Quadratic functors on pointed categories

Manfred Hartl, Christine Vespa

To cite this version:

Manfred Hartl, Christine Vespa. Quadratic functors on pointed categories. 2008. hal-00334292v1

HAL Id: hal-00334292
 https://hal.science/hal-00334292v1

Preprint submitted on 24 Oct 2008 (v1), last revised 21 Oct 2009 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

QUADRATIC FUNCTORS ON POINTED CATEGORIES

MANFRED HARTL; CHRISTINE VESPA

Abstract

We study polynomial functors of degree 2, called quadratic, with values in the category of abelian groups $A b$, and whose source category is an arbitrary category \mathcal{C} with null object such that all objects are finite coproducts of a generating object E. A functorial equivalence is established between quadratic functors from \mathcal{C} to $A b$ and certain minimal algebraic data. Applying this general result to the case where E is a cogroup these data take a particulary simple form. This application extends results of Baues and Pirashvili obtained for \mathcal{C} being the category of free groups or modules of finite rank.

Mathematics Subject Classification: 18D; 18A25; 55U
Keywords: polynomial functors; quadratic functors; algebraic theory

In their foundamental work on homology of spaces thereafter linked to their name 6] Eilenberg and MacLane introduced cross-effects and polynomial functors (see section 1 for definitions). Since then, these functors proved to play a crucial role in unstable homotopy theory; and during the last decade, homological algebra of polynomial functors turned out to be a powerful tool at the crossroad of various fields, such as algebraic K-theory, generic representation theory or cohomology of general linear groups.

In this paper we study polynomial functors of degree 2 , called quadratic, $F: \mathcal{T} \rightarrow A b$ where $A b$ is the category of abelian groups and \mathcal{T} is an arbitrary pointed algebraic theory, i.e. a category \mathcal{T} with null object such that all objects are finite coproducts of a generating object E. For example, the category of finitely generated free objects in any pointed algebraic category is of this type, in particular the category of finitely generated free algebras over any reduced operad. Moreover, the homotopy category of finite one-point unions of a given space is a pointed algebraic theory, and metastable homotopy groups on such a category are examples of quadratic functors. This was one of the motivations for Baues and Pirashvili [1], [4] to study quadratic functors on several particular types of algebraic theories.

In the cited papers, and also in work of the same authors with Dreckmann and Franjou on polynomial functors of higher degree [2], a functorial equivalence is established between polynomial functors on \mathcal{T} and certain minimal algebraic data: these consist of the values of the cross-effects of the corresponding functor on the generating object E, and of certain maps relating them. For example, quadratic functors from the category of finitely generated free groups to $G r$ correspond to diagrams

$$
\left(M_{e} \xrightarrow{H} M_{e e} \xrightarrow{P} M_{e}\right)
$$

called square groups, where M_{e} is a group, $M_{e e}$ an abelian group, H a quadratic map and P a homomorphism (satisfying certain relations), see [4]. Those functors taking values in $A b$ hereby correspond to square groups for which H is linear, i.e. a homomorphism. Similarly, given a ring R, quadratic functors from the category of finitely generated free R-modules to $A b$ correspond to diagrams of the same type called quadratic R-modules, but where M_{e} is an abelian group endowed with a quadratic action of $R, M_{e e}$ is an $R \otimes R$-module, and H and P are homomorphisms compatible with the actions of R, see

[^0][1]. As a last example, quadratic functors from the category of finite pointed sets to $A b$ correspond to diagrams
$$
\left(M_{e e} \xrightarrow{T} M_{e e} \xrightarrow{P} M_{e}\right)
$$
containing no operator H but an involution T of $M_{e e}$ instead, see [13.
In this paper we show that quadratic functors from an arbitrary pointed theory \mathcal{T} to $A b$ are functorially equivalent with diagrams
$$
\left(T_{11}\left(c_{2}(U)\right)(E, E) \otimes_{\Lambda} M_{e} \xrightarrow{\hat{H}} M_{e e} \xrightarrow{T} M_{e e} \xrightarrow{P} M_{e}\right)
$$
which we call quadratic \mathcal{T}-modules, where Λ is the reduced monoid ring of $\mathcal{T}(E, E), M_{e}$ and $M_{e e}$ are modules over Λ and $\Lambda \otimes \Lambda$, resp., $T_{11}\left(c r_{2}(U)\right)(E, E)$ is a module over $\Lambda \otimes \Lambda$ encoding maps from E to $E \vee E$ in \mathcal{T}, the map T is an involution of $M_{e e}$ and \hat{H} and P are homomorphisms compatible with these structures, see Definition 4.6 for details.

A particularly interesting case arises when E has a cogroup structure in \mathcal{T}; note that this holds when \mathcal{T} is the category of finitely generated free algebras over an operad, or the homotopy category of finite one-point unions of a suspension. So if E is a cogroup our above data simplify considerably; notably, the map \hat{H} splits into two maps

$$
M_{e} \xrightarrow{H_{1}} M_{e e} \stackrel{H_{2}}{\stackrel{ }{2}} T_{11} c r_{2} \mathcal{T}(E,-)(E, E) \otimes \operatorname{coker}(P)
$$

the first of which generalizes the map H in the cited examples above, while the second one was not visible in these special cases where it is either trivial or determined by the remaining structure.

Our result shows that in order to model polynomial functors $F: \mathcal{T} \rightarrow A b$, it is not sufficient to just add structure maps of the type H and P between the various crosseffects of F as is suggested by the special cases treated in the literature: the more complicated domain of the map \hat{H} destroys this idealistic picture. On the other hand, the map \hat{H} has the interesting structure of a morphism of symmetric $\Lambda \otimes \Lambda$-modules which had not become apparent so far.

The paper is organized as follows. In the first section we define cross-effects and polynomial functors with values in $G r$ and state a number of elementary properties. An apparently new feature is that we introduce bipolynomialization of bifunctors which is a crucial tool in our approach; this is more extensively studied in [7]. In section 2 we provide explicit formulas for the (bi)linearization and quadratization of functors with values in $A b$. In section 3 we review the functorial equivalence between polynomial functors and certain modules essentially due to Johnson and McCarthy, in a more general framework. We here reprove and exploit only the (easy) case of (bi)linear functors. In section 4 we introduce quadratic \mathcal{C}-modules (for any pointed category \mathcal{C} with finite sums), and show how they are obtained from quadratic functors, while the inverse construction is provided in section 5: we construct a quadratic tensor product $X \otimes M$ of an object X of \mathcal{C} with a quadratic \mathcal{C}-module M, generalizing the correponding constructions in [1] and [4]. This allows to associate a quadratic functor to a quadratic \mathcal{C}-module M, defined by sending X to $X \otimes M$. The computation of $E \otimes M$ and of the cross-effect of the functor $-\otimes M$ allows to establish in section 6 the desired (adjoint) equivalence between quadratic functors from \mathcal{C} to $A b$ and quadratic \mathcal{C}-modules. In the final section we investigate the special case where E is equipped with a cogroup structure. In the cogroup case quadratic \mathcal{C}-modules turn out to take a particularly simple form: \hat{H} splits into two maps H_{1} and H_{2} as above, where the domain of H_{2} is the tensor product with M_{e} of a subquotient of the group of maps from E to $E \vee E$, and the involution T is determined by the remaining structure as $T=H_{1} P-1$.

In subsequent work we plan to extend our results to quadratic functors with values in the category of all groups, starting from a pointed category \mathcal{C} having a generating
object E in the more general categorical sense: that is, such that any object of \mathcal{C} is a colimit of copies of E. In particular this holds when \mathcal{C} is the category of models of any algebraic theory.

We expect that our approach generalizes to polynomial functors of higher degree.

Contents

1. Polvnomial functors 3
1.1. Generalities on polvnomial functors and bifunctors 3
1.2. Algebraic theories and polvnomial functors 8
2. Explicit description of the (bi-)linearization and quadratization functor 9
2.1. Linearization and bilinearization functors 10
2.2. Quadratization functor 11
3. Equivalence between polvnomial functors and suitable modules 12
3.1. Adiunction between reduced functors and Λ-modules 13
3.2. Classification of linear functors 14
3.3. Classification of polvnomial functors of arbitrary degree 15
3.4. Classification of bilinear bifunctors 16
4. Quadratic \mathcal{C}-modules 16
4.1. Definition 17
4.2. Quadratic \mathcal{C}-modules obtained from quadratic functors 19
5. Quadratic tensor product 20
5.1. Definition 20
5.2. The quadratic tensor product defines a quadratic functor 22
5.3. Computation of the quadratic tensor product $E \otimes M$ 24
5.4. Computation of the cross-effect of $-\otimes M$ 26
6. Equivalence between quadratic functors and quadratic \mathcal{C}-modules 29
6.1. The co-unit of the adiunction 29
6.2. The unit of the adjunction 33
7. Application to theories of cogroups 33
7.1. Augmentation ideals: recollections and action of the linearization functor 34
7.2. Computation of $\mathrm{cr}_{2} U(X . Y)$ 35
7.3. Computation of $T_{11} c_{2} U(X . Y)$ 36
7.4. The action of the involution on $T_{11} c r_{2} U(X . Y)$ 38
7.5. The homomorphism \hat{H} 38
7.6. The conditions ($Q M 1$) and ($Q M 2$) 39
7.7. Proof of Theorem $\overline{7.1}$ 40
7.8. Application: quadratic functors from free groups of finite rank to $A b$ 41
References 44

1. Polynomial functors

1.1. Generalities on polynomial functors and bifunctors. Throughout this paper, \mathcal{C} denotes a pointed category (i.e. having a null object denoted by 0) with finite coproducts denoted by \vee. Let $G r$ and $A b$ denote the categories of groups and abelian groups, resp. We begin by giving a definition and basic properties of the cross-effect and of polynomial functors from \mathcal{C} to $G r$, generalizing those given in [4] for linear and quadratic functors and those given by Eilenberg and Mac Lane in the case of functors from an abelian category to $A b$ [6].

In the sequel, \mathcal{D} denotes one of the categories $G r$ or $A b$. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor. We often note $f_{*}=F(f)$ for a morphism f in \mathcal{C}. For objects X_{1}, \ldots, X_{n} of \mathcal{C} and $1 \leq k \leq n$ let

$$
X_{k} \xrightarrow{i_{k}^{n}} X_{1} \vee \ldots \vee X_{n} \xrightarrow{r_{k}^{n}} X_{k}
$$

be the canonical injection and retraction, resp., the latter being defined by $r_{k}^{n} i_{k}^{n}=1_{X_{k}}$ and $r_{k}^{n} i_{p}^{n}=0$ if $p \neq k$.
Definition 1.1. The n-th cross-effect of F is a functor $c r_{n} F: \mathcal{C}^{\times n} \rightarrow \mathcal{D}$ (or a multifunctor) defined inductively by

$$
\begin{gathered}
c r_{1} F(X)=\operatorname{ker}(F(0): F(X) \rightarrow F(0)) \\
c r_{2} F(X)=k e r\left(\left(F\left(r_{1}^{2}\right), F\left(r_{2}^{2}\right)\right)^{t}: F(X \vee Y) \rightarrow F(X) \times F(Y)\right)
\end{gathered}
$$

and, for $n \geq 3$, by

$$
c r_{n} F\left(X_{1}, \ldots, X_{n}\right)=c r_{2}\left(c r_{n-1}\left(-, X_{3}, \ldots, X_{n}\right)\right)\left(X_{1}, X_{2}\right)
$$

In other words, to define the n-th cross-effect of F we consider the ($n-1$)-st crosseffect, we fix the $n-2$ last variables and we consider the second cross-effect of this functor. One often writes $F\left(X_{1}|\ldots| X_{n}\right)=c r_{n} F\left(X_{1}, \ldots, X_{n}\right)$.

Note that $F(X) \simeq c r_{1} F(X) \rtimes F(0)$ as $F(0): F(0) \rightarrow F(X)$ is a natural section of $F(0): F(X) \rightarrow F(0)$. Moreover, one easily checks by induction that $c r_{n} F\left(X_{1}, \ldots, X_{n}\right)$ is a subgroup of $F\left(X_{1} \vee \ldots \vee X_{n}\right)$.

In this paper we are mainly interested in reduced functors $F: \mathcal{C} \rightarrow \mathcal{D}$, that is satisfying $F(0)=0$. We denote by $\operatorname{Func}_{*}(\mathcal{C}, \mathcal{D})$ the category of reduced functors $F: \mathcal{C} \rightarrow \mathcal{D}$.

There is an alternative description of cross-effects for reduced functors. To state this let $r_{12 \ldots(k-1)(k+1) \ldots n}^{n}: X_{1} \vee \ldots \vee X_{n} \rightarrow X_{1} \vee \ldots \vee \hat{X}_{k} \vee \ldots \vee X_{n}$ be the map whose restriction to X_{i} is its canonical injection for $i \neq k$ and is the zero map if $i=k$.

