ab)≤n
(TnUX , F )

≃
−→ F (X)

natural in F and X, defined by Y(ϕ) = ϕX(1X).

This is an immediate consequence of Proposition 1.10 and the additive Yoneda lemma.

Remark 3.16. Pirashvili’s Yoneda lemma for polynomial functors in [18] treats the case
where C is a category of modules over some ring R; instead of the term TnUX in Propo-
sition 3.15 it contains the term Pn(HomR(X,−)), cf. section 2.3 for the definition of
Passi’s functor Pn. In fact, a generalization of results in section 8 below shows that if X
has a cogroup structure in C, then the functors TnUX and Pn ◦ C(X,−) are isomorphic.

3.4. The case of bifunctors. Since cross-effects of quadratic functors are bilinear
we need an analogue of Theorem 3.12 for bifunctors which goes as follows. Let Bilin
(C × C, Ab) denote the category of bilinear bireduced bifunctors from C × C to Ab.

We begin by the following lemma.

Lemma 3.17. For B : C × C → Ab a bilinear bireduced bifunctor, B(E,E) is a left
Λ⊗ Λ-module via

(α⊗ β).x := B(α, β)(x)

for α, β ∈ C(E,E) and x ∈ B(E,E).
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Remark 3.18. Note that T1U(X)⊗T1U(Y ) is a right Λ⊗Λ-module via (t1(x)⊗t1(y))(α⊗
β) = t1(xα)⊗ t1(yβ); this induces a structure of right Λ⊗ Λ-module.

Definition 3.19. The functor

S11 : Bilin(C × C, Ab)→ Λ⊗ Λ−Mod

is defined by S11(B) = B(E,E) for B ∈ Bilin(C × C, Ab).

Definition 3.20. The functor

T11 : Λ⊗ Λ−Mod→ Bilin(C × C, Ab)

is defined by T11(M)(X, Y ) = (T1U(X)⊗ T1U(Y ))⊗Λ⊗Λ M for M ∈ Λ⊗ Λ−Mod.

The following proposition connects the functors T11 and S11.

Proposition 3.21. The functor T11 is the left adjoint of S11.
The unit of this adjunction is the canonical isomorphism

uM : M → (T1U(E)⊗ T1U(E))⊗Λ⊗Λ M

defined by uM(m) = (t1(1)⊗ t1(1))⊗m where M ∈ Λ⊗ Λ−Mod.
The co-unit is

(u′B)X,Y : T11S11(B)(X, Y ) = (T1U(X)⊗ T1U(Y ))⊗Λ⊗Λ B(E,E)→ B(X, Y ),

where (u′B)X,Y (t1(f)⊗ t1(g)⊗ x) = B(f, g)(x) for f ∈ C(E,X), g ∈ C(E, Y ) and x ∈
B(E,E).

The arguments in the proof of Theorem 3.12 are easily adapted to obtain:

Theorem 3.22. If C = 〈E〉C then the functors S11 and T11 form a pair of adjoint
equivalences.

By Proposition 1.20 cross-effects are not only bifunctors but symmetric bifunctors.
In the following we exploit this supplementary structure. We begin by recalling the
definition of a symmetric R⊗ R-module.

Definition 3.23. For a ring R, a symmetric R⊗R-module is a left R⊗R-module M
equipped with a Z-linear involution T (i.e. T 2 = Id) such that for r, s ∈ R and m ∈M

T ((r ⊗ s)m) = (s⊗ r)T (m).

A morphism of symmetric R⊗R-modules is a morphism of R⊗R-modules compatible
with the respective involutions.

Remark 3.24. A symmetric R ⊗ R-module is the same as a module over the wreath
product

(R⊗ R) ≀S2 = (R⊗ R)⊕ (R ⊗R).t

whose multiplication is defined by

(r1 ⊗ r2 + (s1 ⊗ s2).t)(r
′
1 ⊗ r

′
2 + (s′1 ⊗ s

′
2).t)

= (r1r
′
1 ⊗ r2r

′
2 + s1s

′
2 ⊗ s2s

′
1) + (r1s

′
1 ⊗ r2s

′
2 + s1r

′
2 ⊗ s2r

′
1).t

for ri, r
′
i, si, s

′
i ∈ R and where t denotes the generator of S2.

Symmetric R⊗R-modules naturally arise from evaluating symmetric bifunctors. Let
V : C × C → C × C be the canonical interchange functor, V (X, Y ) = (Y,X).

Proposition 3.25. Let (B, T ) be a symmetric bifunctor from C to Ab such that B is
bireduced. Then for E ∈ C, the group B(E,E) is a symmetric Λ ⊗ Λ-module where
(f ⊗ g)x = B(f, g)(x) for f, g ∈ C(E,E) and x ∈ B(E,E), and with involution TE,E.�
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We thus obtain the following two examples of symmetric R⊗R-modules for suitable
R which are important in section 5.

Corollary 3.26. For a reduced functor F : C → Ab, the group F (E|E) admits the
structure of a symmetric Λ ⊗ Λ-module such that for f, g ∈ C(E,E) and α ∈ F (E|E)
we have

(f ⊗ g).α := F (f |g)(α) ∈ F (E|E)

and with involution:

T F (α) = (ι2(1,2))
−1F (τE,E)ι2(1,2)(α) ∈ F (E|E).

Corollary 3.27. For F : C → Ab a reduced functor, the group T11(cr2F )(E,E) admits
the structure of a symmetric Λ̄⊗Λ̄-module, with involution denoted by T̄ F , such that the
projection t11 : F (E|E)→ T11(cr2F )(E,E) is a morphism of symmetric Λ⊗Λ-modules.

Conversely, symmetric Λ⊗ Λ-modules give rise to symmetric bifunctors, as follows.

Proposition 3.28. Let M be a symmetric Λ⊗Λ-module with involution T . Then there
are symmetric bifunctors (T(M), TM ) and (T11(M), T̄M) where

TMX,Y : (U(X)⊗ U(Y ))⊗Λ⊗Λ M → (U(Y )⊗ U(X))⊗Λ⊗Λ M

is given by TMX,Y (f ⊗ g⊗ x) = g⊗ f ⊗ Tx for f, g ∈ C(E,E) and x ∈M , and where T̄M

is given such that t1⊗ t1⊗ id : T(M)→ T11(M) is a morphism of symmetric bifunctors,
in the obvious sense. �

Remark 3.29. Similarly assigning (T11(M), T̄M) to (M,T ) defines a functorial equiva-
lence between symmetric Λ̄ ⊗ Λ̄-modules and symmetric bifunctors (B, T ′) from C to
Ab such that B is bilinear bireduced, but we do not need this here.

4. Equivalence between quadratic functors and modules over suitable
ringoids

In this section, we generalize an approach of Pirashvili in [18] to obtain an equivalence
between the category Quad(C, Ab) and the category of modules over a particular pre-
additive category (or ringoid following the terminology of Baues) with two objects.
More explicitely we have:

Definition 4.1. Let R be the ringoid having two objects Re and Ree and morphisms:

HomR(Re, Ree) = T2UE(E | E)

HomR(Ree, Re) = Λ⊗ Λ

EndR(Re) = Λ := (T2UE)(E) (as a ring)

EndR(Ree) = (Λ⊗ Λ) ≀S2 (as a ring);

the remaining compositions in R are given as follows: for a, b, c, d, α, β, γ ∈ C(E,E),
ξ ∈ C(E,E ∨E):

Ret2(γ) 44

ξ̃=ρ2
(1,2)

t2(ξ)

##
Ree

α⊗β

cc
a⊗b+t(c⊗d)nn

(4.1.1) t2(γ) ◦ (α⊗ β) = γα⊗ γβ

(4.1.2) ρ2
(1,2)t2(ξ) ◦ t2(γ) = ρ2

(1,2)t2(ξγ)

(4.1.3) ρ2
(1,2)t2(ξ) ◦ (α⊗ β) = r1ξα⊗ r2ξβ + (r1ξβ ⊗ r2ξα)t
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(4.1.4) (α⊗ β) ◦ ρ2
(1,2)t2(ξ) = t2(∇(α ∨ β)ξ − αr1ξ − βr2ξ)

(4.1.5) (α⊗ β) ◦ (a⊗ b+ (c⊗ d)t) = αa⊗ βb+ βd⊗ αc

(4.1.6) (a⊗ b+ (c⊗ d)t) ◦ ξ̃ = T2UE(a|b)(ξ̃) + T2UE(c|d)(T ξ̃)

where T is the involution of the symmetric Λ⊗ Λ-module T2UE(E|E).

It follows from Theorem 4.8 below that R is a well defined ringoid.

Theorem 4.2. If C = 〈E〉C we have an equivalence of categories:

σ : Quad(C, Ab)
≃
−→ Funcadd(R, Ab) := R–mod.

The proof of this theorem requires many intermediate results and will only be achieved
at the end of section 4.3 below.

4.1. Projective generators of Quad(C, Ab). Applying Theorem 3.14 to quadratic
functors we see that the category Quad(C, Ab) admits {T2UE , T2UE∨E} as a family of
small projective generators. The following proposition gives a refinement of this result.

Proposition 4.3. For C = 〈E〉C, the category Quad(C, Ab) admits {T2UE , T1UE⊗T1UE}
as a family of small projective generators.

The proof of this proposition relies on the following lemma.

Lemma 4.4. We have a natural decomposition:

UE∨E = UE ⊕ UE ⊕ UE ⊗ UE .

Proof. Let X ∈ C and f ∈ C(E ∨ E,X), we define:

σX : UE∨E(X)→ UE(X)⊕ UE(X)⊕ UE(X)⊗ UE(X)

by:

σX(h) = (h ◦ i1, h ◦ i2, h ◦ i1 ⊗ h ◦ i2)

for h ∈ C(E ∨E,X) and

τX : UE(X)⊕ UE(X)⊕ UE(X)⊗ UE(X)→ UE∨E(X)

by:

τX(f, g, f ′ ⊗ g′) = fr1 + gr2 +∇2(f ′ ∨ g′)− f ′r1 − g
′r2

for f, g, f ′, g′ ∈ C(E,X). We easily verify that τX is the inverse of σX and these maps
are natural. �

Corollary 4.5. There is an isomorphism

T2UE∨E ≃ T2UE ⊕ T2UE ⊕ T1UE ⊗ T1UE

where the injection and retraction T1UE ⊗ T1UE
I

// T2UE∨E

Roo are given by

IX(f ⊗ g) = t2(∇(f ∨ g)− fr1 − gr2)

RX(t2(h)) = hi1 ⊗ hi2

for X ∈ C, f, g ∈ C(E,X) and h ∈ C(E ∨E,X).
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Proof. We deduce from Lemma 4.4 that:

T2UE∨E = T2UE ⊕ T2UE ⊕ T2(UE ⊗ UE).

But

T2(UE ⊗ UE) = T11(UE ⊠ UE)∆ by Lemma 2.7

= (T1UE ⊠ T1UE)∆ by example 1.15

= T1UE ⊗ T1UE.

�

Proposition 4.3 now is a straightforward consequence of Theorem 3.14 and Corollary
4.5.

4.2. Gabriel-Popescu Theorem. Recall the following fundamental property of abelian
categories:

Theorem 4.6 ([21] Corollaire 6.4 p 103). For any abelian category C the following
assertions are equivalent.

(1) The category C has arbitrary direct sums and {Pi}i∈I is a set of projective small
generators of C.

(2) The category C is equivalent to the subcategory Funcadd(Pop, Ab) of Func(Pop, Ab)
whose objects are additive functors (i.e. functors satisfying F (f + g) = F (f) +
F (g) where f and g are morphisms of HomPop(V,W )) and P is the full subcat-
egory of C whose set of objects is {Pi | i ∈ I}.

Combining Proposition 4.3 and Theorem 4.6 we obtain:

Theorem 4.7. For C = 〈E〉C and P the full subcategory of Quad(C, Ab) having as
objects T2UE and T1UE ⊗ T1UE, we have an equivalence of categories:

α : Quad(C, Ab)
≃
−→ Funcadd(Pop, Ab) := Pop–mod

assigning to a quadratic functor F : C → Ab the restriction to P of the representable
functor HomQuad(C,Ab)(−, F ).

4.3. The category Pop. The aim of this section is to prove the following result:

Theorem 4.8. We have an isomorphism of ringoids:

θ : Pop
≃
−→ R

given on the objects by: θ(T2UE) = Re and θ(T1UE ⊗ T1UE) = Ree.

In order to prove this theorem we need the following proposition.

Proposition 4.9. For F ∈ Quad(C, Ab) there is an isomorphism Ỹ fitting into the
commutative diagram:

HomQuad(C,Ab)(T1UE ⊗ T1UE , F )
Ỹ //

R∗

��

F (E | E)
� _

ι2
(1,2)

��
HomQuad(C,Ab)(T2UE∨E, F )

Y

≃ // F (E ∨E).

Proof. By Corollary 4.5 we have a split exact sequence:

0 // T2UE ⊕ T2UE
(r∗1 ,r

∗
2)

// T2UE∨E

R // T1UE ⊗ T1UE
I

oo // 0.
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Homming into F and using naturality of Y in the first variable provides the following
commutative diagram with exact rows which implies the assertion.

0 // Hom(T1UE ⊗ T1UE , F )
R∗

//

≃ Ỹ
��

Hom(T2UE∨E, F )
((r∗1 )∗,(r∗2)∗)

//

≃ Y
��

Hom(T2UE , F )⊕Hom(T2UE, F )

≃ Y⊕Y
��

// 0

0 // F (E | E)
ι2
(1,2)

// F (E ∨E)
(F (r1),F (r2))

// F (E)⊕ F (E) // 0

�

Proof of Theorem 4.8. We first determine the morphisms groups of the ringoid Pop. The
Yoneda Lemma 3.15 provides isomorphisms of groups:

θ1 = Y : HomPop(T2UE , T2UE)
≃
−→ T2UE(E) = Λ

θ2 = Y : HomPop(T1UE ⊗ T1UE , T2UE)
≃
−→ T1UE(E)⊗ T1UE(E) = Λ⊗ Λ.

Proposition 4.9 furnishes isomorphisms of groups:

θ3 = Ỹ : HomPop(T2UE , T1UE ⊗ T1UE)
≃
−→ T2UE(E | E)

Ỹ : HomPop(T1UE ⊗ T1UE , T1UE ⊗ T1UE)
≃
−→ (T1UE ⊗ T1UE)(E | E).

As T1UE is linear, we have an isomorphism ι̃ : Λ⊗Λ⊕Λ⊗Λ→ (T1UE ⊗ T1UE)(E | E)
given by: ι̃(a⊗ b, c⊗ d) = i1a⊗ i2b+ i2d⊗ i1c. Thus we get an isomorphism of groups:

θ4 = ι̃−1Ỹ : HomPop(T1UE ⊗ T1UE, T1UE ⊗ T1UE)
≃
−→ Λ⊗ Λ⊕ Λ⊗ Λ.

Noting that θ−1
1 (t2α) = α∗ we see that θ1 is a ring isomorphism. In order to compute

the remaining composition laws in P, we need the following technical lemma.

Lemma 4.10. Let n ≥ 1, and for k = 1, 2 let Ek ∈ C and Sk : C → Ab be a direct

factor of TnUEk
with injection and retraction Sk

Ik

// TnUEk

Rkoo . Furthermore, let F ∈

Func∗(C, Ab)≤n and S1
ϕ1
−→ S2

ϕ2
−→ F be natural transformations. Write x1 = YR∗

1(ϕ1) ∈
S2(E1) and x2 = YR∗

2(ϕ2) ∈ F (E2) and let (I2)E1(x1) =
∑

j njtn(αj) be a decomposition

in TnUE2(E1) with nj ∈ Z and αj ∈ C(E2, E1). Then

YR∗
1(ϕ2ϕ1) =

∑

j

njF (αj)(x2) ∈ F (E1).

Proof. Let ϕ̃1 = I2ϕ1R1 ∈ Hom(TnUE1 , TnUE2). By naturality of Y in the second
variable we have

Y(ϕ̃1) = YI2∗(ϕ1R1) = (I2)E1YR
∗
1(ϕ1) =

∑

j

njtn(αj)

whence

(4.10.1) ϕ̃1 =
∑

j

njtn(αj)
∗
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since Y(tn(αj)
∗) = tn(αj). Now consider the following diagram:

Hom(S2, F )
ϕ∗

1 //

R∗
2

��

Hom(S1, F )

R∗
1

��
Hom(TnUE2 , F )

ϕ̃1
∗

//

Y ≃
��

Hom(TnUE1, F )

Y ≃
��

F (E2)

P

j njF (αj)
// F (E1).

The upper square commutes by definition of ϕ̃1 while the lower square commutes by
4.10.1 and naturality of Y in the first variable. The desired formula follows applying
commutativity of the exterior rectangle to ϕ2 ∈ Hom(S2, F ). �

In a first step we postcompose endomorphisms of T1UE ⊗ T1UE by other maps in P.
By the isomorphisms θ4 and θ3 and by 2.13.6 it suffices to consider maps:

T1UE ⊗ T1UE

T1UE ⊗ T1UE
ϕ1 // T1UE ⊗ T1UE

ϕ2

66lllllllllllll

ϕ′
2 ((RRRRRRRRRRRRRR

T2UE

such that:

xk = YR∗(ϕk) = ι̃(ak⊗bk, ck⊗dk) = i1ak⊗i2bk+i2dk⊗i1ck ∈ T1UE(E∨E)⊗T1UE(E∨E)

for k ∈ {1, 2} and ak, bk, ck, dk ∈ C(E,E), and such that:

x′2 = YR∗(ϕ′
2) = ι2(1,2)ρ

2
(1,2)t2(ξ) = t2(ξ − i1r1ξ − i2r2ξ) ∈ T2UE(E ∨ E)

for ξ ∈ C(E,E ∨E). Then:

IE∨E(x1) = t2(∇(i1a1 ∨ i2b1)− i1a1r1 − i2b1r2) + t2(∇(i2d1 ∨ i1c1)− i2d1r1 − i1c1r2)

= t2(a1 ∨ b1 − i1a1r1 − i2b1r2) + t2((c1 ∨ d1)τ − i2d1r1 − i1c1r2).