Proposition 1.2. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a reduced functor. Then the n-th cross-effect $\operatorname{cr}_{n} F\left(X_{1}, \ldots, X_{n}\right)$ is equal to the kernel of the natural homomorphism

$$
F\left(X_{1} \vee \ldots \vee X_{n}\right) \xrightarrow{\prod_{k=1}^{n} F\left(r_{12 \ldots(k-1)(k+1) \ldots n)}^{n}\right)} \prod_{k=1}^{n} F\left(X_{1} \vee \ldots \vee \hat{X}_{k} \vee \ldots \vee X_{n}\right)
$$

As a consequence, we see that $c r_{n} F\left(X_{1}, \ldots, X_{n}\right)$ actually is a normal subgroup of $F\left(X_{1} \vee \ldots \vee X_{n}\right)$. Moreover, it follows that $c r_{n} F\left(X_{1}, \ldots, X_{n}\right)$ is symmetric in X_{1}, \ldots, X_{n}. Finally, we see that the functor $c r_{n}$ is multi-reduced, i.e., $c r_{n} F\left(X_{1}, \ldots, X_{n}\right)$ vanishes if one of the X_{k} is the zero object since then $F\left(r_{12 \ldots(k-1)(k+1) \ldots n}^{n}\right)$ is an isomorphism.

The importance of cross-effects comes from the following property of functors with values in $A b$.

Proposition 1.3. Let $F: \mathcal{C} \rightarrow A b$ be a reduced functor. Then there is a natural decomposition

$$
F\left(X_{1} \vee \ldots \vee X_{n}\right) \simeq \bigoplus_{k=1}^{n} \bigoplus_{1 \leq i_{1}<\ldots<i_{k} \leq n} c r_{k} F\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
$$

The cross-effects have the following crucial property.
Proposition 1.4. The functor $\mathrm{cr}_{n}: \operatorname{Func}(\mathcal{C}, \mathcal{D}) \rightarrow \operatorname{Func}\left(\mathcal{C}^{\times n}, \mathcal{D}\right)$ is exact for all $n \geq 1$.
Proof. For $n=1$ it is a consequence of the natural decomposition $F(X) \simeq c r_{1} F(X) \rtimes$ $F(0)$. For $n=2$ this follows from the snake-lemma. For higher n use induction.

Definition 1.5. A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is said to be polynomial of degree lower or equal to n if $\mathrm{cr}_{n+1} F=0$. Such a functor is called linear if $n=1$ and is called quadratic if $n=2$. We denote by $\operatorname{Func}(\mathcal{C}, \mathcal{D})_{\leq n}$ the full subcategory of $\operatorname{Func}(\mathcal{C}, \mathcal{D})$ consisting of polynomial functors of degree lower or equal to n.

The category $\operatorname{Func}(\mathcal{C}, \mathcal{D})_{\leq n}$ has the following fundamental property which is an immediate consequence of Proposition 1.4
Proposition 1.6. The category $\operatorname{Func}(\mathcal{C}, \mathcal{D})_{\leq n}$ is thick i.e. closed under quotients, subobjects and extensions.

Througout this paper we denote by $\Delta_{\mathcal{C}}^{n}: \mathcal{C} \rightarrow \mathcal{C}^{\times n}$ the diagonal functor. For $n=2$ we write $\Delta_{\mathcal{C}}$ instead of $\Delta_{\mathcal{C}}^{2}$.
Definition 1.7. For $F \in \operatorname{Func}(\mathcal{C}, \mathcal{D})$ and $X \in \mathcal{C}$, we denote by S_{n}^{F} the natural map $S_{n}^{F}:\left(c r_{n} F\right) \Delta_{\mathcal{C}}^{n} \rightarrow F$ given by the composition

$$
c r_{n} F(X, \ldots, X) \xrightarrow{i n c} F\left(\vee_{i=1}^{n} X\right) \xrightarrow{F\left(\nabla^{n}\right)} F(X)
$$

where $\nabla^{n}: \vee_{i=1}^{n} X \rightarrow X$ is the folding map.
Note that the image of S_{n}^{F} is normal in $F(X)$; in fact, $c r_{n} F(X, \ldots, X)$ is normal in $F\left(\bigvee_{i=1}^{n} X\right)$, and $F\left(\nabla^{n}\right)$ is surjective admitting $F\left(i_{1}^{n}\right)$ as a section. This fact is used in the following:
Definition 1.8. For $F \in \operatorname{Func}(\mathcal{C}, \mathcal{D})$ the $n-$ Taylorisation functor $T_{n}: \operatorname{Func}(\mathcal{C}, \mathcal{D}) \rightarrow$ $\operatorname{Func}(\mathcal{C}, \mathcal{D})_{\leq n}$ is defined by: $T_{n} F=\operatorname{coker}\left(\left(c r_{n+1} F\right) \Delta_{\mathcal{C}}^{n+1} \xrightarrow{S_{n+1}^{F}} F\right)$. We call T_{1} the linearization functor and T_{2} the quadratization functor.

Let $U_{n}: \operatorname{Func}(\mathcal{C}, \mathcal{D})_{\leq n} \rightarrow \operatorname{Func}(\mathcal{C}, \mathcal{D})$ denote the forgetful (i.e. inclusion) functor.
Proposition 1.9. The n-Taylorisation functor $T_{n}: \operatorname{Func}(\mathcal{C}, \mathcal{D}) \rightarrow(\operatorname{Func}(\mathcal{C}, \mathcal{D}))_{\leq n}$ is a left adjoint of U_{n}. The unit of the adjunction is the natural epimorphism $t_{n}: F \rightarrow T_{n} F$ which is an isomorphism if F is polynomial of degree $\leq n$.

Thus, we obtain the diagram:

The following calculations of $T_{1} F$ for special F are needed in section 7. Recall the following fact:

Lemma 1.10 (4] Lemma 1.6). For $F: \mathcal{C} \rightarrow G r$ a reduced linear functor, $F(X)$ is an abelian group for $X \in \mathcal{C}$.

For a group G and $a, b \in G$ let $[a, b]=a b a^{-1} b^{-1}$ and let $G^{a b}=G /[G, G]$ denote the abelianization of G.

Proposition 1.11. Let $I d_{G r}: G r \rightarrow G r$ be the identity functor. There is a natural isomorphism of functors $G r \rightarrow G r$

$$
\Gamma_{1}: T_{1}\left(I d_{G r}\right)(G) \cong G^{a b}
$$

such that for $g \in G$, one has $\Gamma_{1}(\bar{g})=t_{1}(g)$.
Proof. The map Γ_{1} is welldefined by Lemma 1.10 The natural homomorphism $a b$: $G \rightarrow G^{a b}$ factors through t_{1} followed by a map $\overline{a b}: T_{1}\left(I d_{G r}\right)(G) \rightarrow G^{a b}$ since the abelianization functor $G \mapsto G^{a b}$ is linear. It is straightforward to check that $\overline{a b}$ is the inverse of Γ_{1}.

Recall that a reduced functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is called diagonalizable if there exists a bireduced bifunctor $B: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{D}$ such that $F=B \Delta_{\mathcal{C}}$.

Proposition 1.12. The linearization of a diagonalizable functor F is trivial.
Proof. The section $B\left(i_{1}^{2}, i_{2}^{2}\right)$ of the map $B \Delta_{\mathcal{C}}\left(\nabla^{2}\right): B(X \vee X, X \vee X) \rightarrow B(X, X)$ takes values in $c r_{2}\left(B \Delta_{\mathcal{C}}\right)(X, X)$ since $B\left(r_{k}^{2}, r_{k}^{2}\right) B\left(i_{1}^{2}, i_{2}^{2}\right)=0$ for $k=1,2$. Hence S_{2}^{F} is surjective and $T_{1} F=0$.

Since the cross-effect $c r_{2} F$ of a functor is a bifunctor we need some general definitions and facts about bifunctors.

Definition 1.13. A bifunctor $B: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{D}$ is said to be bireduced if for all $X \in \mathcal{C}$, $B(X, 0)=B(0, X)=0$. We denote by BiFunc $_{*, *}(\mathcal{C} \times \mathcal{C}, \mathcal{D})$ the category of bireduced bifunctors from $\mathcal{C} \times \mathcal{C}$ to \mathcal{D}.
A bireduced bifunctor $B: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{D}$ is said to be bipolynomial of bidegree $\leq(n, m)$ if for all $X \in \mathcal{C}$ the functors $B(-, X), B(X,-): \mathcal{C} \rightarrow \mathcal{D}$ are polynomial of degree $\leq n$ and $\leq m$ respectively. We denote by BiFunc $_{*, *}(\mathcal{C} \times \mathcal{C}, \mathcal{D})_{\leq(n, m)}$ the category of bipolynomial bifunctors of bidegree $\leq(n, m)$.
Proposition 1.14. The category BiFunc $_{*, *}(\mathcal{C} \times \mathcal{C}, \mathcal{D})_{\leq(n, m)}$ is thick.
Definition 1.15. Let $B: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{D}$ be a bireduced bifunctor and $n, m \geq 1$. Then the bifunctor $T_{n, m} B: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{D}$ is defined by $T_{n, m} B(X, Y)=B(X, Y) / N_{1} N_{2}$ where

$$
\begin{gathered}
N_{1}=i m\left(S_{n+1}^{B(-, Y)}: c r_{n+1}(-, Y)(X, \ldots, X) \rightarrow B(X, Y)\right), \\
N_{2}=i m\left(S_{m+1}^{B(X,-)}: c r_{m+1} B(X,-)(Y, \ldots, Y) \rightarrow B(X, Y)\right) .
\end{gathered}
$$

For $(n, m)=(1,1)$ we call $T_{1,1} B$ the bilinearization of B.
Let $U_{n, m}:\left(\text { BiFunc }_{*, *}(\mathcal{C} \times \mathcal{C}, \mathcal{D})\right)_{\leq(n, m)} \rightarrow \operatorname{BiFunc}_{*, *}(\mathcal{C} \times \mathcal{C}, \mathcal{D})$ be the forgetful functor.
Proposition 1.16. The (n, m)-Taylorisation functor $T_{n, m}:$ BiFunc $_{*, *}(\mathcal{C} \times \mathcal{C}, A b) \rightarrow$ $\left(\text { BiFunc }_{*, *}(\mathcal{C}, A b)\right)_{\leq(n, m)}$ is a left adjoint of $U_{n, m}$. The unit of this adjunction is given by the natural epimorphism $t_{n, m}: B \rightarrow T_{n, m} B$.

Notation. For brevity we will often write T_{11} instead of $T_{1,1}$ and \bar{x} instead of $t_{1}(x)$ or $t_{11}(x)$ for $x \in F(X)$ or $x \in B(X, Y)$, resp.
Example 1.17. For reduced functors $F, G: \mathcal{C} \rightarrow A b$ define the bifunctor $F \boxtimes G: \mathcal{C} \rightarrow A b$ by $(F \boxtimes G)(X, Y)=F(X) \otimes F(Y)$. Then there is a natural isomorphism

$$
T_{n, m}(F \boxtimes G) \simeq T_{n} F \boxtimes T_{m} G
$$

This is immediate from right-exactness of the tensor product. The following less trivial example is needed in section 7 .
Proposition 1.18. Let $I d_{G r}: G r \rightarrow G r$ be the identity functor. There is a natural isomorphism of bifunctors $G r \times G r \rightarrow A b$

$$
\Gamma_{11}: T_{11} c r_{2}\left(I d_{G r}\right)(G, H) \cong G^{a b} \otimes H^{a b}
$$

such that for $g \in G, h \in H$ one has $\Gamma_{11}(\bar{g} \otimes \bar{h})=t_{11}\left(\left[i_{1}^{2} g, i_{2}^{2} h\right]\right)$.
Proof. Write $G^{*}=G \backslash\{1\}$, and for a set E let $L(E)$ denote the free group with basis E. It is wellknown that there is an isomorphism

$$
\sigma: L\left(G^{*} \times H^{*}\right) \xrightarrow{\simeq} c r_{2}\left(I d_{G r}\right)(G, H)
$$

such that $\sigma(g, h)=\left[i_{1}^{2} g, i_{2}^{2} h\right]$, see 11]. Let $B: G r \times G r \rightarrow G r$ denote the bifunctor given by $B(G, H)=L(G \times H) / N \simeq L\left(G^{*} \times H^{*}\right)$ where N is the normal subgroup generated by $G \times\{1\} \cup\{1\} \times H$. Let $\pi: L(G \times H) \rightarrow B(G \times H)$ be the canonical projection. The natural homomorphism $\Gamma_{11}^{\prime}: B(G \times H) \rightarrow G^{a b} \otimes H^{a b}$ sending (g, h) to $\bar{g} \otimes \bar{h}$ factors through t_{11} followed by a map $\bar{\Gamma}_{11}^{\prime}: T_{11} B(G, H) \rightarrow G^{a b} \otimes H^{a b}$ since the bifunctor sending (G, H) to $G^{a b} \otimes H^{a b}$ is bilinear. So it remains to show that $\bar{\Gamma}_{11}^{\prime}$ is an isomorphism. For this it suffices to check that the map $b: G \times H \rightarrow T_{11} B(G, H)$ sending (g, h) to $t_{11} \pi(g, h)$ is bilinear, thus providing an inverse of $\bar{\Gamma}_{11}^{\prime}$. To show that b is linear in h consider the map $B\left(I d_{G}, \nabla^{2}\right): B(G, H \vee H) \rightarrow B(G, H)$. One has

$$
x=\pi\left(\left(g, h_{1} h_{2}\right)\left(g, h_{2}\right)^{-1}\left(g, h_{1}\right)^{-1}\right)=B\left(I d_{G}, \nabla^{2}\right)(y)
$$

with $y=\pi\left(\left(g, i_{1}^{2}\left(h_{1}\right) i_{2}^{2}\left(h_{2}\right)\right)\left(g, i_{2}^{2}\left(h_{2}\right)\right)^{-1}\left(g, i_{1}^{2}\left(h_{1}\right)\right)^{-1}\right)$. But

$$
B\left(I d_{G}, r_{1}^{2}\right)(y)=\pi\left(\left(g, h_{1}\right)(g, 1)^{-1}\left(g, h_{1}\right)^{-1}\right)=1
$$

and

$$
B\left(I d_{G}, r_{2}^{2}\right)(y)=\pi\left(\left(g, h_{2}\right)\left(g, h_{2}\right)^{-1}(g, 1)^{-1}\right)=1,
$$

whence $y \in B(G,-)(H \mid H)$. Thus $x \in \operatorname{im}\left(S_{2}^{B(G,-)}\right)$, whence $t_{11}(x)=1$. Thus b is linear in h. Similarly one shows that b is linear in g, as desired.

In the following proposition we give another characterization of the quadratization functor which is useful in the sequel.

Proposition 1.19. For $F \in \operatorname{Func}_{*}(\mathcal{C}, \mathcal{D})$ and $X \in \mathcal{C}$ we have:

$$
T_{2}(F)=\operatorname{coker}\left(\operatorname{ker}\left(\operatorname{cr}_{2} F(X, X) \xrightarrow{t_{11}}\left(T_{11} c r_{2} F\right)(X, X)\right) \xrightarrow{S_{2}^{F}} F(X)\right) .
$$

Proof. We have the following commutative diagram

$$
\left.c r_{3} F(X, X, X)\right)=c r_{2}(c r_{2} F(\underbrace{-, X))(X, X)}_{S_{2}^{F(-\mid X)}} \stackrel{t_{(12)}}{\stackrel{t_{2}^{2}}{\longrightarrow}} c r_{2} F(-, X)(X \vee X) \stackrel{\mid F\left(\nabla^{2} \mid 1\right)}{\stackrel{t_{(12)}^{3}}{\longrightarrow}} F(X \vee X \vee X)
$$

where the right hand square commutes by the following commutative diagram

By Proposition 1.8
$T_{2} F(X)=\operatorname{coker}\left(\operatorname{cr}_{3} F(X, X, X) \xrightarrow{S_{3}^{F}} F(X)\right)=\operatorname{coker}\left(\operatorname{cr}_{3} F(X, X, X) \xrightarrow{F\left(\nabla^{3}\right) \iota_{(12)}^{3} \iota_{(12)}^{2}} F(X)\right)$.

We deduce from the first diagram that

$$
\begin{align*}
T_{2} F(X) & =\operatorname{coker}\left(c r_{3} F(X, X, X) \xrightarrow{S_{2}^{F} S_{2}^{F(-\mid X)}} F(X)\right) \tag{1.19.1}\\
& =\operatorname{coker}\left(\operatorname{ker}\left(\operatorname{cr}_{2} F(-, X)(X) \xrightarrow{t_{1}} T_{1} c r_{2} F(-, X)(X)\right) \xrightarrow{S_{2}^{F}} F(X)\right) . \tag{1.19.2}
\end{align*}
$$

Considering $\mathrm{cr}_{2} F(X,-)$ instead of $\mathrm{cr}_{2} F(-, X)$, we can write down similar commutative diagrams which imply

$$
\begin{equation*}
T_{2} F(X)=\operatorname{coker}\left(\operatorname{ker}\left(c r_{2} F(X,-)(X) \xrightarrow{t_{1}} T_{1} c r_{2} F(X,-)(X)\right) \xrightarrow{S_{2}^{F}} F(X)\right) \tag{1.19.3}
\end{equation*}
$$

Combining 1.19 .1 and 1.19 .3 we deduce the result.
Finally, the following easy lemma is useful in the sequel.
Lemma 1.20. If $B: \mathcal{C} \times \mathcal{C} \rightarrow A b$ is a bilinear bireduced bifunctor then $B \Delta_{\mathcal{C}}: \mathcal{C} \rightarrow A b$ is a quadratic functor.

Proof. For $X, Y \in \mathcal{C}$ we have:

$$
\begin{aligned}
B \Delta_{\mathcal{C}}(X \vee Y)= & B(X \vee Y, X \vee Y)=B(X, X) \oplus B(Y, Y) \oplus B(X, Y) \oplus B(Y, X) \\
& =B \Delta_{\mathcal{C}}(X) \oplus B \Delta_{\mathcal{C}}(Y) \oplus B(X, Y) \oplus B(Y, X)
\end{aligned}
$$

where the second equality follows from the bilinearity of B. We deduce that $c r_{2}\left(B \Delta_{\mathcal{C}}\right)$ $(X, Y)=B(X, Y) \oplus B(Y, X)$ which is a bilinear functor. So $B \Delta_{\mathcal{C}}$ is quadratic.

From now on, we only consider functors on \mathcal{C} with values in $A b$.
1.2. Algebraic theories and polynomial functors. When \mathcal{C} is an algebraic theory, the polynomial functors from \mathcal{C} to $A b$ of degree n have the crucial property that they are determined by their values on n objects of \mathcal{C}.

Recollections on algebraic theories. We here recall and discuss the definition of a pointed algebraic theory used in this paper and many others by Baues, Jibladze and Pirashvili.

Definition 1.21. A pointed (algebraic) theory \mathcal{T} is a pointed category \mathcal{T} with an object E such that any object of \mathcal{T} is isomorphic to a finite sum of copies of E. In particular, for any object E of \mathcal{C} we denote by $\langle E\rangle_{\mathcal{C}}$ the theory generated by E, i.e. the full subcategory of \mathcal{C} consisting of the objects $E^{\vee n}=E \vee \ldots \vee E$ (n times), $n \geq 0$, with $E^{\vee 0}=0$.

Note that this definition of an algebraic theory is dual to the classical one as being a category encoding algebraic operations, see [5]. Thus a model of a theory \mathcal{T} in our sense is a contravariant functor from \mathcal{T} to the category of sets transforming coproducts into products. The advantage of this definition is that here \mathcal{T} identifies with a full subcategory of its category of models, namely the category of free models of \mathcal{T} of finite rank (5). This allows the quadratic functors we construct in section 5, from data depending only on \mathcal{T}, to be naturally defined on the whole category of models of \mathcal{T}; indeed, on all of \mathcal{C} in the more general case where $\mathcal{T}=\langle E\rangle_{\mathcal{C}}$. We will show in subsequent work that actually all quadratic functors on \mathcal{C} with good properties are of this form if \mathcal{C} is generated by E in a suitable generalized sense.

Polynomial functors on algebraic theories. The following property of polynomial functors is crucial in the sequel.

Proposition 1.22. Let $F, G: \mathcal{C} \rightarrow A b$ be two polynomial functors of degree lower or equal to n and $\phi: F \rightarrow G$ be a natural transformation of functors. If $\mathcal{C}=\langle E\rangle_{\mathcal{C}}$, the following statements are equivalent:
(1) ϕ is a natural isomorphism;
(2) $\forall k \leq n, \phi_{E^{\vee k}}$ is an isomorphism;
(3) $\phi_{E^{\vee n}}$ is an isomorphism;
(4) $\forall k$ such that $1 \leq k \leq n, \operatorname{cr}_{k}(\phi)_{E, \ldots, E}$ is an isomorphism.

Proof. Clearly $(1) \Rightarrow(2) \Rightarrow(3)$. The implication $(3) \Rightarrow(4)$ is a consequence of the natural decompositon given in Proposition [1.3. To prove (4) \Rightarrow (1), let $p \in \mathbb{N}$ and $m=\min (p, n)$. Proposition 1.3 provides a natural decomposition:
$F\left(X_{1} \vee \ldots \vee X_{p}\right) \simeq \bigoplus_{k=1}^{p} \bigoplus_{1 \leq i_{1}<\ldots<i_{k} \leq p} c r_{k} F\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \simeq \bigoplus_{k=1}^{m} \bigoplus_{1 \leq i_{1}<\ldots<i_{k} \leq p} c r_{k} F\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)$
since F is supposed to be polynomial of degree n. Using the analogous decomposition for $G\left(X_{1} \vee \ldots \vee X_{p}\right)$ we have:

$$
\phi_{X_{1} \vee \ldots \vee X_{p}} \simeq \bigoplus_{k=1}^{m} \bigoplus_{1 \leq i_{1}<\ldots<i_{k} \leq p} c r_{k}(\phi)_{X_{i_{1}}, \ldots, X_{i_{k}}} .
$$

For $X_{1}=\ldots=X_{p}=E$ we deduce that $\phi_{E^{\vee} p}$ is an isomorphism.
Proposition 1.22 implies the following analogue for bipolynomial bifunctors.
Corollary 1.23. If $\mathcal{C}=\langle E\rangle_{\mathcal{C}}$, for $B, D: \mathcal{C} \times \mathcal{C} \rightarrow A b$ two bipolynomial bifunctors of bidegree lower or equal to (n, m) and $\phi: B \rightarrow D$ a natural transformation of functors. Then ϕ is an natural equivalence if and only if $\phi_{\left(E^{\vee k}, E^{\vee \vee}\right)}$ is an isomorphism for all $k \leq n$ and $l \leq m$.

Let $F: \mathcal{C} \rightarrow A b$ be a reduced functor. Consider the natural map of bifunctors:

$$
c r_{2}\left(t_{2}\right): c r_{2}(F) \rightarrow c r_{2}\left(T_{2} F\right) .
$$

Since T_{11} is the left adjoint of the forgetful functor $U:\left(\operatorname{BiFunc}_{*}(\mathcal{C}, A b)\right)_{\leq(1,1)} \rightarrow$ $\operatorname{BiFunc}_{*}(\mathcal{C}, A b)$ we obtain that $c r_{2}\left(t_{2}\right)$ factors through the unit map $t_{11}: \operatorname{cr}_{2}(F) \rightarrow$ $T_{11}\left(c r_{2}(F)\right)$, thus providing a canonical morphism of bifunctors:

$$
\overline{c r_{2}\left(t_{2}\right)}: T_{11}\left(c r_{2}(F)\right) \rightarrow c r_{2}\left(T_{2} F\right) .
$$

The main result of this paper heavily relies on the following special case of a more general result in [7].

Theorem 1.24. The morphism $\overline{c r_{2}\left(t_{2}\right)}: T_{11}\left(c r_{2}(F)\right) \rightarrow c r_{2}\left(T_{2} F\right)$ is an isomorphism of bifunctors.

2. Explicit description of the (bi-)linearization and quadratization FUNCTOR

The general principle of this section is to express the values $T_{n} F(X)$ of the functor $T_{n} F$ as a cokernel of a map $F\left(X^{\vee(n+1)}\right) \rightarrow F(X)$ instead of a map $c r_{n+1} F(X, \ldots, X) \rightarrow F(X)$ since the elements of $c r_{n+1} F(X, \ldots, X)$ are more difficult to describe than the elements of $F\left(X^{\vee(n+1)}\right)$. This requires some notations: in the diagram
$\left(\left(i_{12 \ldots(k-1)(k+1) \ldots n}^{n}\right) *,\left(i_{k}^{n}\right) *\right)$
$F\left(X_{1} \vee \ldots \vee \widehat{\left.X_{n}\right) \xrightarrow\left[\left(\left(r_{\left.12 \ldots(k-1)(k+1) \ldots n) *\left(r_{k}^{n}\right) *\right)^{t}}\right]{ } F\left(X_{1} \vee \ldots \vee \hat{X}_{k} \vee \ldots \vee X_{n}\right) \oplus F\left(X_{k}\right), ~(k)\right.\right.}\right.$
the map $i_{12 \ldots(k-1)(k+1) \ldots n}^{n}$ is the obvious injection.
Considering the kernel of $\left(\left(r_{12 \ldots(k-1)(k+1) \ldots n}^{n}\right)_{*},\left(r_{k}^{n}\right)_{*}\right)^{t}$ we obtain the maps:

$$
F\left(X_{1} \vee \ldots \vee \hat{X}_{k} \vee \ldots \vee X_{n} \mid X_{k}\right) \xlongequal[\iota_{(12 \ldots(k-1)(k+1) \ldots n, k)}^{n}]{\rho_{(12 \ldots(k-1)(k+1) \ldots n, k)}^{n}} F\left(X_{1} \vee \ldots \vee X_{n}\right)
$$

where $\rho_{(12 \ldots(k-1)(k+1) \ldots n, k)}^{n}$ is the retraction induced by the section $\left(\left(i_{12 \ldots(k-1)(k+1) \ldots n}^{n}\right)_{*},\left(i_{k}^{n}\right)_{*}\right)$ of $\left(\left(r_{12 \ldots(k-1)(k+1) \ldots n}^{n}\right)_{*},\left(r_{k}^{n}\right)_{*}\right)^{t}$.