Applying Lemma 4.10 for E1 = E2 = E∨E, S1 = S2 = F = T1UE⊗T1UE , R1 = R2 = R
and I1 = I2 = I we get (omitting all terms being trivial since r1i2 = 0 = r2i1)):

YR∗(ϕ2ϕ1) = (t1 ⊗ t1)((a1 ∨ b1)i1a2 ⊗ (a1 ∨ b1)i2b2 + (a1 ∨ b1)i2d2 ⊗ (a1 ∨ b1)i1c2

+(c1 ∨ d1)τi1a2 ⊗ (c1 ∨ d1)τi2b2 + (c1 ∨ d1)τi2d2 ⊗ (c1 ∨ d1)τi1c2)

= (t1 ⊗ t1)(i1a1a2 ⊗ i2b1b2 + i2b1d2 ⊗ i1a1c2 + i2d1a2 ⊗ i1c1b2 + i1c1d2 ⊗ i2d1c2)

= ι̃(t1 ⊗ t1)(a1a2 ⊗ b1b2 + c1d2 ⊗ d1c2, a1c2 ⊗ b1d2 + c1b2 ⊗ d1a2)

= ι̃((a1 ⊗ b1, c1 ⊗ d1) ⋆ (a2 ⊗ b2, c2 ⊗ d2))

where ⋆ denotes the wreath product structure on Λ⊗ Λ⊕ Λ⊗ Λ = Λ⊗ Λ⊕ (Λ⊗ Λ)t.

This shows that θ4 is a ring isomorphism: θ4 : EndPop(T1UE ⊗ T1UE)
≃
−→ (Λ⊗ Λ) ≀S2.

Next, again by Lemma 4.10 for E1 = E2 = E ∨E, S1 = S2 = T1UE ⊗ T1UE , F = T2UE ,
R1 = R2 = R and I1 = I2 = I and omitting all terms being trivial:

YR∗(ϕ′
2ϕ1) = T2UE(a1 ∨ b1)ι

2
(1,2)ρ

2
(1,2)t2(ξ) + t2(−i1a1r1ξ + i1a1r1ξ − i2b1r2ξ + i2b1r2ξ)

+T2UE(c1 ∨ d1)T2UE(τ)ι2(1,2)ρ
2
(1,2)t2(ξ)

+t2(−i2d1r1ξ + i2d1r1ξ − i1c1r2ξ + i1c1r2ξ)

= ι2(1,2)T2UE(a1 | b1)ρ
2
(1,2)t2(ξ) + ι2(1,2)T2UE(c1 | d1)Tρ

2
(1,2)t2(ξ)
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whence

θ3(ϕ
op
1 ◦ ϕ

′
2
op

) = θ4(ϕ
op
1 ) ◦ θ3(ϕ

′
2
op

) by 4.1.6.

Next consider maps

T2UE

T1UE ⊗ T1UE
ϕ1 // T2UE

ϕ2

77ppppppppppp

ϕ′
2 ''NNNNNNNNNNN

T1UE ⊗ T1UE

such that:

x1 = YR∗(ϕ1) = ι2(1,2)ρ
2
(1,2)t2(ξ) = t2(ξ − i1r1ξ − i2r2ξ)

for ξ ∈ C(E,E ∨E)

x2 = Y(ϕ2) = t2(α) and x′2 = Y(ϕ′
2) = α⊗ β

for α, β ∈ C(E,E); again this suffices by 2.13.6. Applying Lemma 4.10 for E1 = E ∨E,
E2 = E, S1 = T1UE ⊗ T1UE , S2 = F = T2UE , R1 = R, I1 = I and I2 = R2 = Id we get:

YR∗(ϕ2ϕ1) = T2UE(ξ)(t2α)− T2UE(i1r1ξ)(t2α)− T2UE(i2r2ξ)(t2α)

= t2(ξα− i1r1ξα− i2r2ξα)

= ι2(1,2)ρ
2
(1,2)t2(ξα)

whence

θ3(ϕ
op
1 ◦ ϕ2

op) = θ3(ϕ
op
1 ) ◦ θ1(ϕ2

op) by 4.1.2.

Next applying Lemma 4.10 for E1 = E∨E, E2 = E, S1 = F = T1UE⊗T1UE , S2 = T2UE ,
R1 = R, I1 = I and I2 = R2 = Id we get

YR∗(ϕ′
2ϕ1)

= (T1UE(ξ)⊗ T1UE(ξ)− T1UE(i1r1ξ)⊗ T1UE(i1r1ξ)− T1UE(i2r2ξ)⊗ T1UE(i2r2ξ))(α⊗ β)

= (t1 ⊗ t1)(ξα⊗ ξβ − i1r1ξα⊗ i1r1ξβ − i2r2ξα⊗ i2r2ξβ)

= (t1 ⊗ t1)((i1r1 + i2r2)ξα⊗ (i1r1 + i2r2)ξβ − i1r1ξα⊗ i1r1ξβ − i2r2ξα⊗ i2r2ξβ) by Lemma 3.6

= (t1 ⊗ t1)(i1r1ξα⊗ i2r2ξβ + i2r2ξα⊗ i1r1ξβ)

= ι̃(r1ξα⊗ r2ξβ, r1ξβ ⊗ r2ξα)

whence

θ4(ϕ
op
1 ◦ ϕ

′
2
op

) = θ3(ϕ
op
1 ) ◦ θ2(ϕ

′
2
op

) by 4.1.3.

Now, consider diagrams

T1UE ⊗ T1UE

T2UE
ϕ1 // T1UE ⊗ T1UE

ϕ2

66lllllllllllll

ϕ′
2 ((RRRRRRRRRRRRRR

T2UE

such that:

x1 = Y(ϕ1) = α⊗ β ∈ Λ⊗ Λ

x2 = YR∗(ϕ2) = i1a⊗ i2b+ i2d⊗ i1c = ι̃(a⊗ b, c⊗ d) ∈ T1U(E ∨E)⊗ T1U(E ∨ E)

x′2 = YR∗(ϕ′
2) = ι2(1,2)ρ

2
(1,2)t2(ξ)
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for α, β, a, b, c, d ∈ C(E,E) and ξ ∈ C(E,E ∨E). We have:

IE(x1) = t2(∇(α ∨ β)− αr1 − βr2).

Applying Lemma 4.10 for E1 = E, E2 = E ∨ E, S1 = T2UE , S2 = F = T1UE ⊗ T1UE ,
I1 = R1 = Id,R2 = R and I2 = I we get:

Y(ϕ2ϕ1) = (T1UE(∇(α ∨ β))⊗ T1UE(∇(α ∨ β)))(x2)− (T1UE(αr1)⊗ T1UE(αr1))(x2)

−(T1UE(βr2)⊗ T1UE(βr2))(x2)

= (t1 ⊗ t1)(∇(α ∨ β)i1a⊗∇(α ∨ β)i2b+∇(α ∨ β)i2d⊗∇(α ∨ β)i1c

= (t1 ⊗ t1)(αa⊗ βb+ βd⊗ αc).

Hence

θ2(ϕ
op
1 ◦ ϕ2

op) = θ2(ϕ
op
1 ) ◦ θ4(ϕ2

op) by 4.1.5.

Applying Lemma 4.10 for E1 = E, E2 = E ∨ E, S1 = F = T2UE , S2 = T1UE ⊗ T1UE ,
I1 = R1 = Id,R2 = R and I2 = I we get:

Y(ϕ′
2ϕ1) = T2UE(∇(α ∨ β))(t2(ξ − i1r1ξ − i2r2ξ))− T2UE(αr1)(t2(ξ − i1r1ξ − i2r2ξ))

−T2UE(βr2)(t2(ξ − i1r1ξ − i2r2ξ))

= t2(∇(α ∨ β)ξ − αr1ξ − βr2ξ − αr1ξ + αr1ξ − βr2ξ + βr2ξ).

Thus

θ1(ϕ
op
1 ◦ ϕ

′
2
op

) = θ2(ϕ
op
1 ) ◦ θ3(ϕ

′
2
op

) by 4.1.4.

Finally, let

T2UE
ϕ1 // T2UE

ϕ2 // T1UE ⊗ T1UE

such that:

x1 = Y(ϕ1) = t2(γ) and x2 = Y(ϕ2) = α⊗ β

for α, β, γ ∈ C(E,E). Then:

Y((ϕ2ϕ1) = (T1UE(γ)⊗ T1UE(γ))(α⊗ β) = γα⊗ γβ

whence

θ2(ϕ
op
1 ◦ ϕ2

op) = θ1(ϕ
op
1 ) ◦ θ2(ϕ2

op) by 4.1.1.

�

Proof of Theorem 4.2. Combining Theorem 4.7 and Theorem 4.8 we obtain the result.
�

Remark 4.11. Applying the ideas of this section to linear functors we find again Theorem
3.12 since, in this case, the full subcategory P of Lin(C, Ab) having the single object
T1UE is equivalent to the ring (Λ)op = EndP(T1UE).

4.4. The category R-mod. In this section, we give a reformulation of the structure of
an R-module that motivates the introduction of quadratic C-modules in section 5.

Lemma 4.12. An R-module M : R→ Ab is equivalent with the following data:

(1) a left Λ-module Me;
(2) a symmetric Λ⊗ Λ-module Mee (with involution denoted by T );

(3) a map of Λ-modules

p : (Λ⊗ Λ) ⊗
(Λ⊗Λ)≀S2

Mee →Me

where the structure of right (Λ⊗Λ) ≀S2-module on Λ⊗Λ is given by 4.1.5, and

the structure of Λ-module on Λ⊗ Λ is given by the diagonal action;
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(4) a map of symmetric Λ⊗ Λ-modules

h : T2UE(E | E)⊗
Λ

Me →Mee

such that for α, β ∈ C(E,E), ξ ∈ C(E,E ∨ E), a ∈ Me and m ∈ Mee the following
relations hold:

(RM1) t2(∇(α ∨ β)ξ − αr1ξ − βr2ξ)a = p(α⊗ β ⊗ h(ρ2
(1,2)t2(ξ)⊗ a))

(RM2) h(ρ2
(1,2)t2(ξ)⊗ p(α⊗ β ⊗m)) = (r1ξα⊗ r2ξβ)m+ (r1ξβ ⊗ r2ξα)Tm.

Proof. Given F ∈ R-mod, let Me = F (Re), Mee = F (Ree), p(α⊗β⊗m) = F (α⊗β)(m)

and h(ξ̃ ⊗ a) = F (ξ̃)(a) where ξ̃ = ρ2
(1,2)t2(ξ). Then the relation (RM1) corresponds to

the relation F ((α⊗ β) ◦ ξ̃) = F (α⊗ β) ◦ F (ξ̃), in fact:

F ((α⊗ β)ξ̃)(a) = F (∇(α ∨ β)ξ − αr1ξ − βr2ξ)(a) by 4.1.4

= t2(∇(α ∨ β)ξ − αr1ξ − βr2ξ)a

while

F (α⊗ β) ◦ F (ξ̃)(a) = F (α⊗ β)h(ξ̃ ⊗ a)

= p(α⊗ β ⊗ h(ξ̃ ⊗ a)).

Similarly, the relation (RM2) corresponds to the relation: F (ξ̃◦(α⊗β)) = F (ξ̃)◦F (α⊗
β). In fact:

F (ξ̃ ◦ (α⊗ β))(m) = F (r1ξα⊗ r2ξβ + (r1ξβ ⊗ r2ξα)t)(m)

= (r1ξα⊗ r2ξβ)m+ (r1ξβ ⊗ r2ξα)Tm

while

F (ξ̃) ◦ F (α⊗ β)(m) = F (ξ̃)p(α⊗ β ⊗m)

= h(ξ̃ ⊗ p(α⊗ β ⊗m)).

�

5. Quadratic C-modules

In this section we introduce quadratic C-modules which generalize to any pointed
category C the quadratic Z-modules considered by Baues in [1] for C = Ab. We show that
quadratic C-modules constitute a minimal description ofR-modules, and thus of reduced
quadratic functors from C to Ab if C is a theory generated by E. We make the functor
from quadratic functors to quadratic C-modules explicit; a canonical inverse functor,
however, is more difficult to exhibit, and is provided in section 6 by the construction of
a quadratic tensor product.

5.1. Quadratic C-modules.

Definition 5.1. (Proto-quadratic C-module) A proto-quadratic C-module relative
to E is a diagram of group homomorphisms:

M = (T11(cr2U)(E,E)⊗Λ Me
Ĥ
−→ Mee

T
−→ Mee

P
−→ Me)

where

• Me is a left Λ-module;
• Mee is a symmetric Λ̄⊗ Λ̄-module with involution T ;
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• P : Mee → Me is a homomorphism of Λ-modules with respect to the diagonal
action of Λ on Mee, i.e. for α ∈ C(E,E) and m ∈Mee:

P ((ᾱ⊗ ᾱ)m) = αP (m),

and satisfies PT = P ;
• Ĥ is a homomorphism of symmetric Λ̄⊗Λ̄-modules such that for ξ ∈ C(E,E∨E)

and a ∈Me the following relation holds:

(QM1) (∇2ξ)a = (r2
1ξ)a+ (r2

2ξ)a+ P (Ĥ(ρ2
12(ξ)⊗ a)).

Remark 5.2. By Proposition 2.14 condition (QM1) implies that coker(P ) is a Λ-module.

Definition 5.3. (Quadratic C-module) A quadratic C-module (relative to E) is a
proto-quadratic C-module (relative to E) as above satisfying the additional property that
for ξ ∈ C(E,E ∨ E) and m ∈Mee

(QM2) Ĥ(ρ2
12(ξ)⊗ Pm) = (r2

1ξ ⊗ r
2
2ξ)(m+ Tm).

The intermediate notion of proto-quadratic C-module is justified by the fact that it
suffices to give rise to quadratic functors via the quadratic tensor product; however, we
show in Theorem 6.17 below that a proto-quadratic C-module satisfies relation (QM2)
iff the cross-effect of the associated quadratic tensor product is T11(Mee), see Theorem
3.22.

Remark 5.4. Suppose that E admits a comultiplication µ : E → E ∨ E in C admitting
the zero map E → 0 as a counit. Write µ′ = (ι2(1,2))

−1(µ − i21 − i
2
2) ∈ cr2U(E,E) and

α • β = (α, β)µ for α, β ∈ C(E,E). Then taking ξ = (α ∨ β)µ relation (QM1) implies
that

(α • β)a = αa+ βa+ P
(

Ĥ
(

t11(ι
2
(1,2))

−1
(

(α ∨ β)µ− (α ∨ β)i21 − (α ∨ β)i22
)

⊗ a)
)

= αa+ βa+ P
(

(ᾱ⊗ β̄)Ĥ(µ′ ⊗ a)
)

by Λ̄⊗ Λ̄-linearity of Ĥ . This shows that (QM1) is a generalization of the distributivity
law (α+ β)a = αa+ βa+ P

(

(α⊗ β)H(a)
)

in the case where C is an additive category

[1]. In particular, Ĥ and P are generalizations of the second Hopf invariant and the
Whitehead product [id, id], respectively.

Moreover, taking ξ = µ in relation (QM2) shows that under the above assumption

T is determined by Ĥ and P , as

T (m) = Ĥ(ρU12(µ)⊗ Pm)−m

= Ĥ(µ′ ⊗ Pm)−m.

This generalizes the formula T = HP − 1 in [1], [4], cf. the case where E is a cogroup

considered in section 7. In general, however, T is not determined by Ĥ and P , as is
illustrated by the following “extreme” example.

Example 5.5. Suppose that C and E are such that C(E,E ∨ E) = i21∗C(E,E) ∪
i22∗C(E,E). In particular, this holds when C is the category Γ of finite pointed sets
and E = [1] = {0, 1} is its canonical generator. Then U(E|E) = 0 by (2.13.7), whence

Λ = Λ̄ and the domain of Ĥ is trivial. Thus a quadratic C-module relative to E is a
diagram

M = (Mee
T
−→ Mee

P
−→ Me)

satisfying the properties in Definition 5.1 which do not involve Ĥ; in fact, the relations
(QM1) and (QM2) are trivially satisfied. Together with Theorem 7.1 this reproduces
a description of quadratic functors from Γ to Ab which is a particular case of results
obtained in [20].
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Remark 5.6. In view of the isomorphism in Proposition 2.16 the map Ĥ in the definition
of a (proto-)quadratic C-module can be replaced by a group homomorphism:

H̃ : U(E ∨ E)⊗Λ Me →Mee

satisfying the following relations for α, β ∈ C(E,E), ξ ∈ C(E,E ∨E), γ ∈ C(E,E ∨E ∨
E), a ∈Me:

(H1) H̃((α ∨ β)ξ ⊗ a) = (ᾱ⊗ β̄)H̃(ξ ⊗ a)

(H2) H̃(τξ ⊗ a) = TH̃(ξ ⊗ a)

(H3) H̃(i21α⊗ a) = H̃(i22α⊗ a) = 0

(H4) H̃((∇2 ∨ Id− r2
1 ∨ Id− r

2
2 ∨ Id)γ ⊗ a) = 0

(H5) H̃((Id ∨ ∇2 − Id ∨ r2
1 − Id ∨ r

2
2)γ ⊗ a) = 0.

In fact, (H1) translates the fact that Ĥ is a morphism of Λ̄⊗Λ̄-modules, (H2) corresponds

to the fact that Ĥ is a morphism of symmetric modules, and (H3), (H4) and (H5)

correspond to the fact that the source of Ĥ is (T11(cr2(U))(E,E)⊗ΛMe, see Proposition
2.16.

In the following proposition we give a useful equivalent formulation of condition
(QM1).

Proposition 5.7. Relation (QM1) means that the following diagram commutes

Mee
P // Me

U(E|E)⊗Λ Me

Ĥ(t11⊗1)

OO

SU
2 ⊗1

// U(E)⊗Λ Me

µe ≃

OO

where µe is the canonical isomorphism and SU2 the map given in Definition 1.8.

Proof. We have, for ξ ∈ C(E,E ∨ E)

µe(S
U
2 ⊗ 1)(ρ2

(1,2)(ξ)⊗ a) = µe(U(∇2)ι2(1,2)ρ
2
(1,2)(ξ)⊗ a) by definition of SU2 in 1.8

= µe(U(∇2)(Id− i21∗ ◦ r
2
1∗ − i

2
2∗ ◦ r

2
2∗)(ξ)⊗ a) by 2.13.5

= µe((U(∇2)(ξ)− r2
1∗(ξ)− r

2
2∗(ξ))⊗ a)

= µe((∇
2ξ − r2

1ξ − r
2
2ξ)⊗ a)

= (∇2ξ)a− (r2
1ξ)a− (r2

2ξ)a.