In particular we have the following split short exact sequence:

which implies that:

$$
\begin{equation*}
I d_{F(X \vee Y)}=\iota_{(1,2)}^{2} \circ \rho_{(1,2)}^{2}+i_{1 *}^{2} \circ r_{1 *}^{2}+i_{2 *}^{2} \circ r_{2 *}^{2} \tag{2.0.2}
\end{equation*}
$$

so

$$
\operatorname{Im}\left(\iota_{(1,2)}^{2}\right)=\operatorname{Im}\left(I d_{F(X \vee Y)}-i_{1 *}^{2} \circ r_{1 *}^{2}-i_{2 *}^{2} \circ r_{2 *}^{2}\right)
$$

Furthermore, we obtain a natural isomorphism of bifunctors

$$
\begin{equation*}
F(X \mid Y) \simeq F(X \vee Y) / i_{1 *}^{2} F(X)+i_{2 *}^{2} F(Y) \tag{2.0.3}
\end{equation*}
$$

2.1. Linearization and bilinearization functors. In the following Proposition we give an explicit description of the linearization functor T_{1}.
Proposition 2.1. For $F \in \operatorname{Func}_{*}(\mathcal{C}, A b)$ and $X \in \mathcal{C}$ we have:

$$
T_{1}(F)(X)=\operatorname{coker}\left(F(X \vee X) \xrightarrow{S_{2}^{F} \circ \rho_{(1,2)}^{2}} F(X)\right)
$$

so

$$
\begin{gathered}
T_{1} F(X)=F(X) / \operatorname{Im}\left(S_{2}^{F} \circ \rho_{(1,2)}^{2}\right)=F(X) /\left\{\nabla_{*}^{2}(x)-r_{1 *}^{2}(x)-r_{2 *}^{2}(x) \mid x \in F(X \vee X)\right\} \\
=F(X) /\left\{\left((1,1)_{*}-(1,0)_{*}-(0,1)_{*}\right)(x) \mid x \in F(X \vee X)\right\}
\end{gathered}
$$

Proof. The map $\rho_{(1,2)}^{2}$ is surjective by the short exact sequence 2.0.1, hence

$$
T_{1}(F)(X)=\operatorname{coker}\left(F(X \mid X) \xrightarrow{S_{2}^{F}} F(X)\right)=\operatorname{coker}\left(F(X \vee X) \xrightarrow{S_{2}^{F} \circ \rho_{(1,2)}^{2}} F(X)\right)
$$

and for $x \in F(X \vee X)$ we have by 2.0.2

$$
\begin{gathered}
S_{2}^{F} \circ \rho_{(1,2)}^{2}=F\left(\nabla^{2}\right) \iota_{(1,2)}^{2} \rho_{(1,2)}^{2}=F\left(\nabla^{2}\right)\left(I d-i_{1 *}^{2} \circ r_{1 *}^{2}-i_{2 *}^{2} \circ r_{2 *}^{2}\right) \\
=\nabla_{*}^{2}-r_{1 *}^{2}-r_{2 *}^{2} .
\end{gathered}
$$

Similarly we obtain:

Proposition 2.2. For $B \in$ BiFunc $_{*, *}(\mathcal{C} \times \mathcal{C}, A b)$ and $X, Y \in \mathcal{C}$ we have:
$T_{11} B(X, Y)=\operatorname{coker}\left(B(X \vee X, Y) \oplus B(X, Y \vee Y) \xrightarrow{\left(S_{2}^{c r_{2} B(-, Y)} \circ\left(\rho_{(1,2)}^{2}\right)^{X}, S_{2}^{c r r_{2} B(X,-)} \circ\left(\rho_{(1,2)}^{2}\right)^{Y}\right)} B(X, Y)\right)$
where $\left(\rho_{(1,2)}^{2}\right)^{X}: B(-, Y)(X \vee X) \rightarrow c r_{2} B(-, Y)(X, X)$ and $\left(\rho_{(1,2)}^{2}\right)^{Y}: B(X,-)(Y \vee$ $Y) \rightarrow c r_{2} B(X,-)(Y, Y)$, so

$$
\begin{gathered}
T_{11} B(X, Y)=B(X, Y) / \operatorname{Im}\left(\left(S_{2}^{F} \circ\left(\rho_{(1,2)}^{2}\right)^{X}, S_{2}^{F} \circ\left(\rho_{(1,2)}^{2}\right)^{Y}\right)\right. \\
=B(X, Y) /\left\{B\left(\nabla^{2}, I d\right)(x)-B\left(r_{1}^{2}, I d\right)(x)-B\left(r_{2}^{2}, I d\right)(x)+B\left(I d, \nabla^{2}\right)(y)-B\left(I d, r_{1}^{2}\right)(y)-B\left(I d, r_{2}^{2}\right)(y)\right. \\
\mid x \in B(X \vee X, Y), y \in B(X, Y \vee Y)\}
\end{gathered}
$$

Recall that for $F \in \operatorname{Func}_{*}(\mathcal{C}, A b)$ we have $c r_{2} F \in \operatorname{BiFunc}_{*, *}(\mathcal{C} \times \mathcal{C}, A b)$, so we can consider the bilinearization of the bifunctor $\mathrm{Cr}_{2} F$.

Applying the previous proposition to $c r_{2} F$ give us a description of $T_{11} c r_{2} F(X, Y)$ as a quotient of $c r_{2} F(X, Y)$ where the relations are obtained from elements in $c r_{2} F(X \vee X, Y)$ and $c r_{2} F(X, Y \vee Y)$. A more manageable description of $T_{11} c r_{2} F(X, Y)$, as a quotient of $F(X \vee Y)$, is given as follows:

Proposition 2.3. For $F \in \operatorname{Func}_{*}(\mathcal{C}, A b)$ and $X, Y \in \mathcal{C}$ we have:

$$
\begin{aligned}
T_{11} c r_{2} F(X \mid Y)= & F(X \vee Y) /\left\{A\left(z_{1}\right), B\left(z_{2}\right), i_{1 *}^{2}(x), i_{2 *}^{2}(y) \mid x \in F(X), y \in F(Y),\right. \\
& \left.z_{1} \in F(X \vee X \vee Y), z_{2} \in F(X \vee Y \vee Y)\right\}
\end{aligned}
$$

where

$$
A=F\left(\nabla^{2} \vee I d\right)-F\left(r_{1}^{2} \vee I d\right)-F\left(r_{2}^{2} \vee I d\right)
$$

and

$$
B=F\left(I d \vee \nabla^{2}\right)-F\left(I d \vee r_{1}^{2}\right)-F\left(I d \vee r_{2}^{2}\right) .
$$

Proof. By Proposition 2.1 we have

$$
T_{1}\left(c r_{2} F(-, Y)\right)(X)=\operatorname{coker}\left(F\left(\nabla^{2} \mid I d\right)-F\left(r_{1}^{2} \mid I d\right)-F\left(r_{2}^{2} \mid I d\right)\right) .
$$

We obtain the term A from the following commutative diagram where the vertical arrows are isomorphisms of bifunctors by (2.0.3):

$$
\begin{aligned}
& c r_{2} F(-, Y)(X \vee X) \longrightarrow c r_{2} F(-, Y)(X) \\
& \simeq \downarrow \quad \downarrow \simeq \\
& F((X \vee X) \vee Y) /\left(i_{12 *}^{3} F(X \vee X)+i_{3 *}^{3} F(Y)\right) \frac{}{\overline{F\left(\nabla^{2} \vee I d\right)}-\overline{F\left(r_{1}^{2} \vee I d\right)}-\overline{F\left(r_{2}^{2} \vee I d\right)}} F(X \vee Y) /\left(i_{1 *}^{2} F(X)+i_{2 *}^{2} F(Y)\right) .
\end{aligned}
$$

Similarly, considering $T_{1}\left(c r_{2} F(X,-)\right)(Y)$ we obtain the term B.

2.2. Quadratization functor.

Proposition 2.4. For $F \in \operatorname{Func}_{*}(\mathcal{C}, \mathcal{A})$ and $X \in \mathcal{C}$ we have:

$$
\begin{aligned}
& T_{2} F(X)=F(X) /\left\{\left(\nabla_{*}^{3}-\left(\nabla^{2} r_{12}^{3}\right)_{*}-\left(\nabla^{2} r_{13}^{3}\right)_{*}-\left(\nabla^{2} r_{23}^{3}\right)_{*}+r_{1 *}^{3}+r_{2 *}^{3}+r_{3 *}^{3}\right)(x) \mid x \in F(X \vee X \vee X)\right\} \\
& =F(X) /\left\{\left((1,1,1)_{*}-(1,1,0)_{*}-(1,0,1)_{*}-(0,1,1)_{*}+(1,0,0)_{*}+(0,1,0)_{*}+(0,0,1)_{*}\right)(x) \mid x \in F(X \vee X \vee X)\right\}
\end{aligned}
$$

Proof. By the proof of Proposition 1.19 we have

$$
T_{2} F(X)=\operatorname{coker}\left(\operatorname{cr}_{3} F(X, X, X) \xrightarrow{S_{2}^{F} S_{2}^{c r_{2} F(-, X)}} F(X)\right) .
$$

By the following commutative diagram:

we have

$$
\begin{aligned}
\operatorname{Im}\left(S_{2}^{F} S_{2}^{c r_{2} F(-, X)}\right) & =\operatorname{Im}\left(S_{2}^{F} c r_{2} F\left(\nabla^{2}, I d\right) \iota_{(1,2)}^{2}\right) \\
& =\operatorname{Im}\left(S_{2}^{F} c r_{2} F\left(\nabla^{2}, I d\right) \iota_{(1,2)}^{2} \rho_{(1,2)}^{2}\right) \text { since } \rho_{(1,2)}^{2} \text { is surjective } \\
& =\operatorname{Im}\left(S_{2}^{F} c r_{2} F\left(\nabla^{2}, I d\right)\left(I d-c r_{2} F\left(i_{1}^{2} r_{1}^{2}, I d\right)-c r_{2} F\left(i_{2}^{2} r_{2}^{2}, I d\right)\right)\right) \text { by } 2.0 .2 \\
& =\operatorname{Im}\left(S_{2}^{F}\left(F\left(\nabla^{2} \mid I d\right)-F\left(r_{1}^{2} \mid I d\right)-F\left(r_{2}^{2} \mid I d\right)\right)\right) \\
& =\operatorname{Im}\left(S_{2}^{F}\left(F\left(\nabla^{2} \mid I d\right)-F\left(r_{1}^{2} \mid I d\right)-F\left(r_{2}^{2} \mid I d\right)\right) \rho_{(12,3)}^{3}\right) \text { since } \rho_{(12,3)}^{3} \text { is surjective } \\
& =\operatorname{Im}\left(F\left(\nabla^{2}\right)\left(F\left(\nabla^{2} \vee I d\right)-F\left(r_{1}^{2} \vee I d\right)-F\left(r_{2}^{2} \vee I d\right)\right) \iota_{(1,2)}^{2} \rho_{(12,3)}^{3}\right) .
\end{aligned}
$$

By the following short exact sequence

$$
0 \longrightarrow F(X \vee X \mid Y) \overbrace{\substack{\stackrel{c_{(12,3)}^{3}}{\longrightarrow}}}^{\rho_{(12,3)}^{3}} F(X \vee X \vee Y \overbrace{\left(r_{12 *}^{3}, r_{3 *}^{3}\right)} F(X \vee X) \oplus F(Y) \longrightarrow 0
$$

we obtain:

$$
\begin{aligned}
& \left(F\left(\nabla^{2} \vee I d\right)-F\left(r_{1}^{2} \vee I d\right)-F\left(r_{2}^{2} \vee I d\right)\right) \iota_{(12,3)}^{3} \rho_{(12,3)}^{3} \\
& =\left(F\left(\nabla^{2} \vee I d\right)-F\left(r_{1}^{2} \vee I d\right)-F\left(r_{2}^{2} \vee I d\right)\right)\left(I d-i_{12 *}^{3} r_{12 *}^{3}-i_{3 *}^{3} r_{3 *}^{3}\right) \\
& =F\left(\nabla^{2} \vee I d\right)-F\left(r_{1}^{2} \vee I d\right)-F\left(r_{2}^{2} \vee I d\right)-F\left(\iota_{1}^{2} \nabla^{2} r_{12}^{3}\right)+F\left(i_{1}^{2} r_{1}^{3}\right)+F\left(i_{1}^{2} r_{2}^{3}\right) \\
& -F\left(i_{2}^{2} r_{3}^{3}\right)+F\left(i_{2}^{2} r_{3}^{3}\right)+F\left(i_{2}^{2} r_{3}^{3}\right) \\
& =F\left(\nabla^{2} \vee I d\right)-F\left(r_{1}^{2} \vee I d\right)-F\left(r_{2}^{2} \vee I d\right)-F\left(\iota_{1}^{2} \nabla^{2} r_{12}^{3}\right)+F\left(i_{1}^{2} r_{1}^{3}\right)+F\left(i_{1}^{2} r_{2}^{3}\right)+F\left(i_{2}^{2} r_{3}^{3}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \operatorname{Im}\left(S_{2}^{F} S_{2}^{c r_{2} F(-, X)}\right) \\
& \left.=\operatorname{Im}\left(F\left(\nabla^{2}\right)\left(F\left(\nabla^{2} \vee I d\right)-F\left(r_{1}^{2} \vee I d\right)-F\left(r_{2}^{2} \vee I d\right)-F\left(\iota_{1}^{2} \nabla^{2} r_{12}^{3}\right)+F\left(i_{1}^{2} r_{1}^{3}\right)+F\left(i_{1}^{2} r_{2}^{3}\right)+F\left(i_{2}^{2} r_{3}^{3}\right)\right)\right)\right) \\
& \left.=\operatorname{Im}\left(F\left(\nabla^{3}\right)-F\left(\nabla^{2} r_{13}^{3}\right)-F\left(\nabla^{2} r_{23}^{3}\right)-F\left(\nabla^{2} r_{12}^{3}\right)+F\left(r_{1}^{3}\right)+F\left(r_{2}^{3}\right)+F\left(r_{3}^{3}\right)\right)\right)
\end{aligned}
$$

3. Equivalence between polynomial functors and suitable modules

In this section we give a classification of polynomial functors by modules over suitable rings essentially due to Johnson and McCarthy in 9, 10. Although this provides a classification of polynomial functors of all degrees, it is not satisfactory since the rings that appear are very complicated. So this complete classification does not seem to be manageable for functors of degree higher than 1 . Therefore our aim is to describe polynomial functors by minimal data, which is achieved for quadratic functors in this paper.

We start with some definitions.
Let E be a fixed object of \mathcal{C}. For a set S, let $\mathbb{Z}[S]$ denote the free abelian group with basis S. Since for all $X \in \mathcal{C}, \mathcal{C}(E, X)$ is pointed with basepoint the zero map, we can define a subfunctor $\mathbb{Z}[0]$ of $\mathbb{Z}[\mathcal{C}(E,-)]$ by $\mathbb{Z}[0](X)=\mathbb{Z}[\{E \xrightarrow{0} X\}]$ for $X \in \mathcal{C}$. This allows us to give the following definition.

Definition 3.1. The universal functor $U_{E}: \mathcal{C} \rightarrow A b$ relative to E is the quotient of $\mathbb{Z}[\mathcal{C}(E,-)]$ by the subfunctor $\mathbb{Z}[0]$.

To keep notation simple we write f also for the equivalence class in $U_{E}(X)$ of an element f of $\mathcal{C}(E, X)$ and we often omit the subscript E in U_{E}. We need the following obvious fact.

Proposition 3.2. Composition in \mathcal{C} induces a ring structure on $\Lambda:=U(E)$ and a structure of right Λ-module on $U(X)$ for any $X \in \mathcal{C}$.
3.1. Adjunction between reduced functors and Λ-modules. In this section, we give an adjunction between reduced functors and Λ-modules which is the starting point of the equivalence between polynomial functors and module categories given in the sequel. We begin by the following straightforward lemma.

Lemma 3.3. For $F: \mathcal{C} \rightarrow A b$ a reduced functor, $F(E)$ is a left Λ-module via

$$
\alpha . x:=F(\alpha)(x)
$$

for $\alpha \in \mathcal{C}(E, E)$ and $x \in F(E)$.
So, we can give the following definition.
Definition 3.4. The functor

$$
\mathbb{S}: \operatorname{Func}_{*}(\mathcal{C}, A b) \rightarrow \Lambda-M o d
$$

is defined by $\mathbb{S}(F)=F(E)$ for $F \in F \operatorname{unc}_{*}(\mathcal{C}, A b)$.
A left adjoint of \mathbb{S} is provided in the following definition.
Definition 3.5. The functor

$$
\mathbb{T}: \Lambda-\operatorname{Mod} \rightarrow \operatorname{Func}_{*}(\mathcal{C}, A b)
$$

is defined by $\mathbb{T}(M)(X)=U(X) \otimes_{\Lambda} M$ for $M \in \Lambda$-Mod.
Proposition 3.6. The functor \mathbb{T} is a left adjoint of \mathbb{S}.
The unit of this adjunction is the canonical isomorphism

$$
u_{M}: M \xlongequal{\rightrightarrows} \Lambda \otimes_{\Lambda} M=\mathbb{S T}(M) \quad \text { for } M \in \Lambda-M o d
$$

The co-unit is

$$
\left(u_{F}^{\prime}\right)_{X}: \mathbb{T S}(F)(X)=U(X) \otimes_{\Lambda} F(E) \rightarrow F(X),
$$

where $\quad\left(u_{F}^{\prime}\right)_{X}(f \otimes x)=F(f)(x)$ for $f \in \mathcal{C}(E, X)$, and $x \in F(E)$.
We consider u_{F}^{\prime} as a first order approximation of F; if F is polynomial of degree n then u_{F}^{\prime} may be reduced to a morphism

$$
\overline{u_{F}^{\prime}}: T_{n}(\mathbb{T S}(F)) \rightarrow F .
$$

This turns out to be an isomorphism for $n=1$ but is not for $n>1$. So our approach to polynomial functors consists of inductively improving the approximation $\overline{u_{F}^{\prime}}$ in order to get an isomorphism again, by taking into account higher and higher cross-effects.
3.2. Classification of linear functors. Let $\operatorname{Lin}(\mathcal{C}, A b)$ denote the category of linear reduced functors from \mathcal{C} to $A b$. In this section we show that if \mathcal{C} is a pointed theory then the category $\operatorname{Lin}(\mathcal{C}, A b)$ is equivalent to the category of modules over a suitable ring.

We begin by providing a number of equivalent characterizations of linear functors.
Lemma 3.7. : Let $F: \mathcal{C} \rightarrow A b$ be a reduced functor. Then the following conditions are equivalent
(1) F is linear;
(2) $S_{2}^{F}=0$ where $S_{2}^{F}: c r_{2}(F) \Delta_{\mathcal{C}} \rightarrow F$ is defined in Definition 1.7;
(3) For $X, Y \in \mathcal{C}$ one has

$$
1_{F(X \vee Y)}=i_{1 *}^{2} r_{1 *}^{2}+i_{2 *}^{2} r_{2 *}^{2} ;
$$

(4) For $X, Y \in \mathcal{C}$ and $\xi \in \mathcal{C}(X, Y \vee Y)$ one has

$$
F\left(\nabla^{2} \xi\right)=F\left(r_{1}^{2} \xi\right)+F\left(r_{2}^{2} \xi\right)
$$

Proof. By definition, F is linear if $c r_{2}(F)=0$. Since $S_{2}^{F}: c r_{2}(F) \Delta_{\mathcal{C}} \rightarrow F$ we have $S_{2}^{F}=0$. Conversely, if $S_{2}^{F}=0$, by Proposition 1.8, $F \simeq T_{1} F$ so F is linear and we proved that (1) $\Leftrightarrow(2)$.

By the short exact sequence (2.0.1) we have $(1) \Leftrightarrow(3)$.
By Proposition 1.8, F is linear if and only if $F \simeq T_{1} F$, so by Proposition 2.1 this is equivalent to, $\forall y \in F(Y \vee Y): F\left(\nabla^{2}\right)(y)=F\left(r_{1}^{2}\right)(y)+F\left(r_{2}^{2}\right)(y)$. Applying the last equality to $y=F(\xi)(x) \in F(Y \vee Y)$ where $\xi \in \mathcal{C}(X, Y \vee Y)$ and $x \in F(X)$, we obtain (1) \Leftrightarrow (4).

Proposition 3.8. The abelian group $\bar{\Lambda}:=\left(T_{1} U\right)(E)$ is a ring and $T_{1} U(X)$ has a right $\bar{\Lambda}$-module structure such that t_{1} is Λ-equivariant (i.e. for $\lambda \in \Lambda$ and $x \in U(X), t_{1}(x \lambda)=$ $t_{1}(x) t_{1}(\lambda)$.)
Proof. For $f \in \mathcal{C}(E, E)$ the relation $\left(S_{2}^{U}\right)_{E} c r_{2} U(f, f)=U(f)\left(S_{2}^{U}\right)_{E}$ shows that $\operatorname{Im}\left(\left(S_{2}^{U}\right)_{E}\right)$ is a left ideal of Λ, and we deduce from the following commutative diagram that $\operatorname{Ker}\left(t_{1}\right)=\operatorname{Im}\left(\left(S_{2}^{U}\right)_{E}\right)$ is a right ideal, too:

where $\alpha: E \rightarrow E$. Consequently $\bar{\Lambda}$ is a ring.
For $X \in \mathcal{C}, T_{1} U(X)$ is a right $\bar{\Lambda}$-module via

$$
t_{1}(f) \cdot t_{1}(\alpha)=t_{1}(f \alpha)
$$

for $f \in \mathcal{C}(E, X)$ and $\alpha \in \mathcal{C}(E, E)$; this is welldefined again by naturality of S_{2}^{U}.
Lemma 3.9. For $F: \mathcal{C} \rightarrow A b$ a linear reduced functor, $F(E)$ is a left $\bar{\Lambda}$-module via

$$
\bar{\alpha} . x:=F(\alpha)(x)
$$

for $\alpha \in \mathcal{C}(E, E)$ and $x \in F(E)$.
Proof. By Proposition 2.1 we have

$$
\bar{\Lambda}=\Lambda /\left\langle\nabla^{2} \xi-r_{1}^{2} \xi-r_{2}^{2} \xi \mid \xi \in \mathcal{C}(E, E \vee E)\right\rangle
$$

But

$$
\left(\nabla^{2} \xi-r_{1}^{2} \xi-r_{2}^{2} \xi\right) \cdot x=\nabla^{2} \xi \cdot x-r_{1}^{2} \xi \cdot x-r_{2}^{2} \xi \cdot x=F\left(\nabla^{2} \xi\right)(x)-F\left(r_{1}^{2} \xi\right)(x)-F\left(r_{2}^{2} \xi\right)(x)
$$

$$
=\left(F\left(\nabla^{2} \xi\right)-F\left(r_{1}^{2} \xi\right)-F\left(r_{2}^{2} \xi\right)\right)(x)=0
$$

by Lemma 3.7 (4).

This leads to the following definition.
Definition 3.10. The functor

$$
\mathbb{S}_{1}: \operatorname{Lin}(\mathcal{C}, A b) \rightarrow \bar{\Lambda}-\operatorname{Mod}
$$

is defined by $\mathbb{S}_{1}(F)=F(E)$ for $F \in \operatorname{Lin}(\mathcal{C}, A b)$.
Definition 3.11. The functor

$$
\mathbb{T}_{1}: \bar{\Lambda}-\operatorname{Mod} \rightarrow \operatorname{Lin}(\mathcal{C}, A b)
$$

is defined by $\mathbb{T}_{1}(M)(X)=T_{1} U(X) \otimes_{\bar{\Lambda}} M$ for $M \in \bar{\Lambda}-M o d$.
The following proposition connects the functors \mathbb{S}_{1} and \mathbb{T}_{1}.
Proposition 3.12. The functor \mathbb{T}_{1} is the left adjoint of \mathbb{S}_{1}.
The unit of this adjunction is the canonical isomorphism

$$
u_{M}: M \stackrel{\cong}{\Longrightarrow} \bar{\Lambda} \otimes_{\Lambda} M=\mathbb{S}_{1} \mathbb{T}_{1}(M) \quad \text { for } M \in \bar{\Lambda}-\text { Mod } .
$$

The co-unit is

$$
\left(u_{F}^{\prime}\right)_{X}: \mathbb{T}_{1} \mathbb{S}_{1}(F)(X)=T_{1} U(X) \otimes_{\bar{\Lambda}} F(E) \rightarrow F(X),
$$

where $\quad\left(u_{F}^{\prime}\right)_{X}\left(t_{1}(f) \otimes x\right)=F(f)(x)$ for $f \in \mathcal{C}(E, X)$, and $x \in F(E)$.
A classification of linear functors is now given as follows:
Theorem 3.13. If $\mathcal{C}=\langle E\rangle_{\mathcal{C}}$ then the functors \mathbb{S}_{1} and \mathbb{T}_{1} form a pair of adjoint equivalences.

Proof. It remains to show that the counit is an isomorphism. For $F \in \operatorname{Lin}(\mathcal{C}, A b)$ the source and target functor of u_{F}^{\prime} are linear, so it suffices by Proposition 1.22 to prove that $\left(u_{F}^{\prime}\right)_{E}: \bar{\Lambda} \otimes_{\bar{\Lambda}} F(E) \rightarrow F(E)$ is an isomorphism. We have $\left(u_{F}^{\prime}\right)_{E}\left(t_{1}(f) \otimes x\right)=F(f)(x)=$ $t_{1}(f) . x$ so $\left(u_{F}^{\prime}\right)_{E}$ coincides with the canonical isomorphism.
3.3. Classification of polynomial functors of arbitrary degree. Theorem 3.13 can be generalized to polynomial functors of arbitrary degree; this can be deduced from a more general result of Johnson and McCarthy on polynomial functors with values in categories of chain complexes [9, 10, by identifying the category $A b$ with the category of chain complexes concentrated in a given degree.