So the diagram commutes if and only if for all ξ and a

P (Ĥ(ρ2
12(ξ)⊗ a)) = (∇2ξ)a− (r2

1ξ)a− (r2
2ξ)a.

�

Definition 5.8 (Morphisms of (proto)-quadratic C-modules). A morphism φ :
M → M ′ of (proto)-quadratic C-modules relative to E is a pair φ = (φe, φee) where
φe : Me → M ′

e is a morphism of Λ-modules and φee : Mee → M ′
ee is a morphism of

symmetric Λ̄⊗ Λ̄-modules which commute with the structure maps Ĥ, T and P .

Composition of morphisms of (proto)-quadratic C-modules is defined in the obvious
way. This allows to give the following definition.

Definition 5.9. The category PQModEC (resp. QModEC ) is the category having as
objects the proto-quadratic C-modules (resp. quadratic C-modules) and as maps the
morphisms of proto-quadratic C-modules (resp. quadratic C-modules).
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Remark 5.10. There is a fully-faithful functor I1 : Λ-Mod→ QModEC given by

I1(M) = (T11(cr2U)(E,E)⊗Λ M
Ĥ
−→ 0

T
−→ 0

P
−→M).

In fact, I1(M) satisfies (QM1) as M is a Λ-module, and (QM2) is trivial.

5.2. Equivalence between R-modules and quadratic C-modules. The aim of this
section is to prove the equivalence between R-modules and quadratic C-modules. We
begin by recalling the following notation.

Notation 5.11. If M is an abelian group equipped with an involution t, we denote by
MS2 the coinvariants of the action of the symmetric group S2 on M given by t, i. e.
MS2 = M/(1−t)M . Furthermore, we denote by π : M →MS2 the canonical projection.

Lemma 5.12. Let M be a symmetric Λ ⊗ Λ-module with involution T . There is a
natural isomorphism of groups:

χ : (Λ⊗ Λ) ⊗
(Λ⊗Λ)≀S2

M →MS2

defined by:

χ(α⊗ β ⊗m) = π((α⊗ β)m).

Proof. χ is well defined since

χ((α⊗ β)(a⊗ b+ (c⊗ d)t)⊗m) = χ((αa⊗ βb+ βd⊗ αc)⊗m) by 4.1.5

= π((αa⊗ βb)m) + π((βd⊗ αc)m)

= π((αa⊗ βb)m) + π(T (βd⊗ αc)m)

= π((αa⊗ βb)m) + π((αc⊗ βd)Tm)

= π((αa⊗ βb+ (αc⊗ βd)t)m)

= π((α⊗ β)(a⊗ b+ (c⊗ d)t)m) by 4.1.5

= χ(α⊗ β ⊗ (a⊗ b+ (c⊗ d)t)m).

Let χ′ : M → (Λ⊗ Λ) ⊗
(Λ⊗Λ)≀S2

M given by: χ′(m) = 1⊗ 1⊗m. Then:

χ′(Tm) = 1⊗ 1⊗ Tm

= 1⊗ 1⊗ ((1⊗ 1)tm)

= (1⊗ 1)(1⊗ 1)t⊗m

= (1⊗ 1)⊗m by 4.1.5

= χ′(m)

whence χ′ factors through MS2 and provides an inverse map of χ. �

Theorem 5.13. There is an equivalence of categories ϑ : R–mod → QModEC defined,
using Lemma 4.12, by

ϑ(M) = (T11(cr2U)(E,E)⊗Λ Me
Ĥ
−→ Mee

T
−→ Mee

P
−→ Me)

where Ĥ = h ◦ (cr2(t2) ⊗ 1) and where P = Pπ with P : (Mee)S2 → Me such that
Pχ = p.

The proof of this theorem relies on the following lemma.

Lemma 5.14. Let M ∈ PQModEC . Then the Λ-module structure on Me factors through

Λ.
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Proof. Let ϕ : Λ → End(Me), ϕ(λ)(a) = λa for (λ, a) ∈ Λ × Me. Then for ξ ∈
C(E,E ∨E), we have:

cr2(ϕ)ρ2
(1,2)(ξ)(a) = (∇ξ)a− (r1ξ)a− (r2ξ)a

= PĤ(t11ρ
2
(1,2)(ξ)⊗ a) by (QM1)

= ϕ̃(t11ρ
2
(1,2)(ξ))(a)

where ϕ̃ : T11cr2U(E,E)→ End(Me) is given by

ϕ̃(x)(a) = PĤ(x⊗ a).

Thus, cr2(ϕ) = ϕ̃t11, whence ϕ is a quadratic map (cf. section 2.3). Now the assertion
follows from Proposition 2.10. �

Proof of Theorem 5.13. Let Me be a Λ-module and Mee be a symmetric Λ⊗Λ-module.

First note that by Lemma 5.14, Me actually is a Λ-module if Me and Mee are part of a

quadratic C-module. In view of Lemma 5.12, the data of a morphism of Λ-module p is
equivalent with the data of a Λ-equivariant morphism P : Mee →Me such that PT = P .
Moreover, a morphism of symmetric Λ ⊗ Λ-modules h : T2U(E | E) ⊗Λ Me → Mee is

equivalent with a morphism of symmetric Λ⊗Λ-modules Ĥ : T11(cr2U)(E,E)⊗ΛMe →
Mee in view of the isomorphism of symmetric bifunctors:

cr2(t2) : T11(cr2UE)→ cr2(T2UE)

given in Theorem 2.5. Thus it remains to show that for k = 1, 2 the relations (RMk)
and (QMk) are equivalent. This is based on the following relations for α, β ∈ C(E,E),
ξ ∈ C(E,E ∨E).

ι2(1,2)ρ
2
(1,2)((α ∨ β)ξ) = (α ∨ β)ξ − i1r1(α ∨ β)ξ − i2r2(α ∨ β)ξ(5.14.1)

= (α ∨ β)ξ − i1αr1ξ − i2βr2ξ(5.14.2)

= (α ∨ β)ξ − (α ∨ β)i1r1ξ − (α ∨ β)i2r2ξ(5.14.3)

= UE(α ∨ β)ι2(1,2)ρ
2
(1,2)(ξ)(5.14.4)

= ι2(1,2)UE(α|β)ρ2
(1,2)(ξ).(5.14.5)

Now consider (RM1). On the one hand, we have

t2(∇(α ∨ β)ξ − αr1ξ − βr2ξ)x = t2(∇(α ∨ β)ξ − r1(α ∨ β)ξ − r2(α ∨ β)ξ)x .

On the other hand:

p(α⊗ β ⊗ h(ρ2
(1,2)t2(ξ)⊗ x)) = P ((α⊗ β)h(t2ρ

2
(1,2)(ξ)⊗ x))

= Ph(T2UE(α | β)t2ρ
2
(1,2)(ξ)⊗ x)

since h is (Λ⊗ Λ) ≀S2-equivariant, and by 4.1.6; thus

p(α⊗ β ⊗ h(ρ2
(1,2)t2(ξ)⊗ x)) = PĤ(t11ρ

2
(1,2)((α ∨ β)ξ)⊗ x) by 5.14.5.

Hence (RM1) is equivalent with (QM1). To see the equivalence between (RM2) and
(QM2), just note that:

h(ρ2
(1,2)t2(ξ)⊗ p(α⊗ β ⊗m)) = Ĥ(t11ρ

2
(1,2)(ξ)⊗ P ((α⊗ β)m))

while

(r1ξα⊗ r2ξβ)m+ (r1ξβ⊗ r2ξα)Tm = (r1ξ⊗ r2ξ)((α⊗ β)m) + (r1ξ ⊗ r2ξ)T ((α⊗ β)m).

�
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5.3. Quadratic C-modules obtained from quadratic functors. We here provide
an explicit construction of the composite functor

S2 : Quad(C, Ab)
σ // R–mod

θ // QModEC .

Lemma 5.15. For F ∈ Quad(C, Ab) there exists a natural transformation of functors
HF : (T11(cr2U) ⊗Λ F (E))∆C → (cr2F )∆C such that the following natural diagram is
commutative for X ∈ C:

T11(cr2U)(X,X)⊗Λ F (E)
(HF )X // F (X|X)

U(X|X)⊗Λ F (E).
(t11⊗1)X

jjjjVVVVVVVVVVVVVVVVV (cr2(u′
F

))X

66mmmmmmmmmmmmm

Proof. Recall that the cross-effect of a quadratic functor is a bilinear bifunctor. Hence
the existence of HF follows from the universal property of t11.

�

Proposition 5.16. For F ∈ Quad(C, Ab) we have

S2(F ) = (T11(cr2U)(E,E)⊗Λ F (E)
(HF )E// F (E|E)

TF
// F (E|E)

(SF
2 )E // F (E)) .

Checking this is straightforward going through the various definitions involved in the
construction of σ and θ.

The following proposition formalizes the fact that S2 extends the functor S1.

Proposition 5.17. The following diagram is commutative

Quad(C, Ab)
S2 // QModEC

Lin(C, Ab)
?�

OO

S1

// Λ−Mod

I1

OO

where I1 is the functor defined in Remark 5.10.

6. Quadratic tensor product

The left adjoint of the functor S2 : Quad(C, Ab) → QModEC is given by a con-
struction which we call the quadratic tensor product. In fact, a special case of a
quadratic tensor product first appeared in [1], providing a left adjoint of a functor
Quad(Ab,Ab) → QMod(Z) is defined explicitely by generators and relations; here
QMod(Z) is the category of quadratic Z-modules. Similarly, in [4] a left adjoint of
Quad(Gr,Gr) → Square is constructed by generators and relations; here Square is
the category of square groups (see also section 8.8). In this paper, however, we give a
more conceptual construction of the quadratic tensor product, by means of a push-out
diagram, in our general setting. We expect to generalize this construction to polynomial
functors of higher degree. A description of our quadratic tensor product in terms of
generators and relations is nevertheless provided generalizing the constructions in [1]
and [4]. We then compute the quadratic tensor product E ⊗M for M ∈ QModEC and
the cross-effect of −⊗M which are two essential tools in the proof of our main theorem
in section 7.
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6.1. Definition. We start with the following straightforward lemma.

Lemma 6.1. If N is a symmetric Λ ⊗ Λ-module with involution T and X ∈ C, the
group M = ((T1U)(X)⊗ (T1U)(X))⊗Λ⊗Λ N is equipped with an involution t defined by

t(x⊗ y ⊗ n) = y ⊗ x⊗ T (n)

for x, y ∈ (T1U)(X) and n ∈ N .

To define the quadratic tensor product, we need to consider the coinvariants by the
action of the symmetric group S2.

Definition 6.2. (Quadratic tensor product) Let M be a proto-quadratic C-module
relative to E and X ∈ C. The quadratic tensor product X ⊗M ∈ Ab is the push-out of
the following diagram of abelian groups:

((U(X)⊗ U(X))⊗Λ⊗Λ U(E|E)⊗Λ Me)⊕ (U(X)⊗Mee)
φ=(φ1,t2⊗P )

//

ψ=(ψ1,π(δ⊗1))
��

(T2U)(X)⊗Λ Me

ψ̂

��
(((T1U)(X)⊗ (T1U)(X))⊗Λ⊗Λ Mee)S2

φ̂

// X ⊗M

where ψ1 = π(t1 ⊗ t1 ⊗ Ĥ(t11 ⊗ 1)), δ(f) = (t1f) ⊗ (t1f) for f ∈ C(E,X) and φ1(f ⊗
g ⊗ x⊗ a) = t2S

U
2 U(f |g)(x)⊗ a for f, g ∈ C(E,X), x ∈ U(E|E) and a ∈Me.

In the following proposition we give a description of the quadratic tensor product
X ⊗M by generators and relations.

Proposition 6.3. Let M be a proto-quadratic C-module relative to E and X ∈ C. The
quadratic tensor product X ⊗M ∈ Ab is the abelian group generated by the symbols

f ⊗ a, f ∈ C(E,X), a ∈Me

[f, g]⊗m, f, g ∈ C(E,X), m ∈Mee

subject to the following relations:

(1) (fβ)⊗ a = f ⊗ (βa) for β ∈ C(E,E)
(2) f ⊗ (a+ b) = f ⊗ a+ f ⊗ b
(3) (1, 1, 1)ξ⊗a−(1, 1, 0)ξ⊗a−(1, 0, 1)ξ⊗a−(0, 1, 1)ξ⊗a+(1, 0, 0)ξ⊗a+(0, 1, 0)ξ⊗

a+ (0, 0, 1)ξ ⊗ a = 0 for ξ ∈ C(E,X ∨X ∨X)
(4) [fα, gβ]⊗m = [f, g]⊗ (α⊗ β)m for α, β ∈ C(E,E)
(5) [f, g]⊗ (m+ n) = [f, g]⊗m+ [f, g]⊗ n
(6) [∇2

∗(ξ), g]⊗m = [r2
1∗(ξ), g]⊗m+ [r2

2∗(ξ), g]⊗m for ξ ∈ C(E,X ∨X)
(7) [f, g]⊗m = [g, f ]⊗ T (m)
(8) [f, f ]⊗m = f ⊗ P (m)

(9) (f, g)γ⊗a = fr2
1γ⊗a+gr2

2γ⊗a+[f, g]⊗Ĥ(t11ρ
2
(1,2)(γ)⊗a) for γ ∈ C(E,E∨E).

Proof. The symbol f ⊗ a corresponds to a generator of U(X) ⊗Λ Me and [f, g] ⊗ m
corresponds to a generator of (U(X)⊗Λ U(X))⊗Λ⊗Λ Mee.

For the elements f ⊗ a, relation (1) corresponds to the fact that the tensor product
is taken over Λ, (2) translates the linearity in Me, (3) corresponds to the fact that the
element f ⊗ a is in T2U(X)⊗Λ Me where we use Proposition 2.17 which describes T2F
as a quotient of F .

For the elements [f, g] ⊗ m, (4) corresponds to the fact that the tensor product is
taken over Λ⊗Λ, (5) translates the linearity in Mee, (6) (also using (7)) corresponds to
the fact that the element [f, g]⊗m lies in ((T1U)(X) ⊗ (T1U)(X)) ⊗Λ⊗Λ Mee, and (7)
translates the fact that we take the coinvariants by the action of S2.

Finally, (8) and (9) correspond to the fact that the diagram in Definition 6.2 is a
pushout. �
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We need the following technical lemma.

Lemma 6.4. The quadratic tensor product X ⊗ M is equal to the pushout Π of the
following diagram of abelian groups

((T1UX ⊗ T1UX) ⊗
Λ⊗Λ

T11(cr2U)(E,E) ⊗
Λ

Me)S2 ⊕ (UX ⊗Mee)
φ=(φ′1⊗1,t2⊗P )

//

ψ=(ψ1,π(δ⊗1))
��

T2UX ⊗
Λ

Me

ψ̂

��
((T1UX ⊗ T1UX)⊗Λ⊗Λ Mee)S2

φ̂

// Π

where UX := U(X), TiUX := TiU(X) for i ∈ {1, 2}, ψ1 = 1⊗ 1⊗ Ĥ and φ′
1 is the

following composite map:

(T1U(X)⊗ T1U(X))⊗Λ⊗Λ T11(cr2U)(E,E)
φ′1 //_____

1⊗1⊗cr2(t2)
��

T2U(X)

(T1U(X)⊗ T1U(X)) ⊗
Λ⊗Λ

cr2(T2U)(E,E)
u′

cr(T2U)

// cr2(T2U)(X,X).

S
T2U

2

OO

Proof. We have the following surjection

(UX ⊗ UX) ⊗
Λ⊗Λ

U(E|E)⊗
Λ
Me

π(t1⊗t1⊗t11⊗1)
// (((T1U)X ⊗ (T1U)X) ⊗

Λ⊗Λ
T11(cr2U)(E,E)⊗

Λ
Me)S2

which verifies

ψ1 = π(t1 ⊗ t1 ⊗ Ĥ(t11 ⊗ 1)) = π(1⊗ 1⊗ Ĥ)(t1 ⊗ t1 ⊗ t11 ⊗ 1).

We first check that φ1 = (φ′
1⊗ 1)(t1⊗ t1⊗ t11⊗ 1). For f, g ∈ C(E,X) and x ∈ U(E|E)

we have:

φ′
1(t1 ⊗ t1 ⊗ t11)(f ⊗ g ⊗ x) = ST2U

2 u′cr2(T2U)(1⊗ 1⊗ cr2(t2))(t1(f)⊗ t1(g)⊗ t11(x))

= ST2U
2 cr2(T2U)(f, g)cr2(t2)(x) by definition of u′cr2(T2U)

= (T2U)(∇2)ι2(1,2)cr2(T2U)(f, g)cr2(t2)(x) by definition of ST2U
2

= (T2U)(∇2)(T2U)(f ∨ g)t2ι
2
(1,2)(x)

= t2 U(∇2)U(f ∨ g)ι2(1,2)(x)

= t2 U(∇2)ι2(1,2) U(f |g)(x)

= t2 S
U
2 U(f |g)(x).
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It remains to check that φ′
1 factors through the coinvariants, that is φ′

1(t1(f)⊗ t1(g)⊗
t11x) = φ′

1(t(t1(f)⊗ t1(g)⊗ t11x)). We have:

φ′
1(t(t1(f)⊗ t1(g)⊗ t11x)) = φ′

1(t1(g)⊗ t1(f)⊗ t11(ι
2
(1,2))

−1U(τ)ι2(1,2)x)

= t2 S
U
2 U(g|f)(ι2(1,2))

−1U(τ)(ι2(1,2)x) by the previous calculation

= t2 U(∇2)ι2(1,2)U(g|f)(ι2(1,2))
−1U(τ)(ι2(1,2)x)

= t2 U(∇2)U(g ∨ f)ι2(1,2)(ι
2
(1,2))

−1U(τ)(ι2(1,2)x)

= t2 U(∇2)U(g ∨ f)U(τ)(ι2(1,2)x)

= t2 U(∇2)U(τ)U(f ∨ g)(ι2(1,2)x)

= t2 U(∇2τ)U(f ∨ g)(ι2(1,2)x)

= t2 U(∇2)U(f ∨ g)(ι2(1,2)x)

= t2 U(∇2)ι2(1,2)U(f |g)(x)

= t2 S
U
2 U(f |g)(x)

= φ′
1(t1(f)⊗ t1(g)⊗ t11x).