Theorem 3.14. Suppose that $\mathcal{C}=\langle E\rangle_{\mathcal{C}}$. Then the group $T_{n} U_{E^{\vee n}}\left(E^{\vee n}\right)$ has a ring structure induced by composition in \mathcal{C}, and there is an equivalence of categories

$$
\mathbb{S}_{n}: \operatorname{Func}(\mathcal{C}, A b)_{\leq n} \rightarrow T_{n} U_{E^{\vee n}}\left(E^{\vee n}\right)-\operatorname{Mod}
$$

given by $\mathbb{S}_{n}(F)=F(E)$.
This result generalizes a similar one for additive categories \mathcal{C} due to Pirashvili [12. A simple direct proof of Theorem [3.14] is given in [7]. Further study of polynomial functors could thus be based on this theorem in analyzing the - very complicated - structure of the rings $T_{n} U(E)$ and their representations; instead, we follow the basic idea of the work of Baues and Pirashvili: according to Proposition 1.22 a polynomial functor F of degree n is determined by the values of its cross-effects $c r_{k}(F)$ on $(E, \ldots, E), 1 \leq k \leq n$; so we seek for minimal extra structure relating them so as to make the correspondance between polynomial functors and these enriched cross-effects into a functorial equivalence.
3.4. Classification of bilinear bifunctors. Since cross-effects of quadratic functors are bilinear we need an analogue of Theorem 3.13 for bifunctors which goes as follows. Let Bilin $(\mathcal{C} \times \mathcal{C}, A b)$ denote the category of bilinear bireduced bifunctors from $\mathcal{C} \times \mathcal{C}$ to $A b$.

We begin by the following lemma.
Lemma 3.15. For $B: \mathcal{C} \times \mathcal{C} \rightarrow A b$ a bilinear bireduced bifunctor, $B(E, E)$ is a left $\bar{\Lambda} \otimes \bar{\Lambda}$-module via

$$
(\bar{\alpha} \otimes \bar{\beta}) \cdot x:=B(\alpha, \beta)(x)
$$

for $\alpha, \beta \in \mathcal{C}(E, E)$ and $x \in B(E, E)$.
Remark 3.16. Note that $T_{1} U(X) \otimes T_{1} U(Y)$ is a right $\Lambda \otimes \Lambda$-module via $\left(t_{1}(x) \otimes\right.$ $\left.t_{1}(y)\right)(\alpha \otimes \beta)=t_{1}(x \alpha) \otimes t_{1}(y \beta)$; this induces a structure of right $\bar{\Lambda} \otimes \bar{\Lambda}$-module.

Definition 3.17. The functor

$$
\mathbb{S}_{11}: \operatorname{Bilin}(\mathcal{C} \times \mathcal{C}, A b) \rightarrow \bar{\Lambda} \otimes \bar{\Lambda}-\operatorname{Mod}
$$

is defined by $\mathbb{S}_{11}(B)=B(E, E)$ for $B \in \operatorname{Bilin}(\mathcal{C} \times \mathcal{C}, A b)$.
Definition 3.18. The functor

$$
\mathbb{T}_{11}: \bar{\Lambda} \otimes \bar{\Lambda}-\operatorname{Mod} \rightarrow \operatorname{Bilin}(\mathcal{C} \times \mathcal{C}, A b)
$$

is defined by $\mathbb{T}_{11}(M)(X, Y)=\left(T_{1} U(X) \otimes T_{1} U(Y)\right) \otimes_{\Lambda \otimes \Lambda} M$ for $M \in \bar{\Lambda} \otimes \bar{\Lambda}-$ Mod.
The following proposition connects the functors \mathbb{T}_{11} and \mathbb{S}_{11}.
Proposition 3.19. The functor \mathbb{T}_{11} is the left adjoint of \mathbb{S}_{11}.
The unit of this adjunction is the canonical isomorphism

$$
u_{M}: M \rightarrow\left(T_{1} U(E) \otimes T_{1} U(E)\right) \otimes_{\bar{\Lambda} \otimes \bar{\Lambda}} M
$$

defined by $u_{M}(m)=\left(t_{1}(1) \otimes t_{1}(1)\right) \otimes m$ where $M \in \bar{\Lambda} \otimes \bar{\Lambda}-\operatorname{Mod}$.
The co-unit is

$$
\left(u_{B}^{\prime}\right)_{X, Y}: \mathbb{T}_{11} \mathbb{S}_{11}(B)(X, Y)=\left(T_{1} U(X) \otimes T_{1} U(Y)\right) \otimes_{\bar{\Lambda} \otimes \bar{\Lambda}} B(E, E) \rightarrow B(X, Y),
$$

where $\quad\left(u_{B}^{\prime}\right)_{X, Y}\left(t_{1}(f) \otimes t_{1}(g) \otimes x\right)=B(f, g)(x)$ for $f \in \mathcal{C}(E, X), g \in \mathcal{C}(E, Y)$ and $x \in$ $B(E, E)$.

The arguments in the proof of Theorem 3.13 are easily adapted to obtain:
Theorem 3.20. If $\mathcal{C}=\langle E\rangle_{\mathcal{C}}$ then the functors \mathbb{S}_{11} and \mathbb{T}_{11} form a pair of adjoint equivalences.

4. Quadratic \mathcal{C}-modules

The aim of this section is to define quadratic \mathcal{C}-modules which generalize for any pointed category \mathcal{C} the quadratic \mathbb{Z}-modules considered by Baues in [1] for $\mathcal{C}=A b$. Then we define a functor \mathbb{S}_{2} from quadratic functors to quadratic \mathcal{C}-modules which extends the functor $\mathbb{S}_{1}: \operatorname{Lin}(\mathcal{C}, A b) \rightarrow \bar{\Lambda}-\operatorname{Mod}$ considered in Proposition 3.10. The functor \mathbb{S}_{2} is a part of the adjoint equivalence established in Theorem 6.1] Its left adjoint \mathbb{T}_{2} is constructed in section 5,
4.1. Definition. We begin by recalling the definition of a symmetric $R \otimes R$-module.

Definition 4.1. For a ring R, a symmetric $R \otimes R$-module is a left $R \otimes R$-module M equipped with a \mathbb{Z}-linear involution T (i.e. $T^{2}=I d$) such that for $r, s \in R$ and $m \in M$

$$
T((r \otimes s) m)=(s \otimes r) T(m) .
$$

A morphism of symmetric $R \otimes R$-module is a morphism of $R \otimes R$-module compatible with the respective involutions.

In the following two propositions, we give examples of symmetric $R \otimes R$-modules for suitable R which are important in the sequel.

Proposition 4.2. For a reduced functor $F: \mathcal{C} \rightarrow A b$, the group $F(E \mid E)$ admits the structure of a symmetric $\Lambda \otimes \Lambda$-module such that for $f, g \in \mathcal{C}(E, E)$ and $\alpha \in F(E \mid E)$ we have

$$
(f \otimes g) . \alpha:=\left(\iota_{(1,2)}^{2}\right)^{-1} F(f \vee g) \iota_{(1,2)}^{2}(\alpha) \in F(E \mid E)
$$

and with involution:

$$
T^{F}(\alpha)=\left(\iota_{(1,2)}^{2}\right)^{-1} F(\tau) \iota_{(1,2)}^{2}(\alpha) \in F(E \mid E)
$$

where $\tau: E \vee E \rightarrow E \vee E$ is the canonical switch.
Proof. By functoriality of F the first relation defines a module structure. The map T^{F} is clearly an involution and we have:

$$
\begin{aligned}
T^{F}((f \otimes g) \cdot \alpha) & =\left(\iota_{(1,2)}^{2}\right)^{-1} F(\tau) \iota_{(1,2)}^{2}\left(\left(\iota_{(1,2)}^{2}\right)^{-1} F(f \vee g) \iota_{(1,2)}^{2}(\alpha)\right) \\
& =\left(\iota_{(1,2)}^{2}\right)^{-1} F(\tau(f \vee g)) \iota_{(1,2)}^{2}(\alpha) \\
& =\left(\iota_{(1,2)}^{2}\right)^{-1} F((g \vee f) \tau) \iota_{(1,2)}^{2}(\alpha) \\
& =\left(\iota_{(1,2)}^{2}\right)^{-1} F(g \vee f) \iota_{(1,2)}^{2}\left(\iota_{(1,2)}^{2}\right)^{-1} F(\tau) \iota_{(1,2)}^{2}(\alpha) \\
& =(g \otimes f) T^{F}(\alpha)
\end{aligned}
$$

Proposition 4.3. For $F: \mathcal{C} \rightarrow A b$ a reduced functor, the group $T_{11}\left(c r_{2} F\right)(E, E)$ admits the structure of a symmetric $\bar{\Lambda} \otimes \bar{\Lambda}$-module, with involution denoted by \bar{T}^{F}, such that the projection $t_{11}: F(E \mid E) \rightarrow T_{11}\left(c r_{2} F\right)(E, E)$ is a morphism of symmetric $\Lambda \otimes \Lambda$-modules.
Definition 4.4. A pre-quadratic \mathcal{C}-module relative to E is a diagram of group homomorphisms:

$$
M=\left(T_{11}\left(c r_{2}(U)\right)(E, E) \otimes_{\Lambda} M_{e} \xrightarrow{\hat{H}} M_{e e} \xrightarrow{T} M_{e e} \xrightarrow{P} M_{e}\right)
$$

where

- M_{e} is a left Λ-module;
- $M_{e e}$ is a symmetric $\bar{\Lambda} \otimes \bar{\Lambda}$-module with involution T;
- $P: M_{e e} \rightarrow M_{e}$ is a homomorphism of Λ-modules with respect to the diagonal action of Λ on $M_{e e}$, i.e. for $\alpha \in \mathcal{C}(E, E)$ and $m \in M_{e e}$:

$$
P((\bar{\alpha} \otimes \bar{\alpha}) m)=\alpha P(m),
$$

and satisfies $P T=P$;

- \hat{H} is a homomorphism of symmetric $\bar{\Lambda} \otimes \bar{\Lambda}$-modules such that for $\xi \in \mathcal{C}(E, E \vee E)$ and $a \in M_{e}$ the following relation holds:

$$
(Q M 1) \quad\left(\nabla^{2} \xi\right) a=\left(r_{1}^{2} \xi\right) a+\left(r_{2}^{2} \xi\right) a+P\left(\hat{H}\left(\overline{\rho_{12}^{2}(\xi)} \otimes a\right)\right)
$$

Remark 4.5. By Proposition 2.1 the condition (QM1) implies that coker (P) is a $\bar{\Lambda}$ module.

Definition 4.6. A quadratic \mathcal{C}-module (relative to E) is a pre-quadratic \mathcal{C}-module (relative to E) as above satisfying the additional property that for $\xi \in \mathcal{C}(E, E \vee E)$ and $m \in M_{e e}$

$$
(Q M 2) \quad \hat{H}\left(\overline{\rho_{12}^{U}(\xi)} \otimes P m\right)=\left(\overline{r_{1}^{2}(\xi)} \otimes \overline{r_{2}^{2}(\xi)}\right)(m+T m) .
$$

Remark 4.7. In view of the isomorphism in Proposition 2.3 the map \hat{H} in the definition of a (pre-)quadratic \mathcal{C}-module can be replaced by a group homomorphism:

$$
\tilde{H}: U(E \vee E) \otimes_{\Lambda} M_{e} \rightarrow M_{e e}
$$

satisfying the following relations for $\alpha, \beta \in \mathcal{C}(E, E), \xi \in \mathcal{C}(E, E \vee E), \gamma \in \mathcal{C}(E, E \vee E \vee$ E), $a \in M_{e}$:

$$
\begin{array}{cc}
\left(H_{1}\right) & \tilde{H}((\alpha \vee \beta) \xi \otimes a)=(\bar{\alpha} \otimes \bar{\beta}) \tilde{H}(\xi \otimes a) \\
\left(H_{2}\right) & \tilde{H}(\tau \xi \otimes a)=\tilde{H}(\xi \otimes a) \\
\left(H_{3}\right) & \tilde{H}\left(i_{1}^{2} \alpha \otimes a\right)=\tilde{H}\left(i_{2}^{2} \alpha \otimes a\right)=0 \\
\left(H_{4}\right) & \tilde{H}\left(\left(\nabla^{2} \vee I d-r_{1}^{2} \vee I d-r_{2}^{2} \vee I d\right) \gamma \otimes a\right)=0 \\
\left(H_{5}\right) & \tilde{H}\left(\left(I d \vee \nabla^{2}-I d \vee r_{1}^{2}-I d \vee r_{2}^{2}\right) \gamma \otimes a\right)=0 .
\end{array}
$$

In fact, $\left(H_{1}\right)$ translates the fact that \hat{H} is a morphism of $\bar{\Lambda} \otimes \bar{\Lambda}$-modules, $\left(H_{2}\right)$ corresponds to the fact that \hat{H} is a morphism of symmetric modules, and $\left(H_{3}\right),\left(H_{4}\right)$ and $\left(H_{5}\right)$ correspond to the fact that the source of \hat{H} is $\left(T_{11}\left(c r_{2}(U)\right)(E, E) \otimes_{\Lambda} M_{e}\right.$, see Proposition 2.3

Remark 4.8. Suppose that \mathcal{C} and E are such that $\mathcal{C}(E, E \vee E)=i_{1 *}^{2} \mathcal{C}(E, E) \cup i_{2 *}^{2} \mathcal{C}(E, E)$. In particular, this holds when \mathcal{C} is the category Γ of finite pointed sets and $E=[1]=$ $\{0,1\}$ is its canonical generator. Then $U(E \mid E)=0$ by (2.0.3), whence $\Lambda=\bar{\Lambda}$ and the domain of \hat{H} is trivial. Thus a quadratic \mathcal{C}-module relative to E is a diagram

$$
M=\left(M_{e e} \xrightarrow{T} M_{e e} \xrightarrow{P} M_{e}\right)
$$

satisfying the properties in Definition 4.4 which do not involve \hat{H}; in fact, the relations (QM1) and (QM2) are trivially satisfied. Together with Theorem 6.1 this reproduces a description of quadratic functors from Γ to $A b$ given in [13].