�

6.2. The quadratic tensor product defines a quadratic functor. The aim of this
section is to prove the following result.

Proposition 6.5. For M ∈ PQModEC the functor given by the quadratic tensor product:
−⊗M : C → Ab is a quadratic functor.

The proof of this proposition relies on the following lemma.

Lemma 6.6. For M a proto-quadratic C-module, the following natural transformation
of functors from C to Ab is surjective:

cr2(φ̂) : cr2((((T1U(−)⊗ T1U(−))⊗Λ⊗Λ Mee)∆C)S2)→ cr2(−⊗M);

here φ̂ is the map in the push-out diagram in Definition 6.2.

Remark 6.7. In Theorem 6.17 below we give an improved version of this lemma.

Proof of Lemma 6.6. To simplify notation we write T11(Mee)∆C instead of (((T1U)(−)⊗
(T1U)(−))⊗Λ⊗Λ Mee)∆C. Recall that the functor T11 is the functor defined in 3.20.

By the universal property of a push-out, we obtain the existence of a map f : X⊗M →
coker(φ) making the following diagram of abelian groups commutative:

(UX ⊗ UX)⊗Λ⊗Λ U(E|E)⊗Λ Me ⊕ UX ⊗Mee

φ //

ψ

��

(T2U)(X)⊗Λ Me

ψ̂

��

!! !!CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

C

(((T1U)(X)⊗ (T1U)(X))⊗Λ⊗Λ Mee)S2
φ̂

//

0
--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

X ⊗M
f

((Q
Q

Q
Q

Q
Q

Q

coker(φ).

We deduce the existence of a natural exact sequence

(6.7.1) (T11(Mee)∆C)S2(X)
φ̂
−→ X ⊗M

f
−→ coker(φ)→ 0.

In the sequel we show that the functor coker(φ) is linear. Recall that φ1 = φ′
1(t1 ⊗

t1 ⊗ t11)⊗ 1 where (φ′
1(t1 ⊗ t1 ⊗ t11))X is given by the following composition:
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(U(X)⊗ U(X))⊗Λ⊗Λ U(E|E)
α // cr2(T2U)(X,X)

(S
T2U

2 )X// (T2U)(X)

where α = (u′cr2(T2U))X,X(1⊗ 1⊗ cr2(t2))(t1 ⊗ t1 ⊗ t11).

The functor T2U is quadratic by definition of T2, so cr2(T2U) is a bilinear functor, and
so is (T1U(−) ⊗ T1U(−)) ⊗Λ⊗Λ cr2(T2U)(E,E). Since (u′cr(T2U))E,E is an isomorphism

according to Theorem 3.22, we deduce by Proposition 1.18 that (u′cr(T2U)) is a natural

equivalence and (u′cr(T2U))X,X is an isomorphism. Furthermore 1⊗ 1⊗ cr2(t2) and t1 ⊗
t1 ⊗ t11 are surjective by construction. It follows that

coker((φ1)X) = coker((ST2U
2 )X) = T1(T2U)(X)

by Proposition 1.9.
Since Im(φ1) ⊂ Im(φ) we see that coker(φ) is a quotient of coker(φ1) = T1(T2U)⊗Λ

Me which is a linear functor. Thus coker(φ) is a linear functor by Proposition 1.7. But
the cross-effect functor is exact by Proposition 1.5, so applying it to sequence (6.7.1)

shows that cr2(φ̂) is pointwise surjective.
�

Proof of Proposition 6.5. The functor T11(Mee) is bilinear and bireduced, so by Lemma
2.6, T11(Mee)∆C is quadratic. By Proposition 1.12, we deduce that (T11(Mee)∆C)S2

is quadratic. Consequently cr2((T11(Mee)∆C)S2) is bilinear. Since cr2(− ⊗ M) is a
quotient of cr2((T11(Mee)∆C)S2) by Lemma 6.6, the functor cr2(−⊗M) is also bilinear,
so −⊗M is quadratic.

�

Proposition 6.5 leads to the following definition.

Definition 6.8. The functor

T2 : QModEC → Quad(C, Ab)

is defined as follows: for M ∈ QModEC let T2(M) = − ⊗M , and for a morphism of
quadratic C− modules (φe, φee) : M → N let T2(φe, φee) = ϕ where ϕX : X⊗M → X⊗N
is given by the universal property of a push-out.

Remark 6.9. The functor T2 extends the tensor product functor T1 in the following sense:
it improves the approximation of a quadratic functor F by u′ : T2U(−)⊗ΛF (E)→ F by
taking into account the cross-effect of F in ”amalgamating” T2U(X)⊗Λ F (E) with the
image of F (X|X) under (SF2 )X . We expect that this idea can be extended to polynomial
functors of higher degree.

Remark 6.10. Since the functor −⊗M is quadratic by Proposition 6.5, the computation
of (−⊗M)(E∨n) for n ≥ 1 reduces to computing (−⊗M)(E) and cr2(−⊗M)(E,E),
see Proposition 1.4.

6.3. Computation of the quadratic tensor product E⊗M . In section 7, in order
to obtain the desired equivalence between quadratic functors and quadratic C-modules,
we need to compute E ⊗M for M ∈ QModEC , as follows.

Proposition 6.11. For M ∈ PQModEC , there exists a natural isomorphism of abelian
groups

E ⊗M
≃
−→Me.

In order to define this isomorphism we need the following lemmas.
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Lemma 6.12. For M ∈ PQModEC , there exists an isomorphism µe : (T2U)(E)⊗ΛMe →
Me making the following diagram commutative

U(E)⊗Λ Me

µe //

t2⊗1 )) ))RRRRRRRRRRRRR
Me

(T2U)(E)⊗Λ Me

µe

77

where µe is the canonical isomorphism. In particular, the map t2⊗1 is an isomorphism.

Proof. To prove that µe exists we have to prove that µe(Ker(t2⊗1)) = 0. By Proposition
2.13 we have

T2(F ) = coker(ker(cr2F (X|X)
t11−→ (T11cr2F )(X|X))

SU
2−→ F (X)).

So we have ker(t2) = SU2 (ker(t11)) and

µe(ker(t2 ⊗ 1)) = µe(S
U
2 ⊗ 1)(ker(t11)⊗Me) = PĤ(t11 ⊗ Id)(ker(t11)⊗Me) = 0

where the second equality is given by Proposition 5.7.
Since t2⊗1 is surjective and µe is an isomorphism we deduce that µe is an isomorphism.
As a consequence we obtain that t2 ⊗ 1 is also an isomorphism. �

Lemma 6.13. For M ∈ PQModEC , there exists a morphism P : (Mee)S2 →Me making
the following diagram commutative

Mee
P //

π $$ $$IIIIIIIII
Me

(Mee)S2

P

::

Proof. This is due to the relation PT = P in Definition 5.3. �

Lemma 6.14. There exists an isomorphism

µee : ((T1U)(E)⊗ (T1U)(E))⊗Λ⊗Λ Mee)S2 → (Mee)S2

making the following diagram commutative

((T1U)(E)⊗ (T1U)(E))⊗Λ⊗Λ Mee

µee //

π
����

Mee

π
����

(((T1U)(E)⊗ (T1U)(E))⊗Λ⊗Λ Mee)S2

µee // (Mee)S2

where ((T1U)(E)⊗ (T1U)(E))⊗Λ⊗Λ Mee

µee // Mee is the canonical isomorphism.

Proof. This is immediate from the fact that the canonical isomorphism

((T1U)(E)⊗ (T1U)(E))⊗Λ⊗Λ Mee

µee // Mee

is compatible with the involutions. �

Proposition 6.11 is a direct consequence of the following lemma.

Lemma 6.15. For M ∈ PQModEC , there exists an isomorphism

(P µee, µe) : E ⊗M →Me

such that (P µee, µe)φ̂ = P µee and (P µee, µe)ψ̂ = µe where the maps P , µee and µe
are defined in Lemma 6.13, 6.14 and 6.12 respectively and the maps φ̂ and ψ̂ appear in
the pushout diagram of Proposition 6.2.
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Proof. To prove that the morphism (P µee, µe) exists, it is sufficient to prove that
P µeeψ = µeφ by the universal property of the push-out.

For f ∈ C(E,E) and m ∈ Mee we have:

P̄ µee π(δ ⊗ 1)(f ⊗m) = Pµee(f̄ ⊗ f̄ ⊗m) by Lemmas 6.13 and 6.14

= P ((f̄ ⊗ f̄).m) by definition of µee

= fP (m) by Definition 5.1

= µe(f ⊗ P (m)) by definition of µe

= µe (t2 ⊗ Id)(f ⊗ P (m)) by Lemma 6.12

= µe (t2 ⊗ P )(f ⊗m).

For f, g ∈ C(E,E), x ∈ U(E|E), a ∈ Me we have:

P̄µeeπ(t1 ⊗ t1 ⊗ Ĥ(t11 ⊗ 1))(f ⊗ g ⊗ x⊗ a)

= Pµee(f̄ ⊗ ḡ ⊗ Ĥ(t11(x)⊗ a)) by Lemmas 6.13 and 6.14

= P ((f̄ ⊗ ḡ)Ĥ(t11(x)⊗ a)) by definition of µee
= PĤ((f̄ ⊗ ḡ)(t11(x)⊗ a)) since Ĥ is a morphism of Λ̄⊗ Λ̄−modules by Definition 5.1

= PĤ(t11(U(f | g)(x))⊗ a) by the structure of Λ̄⊗ Λ̄−module of T11(cr2U)(E,E)

= PĤ(t11 ⊗ Id)(U(f | g)(x)⊗ a)
= µe(S

U
2 ⊗ Id)(U(f | g)(x)⊗ a) by Proposition 5.7

= µe(t2 ⊗ Id)(S
U
2 ⊗ Id)(U(f | g)(x)⊗ a) by Lemma 6.12

= µe(t2S
U
2 U(f |g)(x)⊗ a).

Hence the morphism (P µee, µe) : E ⊗M →Me exists.
For m ∈Mee, we have:

µeeπ(δ ⊗ 1)(1⊗m) = m̄.

Since µee is an isomorphism by Lemma 6.14 we deduce that π(δ ⊗ 1) is surjective.
Consequently ψ is surjective and by general properties of push-out diagrams we obtain
that ψ̂ : (T2U)(E) ⊗Me → E ⊗M is surjective. Now, since (P µee, µe)ψ̂ = µe is an
isomorphism by Lemma 6.12, it follows that (P µee, µe) is an isomorphism. �

In particular, by Proposition 5.16, for F a quadratic functor, S2(F ) is a quadratic
C-module, so we can apply the previous lemma to S2(F ) to obtain:

Lemma 6.16. For F ∈ Quad(C, Ab) the morphism

((SF2 )E µee, µe) : E ⊗ S2(F )→ F (E).

is an isomorphism.

6.4. Computation of the cross-effect of −⊗M . The aim of this section is to prove
the following theorem which allows to compute the cross-effect of −⊗M , in Corollary
6.20.

Theorem 6.17. For C a pointed theory generated by E and M a proto-quadratic C-
module relative to E, the following natural transformation of functors is an equivalence
if and only if M is a quadratic C-module.

cr2(φ̂) : cr2((((T1U(−)⊗ T1U(−))⊗Λ⊗Λ Mee)∆C)S2)→ cr2(−⊗M)

Here φ̂ is the map in the push-out diagram in Definition 6.2.

The proof of this theorem relies on the following lemmas.
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Lemma 6.18. Let (B, T ) be a symmetric bifunctor from C to Ab such that B is bilinear
bireduced, see Definition 1.19. Then the map given by

(ι2(1,2))
−1πB(i21, i

2
2) : B(X, Y ) −→ cr2(B∆C)S2(X, Y )

for X, Y ∈ C, is a natural equivalence.

Proof. For X, Y ∈ C, we have B∆C(X ∨ Y ) = B(X,X) ⊕ B(X, Y ) ⊕ B(Y,X) ⊕
B(Y, Y ) since B is a bilinear functor. For X1 = X, X2 = Y and p, q = 1, 2 we
have TX1∨X2,X1∨X2B(i2p, i

2
q) = B(i2q , i

2
p)TXp,Xq

. Thus (B∆C)S2(X ∨ Y ) = B(X,X)S2 ⊕
B(Y, Y )S2 ⊕ (B(X, Y )⊕B(Y,X))S2 and cr2(B∆C)S2(X, Y ) = (B(X, Y )⊕ B(Y,X))S2

where the action of S2 on B(X, Y )⊕ B(Y,X) is given by t(x, y) = (TY,X(y), TX,Y (x)).

We have (ι2(1,2))
−1πB(i21, i

2
2)(x) = (x, 0). An inverse of this map is defined as follows: let

f : B(X, Y )⊕B(Y,X)→ B(X, Y ) be given by f(x, y) = x+TY,X(y). Then f(t(x, y)) =
TY,X(y) + TY,XTX,Y (x) = f(x, y). So f defines a map f̄ : (B(X, Y ) ⊕ B(Y,X))S2 →
B(X, Y ), and one easily checks that f̄ is the inverse of (ι2(1,2))

−1πB(i21, i
2
2). �

Lemma 6.19. For a Λ⊗Λ-module A, let µA : T11(A)(E,E)→ A denote the canonical
isomorphism. Then the following diagram is commutative:

N ⊕ U(E|E)⊗Mee

k1

≃
//

k2
��

cr2((T11(N)∆C)S2)(E,E)⊕ U(E|E)⊗Mee

cr2(ψ)
��

Mee
k3

≃ // cr2((T11(Mee)∆C)S2)(E,E)

where: N = T11(cr2(U))(E,E) ⊗Λ Me, k1 = (ι2(1,2))
−1πT11(N)(i21, i

2
2)(µN)−1 ⊕ 1, k2 =

(Ĥ, k′2) with k′2(ρ
2
(1,2)(ξ)⊗m) = (r2

1ξ⊗r
2
2ξ).(m+Tm) for ξ ∈ C(E,E∨E) and m ∈Mee,

and k3 = (ι2(1,2))
−1πT11(Mee)(i

2
1, i

2
2)(µMee

)−1.

Proof. The morphisms k1 and k3 are isomorphisms since µMee
and µN are the canoni-

cal isomorphisms and (ι2(1,2))
−1πT11(N)(i21, i

2
2) and (ι2(1,2))

−1πT11(Mee)(i
2
1, i

2
2) are isomor-

phisms by Lemma 6.18. The fact that k′2 is welldefined follows from the fact that k3 is
an isomorphism and from commutativity of the diagram which we prove now.

By Lemma 6.4, cr2(ψ) = (cr2(1⊗ 1⊗ Ĥ), cr2(π(δ ⊗ 1))).
The commutativity of the diagram on N follows from the naturality of µ and by the

fact that T11(−)(−,−) is a trifunctor.
To prove the commutativity of the diagram on U(E|E)⊗Mee we consider the injec-

tion ι2(1,2) : cr2((T11(Mee)∆C)S2)(E,E) → (T11(Mee)∆C)S2)(E ∨ E) and we prove that

ι2(1,2) cr2(ψ̄) k1 = ι2(1,2) k3 k2 on U(E|E)⊗Mee.
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ι2(1,2) cr2(ψ̄) k1(ρ
2
(1,2)(ξ)⊗m)

= ι2(1,2) cr2(π(δ ⊗ 1)) (ρ2
(1,2)(ξ)⊗m)

= π(δ ⊗ 1)ι2(1,2) (ρ2
(1,2)(ξ)⊗m)

= π(δ ⊗ 1)((ξ − i21r
2
1ξ − i

2
2r

2
2ξ)⊗m) by 2.13.5

= π((ξ ⊗ ξ − i21r
2
1ξ ⊗ i

2
1r

2
1ξ − i

2
2r

2
2ξ ⊗ i

2
2r

2
2ξ)⊗m)

= π(((i21r
2
1ξ + i22r

2
2ξ)⊗ (i21r

2
1ξ + i22r

2
2ξ)− i

2
1r

2
1ξ ⊗ i

2
1r

2
1ξ − i

2
2r

2
2ξ ⊗ i

2
2r

2
2ξ)⊗m)

by Lemma 3.6 (3) since T1U is linear

= π(i21r
2
1ξ ⊗ i

2
2r

2
2ξ ⊗m+ i22r

2
2ξ ⊗ i

2
1r

2
1ξ ⊗m)

= π(i21r
2
1ξ ⊗ i

2
2r

2
2ξ ⊗m+ t(i21r

2
1ξ ⊗ i

2
2r

2
2ξ ⊗ Tm)) cf. Propositions 3.28 and 3.25

= π(i21r
2
1ξ ⊗ i

2
2r

2
2ξ ⊗m+ i21r

2
1ξ ⊗ i

2
2r

2
2ξ ⊗ Tm) since π(tx) = π(x)

= π(i21r
2
1ξ ⊗ i

2
2r

2
2ξ ⊗ (m+ Tm))

= π T11(Mee)(i
2
1, i

2
2)(r

2
1ξ ⊗ r

2
2ξ ⊗ (m+ Tm))

= π T11(Mee)(i
2
1, i

2
2)(1⊗ 1⊗ (r2

1ξ ⊗ r
2
2ξ).(m+ Tm))

= π T11(Mee)(i
2
1, i

2
2)µ

−1
Mee

((r2
1ξ ⊗ r

2
2ξ).(m+ Tm))

= ι2(1,2) k3((r
2
1ξ ⊗ r

2
2ξ).(m+ Tm))

= ι2(1,2) k3 k2(ρ
2
(1,2)(ξ)⊗m)

�

Proof of Theorem 6.17 . By Lemma 2.6 and Proposition 1.12 the source functor is bilin-
ear and we deduce from Proposition 6.5 that the target functor is bilinear. So according
to Proposition 1.18 it suffices to check that cr2(φ̂)(E,E) is an isomorphism if and only if
M is a quadratic C-module. By Lemma 6.6 we know that, for M a proto-quadratic C
module, cr2(φ̂)(E,E) is surjective. So it is sufficient to prove that cr2(φ̂)(E,E) is injective
if and only if the condition (QM2) is satisfied.

As a pushout of abelian groups can be written as a right exact sequence in an obvious
way and as the cross-effect functor is exact, we deduce from Lemma 6.4 that the following
diagram is also a pushout.

cr2((T11(N)∆C)S2)(E,E)⊕ cr2(U)(E,E)⊗Mee

cr2(φ)E,E//

cr2(ψ)E,E

��

cr2(T2U)(E,E)⊗Λ Me

cr2(ψ̂)E,E

��
cr2((T11(Mee)∆C)S2)(E,E)

cr2(φ̂)E,E

// cr2(−⊗M)(E,E).

By the previous Lemma we obtain the following commutative diagram (where, for
simplicity, we omit the subscript E,E):

N ⊕ U(E|E)⊗Mee

k1

≃
//

k2
��

cr2((T11(N)∆C)S2)(E,E)⊕ cr2(U)(E,E)⊗Mee

cr2(φ)
//

cr2(ψ)
��

cr2(T2U)(E,E)⊗Λ Me

cr2(ψ̂)
��

Mee
k3

≃ // cr2((T11(Mee)∆C)S2)(E,E)
cr2(φ̂)

// cr2(−⊗M)(E,E).

As k1 and k3 are isomorphisms, we deduce that the exterior diagram is a pushout
too.

By a general property of pushouts in Ab we deduce that:

(6.19.1) ker(cr2(φ̂)) = k3 ker(cr2(φ̂)k3) = k3 k2 ker(cr2(φ)k1).
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Recall that cr2(φ) = (cr2(φ
′
1 ⊗ 1), cr2(t2)⊗ P ). So, we have

cr2(φ)k1 = (cr2(φ′
1 ⊗ 1)(ι2(1,2))

−1πT11(N)(i21, i
2
2)(µN)−1, cr2(t2)⊗ P ).

In the sequel, we compute cr2(φ′
1 ⊗ 1)(ι2(1,2))

−1πT11(N)(i21, i
2
2)(µN)−1. For x ∈ cr2(U)(E,E)

and a ∈Me we have:

ι2(1,2)cr2(φ
′
1 ⊗ 1)(ι2(1,2))

−1πT11(N)(i21, i
2
2)(µN)−1(t11(x)⊗ a)

= (φ′
1 ⊗ 1)ι2(1,2)(ι

2
(1,2))

−1πT11(N)(i21, i
2
2)(µN)−1(t11(x)⊗ a)

= (φ′
1 ⊗ 1)πT11(N)(i21, i

2
2)(1⊗ 1⊗ (t11(x)⊗ a))

= (φ′
1 ⊗ 1)(i21 ⊗ i

2
2 ⊗ (t11(x)⊗ a))

= φ′
1(t1 ⊗ t1 ⊗ t11)(i

2
1 ⊗ i

2
2 ⊗ x)⊗ a

= t2S
U
2 U(i21 | i

2
2)(x)⊗ a by the proof of Lemma 6.4

= t2 U(∇2)U(i21 ∨ i
2
2)ι

2
(1,2)(x)⊗ a

= t2 ι
2
(1,2)(x)⊗ a

= ι2(1,2)cr2(t2)(x)⊗ a

= ι2(1,2)(cr2(t2)⊗ 1)(t11(x)⊗ a).

We deduce that:

cr2(φ)k1 = (cr2(t2)⊗ 1, cr2(t2)⊗ P ).

By Theorem 2.5, cr2(t2) is an isomorphism, whence we have the following exact se-
quence:

U(E | E)⊗Λ Mee
k4−→ N ⊕ (U(E | E)⊗Λ Mee)

cr2(φ)k1
−−−−→ T2U(E | E)⊗Λ Me

where

k4 = ((cr2(t2)⊗ 1)−1(cr2(t2)⊗ P ),−1)t = ((cr2(t2))
−1cr2(t2)⊗ P,−1)t = (t11 ⊗ P,−1)t.

Since k3 is an isomorphism, we deduce from 6.19.1 and the last exact sequence that:

ker(cr2(φ̂)k3) = k2 ker(cr2(φ)k1) = k2Im(k4).

For ξ ∈ C(E,E ∨E) and m ∈Mee we have:

k2 k4(ρ
2
(1,2)(ξ)⊗m) = k2(t11ρ

2
(1,2)(ξ)⊗ Pm,−ρ

2
(1,2)(ξ)⊗m)

= Ĥ(t11ρ
2
(1,2)(ξ)⊗ Pm)− (r2

1ξ ⊗ r
2
2ξ).(m+ Tm).

It follows that ker(cr2(φ̂)) = 0 if and only if the condition (QM2) holds. �

We now are ready to compute the cross-effect of −⊗M .

Corollary 6.20. Let M ∈ QModEC , there is a natural isomorphism of bifunctors:

γ : (T1U(X)⊗ T1U(Y ))⊗Λ⊗Λ Mee
≃
−→ cr2(−⊗M)(X, Y )

for all X, Y ∈ 〈E〉C such that:

(γ)X,Y (t1(f)⊗ t1(g)⊗m) = (ι2(1,2))
−1φ̂π(t1(i1f)⊗ t1(i2g)⊗m)

where f ∈ C(E,X), g ∈ C(E, Y ), m ∈Mee, i1 : X → X ∨ Y and i2 : Y → X ∨ Y .

When E has suitable properties this result extends to all objects X, Y which are
colimits of copies of E, see Theorem 6.27 below.

Proof. Recall that T11(Mee)(X, Y ) = (T1U(X)⊗ T1U(Y ))⊗Λ⊗Λ Mee by Definition 3.20.
We have the following natural factorization of (γ)X,Y :

T11(Mee)(X, Y )
(ι2

(1,2)
)−1πT11(Mee)(i1,i2)

−−−−−−−−−−−−−−−→ cr2((T11(Mee)∆C)S2)(X, Y )
cr2(φ̂)
−−−→ cr2(−⊗M)(X, Y ).
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Since T11(Mee) is bilinear we deduce from Proposition 6.18 that (ι2(1,2))
−1πT11(Mee)(i1, i2)

is a natural equivalence, and we deduce from Theorem 6.17 that cr2(φ̂) is an isomor-
phism. Hence γ is a natural equivalence, too. �

6.5. Preservation of filtered colimits and suitable coequalizers. In this section
we show that the quadratic tensor product has strong enough preservation properties
to be determined, under suitable assumptions, by its restriction to “free objects of finite
rank” which was determined in the preceding sections. Under even stronger, but still
very general assumptions which in particular cover all pointed algebraic varieties where
a group law is part of the structure, we extend the computation of the cross-effect of
−⊗M in the preceding section to all objects in C.

More precisely, we suppose throughout this section that C has all (even infinite) sums
(or at least all sums of copies of E), and that E is a small regular projective generator
of C. Recall that small means that the functor C(E,−) : C → Set∗ preserves filtered
colimits, regular projective means that E is projective with respect to the class of all
regular epimorphisms (i.e., quotients of coequalizers in C), and generator means that all
objects X in C are colimits of copies of E, or equivalently, admit a regular epimorphism
∨

i∈I E // // X . Note that these assumptions are satisfied for all algebraic varieties

when we take E to be the free object of rank 1.

Definition 6.21. A presentation of an object X in C is a coequalizer diagram

P : X1

d0 //

d1

// X0

q // X

in C. We say that P is E-free if X0 and X1 are E-free, i.e. sums of copies of E, and
that P is E-saturated if ∀f0, f1 ∈ C(E,X0), (qf0 = qf1 ⇒ ∃f01 ∈ C(E,X1), fk = dkf01,
k = 0, 1). Moreover, P is said to be reflexive if the pair (d0, d1) is reflexive, i.e. admits
a common section s0 ∈ C(X0, X1) of d0 and d1.

Lemma 6.22. We have the following properties for C and E as above.

(1) Any object of C admits an E-saturated E-free presentation.
(2) Any E-saturated E-free presentation is reflexive.
(3) If C is Mal’cev and Barr exact, any reflexive presentation is E-saturated.

We point out that all pointed homological, in particular semi-abelian categories are
Mal’cev and Barr exact, see [6]; so these hypothesis cover all pointed algebraic varieties
where a group law is part of the structure, like groups, algebras over any reduced operad
etc., as well as the categories of compact Hausdorff-spaces, of crossed modules of groups,
of C∗-algebras etc., see for example [6].

Proof of Lemma 6.22. (1): Let X be an object in C. As E generates C there exists an E-

free presentation P : E1

d0 //

d1

// E0

q // X . Now let P [q] = {(f0, f1) ∈ C(E,E0) | qf0 =

qf1}, E
′
1 =

∨

(f0,f1)∈P [q]E and e(f0,f1) : E → E ′
1, (f0, f1) ∈ P [q], be the defining injections

of the coproduct. For k = 0, 1, let d′k : E ′
1 → E0 such that dke(f0,f1) = fk. Then

P : X1 ∨E
′
1

(d0,d′0)
//

(d1,d′1)
// X0

q // X is an E-saturated E-free presentation of X.

(2): Let P : E1

d0 //

d1

// E0

q // X be an E-saturated E-free presentation, with E0 =
∨

i∈I E and defining injections ei : E → E0. Taking f0 = f1 = ei for i ∈ I provides
a map f i01 ∈ C(E,E1) such that d0f

i
01 = d1f

i
01 = ei. Pasting these maps f i01 together

furnishes the desired common section s0 : E0 → E1 of d0 and d1.
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(3): Consider the following diagram

X1

d0 //

d1

//

(d0,d1)
((

X0

q // X

E

f01

OO

(f0,f1)
// R[q]

p0

OO

p1 // X0

q

OO

where the top line is a reflexive presentation and the right hand square is a pullback
(i.e., (p0, p1) is a kernel pair of q). Thus the map (d0, d1) as indicated exists such that
pk(d0, d1) = dk, k = 0, 1. Moreover, we suppose that f0, f1 ∈ C(E,X0) are maps such
that qf0 = qf1; thus the map (f0, f1) as indicated exists such that pk(f0, f1) = fk,
k = 0, 1. By hypothesis on C the map (d0, d1) is a regular epimorphism (cf. [6] or
[7]), so by regular projectivity of E there exists a lifting f01 as indicated such that
(d0, d1)f01 = (f0, f1). It satisfies dkf01 = pk(d0, d1)f01 = pk(f0, f1) = fk, as desired. �

Now consider a functor F : C → D to some category D. Recall that one says that F
preserves a certain type of coequalizers (or presentations) if it transforms coequalizers
of this type in C into coequalizers in D.

Proposition 6.23. For F as above consider the following properties.

(1) F preserves E-saturated coequalizers.
(2) F preserves E-saturated E-free coequalizers.
(3) F preserves reflexive coequalizers.

Then (1) ⇔ (2) ⇐ (3), and if C is Mal’cev and Barr exact then all three properties
are equivalent.

Proof. It is obvious that (1) implies (2), and (3) implies (2) by Lemma 6.22 (2). More-
over, if C is Mal’cev and Barr exact (1) implies (3) by Lemma 6.22 (3), so it remains to
prove that (2) implies (1). Let P be an E-saturated coequalizer as in Definition 6.21.

Then we may choose a regular epimorphism q1 : E1
// // X1 with an E-free object E1,

and an E-saturated E-free presentation of X0 as in the diagram

(6.23.1) E ′
1

d′1
��

d′0
��

E1

d̃0 //

d̃1

//

q1

��

E0

s}}||
||

||
||

q0

��
X1

d0 //

d1

// X0

q // X

Here the diagonal map s is a map such that d0s = d1s = q0; it is constructed on a given
summand E of E0 by taking f0 and f1 to be the restriction of q0 to this summand, and
applying the saturation property of P, as in the proof of Lemma 6.22 (2). Moreover,

d̃0 and d̃1 are liftings such that q0d̃k = dkq1, k = 0, 1; they exist since E1 is regular

projective. Now observe that E1 ∨E
′
1

(d̃0,d′0)//

(d̃1,d′1)

// E0

qq0 // X is an E-free presentation of X;

by applying the procedure in the proof of Lemma 6.22(1) we find an E-free object E ′′
1

and maps E ′′
1

ǫ0 //
ǫ1

// E0 in C such that E1 ∨ E
′
1 ∨E

′′
1

(d̃0,d′0,ǫ0)//

(d̃1,d′1,ǫ1)

// E0

qq0 // X is an E-saturated

E-free presentation of X. Next we construct a map s′ ∈ C(E ′′
1 , X1) such that dks

′ = q0ǫk,
k = 0, 1: on a given summand E of E ′′

1 it is obtained by taking fk to be the restriction
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of q0ǫk to that summand, and applying the saturation property of P. We thus get the
following diagram where e′1 is the injection.

(6.23.2) E ′
1

d′1
��

d′0
��

e′1

xxrrrrrrrrrrr

E1 ∨ E
′
1 ∨ E

′′
1

(d̃0,d′0,ǫ0)//

(d̃1,d′1,ǫ1)

//

(q1,sd′0,s
′)

��

E0

qq0 //

q0

��

X

X1

d0 //

d1

// X0
q // X

It is commutative, for the left hand square in the sense that the two squares formed by
taking the horizontal arrows with the same index k = 0, 1, commute.

Now we apply a functor F : C → D preserving E-saturated E-free coequalizers to this

diagram, and deduce that F (X1)
F (d0)

//

F (d1)
// F (X0)

F (q)
// F (X) is a coequalizer. Let A ∈ D

and α ∈ D(F (X0), A) such that αF (d0) = αF (d1). Then

αF (q0)F (d̃0, d
′
0, ǫ0) = αF (d0)F (q1, sd

′
0, s

′)

= αF (d1)F (q1, sd
′
0, s

′)

= αF (q0)F (d̃1, d
′
1, ǫ1)

As F transforms the top line and the column in (6.23.2) into a coequalizers it follows
that there exists a unique map ᾱ ∈ D(F (X), A) such that ᾱF (qq0) = αF (q0), and that
F (q0) is a regular epimorphism. Thus ᾱF (q) = α, which implies the assertion.

�

Recall that if P as above is a reflexive coequalizer in Ab then X ∼= Coker(d0 −
d1 : X1 → X0) ∼= Coker(d′1 : Ker(d0) → X0) where d′1 denotes the restriction of d1.
This implies that an additive functor between abelian categories preserves reflexive
coequalizers iff it is right exact, so preservation of reflexive coequalizers generally is
considered as the appropriate generalization of right exactness to non-linear functors.
In fact, a functor preserving reflexive coequalizers and filtered colimits generically is
determined by its restriction to “free objects of finite rank”. In particular this reduction
is used in the study of quadratic functors [4] and of functors between categories of
algebras over operads [9]. In the same spirit, we now state a preservation theorem for
our quadratic tensor product which shows, however, that in the most general situation
reflexive coequalizers must be replaced by the more specific E-saturated ones; on the
other hand, Proposition 6.23 explains why this difference did not yet appear in practice:
most “real life” pointed categories are at least homological and hence Mal’cev and Barr
exact.

Theorem 6.24. Suppose that C is a pointed category with sums and that E is a small
regular projective generator of C. Moreover, let M be a quadratic C-module relative to
E. Then the functors TnUE and − ⊗M : C → Ab, n = 1, 2, preserve filtered colimits
and E-saturated coequalizers, and reflexive coequalizers if C is Mal’cev and Barr exact.

Proof. Let Set∗, Set∗- C(E,E) denote the categories of pointed sets and of pointed sets
equipped with a right action of the monoid C(E,E), resp., the latter satisfying that
x0a = x0 = x0 where x0 is the basepoint of S ∈ Set∗- C(E,E), x ∈ S and a ∈ C(E,E).
Consider the functors

Ab Set∗
Z[−]

oo C
ρEoo

ρ′E // Set∗- C(E,E)
Z[−]

// Mod - Λ
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where ρE , ρ
′
E are both given by C(E,−), the right action of C(E,E) on C(E,X) being

given by precomposition. Both ρE and ρ′E preserve filtered colimits since E is small,
and preserve E-saturated coequalizers since E is regular projective, and by definition of
E-saturation. Moreover, both functors Z[−] are left adjoint to the obvious forgetful func-

tors, hence preserve colimits. Thus the composite functors Ab C
UEoo

U ′
E // Mod - Λ ,

both preserve filtered colimits and E-saturated coequalizers, and so do the functors

UE(X∨n) X
�oo � // U ′

E(X∨n) since colimits commute among each other. For the

same reason, T1UE = Coker(SF2 ◦ ρ
2
(1,2) : UE(X∨2) → UE(X)), T2UE = Coker(∇3

∗ −

(∇2r3
12)∗−(∇2r3

13)∗−(∇2r3
23)∗+r3

1∗+r3
2∗+r3

3∗ : UE(X∨3)→ UE(X)), and T2U
′
E preserve

filtered colimits and E-saturated coequalizers, see Propositions 2.14 and 2.17. As the
tensor product preserves filtered colimits and coequalizers so does the functorMod - Λ→
Z[S2] -Mod sending A to (A⊗A)⊗Λ⊗ΛN , N = Mee or N = T11(cr2UE)(E,E), and also
the functor Z⊗Z[S2]− : Z[S2] -Mod→ Ab. Thus −⊗M is a functorial pushout (hence
colimit) of functors which preserve filtered colimits and E-saturated coequalizers, hence
so does −⊗M as colimits commute among each other. The statement about reflexive
coequalizers then follows from Proposition 6.23. �

The preservation properties just proved allow for the desired reduction to the case of
free objects of finite rank:

Proposition 6.25. Let D be any category, and let ϕ : F → G be a morphism between
functors F,G : C → D which both preserve filtered colimits and E-saturated E-free
coequalizers. Then ϕ is an isomorphism iff ϕE∨n is an isomorphism for all n ≥ 1.
Similarly, let ψ : B → C be a morphism between bifunctors B,C : C × C → D which
both preserve filtered colimits and E-saturated E-free coequalizers in each variable (i.e.
the functors B(X,−) and B(−, X) do for all X ∈ C, the same for C). Then ψ is an
isomorphism iff ψ(E∨n,E∨m) is an isomorphism for all n,m ≥ 1.