In the following proposition we give a useful equivalent formulation of condition (QM1).
Proposition 4.9. Relation (QM1) means that the following diagram commutes

where μ_{e} is the canonical isomorphism and S_{2}^{U} the map given in Definition 1.7.
Proof. We have, for $\xi \in \mathcal{C}(E, E \vee E)$

$$
\begin{aligned}
\mu_{e}\left(S_{2}^{U} \otimes 1\right)\left(\rho_{(1,2)}^{2}(\xi) \otimes a\right) & =\mu_{e}\left(U\left(\nabla^{2}\right) \iota_{(1,2)}^{2} \rho_{(1,2)}^{2}(\xi) \otimes a\right) \text { by definition of } S_{2}^{U} \text { in 1.7] } \\
& =\mu_{e}\left(U\left(\nabla^{2}\right)\left(I d-i_{1 *}^{2} \circ r_{1 *}^{2}-i_{2 *}^{2} \circ r_{2 *}^{2}\right)(\xi) \otimes a\right) \text { by [2.0.2 } \\
& =\mu_{e}\left(\left(U\left(\nabla^{2}\right)(\xi)-r_{1 *}^{2}(\xi)-r_{2 *}^{2}(\xi)\right) \otimes a\right) \\
& =\mu_{e}\left(\left(\nabla^{2} \xi-r_{1}^{2} \xi-r_{2}^{2} \xi\right) \otimes a\right) \\
& =\left(\nabla^{2} \xi\right) a-\left(r_{1}^{2} \xi\right) a-\left(r_{2}^{2} \xi\right) a .
\end{aligned}
$$

So the diagram commutes if and only if for all ξ and a

$$
P\left(\hat{H}\left(\overline{\rho_{12}^{2}(\xi)} \otimes a\right)=\left(\nabla^{2} \xi\right) a-\left(r_{1}^{2} \xi\right) a-\left(r_{2}^{2} \xi\right) a\right.
$$

Definition 4.10 (Morphisms of (pre)-quadratic \mathcal{C}-modules). A morphism ϕ : $M \rightarrow M^{\prime}$ of (pre)-quadratic \mathcal{C}-modules relative to E is a pair $\phi=\left(\phi_{e}, \phi_{e e}\right)$ where $\phi_{e}: M_{e} \rightarrow M_{e}^{\prime}$ is a morphism of Λ-modules and $\phi_{e e}: M_{e e} \rightarrow M_{e e}^{\prime}$ is a morphism of symmetric $\bar{\Lambda} \otimes \bar{\Lambda}$-modules which commute with the structure maps \hat{H}, T and P.

Composition of morphisms of (pre)-quadratic \mathcal{C}-modules is defined in the obvious way. This allows to define the category of (pre)-quadratic \mathcal{C}-modules.
Definition 4.11. The category $Q M o d_{\mathcal{C}}^{E}$ is the category having as objects the quadratic \mathcal{C}-modules and as maps the morphisms of quadratic \mathcal{C}-modules.
Remark 4.12. There is a fully-faithful functor $I_{1}: \bar{\Lambda}-\operatorname{Mod} \rightarrow Q M o d_{\mathcal{C}}^{E}$ given by

$$
I_{1}(M)=\left(T_{11}(c r(U))(E, E) \otimes_{\Lambda} M \xrightarrow{\hat{H}} 0 \xrightarrow{T} 0 \xrightarrow{P} M\right) .
$$

In fact, $I_{1}(M)$ satisfies (QM1) as M is a $\bar{\Lambda}$-module, and (QM2) is trivial.
4.2. Quadratic \mathcal{C}-modules obtained from quadratic functors. Let $\operatorname{Quad}(\mathcal{C}, A b)$ denote the category of quadratic reduced functors from \mathcal{C} to $A b$. The aim of this section is to define a functor $\mathbb{S}_{2}: \operatorname{Quad}(\mathcal{C}, A b) \rightarrow Q M o d_{\mathcal{C}}^{E}$. In order to define \mathbb{S}_{2} we need the following lemma.
Lemma 4.13. For $F \in \operatorname{Quad}(\mathcal{C}, A b)$ there exists a natural transformation of functors $H^{F}:\left(T_{11}\left(c r_{2}(U)\right) \otimes_{\Lambda} F(E)\right) \Delta_{\mathcal{C}} \rightarrow\left(c r_{2} F\right) \Delta_{\mathcal{C}}$ such that the following natural diagram is commutative for $X \in \mathcal{C}$:

Proof. Recall that the cross-effect of a quadratic functor is a bilinear bifunctor. Hence the existence of H^{F} follows from the universal property of t_{11}.

We now associate a quadratic \mathcal{C}-module to any quadratic functor, as follows.
Proposition 4.14. For $F \in \operatorname{Quad}(\mathcal{C}, A b)$ the object

$$
M^{F}=\left(T_{11}\left(c r_{2}(U)\right)(E, E) \otimes_{\Lambda} F(E) \xrightarrow{\left(H^{F}\right)_{E}} F(E \mid E) \xrightarrow{T^{F}} F(E \mid E) \xrightarrow{\left(S_{2}^{F}\right)_{E}} F(E)\right)
$$

is a quadratic \mathcal{C}-module relative to E.
Proof. The abelian group $F(E)$ is a Λ-module by Lemma 3.3, and since $c r_{2} F$ is bireduced and bilinear we deduce from Proposition 4.3 that $F(E \mid E)$ is a symmetric $\bar{\Lambda} \otimes \bar{\Lambda}$-module. It is straightforward to see that $\left(S_{2}^{F}\right)_{E}: F(E \mid E) \rightarrow F(E)$ is a morphism of Λ-modules.

Also the fact that $\left(c r_{2}\left(u_{F}^{\prime}\right)\right)_{E}$ and hence $\left(H^{F}\right)_{E}$ are morphisms of symmetric $\bar{\Lambda} \otimes \bar{\Lambda}-$ modules is easy to check.

Now the following commutative diagram shows that the equivalent characterization of property ($Q M 1$) given in Proposition 4.9 is satisfied by M^{F} :

The property (QM2) is more intricate to check, so we postpone its proof to section 6 (see Corollary 6.7).

The previous proposition leads to the following definition.
Definition 4.15. The functor

$$
\mathbb{S}_{2}: \operatorname{Quad}(\mathcal{C}, A b) \rightarrow Q M o d_{\mathcal{C}}^{E}
$$

is defined by $\mathbb{S}_{2}(F)=M^{F}$ for $F \in \operatorname{Quad}(\mathcal{C}, A b)$ and by $\mathbb{S}_{2}(\varphi)=\left(\varphi_{E}, c r_{2}(\varphi)_{E, E}\right)$ for $\varphi: F \rightarrow G$ a morphism of quadratic functors.

The following proposition formalizes the fact that \mathbb{S}_{2} extends the functor \mathbb{S}_{1}.
Proposition 4.16. The following diagram is commutative

where I_{1} is the functor defined in Remark 4.12.

5. Quadratic TEnsor Product

The left adjoint of the functor $\mathbb{S}_{2}: \operatorname{Quad}(\mathcal{C}, A b) \rightarrow Q M o d_{\mathcal{C}}^{E}$ is given by a construction which we call the quadratic tensor product. In fact, a special case of a quadratic tensor product first appeared in [1], providing a left adjoint of a functor $\operatorname{Quad}(A b, A b) \rightarrow \operatorname{QMod}(\mathbb{Z})$ is defined explicitely by generators and relations; here $Q \operatorname{Mod}(\mathbb{Z})$ is the category of quadratic \mathbb{Z}-modules. Similarly, in [4] a left adjoint of Quad $(G r, G r) \rightarrow$ Square is constructed by generators and relations; here Square is the category of square groups (see also section [7.8). In this paper, however, we give a more conceptual construction of the quadratic tensor product, by means of a push-out diagram, in our general setting. We expect to generalize this construction to polynomial functors of higher degree. A description of our quadratic tensor product in terms of generators and relations is nevertheless provided generalizing the constructions in [1] and [4]. We then compute the quadratic tensor product $E \otimes M$ for $M \in Q M o d_{\mathcal{C}}^{E}$ and the cross-effect of $-\otimes M$ which are two essential tools in the proof of our main theorem in section 6 .

5.1. Definition. We start with the following straightforward lemma.

Lemma 5.1. If N is a symmetric $\Lambda \otimes \Lambda$-module with involution T and $X \in \mathcal{C}$, the group $M=\left(\left(T_{1} U\right)(X) \otimes\left(T_{1} U\right)(X)\right) \otimes_{\Lambda \otimes \Lambda} N$ is equipped with an involution t defined by

$$
t(x \otimes y \otimes n)=y \otimes x \otimes T(n)
$$

for $x, y \in\left(T_{1} U\right)(X)$ and $n \in N$.
To define the quadratic tensor product, we need to consider the coinvariants by the action of the symmetric group \mathfrak{S}_{2}. So we introduce the following notation:

Notation 5.2. If M is an abelian group equipped with an involution t, we denote by $M_{\mathfrak{S}_{2}}$ the coinvariants of the action of the symmetric group \mathfrak{S}_{2} on M given by t, i. e. $M_{\mathfrak{S}_{2}}=M /(1-t) M$. Furthermore, we denote by $\pi: M \rightarrow M_{\mathfrak{S}_{2}}$ the canonical projection.

Definition 5.3. Let M be a quadratic \mathcal{C}-module relative to E and $X \in \mathcal{C}$. The quadratic tensor product $X \otimes M \in A b$ is the push-out of the following diagram of abelian groups:

$$
\begin{gathered}
\left((U(X) \otimes U(X)) \otimes_{\Lambda \otimes \Lambda} U(E \mid E) \otimes_{\Lambda} M_{e}\right) \oplus\left(U(X) \otimes M_{e e}\right) \xrightarrow{\phi=\left(\phi_{1}, t_{2} \otimes P\right)}\left(T_{2} U\right)(X) \otimes_{\Lambda} M_{e} \\
\psi=\left(\psi_{1}, \pi(\delta \otimes 1)\right) \\
\downarrow
\end{gathered}
$$

where $\psi_{1}=\pi\left(t_{1} \otimes t_{1} \otimes \hat{H}\left(t_{11} \otimes 1\right)\right), \delta(f)=\left(t_{1} f\right) \otimes\left(t_{1} f\right)$ for $f \in \mathcal{C}(E, X)$ and $\phi_{1}(f \otimes$ $g \otimes x \otimes a)=t_{2} S_{2}^{U} U(f \mid g)(x) \otimes a$ for $f, g \in \mathcal{C}(E, X), x \in U(E \mid E)$ and $a \in M_{e}$.

In the following proposition we give a description of the quadratic tensor product $X \otimes M$ by generators and relations.

Proposition 5.4. Let M be a quadratic \mathcal{C}-module relative to E and $X \in \mathcal{C}$. The quadratic tensor product $X \otimes M \in A b$ is the abelian group generated by the symbols

$$
\begin{gathered}
f \otimes a, f \in \mathcal{C}(E, X), a \in M_{e} \\
{[f, g] \otimes m, f, g \in \mathcal{C}(E, X), m \in M_{e e}}
\end{gathered}
$$

subject to the following relations:
(1) $(f \beta) \otimes a=f \otimes(\beta a)$ for $\beta \in \mathcal{C}(E, E)$
(2) $f \otimes(a+b)=f \otimes a+f \otimes b$
(3) $(1,1,1) \xi \otimes a-(1,1,0) \xi \otimes a-(1,0,1) \xi \otimes a-(0,1,1) \xi \otimes a+(1,0,0) \xi \otimes a+(0,1,0) \xi \otimes$ $a+(0,0,1) \xi \otimes a=0$ for $\xi \in \mathcal{C}(E, X \vee X \vee X)$
(4) $[f \alpha, g \beta] \otimes m=[f, g] \otimes(\bar{\alpha} \otimes \bar{\beta}) m$ for $\alpha, \beta \in \mathcal{C}(E, E)$
(5) $[f, g] \otimes(m+n)=[f, g] \otimes m+[f, g] \otimes n$
(6) $\left[\nabla_{*}^{2}(\xi), g\right] \otimes m=\left[r_{1 *}^{2}(\xi), g\right] \otimes m+\left[r_{2 *}^{2}(\xi), g\right] \otimes m$ for $\xi \in \mathcal{C}(E, X \vee X)$
(7) $[f, g] \otimes m=[g, f] \otimes T(m)$
(8) $[f, f] \otimes m=f \otimes P(m)$
(9) $(f, g) \gamma \otimes a=f r_{1}^{2} \gamma \otimes a+g r_{2}^{2} \gamma \otimes a+[f, g] \otimes \hat{H}\left(t_{11} \rho_{(1,2)}^{2}(\gamma) \otimes a\right)$ for $\gamma \in \mathcal{C}(E, E \vee E)$.