Proof. This is standard: let I be a set and P be the set of its finite subsets, and write
EI =

∨

i∈I E. Then EI = colimJ∈PEJ is a filtered colimit whence ϕEI
is a colimit of

isomorphisms, hence an isomorphism. It now follows that ϕX is an isomorphism for
all X ∈ C by using an E-saturated E-free presentation of X, which exists by Lemma
6.22. As to bifunctors, the result for functors just proved successively implies that first
ψ(X,E∨m), then ψ(X,Y ) is an isomorphism for all X, Y ∈ C, m ≥ 1. �

Now we wish to establish similar reduction properties for cross-effects. For this we
must check that suitable preservation properties of a functor are inherited by its cross-
effects:

Proposition 6.26. If a functor F : C → Ab preserves filtered colimits and reflexive co-
equalizers then so do the functors crn(X1, . . . , Xn,−) : C → Ab for n ≥ 1 and X1, . . . , Xn

∈ C.

Proof. By induction it suffices to prove the case n = 1. Let X ∈ C.

Filtered colimits: Let I be a filtered category and D : I → C be a diagram admitting a
colimit in C. Then X ∨ colimD = colimD1 where D1 : I → C is given by D1(i) = X ∨
D(i) for i ∈ I andD1(f) = 1∨D(f) for a morphism f in I. Similarly we define diagrams
D2, D3 : I → C such that D2(i) = F (X) ⊕ FD(i) and D3(i) = F (X|D(i)). Writing
r(i) = (r2

1∗, r
2
2∗) : F (X ∨ D(i)) → F (X) × FD(i) we have the following commutative
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diagram.

F (X ∨ colimD)
(r21∗,r

2
2∗)

// F (X)× F (colimD)

F (colimD1)

∼=

OO

F (X)⊕ colim (F ◦D)

∼=

OO

colim (F ◦D1)

∼=

OO

colim r(i)
// colimD2

∼=

OO

Hence

F (X|colimD) ∼= Ker(colimi∈I r(i))
∼= colimi∈I Ker(r(i)) since I is filtered
∼= colimD3,

as asserted.

Reflexive coequalizers: Let Y1

d0 //

d1

// Y0

q // Y be a reflexive coequalizer in C with

commun splitting s0 of d0 and d1. Then X ∨ Y1

1∨d0 //

1∨d1

// X ∨ Y0

1∨q // X ∨ Y also is a

reflexive coequalizer in C with commun splitting 1 ∨ s0 of 1 ∨ d0 and 1 ∨ d1. Consider
the following commutative diagram in Ab.

F (X|Y1)
α //

� _

ι2
(1,2)

��

F (X|Y0)
F (1|q)

//
� _

ι2
(1,2)

��

F (X|Y )
� _

ι2
(1,2)

��
F (X ∨ Y1)

β //

(r21∗,r
2
2∗)

����

F (X ∨ Y0)
F (1∨q)

//

(r21∗,r
2
2∗)

����

F (X ∨ Y )

(r21∗,r
2
2∗)

����

// 0

F (X)× F (Y1)
γ // F (X)× F (Y0)

1×F (q)
// F (X)× F (Y ) // 0

where α = F (1|d0)−F (1|d1), β = F (1∨d0)−F (1∨d1), γ = (1×F (d0))−(1×F (d1)) =
0× (F (d0)− F (d1)). The columns are exact by (2.13.4), and the second and third row
are exact since F preserves reflexive coequalizers. Now replacing F (X)× F (Y1) by its
image under γ the left half of the above diagram becomes

F (X|Y1)⊕ F (X)⊕Ker(d0∗ − d1∗)
α̃ //

� _

(ι2
(1,2)

,F (i1),F (i2)j)

��

F (X|Y0)� _

(ι2
(1,2)

��
F (X ∨ Y1)

β //

γ(r21∗,r
2
2∗)

����

F (X ∨ Y0)

(r21∗,r
2
2∗)

����
Im(γ) � � // F (X)× F (Y0)

with j : Ker(d0∗ − d1∗) →֒ F (Y1). But βF (i1) = F (i1) − F (i1) = 0, and βF (i2)j =
(F (i2d0) − F (i2d1))j = F (i2)(F (d0) − F (d1))j = 0, so Im(α̃) = Im(α). Thus the

snake lemma provides an exact sequence F (X|Y1)
α
−→ F (X|Y0)

F (1|q)
−−−→ F (X|Y ) → 0, as

asserted. �
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We now are ready to extend the computation of the cross-effect of the quadratic
tensor product from E-free objects of finite rank to all objects in C, as follows.

Theorem 6.27. Suppose that C is a pointed Mal’cev and Barr exact category with sums,
and that E is a small regular projective generator of C. Moreover, let M be a quadratic
C-module relative to E. Then the natural isomorphism

γ : (T1U(X)⊗ T1U(Y ))⊗Λ⊗Λ Mee
≃ // cr2(−⊗M)(X, Y )

in Corollary 6.20 is valid for all objects X, Y in C.

Proof. The functor −⊗M preserves E-saturated coequalizers by Theorem 6.24, hence
reflexive coequalizers by Proposition 6.23 and by hypothesis on C. Thus by Proposition
6.26 the bifunctor cr2(− ⊗ M) preserves reflexive coequalizers in both variables, in
particular E-saturated E-free coequalizers by Lemma 6.22 (2), and so does the bifunctor
(T1U(−) ⊗ T1U(−)) ⊗Λ⊗Λ Mee, see the proof of Theorem 6.24. So by Proposition 6.25
the natural map γ is an isomorphism for all X, Y ∈ C since it is so when X = E∨n,
Y = E∨m, n,m ≥ 1, by Proposition 6.20. �

7. Equivalence between quadratic functors and quadratic C-modules

The aim of this section is to prove the following theorem which is the main result of
this paper.

Let QUAD(C, Ab) denote the category of reduced quadratic functors from C to Ab
which preserve filtered colimits and E-saturated coequalizers; recall from Proposition
6.23 that here E-saturated coequalizers can be replaced by E-saturated E-free coequal-
izers, and by reflexive coequalizers if C is Mal’cev and Barr exact.

Theorem 7.1. Let C be a pointed category with finite sums.

(A) The functors

Quad(C, Ab)
S2

// QModEC

T2oo

where S2 is defined in section 5.3 and T2(M) = −⊗M , form a pair of adjoint functors
extending T1 and S1 given in Proposition 3.11 (see also Proposition 5.17).

(B) If C = 〈E〉C, the functors S2 and T2 form a pair of adjoint equivalences.

(C) If C has sums and if E is a small regular projective generator of C, then the functors

QUAD(C, Ab)
S′
2

// QModEC

T
′
2oo

form a pair of adjoint equivalences where T′
2 is given by T2 which actually takes values

in QUAD(C, Ab) by Theorem 6.24, and where S′
2 is the restriction of S2.

To prove this theorem we start by constructing the co-unit and prove that it is an
isomorphism if C = 〈E〉C, thanks to the computations of E ⊗M given in Proposition
6.11 and of the cross-effect of − ⊗M given in Corollary 6.20. Next we construct the
unit of this adjunction and prove that it is an isomorphism. Assertion (C) then follows
from Proposition 6.25.
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7.1. The co-unit of the adjunction. The co-unit of the adjunction of Theorem 7.1
is a natural map of quadratic functors ǫ : −⊗ S2(F )→ F . To define this map we need
a series of lemmas.

Lemma 7.2. For F ∈ Quad(C, Ab), there exists a natural transformation u′F : (T2U)(−)⊗Λ

F (E)→ F (−) such that we have the following natural commutative diagram

U(X)⊗Λ F (E)
(u′

F
)X //

(t2⊗1)X )) ))SSSSSSSSSSSSSSS
F (X)

(T2U)(X)⊗Λ F (E)
(u′

F
)X

66

for X ∈ C and u′F the co-unit of the adjunction between S and T given in Proposition
3.5.

Proof. This is immediate from the universal property of t2. �

Lemma 7.3. For F ∈ Quad(C, Ab), there exists a morphism (SF2 )X : F (X|X)S2 →
F (X) making the following diagram commutative

F (X|X)
(SF

2 )X //

π && &&NNNNNNNNNNN
F (X)

F (X|X)S2

(SF
2 )X

88

for X ∈ C.

Proof. To prove that SF2 exists we have to prove that SF2 T
F = SF2 where T F is the

involution of F (−|−). Recall that T F is defined by the following commutative diagram

F (X|X) � �
ι2
(1,2) //

TF

��

F (X ∨X)

F (τ)
��

F (X|X) � �
ι2
(1,2) // F (X ∨X)

where τ is the canonical switch. Thus:

(SF2 )XT
F = F (∇2)ι2(1,2)T

F = F (∇2τ)ι2(1,2) = F (∇2)ι2(1,2) = (SF2 )X .

�

Lemma 7.4. For F ∈ Quad(C, Ab), there exists a natural transformation of functors:

u′
cr(F ) : (((T1U)(−)⊗ (T1U)(−))⊗Λ⊗Λ F (E|E))∆C)S2 → (cr2F (−,−)∆C)S2

where ∆C : C × C → C is the diagonal functor, making the following diagram naturally
commutative.

((T1U)(X)⊗ (T1U)(X))⊗Λ⊗Λ F (E|E)
(u′

cr2(F )
)X,X

//

π
����

F (X|X)

π
����

(((T1U)(X)⊗ (T1U)(X))⊗Λ⊗Λ F (E|E))S2

(u′
cr2(F )

)X,X

// (F (X|X))S2

Here X ∈ C, and ((T1U)(X)⊗ (T1U)(X))⊗Λ⊗Λ F (E|E)
(u′

cr2(F )
)X,X

// F (X|X) is the co-unit

of the adjunction in Proposition 3.21.
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Proof. For x, y ∈ U(X) and m ∈ F (E | E) we have:

T Fu′cr2(F )(t1(f)⊗ t1(g)⊗m) = T F (cr2F (f, g))(m)

= (ι2(1,2))
−1F (τ)ι2(1,2)cr2F (f, g)(m)

= (ι2(1,2))
−1F (τ)F (f ∨ g)ι2(1,2)(m)

= (ι2(1,2))
−1F (g ∨ f)F (τ)ι2(1,2)(m)

= cr2F (g, f)(ι2(1,2))
−1F (τ)ι2(1,2)(m)

= cr2F (g, f)(T F(m))

= u′cr2(F )(t1(g)⊗ t1(f)⊗ T F (m))

= u′cr2(F )(t(t1(f)⊗ t1(g)⊗m))

Thus u′cr2(F ) is S2-equivariant and hence passes to coinvariants. �

We deduce the following proposition.

Proposition 7.5. For F ∈ Quad(C, Ab), there exists a natural map ǫ : −⊗S2(F )→ F
given by:

ǫX = ((SF2 )X (u′
cr2(F ))X , (u

′
F )X) : X ⊗ S2(F )→ F (X)

for X ∈ C such that ǫX φ̂ = (SF2 )X (u′
cr2(F ))X and ǫXψ̂ = (u′F )X; here the natural maps

u′F , SF2 and u′
cr2(F ) are defined in Lemmas 7.2, 7.3 and 7.4 respectively and the maps φ̂

and ψ̂ appear in the pushout diagram of Proposition 6.2.

Proof. To prove the existence of ǫX it is sufficient to show that (SF2 )X (u′
cr2(F ))Xψ =

(u′F )Xφ where ψ and φ are the maps in the pushout diagram of Proposition 6.2.
For f ∈ C(E,X) and m ∈ F (E|E) we have:

(SF2 )X (u′
cr2(F ))X π (δ ⊗ 1)(f ⊗m) = (SF2 )X π(u′cr2(F ))X (δ ⊗ 1)(f ⊗m) by Lemma 7.4

= (SF2 )X (u′cr2(F ))X (δ ⊗ 1)(f ⊗m) by Lemma 7.3

= (SF2 )X (u′cr2(F ))X (t1(f)⊗ t1(f)⊗m) by definition of δ

= (SF2 )X cr2F (f, f)(m) by definition of u′cr2(F )

= F (∇2) ι2(1,2) cr2F (f, f)(m) by definition of SF2
= F (∇2) F (f ∨ f) ι2(1,2)(m) by definition of cr2F (f, f)

= F (∇2(f ∨ f)) ι2(1,2)(m) by functoriality

= F (f ∇2)ι2(1,2)(m) since ∇2(f ∨ f) = f ∇2

= F (f) F (∇2)ι2(1,2)(m) by functoriality

= (u′F )X(f ⊗ F (∇2)ι2(1,2)(m)) by definition of u′F
= (u′F )X(t2 ⊗ Id)(f ⊗ F (∇2)ι2(1,2)(m)) by Lemma 7.2

= (u′F )X(t2 ⊗ Id)(f ⊗ S
F
2 (m)) by definition of SF2

= (u′F )X(t2 ⊗ S
F
2 )(f ⊗m)



QUADRATIC FUNCTORS ON POINTED CATEGORIES 51

For f, g ∈ C(E,X), ξ ∈ C(E,E ∨ E), x = (ι2(1,2))
−1(ξ − i21∗r

2
1∗(ξ) − i22∗r

2
2∗(ξ)) (x ∈

U(E | E) by 2.13.5) and a ∈ F (E) we have:

(SF2 )X (u′
cr2(F ))X ψ1(f ⊗ g ⊗ x⊗ a)

= (SF2 )X (u′
cr2(F ))X π(t1 ⊗ t1 ⊗ (HF )E(t11 ⊗ 1))(f ⊗ g ⊗ x⊗ a)

= (SF2 )X(u′cr2(F ))X (f̄ ⊗ ḡ ⊗ (HF )E(t11 ⊗ 1)(x⊗ a)) by Lemmas 7.3 and 7.4

= (SF2 )X(u′cr2(F ))X (f̄ ⊗ ḡ ⊗ (cr2(u
′
F ))E(x⊗ a)) by Lemma 5.15

= (SF2 )Xcr2F (f, g)(cr2(u
′
F ))E(x⊗ a) by definition of u′cr2(F )

= F (∇2)ι2(1,2)cr2F (f, g)(cr2(u
′
F ))E(x⊗ a)

= F (∇2)F (f ∨ g)(u′F )E(ι2(1,2)x⊗ a)

= F (∇2)F (f ∨ g)F (ι2(1,2)x)(a) by definition of u′F
= F (∇2(f ∨ g)ι2(1,2)x)(a) by functoriality

= (u′F )X(∇2(f ∨ g)ι2(1,2)x⊗ a) by definition of u′F
= (u′F )X(U(∇2)U(f ∨ g)ι2(1,2)x⊗ a)

= (u′F )X(U(∇2)ι2(1,2)cr2U(f, g)x⊗ a)

= (u′F )X(t2 ⊗ 1)(U(∇2)ι2(1,2)cr2U(f, g)x⊗ a) by Lemma 7.2

= (u′F )X(t2S
U
2 cr2U(f, g)(x)⊗ a)

= (u′F )Xφ1(f ⊗ g ⊗ x⊗ a).

�

In the following proposition we consider the cross-effect of ǫ.

Proposition 7.6. Let F : C → Ab be a quadratic functor. Then the natural map:

cr2(ǫ)X,Y : cr2(−⊗ S2(F ))(X, Y )→ cr2F (X, Y )

is an isomorphism for all X, Y ∈ 〈E〉C.

Proof. For X, Y arbitrary objects of C we have the following diagram whose right hand
square commutes by definition of cr2(ǫ)X,Y :

cr2(T11(F (E|E))∆C)S2(X, Y )
cr2(φ̂)

// cr2(−⊗ S2(F ))(X, Y ) � �
ι2
(1,2) //

cr2(ǫ)X,Y

��

(−⊗ S2(F ))(X ∨ Y )

(ǫ)X∨Y

��
T11(F (E|E))(X, Y )

(ι2
(1,2)

)−1πT11(F (E|E))(i1,i2) ≃

OO

u′
cr2F

// cr2F (X, Y ) � �
ι2
(1,2) // F (X ∨ Y ).

In the following, we prove that the left hand square is commutative. Since ι2(1,2) is
injective, it is sufficient to prove that

ι2(1,2)cr2(ǫ)X,Y cr2(φ̂)(ι2(1,2))
−1πT11(F (E|E))(i1, i2) = ι2(1,2)u

′
cr2F

.

For f ∈ C(E,X), g ∈ C(E, Y ) and m ∈ F (E|E) we have:
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ι2(1,2)cr2(ǫ)X,Y cr2(φ̂)(ι2(1,2))
−1πT11(F (E|E))(i1, i2)(f̄ ⊗ ḡ ⊗m)

= (ǫ)X∨Y ι
2
(1,2)cr2(φ̂)(ι2(1,2))

−1π(i1f ⊗ i2g ⊗m)

= (ǫ)X∨Y φ̂π(i1f ⊗ i2g ⊗m)

= (SF2 )X∨Y (u′
cr(F ))X∨Y π(i1f ⊗ i2g ⊗m) by definition of ǫ given in Proposition 7.5

= (SF2 )X∨Y (u′cr(F ))X∨Y (i1f ⊗ i2g ⊗m)

= (SF2 )X∨Y cr2F (i1f, i2g)(m) by definition of u′cr(F ) given in Proposition 3.21

= F (∇2)ι2(1,2)cr2F (i1f, i2g)(m) by definition of SF2
= F (∇2)F (i1f ∨ i2g)ι

2
(1,2)(m)

= F (f ∨ g)ι2(1,2)(m) since ∇2(i1f ∨ i2g) = f ∨ g

= ι2(1,2)cr2F (f, g)(m)

= ι2(1,2)u
′
cr2(F )(f ⊗ g ⊗m) by definition of u′cr2(F ).

Now let X, Y ∈ 〈E〉C. Since F is quadratic, cr2(F ) is bilinear, so by Theorem 3.22,
(u′cr2(F ))X,Y is an isomorphism. By commutativity of the left hand square this implies

that cr2(φ̂) is injective and by Lemma 6.6 we know that cr2(φ̂) is surjective. Thus cr2(φ̂)
is an isomorphism, hence so is cr(ǫ)X,Y .

�

Proposition 7.7. If C = 〈E〉C, for F ∈ Quad(C, Ab) the natural map ǫ : −⊗MF → F
is a natural equivalence.

Proof. Since F is quadratic by hypothesis and − ⊗ MF is quadratic by Proposition
6.5, it is sufficient to prove that (ǫ)E and cr2(ǫ)(E,E) are isomorphisms according to
Proposition 1.17.

By Lemma 6.16 we know that (ǫ)E is an isomorphism since

((SF2 )E (u′
cr(F ))E, (u

′
F )E) = ((SF2 )E µee, µe).

By Proposition 7.6 we know that cr2(ǫ)(E,E) is an isomorphism. �

Proposition 7.8. The natural map ǫ : − ⊗MF → F is the counit of the adjunction
given in Theorem 7.1.

Proof. For M ∈ QModEC and α : − ⊗M → F we want to prove that there exists a
unique β : M → MF such that ǫ(− ⊗ M)(β) = α. Since ǫ is a natural equivalence
the latter relation implies that: (− ⊗M)(β) = ǫ−1α. One can check that β such that
βe = αe(Pµee, µe)

−1 and βee = cr2(α)E,EγE,E(µee)
−1 is the unique solution. �

7.2. The unit of the adjunction.

Definition 7.9. Let η : IdQModE
C
→ S2T2 be the natural map such that, for M ∈

QModEC , ηM : M → S2T2(M) is given by (ηM)e = (Pµee, µe)
−1 and (ηM)ee = (γ)E,Eµ

−1
ee

where µee is the canonical isomorphism and γ is the natural equivalence of Corollary
6.20.

Proposition 7.10. The natural map η : IdQModE
C
→ S2T2 is a natural equivalence.

Proof. By Lemma 6.15 and Corollary 6.20, (ηM)e and (ηM )ee are isomorphisms. �

Proposition 7.11. The natural map η : IdQModE
C
→ S2T2 is the unit of the adjunction

in Theorem 7.1.

Proof. For F ∈ Quad(C, Ab) and α : M → MF a morphism in QModEC , we want to prove
that there exists a unique natural map β : −⊗M → F such that S2(β)ηM = α. Let β be
the composition ǫ(−⊗ α). We check that β is the unique solution of S2(β)ηM = α. �
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Together with Propositions 7.10, 7.8 and 7.7 this achieves the proof of the assertions
(A) and (B) of Theorem 7.1; together with Proposition 6.25 these then imply assertion
(C).

8. Application to theories of cogroups

In this section, we apply Theorem 7.1 to the particular case where E has a cogroup
structure in C. This is the case when C is a theory of cogroups T with generator E,
or when C is an algebraic variety where a group law is part of the structure, and E is
the free object of rank 1. The first case (which is generic in view of Theorem 7.1) is
considered in [4] where the authors define, in Proposition 3.6, a functor:

u : Quad(T , Gr)→ Square

to the category Square of so-called square groups, sending F ∈ Quad(T , Gr) to the

square group u(F )(E) = (F (E)
H
−→ F (E | E)

P
−→ F (E)), see Definition 8.12 below.

They prove that u is an equivalence of categories when T is the category 〈Z〉Gr of free
groups of finite rank. This is no longer true for more general theories of cogroups, even
when restricting to quadratic functors with values in Ab. In fact, we here show how
for general T the structure of square group has to be enriched in order to obtain an
equivalence with quadratic functors from T to Ab. In particular, a second map relating
F (E) to F (E | E) has to be added to the picture; in the case where T = 〈Z〉Gr this
turns out to provide a new interpretation of the map ∆ associated with a square group
in [4]. Recall that a theory of cogroups is a pointed category T with finite sums such
that each object X has the structure of a cogroup given by the maps µ : X → X ∨X
and τ : X → X. Then, for X, Y ∈ T , T (X, Y ) is a group with f • g = (f, g)µ and
f−1 = fτ . The identity element of • is the null map 0. Moreover, for Z ∈ T and
h ∈ T (Y, Z) the map h∗ : T (X, Y )→ T (X,Z) is a homomorphism of groups.

Notation. For brevity, we write in this section i1, i2, r1 and r2 instead of i21, i
2
2, r

2
1 and

r2
2, respectively.

For a theory of cogroups T we have a simpler description of a quadratic T -module
relative to E given in the following theorem. In particular, note that the functor U
disappears from the picture.

Theorem 8.1. Let T be a theory of cogroups. The category of quadratic T -modules
relative to E is equivalent to the category of diagrams of group homomorphisms:

M =





















Me

H1

**UUUUUUUUUUUUUUUUUUUUUUU

Mee
P // Me

T11cr2(T (E,−))(E,E)⊗Λ coker(P )

H2

44iiiiiiiiiiiiiiiiiii





















where

• Me is a left Λ-module;
• Mee is a left Λ̄⊗ Λ̄-module;
• P : Mee → Me is a homomorphism of Λ-modules with respect to the diagonal

action of Λ on Mee;
• H1 is a homomorphism of abelian groups;
• H2 is a homomorphism of Λ̄⊗ Λ̄-modules,
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satisfying the following relations for a ∈ Me, m ∈ Mee, γ ∈ cr2(T (E,−))(E,E),
α, β ∈ T (E,E):

(T1) PH1P = 2P
(T2) H1P ((α⊗ β)m)− (β ⊗ α)H1P (m) = (α⊗ β)m− (β ⊗ α)m
(T3) H1PH1(a) = 2H1(a) +H2(t11([i2, i1])⊗ ā)
(T4) H1PH2(t11γ ⊗ ā) = H2(t11(γ • τγ)⊗ ā)
(T5) (∇2γ • α • β)a = αa+ βa+ P ((ᾱ⊗ β̄)H1(a)) + PH2(t11γ ⊗ ā)
(T6) H1(αa) = H2(t11h(α)⊗ ā) + (α⊗ α)H1(a)

where [i2, i1] = i2 • i1 • (i2)
−1 • (i1)

−1, τ is the canonical switch of E ∨ E and h :
T (E,E)→ T (E,E | E) is given by

h(α) = (ι2(1,2))
−1(((i1 • i2)α) • (i2α)−1 • (i1α)−1).

Note that the map h describes the deviation of endomorphisms of E from being
morphisms of cogroups.

The plan of the proof of Theorem 8.1 is as follows: we first compute, in several steps,
the symmetric bifunctor T11(cr2U). The result is then used to split up the map Ĥ in a
given quadratic T -module into the two maps H1 and H2 occuring in Theorem 8.1, and
to translate the properties of the map Ĥ in terms of H1 and H2, which leads to the
relations (T1)-(T6).

As a main tool we need some elementary facts about augmentation ideals of group
rings.

8.1. Augmentation ideals: recollections and action of the linearization func-
tor. Recall that the augmentation ideal IG of a group G is the kernel of the augmenta-
tion map ǫ : Z[G]→ Z of the group ring Z[G]. IG is a free Z-module generated by the
elements g − 1 for g ∈ G \ {1}. For a subset H of G we denote by IH the subgroup of
IG generated by the elements of the form h−1 for h ∈ H . The key ideas of this section
are to use the natural isomorphism Ξ : I(T (E,X)) → U(X) such that Ξ(f − 1) = f
and the trivial but useful formula a.b − 1 = (a − 1) + (b − 1) + (a − 1).(b − 1) in IG.
Moreover, we need the following elementary result which is wellknown.

Proposition 8.2. For G ∈ Gr we have a natural isomorphism of abelian groups:

θ : IG/(IG)2 ≃
−→ G/[G,G]

such that for g ∈ G, θ(g − 1) = g.

8.2. Computation of cr2U(X, Y ). In a first step we compute the cross-effect of the
functor U , which by the isomorphism Ξ above comes down to computing the cross-
effect of the composite functor IT (E,−) where I : Gr → Ab is given by taking the
augmentation ideal. More generally, we have the following result.

Proposition 8.3. Let F : C → Gr be a reduced functor. There is an isomorphism of
bifunctors T × T → Ab:

Θ : I(F (X | Y ))⊕(IF (X)⊗IF (Y ))⊕(I(F (X | Y ))⊗I(F (X)×F (Y )))
≃
−→ cr2(IF )(X, Y )

given by
Θ(x− 1, 0, 0) = x− 1

Θ(0, (y − 1)⊗ (z − 1), 0) = (i1∗y − 1).(i2∗z − 1)

Θ(0, 0, (u− 1)⊗ (v − 1)) = (u− 1).(sv − 1)

where s : F (X)×F (Y )→ F (X∨Y ) is the map defined by s(x, y) = i1∗x.i2∗y, the point .
denoting the group structure on F (X ∨ Y ).

The proof requires the following elementary fact.
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Lemma 8.4. Let G be a group and H,K be two subsets of G containing 1 such that
each g ∈ G admits a unique decomposition g = hgkg with hg ∈ H and kg ∈ K. Then
the map:

φ : IH ⊕ IK ⊕ (IH ⊗ IK)→ IG

given by φ(h− 1, 0, 0) = h− 1, φ(0, k − 1, 0) = k − 1 and φ(0, 0, (h′ − 1)⊗ (k′ − 1)) =
(h′ − 1).(k′ − 1) is an isomorphism of Z-modules.

Proof. We define
ψ : IG→ IH ⊕ IK ⊕ (IH ⊗ IK)

by
ψ(g − 1) = (hg − 1, kg − 1, (hg − 1)⊗ (kg − 1)).

One readily checks that ψ is the inverse of φ, using the fact that the unique decompo-
sition of h ∈ H ⊂ G (resp. k ∈ K ⊂ G) in HK is h.1 (resp. 1.k). �

Proof of Proposition 8.3. For X, Y ∈ C we have a short exact sequence:

1→ F (X | Y )→ F (X ∨ Y )
(r1∗,r2∗)t

−−−−−→ F (X)× F (Y )→ 1.

Since i1∗ and i2∗ are group morphisms we have s(1, 1) = 1 and since F is reduced, s is a
set-theoretic section of (r1∗, r2∗)

t natural in X and Y . Hence the subsets H = F (X | Y )
and K = s(F (X)× F (Y )) of the group F (X ∨ Y ) satisfy the conditions of Lemma 8.4
and we have an isomorphism of bifunctors:

I(F (X∨Y )) ≃ I(F (X | Y ))⊕I(s(F (X)×F (Y )))⊕(I(F (X | Y ))⊗I(s(F (X)×F (Y )))).

Since the map s is a bijection of F (X)× F (Y ) onto the set K, applying Proposition
8.4 to the product group F (X)× F (Y ) provides an isomorphism of bifunctors:

I(F (X ∨ Y )) ≃ I(F (X | Y ))⊕ (IF (X)⊕ IF (Y )⊕ IF (X)⊗ IF (Y ))

⊕(I(F (X | Y ))⊗ I(F (X)× F (Y )))

Now the assertion follows from (2.13.7). �

The following application of Proposition 8.3 illustrates the power of the linearization
functor T1.

Proposition 8.5. Let F : C → Gr be a reduced functor. Then we have a natural
isomorphism:

θF : T1(IF )→ T1F

defined by θF (t1(x− 1)) = t1(x) for X ∈ C and x ∈ F (X).

Proof. By the isomorphism Θ in Proposition 8.3 we have

T1(IF )(X) = coker(cr2(IF )(X,X)
S

IF (−)
2−−−−→ IF (X))

= coker(I(F (X | X))⊕(IF (X)⊗IF (X))⊕(I(F (X | X))⊗I(F (X)×F (X))
S

IF (−)
2 Θ
−−−−−→ IF (X))

S
IF (−)
2 Θ(x− 1, 0, 0) = S

IF (−)
2 (x− 1) = I(SF2 )(x− 1)

S
IF (−)
2 Θ(0, (y−1)⊗(z−1), 0) = S

IF (−)
2 ((i1∗y−1).(i2∗z−1)) = IF (∇2)((i1∗y−1).(i2∗z−1))

= (∇2
∗i1∗y − 1).(∇2

∗i2∗z − 1) = (y − 1).(z − 1) ∈ (IF (X))2

S
IF (−)
2 Θ(0, 0, (u−1)⊗(v−1)) = IF (∇2)((u−1).(sv−1)) = (∇2u−1).(∇2sv−1) ∈ (IF (X))2.

By Proposition 8.2 we obtain:

T1(IF )(X) = IF (X)/(Im(I(SF2 )) + (IF (X))2) ≃ F (X)ab/ab(Im(SF2 ))

≃ (F (X)/Im(SF2 ))ab ≃ (T1F (X))ab ≃ T1F (X) by Proposition 2.1

where −ab : Gr → Ab is the abelianization functor and ab : F (X)→ F (X)ab. �
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8.3. Computation of T11(cr2U)(X, Y ). In order to compute T11(cr2U)(E,E) as a right
Λ-module we apply the results of section 8.2 to the reduced functor T (E,−) : C → Gr.

Notation 8.6. In the sequel we use the following abbreviations:

T (E,X | Y ) := cr2(T (E,−))(X, Y ) ;

T1T (E,X) := T1(T (E,−))(X) ; T1IT (E,X) := T1(IT (E,−))(X);

T11T (E,X | Y ) := T11(cr2(T (E,−)))(X, Y ); T11IT (E,X | Y ) := T11(Icr2(T (E,−)))(X, Y ).

Proposition 8.7. There is a binatural isomorphism:

(8.7.1) Υ : T11T (E,X | Y )⊕ (T1T (E,X)⊗ T1T (E, Y ))
≃
−→ T11cr2(IT (E,−))(X, Y )

such that

Υ(t11ξ, t1f ⊗ t1g) = t11(ι
2
(1,2))

−1((ξ − 1) + (i1f − 1) • (i2g − 1)).

Moreover, the right action of Λ on T11cr2(IT (E,−))(X, Y ) induced by precomposition
in T is given on the above components by

(8.7.2) Υ(t11ξ, 0).α = Υ(t11(ξα), 0)

(8.7.3) Υ(0, t1f ⊗ t1g).α = Υ(t11((f ∨ g)h(α)), t1(fα)⊗ t1(gα))

for α ∈ T (E,E).

Proof. Taking F = T (E,−) in Proposition 8.3 gives an isomorphism of bifunctors

I(T (E,X | Y ))⊕(I(T (E,X))⊗I(T (E, Y )))⊕(I(T (E,X | Y ))⊗I(T (E,X)×T (E, Y )))

Θ
−→ cr2(IT (E,−))(X, Y ).

We have the following binatural isomorphisms

I(T (E,X | Y ))⊗ I(T (E,X)× T (E, Y )) ≃ (I(T (E,X | Y ))⊗ I(T (E,X)))

⊕(I(T (E,X | Y ))⊗ I(T (E, Y )))

⊕(I(T (E,X | Y ))⊗ I(T (E,X))⊗ I(T (E, Y ))).

Thus I(T (E,X | Y )) ⊗ I(T (E,X) × T (E, Y )) is a sum of bifunctors which are diag-
onalizable as functors in X or in Y . So Proposition 2.4 implies that T11(I(T (E,X |
Y )) ⊗ I(T (E,X) × T (E, Y ))) = 0. Using Proposition 8.5 and Example 1.15 the iso-
morphism T11(Θ) thus becomes the desired isomorphism Υ.

The structure of right Λ-module on T11IT (E,X | Y ) is induced by the inclusion
T (E,X | Y )→ T (E,X ∨ Y ); this implies relation (8.7.2). To prove relation (8.7.3) let
f ∈ T (E,X) and g ∈ T (E, Y ). Then:

ι2(1,2)Θ(0, (f − 1)⊗ (g − 1), 0).α = ((i1f − 1) • (i2g − 1)).α

= ((i1f • i2g − 1)− (i1f − 1)− (i2g − 1)).α

= ((i1f • i2g) ◦ α− 1)− (i1f ◦ α− 1)− (i2g ◦ α− 1)

= (ω • (i1fα) • (i2gα)− 1)− (i1fα− 1)− (i2gα− 1)

where ω = ((i1f • i2g) ◦ α) • (i2g ◦ α)−1 • (i1f ◦ α)−1. Hence:

ι2(1,2)Θ(0, (f − 1)⊗ (g − 1), 0).α

= (ω − 1) + ((i1fα) • (i2gα)− 1) + (ω − 1) • ((i1fα) • (i2gα)− 1)− (i1fα− 1)
− (i2gα− 1)

= (ω − 1) + (i1fα− 1) • (i2gα− 1) + (ω − 1) • ((i1fα) • (i2gα)− 1).

Now observe that

(8.7.4) (i1f) • (i2g) = (f ∨ g)∗(i1 • i2).
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Thus ω = (f ∨ g)∗((i1 • i2)α) • (f ∨ g)∗(i2α)−1 • (f ∨ g)∗(i1α)−1 = (f ∨ g)∗(h(α)). It
follows that ω = T (E, f | g)(h(α)) ∈ T (E,X | Y ). Hence

(ω − 1) • ((i1fα) • (i2gα)− 1) ∈ Θ
(

T (E,X | Y )⊗ I(T (E,X)× T (E, Y ))
)

,

and we deduce that

Υ(0, t1f ⊗ t1g).α = t11(Θ(0, (f − 1)⊗ (g − 1), 0).α)

= Υ(t11((f ∨ g)h(α)), t1(fα)⊗ t1(gα)),

as desired. �

Using the natural isomorphism Ξ : I(T (E,X))→ U(X) we finally obtain:

Corollary 8.8. We have a natural isomorphism of right Λ-modules:

T11cr2(Ξ)Υ : T11T (E,X | Y )⊕ (T1T (E,X)⊗ T1T (E, Y ))→ T11(cr2U)(X, Y )

such that:
T11cr2(Ξ)Υ(t11ξ, t1f ⊗ t1g) = t11(ξ + ρ2

(1,2)(i1f • i2g))

and where the action of Λ on the domain of T11cr2(Ξ)Υ is given by:

(t11ξ, t1f ⊗ t1g).α = (t11((ξα) • (f ∨ g)h(α)), t1(fα)⊗ t1(gα)).

Proof. It suffices to combine Proposition 8.7 with the isomorphism T11cr2(Ξ). In fact,

T11cr2(Ξ)Υ(t11ξ, t1f ⊗ t1g) = T11cr2(Ξ)t11(ι
2
(1,2))

−1((ξ − 1) + (i1f − 1) • (i2g − 1))

= t11(ι
2
(1,2))

−1Ξ((ξ − 1) + (i1f − 1) • (i2g − 1))

= t11(ι
2
(1,2))

−1Ξ((ξ − 1) + (i1f • i2g − 1)− (i1f − 1)− (i2g − 1))

= t11(ι
2
(1,2))

−1(ξ + i1f • i2g − i1f − i2g)

= t11(ξ + ρ2
12(i1f • i2g)) by (2.13.5)

�

8.4. The action of the involution on T11(cr2U)(X, Y ). Since Ĥ is a morphism of
symmetric Λ ⊗ Λ-modules we have to understand the action of the involution on the
two components of T11(cr2U)(X, Y ) according to Corollary 8.8.

For ξ ∈ T (E,X | Y ) we have the relation

T̄Ut11(ξ) = t11T
T (E,−)(ξ)

in T11(cr2U)(X, Y ) by Proposition 1.20.
For f, g ∈ T (E,X) we have

I(τ)ι2(1,2)Θ(0, (f − 1)⊗ (g − 1), 0) = I(τ)((i1f − 1) • (i2g − 1))

= (i2f − 1) • (i1g − 1)

= (i2f • i1g − 1)− (i2f − 1)− (i1g − 1)

= ([i2f, i1g] • i1g • i2f − 1)− (i2f − 1)− (i1g − 1)

= ([i2f, i1g]− 1) + (i1g • i2f − 1) +

([i2f, i1g]− 1) • (i1g • i2f − 1)− (i2f − 1)− (i1g − 1)

= ([i2f, i1g]− 1) + (i1g − 1) • (i2f − 1) +

([i2f, i1g]− 1) • (i1g • i2f − 1)

But [i2f, i1g] ∈ T (E,X | Y ), hence we obtain:

T̄UΥ(0, t1f ⊗ t1g) = t11(ι
2
(1,2))

−1I(τ)ι2(1,2)Θ(0, (f − 1)⊗ (g − 1), 0)

= Υ(t11[i2f, i1g], t1g ⊗ t1f)
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Combining this relation with (8.4) and Corollary 8.8 we obtain
(8.8.1)

T̄Ut11
(

ξ + ρ2
(1,2)((i1f) • (i2g))

)

= t11
(

T T (E,−)(ξ) + [i2f, i1g] + ρ2
(1,2)((i1g) • (i2f))

)

8.5. The homomorphism Ĥ. By definition of a quadratic C-module the map

Ĥ : T11(cr2(U))(E,E)⊗Λ Me →Mee

is a morphism of symmetric Λ⊗Λ-modules. In the case of cogroups we have the following
equivalent description of Ĥ :

Proposition 8.9. For a theory of cogroups T , the morphism of symmetric Λ ⊗ Λ-
modules Ĥ is equivalent to the following data:

(1) a morphism of abelian groups:

H1 : Me → Mee

(2) a morphism of symmetric Λ⊗ Λ-modules

H ′
2 : T11T (E,E | E)⊗Λ Me →Mee

satisfying the following relations for α ∈ T (E,E) and a ∈Me:

(8.9.1) H1(αa) = H ′
2(t11h(α)⊗ a) + (α⊗ α)H1(a)

(8.9.2) TH1(a) = H1(a) +H ′
2(t11([i2, i1])⊗ a).

Proof. Using Corollary 8.8 and relation (8.7.4) one easily verifies that when dropping

the symmetry conditions, the map Ĥ is equivalent with the maps H1 and H ′
2 as in (1)

and (2) satisfying relation (8.9.1). In fact, given Ĥ we may define

(8.9.3) H1(a) = Ĥ(t11ρ
2
(1,2)(i1 • i2)⊗ a)

(8.9.4) H ′
2(t11ξ ⊗ a) = Ĥ(t11ξ ⊗ a).

Conversely, given H1 andH ′
2 the associated map Ĥ is determined by the relations (8.9.4)

and

Ĥ(t11ρ(1,2)((i1α) • (i2β))⊗ a) = (ᾱ⊗ β̄)H1(a)

for α, β ∈ T (E,E). It remains to check that Ĥ commutes with the respective involutions
if and only if relation (8.9.2) holds. In fact,

ĤT̄U(t11(ξ + ρ2
(1,2)((i1α) • (i2β)))⊗ a)

= Ĥ
(

t11

(

T T (E,−)(ξ) + [i2α, i1β] + ρ2
(1,2)((i1β) • (i2α))

)

⊗ a
)

by (8.7.4)

= Ĥ
(

t11

(

T T (E,−)(ξ) + [i2α, i1β] + cr2U(β, α)ρ2
(1,2)(i1 • i2)

)

⊗ a
)

= H ′
2

(

t11
(

T T (E,−)(ξ) + [i2α, i1β]
)

⊗ a
)

+ (β̄ ⊗ ᾱ)H1(a)
= H ′

2

(

t11T
T (E,−)(ξ)⊗ a

)

+ (β̄ ⊗ ᾱ)H ′
2([i2, i1]⊗ a) + (β̄ ⊗ ᾱ)H1(a)

since [i2α, i1β] = (β ∨ α)∗[i2, i1] = T (E, β | α)([i2, i1]) and H ′
2 is Λ̄⊗ Λ̄-linear. On the

other hand,

TĤ(t11(ξ + ρ2
(1,2)((i1α) • (i2β)))⊗ a) = TĤ(t11(ξ + cr2U(α, β)ρ2

(1,2)(i1 • i2))⊗ a)

= TH ′
2(t11ξ ⊗ a) + T ((ᾱ⊗ β̄)H1(a))

= H ′
2

(

t11T
T (E,−)(ξ)⊗ a

)

+ (β̄ ⊗ ᾱ)TH1(a).

Thus if relation (8.9.2) holds, Ĥ commutes with the respective involutions; the converse
is also true as we may take α = β = 1E. �
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8.6. The conditions (QM1) and (QM2). In this section we translate the conditions
(QM1) and (QM2) to the case of cogroups. We begin by the remark that for each
ξ ∈ T (E,E ∨ E), there exists γ ∈ T (E,E | E) such that ξ = γ • i1r1ξ • i2r2ξ. In fact,
(r1∗, r2∗)

t(ξ) = (r1ξ, r2ξ) = (r1∗, r2∗)
t(i1r1ξ • i2r2ξ) hence ξ • (i1r1ξ • i2r2ξ)

−1 ∈ T (E,E |
E). Thus any element of T (E,E ∨ E) can be written in the form γ • i1α • i2β for
α, β ∈ T (E,E) and γ ∈ T (E,E | E).

Proposition 8.10. For a theory of cogroups T , the condition (QM1) is equivalent to
the following equation:

(∇2γ • α • β).a = αa+ βa+ P ((ᾱ⊗ β̄)H1(a)) + PH ′
2(t11γ ⊗ a)

for α, β ∈ T (E,E), a ∈Me and γ ∈ T (E,E | E).

Proof. For ξ ∈ T (E,E∨E) such that ξ = γ•i1α•i2β and a ∈Me, we have the following
equations in U(E ∨E):

ι2(1,2) ◦ ρ
2
(1,2)(ξ) = ι2(1,2) ◦ ρ

2
(1,2)(γ • i1α • i2β)

= γ • i1α • i2β − i1r1(γ • i1α • i2β)− i2r2(γ • i1α • i2β) by 2.13.5

= γ • i1α • i2β − 0 • i1α • 0− 0 • 0 • i2β

= γ • i1α • i2β − i1α− i2β.

Hence:

(Ξ)−1(ι2(1,2) ◦ ρ
2
(1,2)(ξ))

= (γ • i1α • i2β − 1)− (i1α− 1)− (i2β − 1)
= (γ − 1) + (i1α • i2β − 1) + (γ − 1) • (i1α • i2β − 1)− (i1α− 1)− (i2β − 1)
= (γ − 1) + (i1α− 1) • (i2β − 1) + (γ − 1) • (i1α • i2β − 1)

and:
(Υ)−1(T11cr2(Ξ))−1(t11ρ

2
12(ξ)) = (t11γ, t1α⊗ t1β).

We deduce that:

Ĥ(t11ρ
2
12(ξ)⊗ a) = Ĥ(T11cr2(Ξ)Υ(t11γ, t1α⊗ t1β)⊗ a)

= Ĥ(t11(γ + ρ2
(1,2)(i1α • i2β))⊗ a) by Corollary 8.8

= H ′
2(t11γ ⊗ a) + (t1α⊗ t1β)H1(a).(8.10.1)

On the other hand

(∇2ξ)a− (r2
1ξ)a− (r2

2ξ)a = (∇2(γ • i1α • i2β))a− (r2
1(γ • i1α • i2β))a− (r2

2(γ • i1α • i2β))a

= (∇2γ • α • β)a− (0 • α • 0)a− (0 • 0 • β)a

= (∇2γ • α • β)a− αa− βa.

�

Proposition 8.11. For a theory of cogroups T , the condition (QM2) is equivalent to
the following equations for m ∈Mee and γ ∈ T (E,E | E):

(QM2− 1) H ′
2(t11γ ⊗ Pm) = 0

(QM2− 2) H1(Pm) = m+ Tm.

.

Proof. For m ∈Mee and ξ ∈ T (E,E ∨E) such that ξ = γ • i1α • i2β as above, we have:

Ĥ(t11ρ
2
(1,2)(ξ)⊗ Pm) = H ′

2(t11γ ⊗ Pm) + (t1α⊗ t1β)H1(Pm)

by (8.10.1). On the other hand:

(t1r1(ξ)⊗ t1r2(ξ))(m+ Tm) = (t1α⊗ t1β)(m+ Tm).
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Hence the condition (QM2) is equivalent to the condition:

H ′
2(t11γ ⊗ Pm) + (t1α⊗ t1β)H1(Pm) = (t1α⊗ t1β)(m+ Tm).

Since α, β and γ are independent, taking α = 0 we deduce (QM2−1) and taking γ = 0
and α = β = 1E we deduce (QM2− 2). The converse is clear. �

8.7. Proof of Theorem 8.1. This now is an easy combination of Corollary 8.8 and
the Propositions 8.9 and 8.11: let M be a quadratic C-module relative to E. First use
Proposition 8.9 to replace the map Ĥ by H1 and H ′

2, then H ′
2 by H2 using relation

(QM2-1). Now the main feature is that relation (QM2-2) implies that T is determined
by H1 and P , as

T = H1P − 1.

Using this, the relation PT = P becomes (T1), which, in the converse proof, implies
that T is an involution. Next (T2) translates the relation T ((α⊗β)m) = (β⊗α)T (m).
Relation (8.9.2) becomes (T3), while (T4) translates the fact that H2 is compatible with
the respective involutions. Finally, (T5) is relation (QM1) and (T6) is (8.9.1).

8.8. Application: quadratic functors from free groups of finite rank to Ab. In
this section we apply Theorems 7.1 and 8.1 to the category C = Gr, or equivalently,
to the theory T = 〈Z〉Gr of free groups of finite rank. Baues and Pirashvili described
quadratic functors from T to Gr and Ab in terms of simpler data in [4]. We start by
recalling the simplified version of this description given in [3].

Definition 8.12 ([4]). A square group is a diagram

M = (Me
H
−→Mee

P
−→Me)

where Me is a group and Mee is an abelian group. Both groups are written additively.
Moreover P is a homomorphism and H is a quadratic map, that is, the cross effect

(a | b)H = H(a+ b)−H(a)−H(b)

is linear in a, b ∈Me. In addition the following identities are satisfied for all x, y ∈Me

and a, b ∈Mee:

(Pa | y)H = 0 = (x | Pb)H ;

P (x | y)H = −x − y + x+ y;

PHP (a) = 2P (a).

Theorem 8.13 ([4]). The category of quadratic functors from 〈Z〉Gr to Ab (or of qua-
dratic endofunctors of Gr preserving filtered colimits and reflexive coequalizers) is equiv-
alent to the category of square groups with H linear.

We reprove this theorem by specializing our general results to the case T = 〈Z〉Gr, as
follows.

Proof. Since 〈Z〉Gr is a theory of cogroups we can apply Theorem 8.1. Let M be a
diagram as in this theorem. Condition (T1) shows that

Square(M) = (Me
H1−→ Mee

P
−→ Me)

is a square group such that H1 is linear. So we have to prove that the remaining
structure of M is determined and well defined by Square(M) when one requires the
conditions (T2) - (T6) to hold.
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First of all,

Λ = (T1U)(Z) by Proposition 3.7

≃ (T1I(Gr(Z,−)))(Z)

≃ T1(Gr(Z,−))(Z) by Proposition 8.5

≃ T1(IdGr)(Z)

≃ Z by Proposition 2.2.

We deduce that Λ⊗ Λ ≃ Z hence condition (T2) is trivially satisfied.
The isomorphism of endofunctors of Gr:

ν : Gr(Z,−)→ IdGr, νG(f) = f(1)

induces an isomorphism of bifunctors

T11(cr2ν) : T11cr2(Gr(Z,−))→ T11cr2(IdGr)

such that

(8.13.1) T11(cr2ν)G,H(t11(ξ)) = t11(ξ(1))

for ξ ∈ cr2Gr(Z,−)(G,H). So by Proposition 2.3,

(8.13.2) T11cr2(Gr(Z,−))(Z,Z) ≃ Z;

and T11cr2(Gr(Z,−))(Z,Z) is generated by the commutator t11[i2, i1]. We deduce that
condition (T3) means that H2 is determined by Square(M) and satisfies

PH2 = 0 and H2(t11γ ⊗ ā) = 0

by (T1). However, starting out with the square group Square(M), condition (T3) a
priori only gives rise to a map

H̃2 : T11cr2(Gr(Z,−))(Z,Z)⊗Z coker(P )→Mee;

in order to check that it factors through the tensor product over Λ we must first consider
the action of Λ on Me.

Let n : Z→ Z be the homomorphism such that 1 7→ n. Consider condition (T5). By
(8.13.2) we have γ = k[i2, i1], k ∈ Z, whence ∇2γ = k[Id, Id] = 0. As we know that
PH2 = 0, condition (T5) is equivalent to the relation

(8.13.3) ([n] • [m])a = [n]a + [m]a + P (([n]⊗ [m])H1(a)).

which by induction is equivalent to

(8.13.4) [n]a = na +

(

n

2

)

PH1(a).

So (T5) means that the action of Λ on Me is determined by Square(M), via (8.13.4);
the property to be an action is a formal consequence of the identity

(

nm

2

)

= m

(

n

2

)

+ n

(

m

2

)

+ 2

(

n

2

)(

m

2

)

for n,m ∈ Z.
By (8.13.4), [n]a = na in coker(P ). On the other hand, for γ ∈ cr2(Gr(Z,Z | Z)) we

have:

γ([n+m]) = γ([n] • [m]) = γ([n]) • γ([m]).

Since γ([1]) = γ we deduce that γ([n]) = (γ([1]))•n = γ•n. Hence the right action of Λ
on T11cr2(Gr(Z,−))(Z,Z) is given by

t11(γ).[n] = t11(γ[n]) = t11(γ
•n) = nt11(γ).
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We deduce that:

T11cr2(Gr(Z,−))(Z,Z)⊗Λ coker(P ) = T11cr2(Gr(Z,−))(Z,Z)⊗Z coker(P ) ≃ coker(P ).

So finally we obtain that H2 = H̃2 is welldefined.
The fact that P is Λ-equivariant is equivalent to condition (T1) by (8.13.4).
Condition (T4) is trivially satisfied since PH2 = 0 and γ •τγ = (k[i2, i1])•(k[i1, i2]) =

0.
So it remains to show that condition (T6) is a consequence of the others. For this we

need the following lemma:

Lemma 8.14. Let G and H be two groups. Then for g ∈ G, h ∈ H and n ∈ Z, the
following identity holds in T11cr2(IdGr)(G,H):

t11

(

((i1g)(i2h))
n(i2h)

−n(i1g)
−n

)

= t11([i2h, i1g]
(n

2)).

Proof. Consider the following diagram where γ3(G) = [[G,G], G], the isomorphism Γ′
11

is defined in the proof of Proposition 2.3, p is the canonical projection, and the map c
is given by c(ḡ ⊗ h̄) = [i1g, i2h].

cr2(IdGr)(G,H)

t11
����

� �

inc
// G ∨H

p
����

T11cr2(IdGr)(G,H)
Γ′

11

// Gab ⊗Hab
c

// (G ∨H)/γ3(G ∨H)

The diagram commutes as is easily checked on the canonical generators t11[i1g, i2h]
of T11cr2(IdGr)(G,H), see Proposition 2.3. Thus

(cΓ′
11)t11

(

((i1g)(i2h))
n(i2h)

−n(i1g)
−n

)

= p
(

((i1g)(i2h))
n(i2h)

−n(i1g)
−n

)

= p([i2h, i1g]
(n

2)) by the Hall-Petrescu formula

= (cΓ′
11)t11([i2h, i1g]

(n

2)).

But the map c is injective, see [13, Proposition 1.2]. �

This implies that

t11(h([n])) =

(

n

2

)

t11[i2, i1];

in fact,

T11(cr2ν)(t11(h([n])) = t11(h([n])(1)) by (8.13.1)

= t11

(

((i1 • i2)[n]) • (i2[n])−1 • (i1[n])−1)(1)
)

= t11

(

((i1 • i2)(n))i2(n)−1i1(n)−1
)

= t11

(

((i1 • i2)(1))ni2(1)−ni1(1)−n
)

= t11(((i1(1)i2(1))ni2(1)−ni1(1)−n)

= t11([i2(1), i1(1)](
n

2)) by Lemma 8.14

= t11([i2, i1]
•(n

2)(1))

= T11(cr2ν)(t11([i2, i1]
•(n

2)))

= T11(cr2ν)(

(

n

2

)

t11([i2, i1])).
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Thus

H2(t11h([n])⊗ a) + n2H1(a) =

(

n

2

)

H2(t11[i2, i1]⊗ a) + n2H1(a)

=

(

n

2

)

(H1PH1(a)− 2H1(a)) + n2H1(a) by condition (T3)

=

(

n

2

)

H1PH1(a) + nH1(a)

= H1([n]a) by (8.13.4),

as desired.
�

Remark 8.15. In the definition of square group given in [4] the authors consider the
map: ∆(a) = HPH(a) +H(2a)− 4H(a). When H is linear we have ∆ = HPH − 2H .
So the map ∆ corresponds to our map H2 according to condition (T3).

Remark 8.16. The case of the theory of free groups of finite rank is very simple compared
to a general theory of cogroups since a quadratic Gr-module relative to Z must satisfy
only the single condition (T1) instead of the six conditions (T1) - (T6) in the general
situation.
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