Proof. The symbol $f \otimes a$ corresponds to a generator of $U(X) \otimes_{\Lambda} M_{e}$ and $[f, g] \otimes m$ corresponds to a generator of $\left(U(X) \otimes_{\Lambda} U(X)\right) \otimes_{\Lambda \otimes \Lambda} M_{e e}$.

For the elements $f \otimes a$, relation (1) corresponds to the fact that the tensor product is taken over $\Lambda,(2)$ translates the linearity in $M_{e},(3)$ corresponds to the fact that the element $f \otimes a$ is in $T_{2} U(X) \otimes_{\Lambda} M_{e}$ where we use Proposition [2.4 which describes $T_{2} F$ as a quotient of F.

For the elements $[f, g] \otimes m$, (4) corresponds to the fact that the tensor product is taken over $\Lambda \otimes \Lambda$, (5) translates the linearity in $M_{e e}$, (6) (also using (7)) corresponds to the fact that the element $[f, g] \otimes m$ lies in $\left(\left(T_{1} U\right)(X) \otimes\left(T_{1} U\right)(X)\right) \otimes_{\Lambda \otimes \Lambda} M_{e e}$, and (7) translates the fact that we take the coinvariants by the action of \mathfrak{S}_{2}.

Finally, (8) and (9) correspond to the fact that the diagram in Definition 5.3 is a pushout.

We need the following technical lemma.
Lemma 5.5. The quadratic tensor product $X \otimes M$ is equal to the push-out P of the following diagram of abelian groups

$$
\begin{aligned}
& \left(\left(T_{1} U X \otimes T_{1} U X\right) \underset{\Lambda \otimes \Lambda}{\otimes} T_{11} c r_{2} U(E, E) \underset{\Lambda}{\otimes} M_{e}\right)_{\mathfrak{S}_{2}} \oplus\left(U X \otimes M_{e e}\right)^{\bar{\phi}=\left(\overline{\phi_{1}^{\prime} \otimes 1}, t_{2} \otimes P\right)} T_{2} U X \underset{\Lambda}{\otimes} M_{e} \\
& \stackrel{\bar{\psi}=\left(\overline{\psi_{1}}, \pi(\delta \otimes 1)\right) \downarrow}{\downarrow}\left(\left(T_{1} U(X) \otimes T_{1} U(X)\right) \otimes_{\Lambda \otimes \Lambda} M_{e e}\right)_{\mathfrak{S}_{2}} \longrightarrow \stackrel{\hat{\psi}}{\stackrel{\hat{\phi}}{P}}
\end{aligned}
$$

where $U X:=U(X), T_{i} U X:=T_{i} U(X)$ for $i \in\{1,2\}, \overline{\psi_{1}}=\overline{1 \otimes 1 \otimes \hat{H}}$ and ϕ_{1}^{\prime} is the following composite map:

$$
\begin{aligned}
& \left(T_{1} U(X) \otimes T_{1} U(X)\right) \otimes_{\Lambda \otimes \Lambda} T_{11}\left(c r_{2} U\right)(E, E)--\stackrel{\phi_{1}^{\prime}}{-}-T_{2} U(X) \\
& 1 \otimes 1 \otimes c \overline{c r_{2}\left(t_{2}\right)} \downarrow \quad \overbrace{S_{2}^{T_{2} U}} \\
& \left(T_{1} U(X) \otimes T_{1} U(X)\right) \underset{\Lambda \otimes \Lambda}{\otimes} c r_{2}\left(T_{2} U\right)(E, E) \xrightarrow[u_{c r\left(T_{2} U\right)}^{\prime}]{\longrightarrow} c r_{2}\left(T_{2} U\right)(X, X) .
\end{aligned}
$$

Proof. We have the following surjection

$$
(U X \otimes U X) \underset{\Lambda \otimes \Lambda}{\otimes} U(E \mid E) \underset{\Lambda}{\otimes} M_{e} \xrightarrow{\pi\left(t_{1} \otimes t_{1} \otimes t_{11} \otimes 1\right)}\left(\left(\left(T_{1} U\right) X \otimes\left(T_{1} U\right) X\right) \underset{\Lambda \otimes \Lambda}{\otimes} T_{11}\left(c r_{2} U\right)(E, E) \underset{\Lambda}{\otimes} M_{e}\right)_{\mathfrak{S}_{2}}
$$

which verifies

$$
\psi_{1}=\pi\left(t_{1} \otimes t_{1} \otimes \hat{H}\left(t_{11} \otimes 1\right)\right)=\pi(1 \otimes 1 \otimes \hat{H})\left(t_{1} \otimes t_{1} \otimes t_{11} \otimes 1\right) .
$$

We first check that $\phi_{1}=\left(\phi_{1}^{\prime} \otimes 1\right)\left(t_{1} \otimes t_{1} \otimes t_{11} \otimes 1\right)$. For $f, g \in \mathcal{C}(E, X)$ and $x \in U(E \mid E)$ we have:

$$
\begin{aligned}
\phi_{1}^{\prime}\left(t_{1} \otimes t_{1} \otimes t_{11}\right)(f \otimes g \otimes x) & =S_{2}^{T_{2} U} u_{c r_{2}\left(T_{2} U\right)}^{\prime}\left(1 \otimes 1 \otimes \overline{c r_{2}\left(t_{2}\right)}\right)\left(t_{1}(f) \otimes t_{1}(g) \otimes t_{11}(x)\right) \\
& =S_{2}^{T_{2} U} c r_{2}\left(T_{2} U\right)(f, g) c r_{2}\left(t_{2}\right)(x) \quad \text { by definition of } u_{c r_{2}\left(T_{2} U\right)}^{\prime} \\
& =\left(T_{2} U\right)\left(\nabla^{2}\right) \iota_{(1,2)}^{2} c r_{2}\left(T_{2} U\right)(f, g) c r_{2}\left(t_{2}\right)(x) \quad \text { by definition of } S_{2}^{T_{2} U} \\
& =\left(T_{2} U\right)\left(\nabla^{2}\right)\left(T_{2} U\right)(f \vee g) t_{2} \iota_{(1,2)}^{2}(x) \\
& =t_{2} U\left(\nabla^{2}\right) U(f \vee g) \iota_{(1,2)}^{2}(x) \\
& =t_{2} U\left(\nabla^{2}\right) \iota_{(1,2)}^{2} U(f \mid g)(x) \\
& =t_{2} S_{2}^{U} U(f \mid g)(x) .
\end{aligned}
$$

It remains to check that ϕ_{1}^{\prime} factors through the coinvariants, that is $\phi_{1}^{\prime}\left(t_{1}(f) \otimes t_{1}(g) \otimes\right.$ $\left.t_{11} x\right)=\phi_{1}^{\prime}\left(t\left(t_{1}(f) \otimes t_{1}(g) \otimes t_{11} x\right)\right)$. We have:

$$
\begin{aligned}
\phi_{1}^{\prime}\left(t\left(t_{1}(f) \otimes t_{1}(g) \otimes t_{11} x\right)\right) & =\phi_{1}^{\prime}\left(t_{1}(g) \otimes t_{1}(f) \otimes t_{11}\left(\iota_{(1,2)}^{2}\right)^{-1} U(\tau) \iota_{(1,2)}^{2} x\right) \\
& =t_{2} S_{2}^{U} U(g \mid f)\left(\iota_{(1,2)}^{2}\right)^{-1} U(\tau)\left(\iota_{(1,2)}^{2} x\right) \text { by the previous calculation } \\
& =t_{2} U\left(\nabla^{2}\right) \iota_{(1,2)}^{2} U(g \mid f)\left(\iota_{(1,2)}^{2}\right)^{-1} U(\tau)\left(\iota_{(1,2)}^{2} x\right) \\
& =t_{2} U\left(\nabla^{2}\right) U(g \vee f) \iota_{(1,2)}^{2}\left(\iota_{(1,2)}^{2}\right)^{-1} U(\tau)\left(\iota_{(1,2)}^{2} x\right) \\
& =t_{2} U\left(\nabla^{2}\right) U(g \vee f) U(\tau)\left(\iota_{(1,2)}^{2} x\right) \\
& =t_{2} U\left(\nabla^{2}\right) U(\tau) U(f \vee g)\left(\iota_{(1,2)}^{2} x\right) \\
& =t_{2} U\left(\nabla^{2} \tau\right) U(f \vee g)\left(\iota_{(1,2)}^{2} x\right) \\
& =t_{2} U\left(\nabla^{2}\right) U(f \vee g)\left(\iota_{(1,2)}^{2} x\right) \\
& =t_{2} U\left(\nabla^{2}\right) \iota_{(1,2)}^{2} U(f \mid g)(x) \\
& =t_{2} S_{2}^{U} U(f \mid g)(x) \\
& =\phi_{1}^{\prime}\left(t_{1}(f) \otimes t_{1}(g) \otimes t_{11} x\right)
\end{aligned}
$$

5.2. The quadratic tensor product defines a quadratic functor. The aim of this section is to prove the following result.

Proposition 5.6. For $M \in Q M o d_{\mathcal{C}}^{E}$ the functor given by the quadratic tensor product: $-\otimes M: \mathcal{C} \rightarrow A b$ is a quadratic functor.

The proof of this proposition relies on the following lemma.
Lemma 5.7. For M a pre-quadratic \mathcal{C}-module, the following natural transformation of functors from \mathcal{C} to $A b$ is pointwise surjective:

$$
c r_{2}(\hat{\phi}): c r_{2}\left(\left(\left(\left(T_{1} U(-) \otimes T_{1} U(-)\right) \otimes_{\Lambda \otimes \Lambda} M_{e e}\right) \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}\right) \rightarrow c r_{2}(-\otimes M) ;
$$

here $\hat{\phi}$ is the map in the push-out diagram in Definition 5.3.
Remark 5.8. In Theorem 5.18 below we give an improved version of this lemma.
Proof of Lemma 5.7. To simplify notation we write $\mathbb{T}_{11}\left(M_{e e}\right) \Delta_{\mathcal{C}}$ instead of $\left(\left(\left(T_{1} U\right)(-) \otimes\right.\right.$ $\left.\left.\left(T_{1} U\right)(-)\right) \otimes_{\Lambda \otimes \Lambda} M_{e e}\right) \Delta_{\mathcal{C}}$. Recall that the functor \mathbb{T}_{11} is the functor defined in 3.18.

By the universal property of a push-out, we obtain the existence of a map $f: X \otimes M \rightarrow$ $\operatorname{coker}(\phi)$ making the following diagram of abelian groups commutative:

We deduce the existence of a natural exact sequence

$$
\begin{equation*}
\left(\mathbb{T}_{11}\left(M_{e e}\right) \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}(X) \xrightarrow{\hat{\phi}} X \otimes M \xrightarrow{f} \operatorname{coker}(\phi) \rightarrow 0 . \tag{5.8.1}
\end{equation*}
$$

In the sequel we show that the functor $\operatorname{coker}(\phi)$ is linear. Recall that $\phi_{1}=\phi_{1}^{\prime}\left(t_{1} \otimes\right.$ $\left.t_{1} \otimes t_{11}\right) \otimes 1$ where $\left(\phi_{1}^{\prime}\left(t_{1} \otimes t_{1} \otimes t_{11}\right)\right)_{X}$ is given by the following compositon:

$$
(U(X) \otimes U(X)) \otimes_{\Lambda \otimes \Lambda} U(E \mid E) \xrightarrow{\alpha} c r_{2}\left(T_{2} U\right)(X, X) \xrightarrow{\left(S_{2}^{T_{2} U}\right)_{X}}\left(T_{2} U\right)(X)
$$

where $\alpha=\left(u_{c r_{2}\left(T_{2} U\right)}^{\prime}\right)_{X, X}\left(1 \otimes 1 \otimes \overline{c r_{2}\left(t_{2}\right)}\right)\left(t_{1} \otimes t_{1} \otimes t_{11}\right)$.
The functor $T_{2} U$ is quadratic by definition of T_{2}, $\operatorname{so~}_{\text {cr }}^{2}\left(T_{2} U\right)$ is a bilinear functor, and so is $\left(T_{1} U(-) \otimes T_{1} U(-)\right) \otimes_{\Lambda \otimes \Lambda} c r_{2}\left(T_{2} U\right)(E, E)$. Since $\left(u_{c r\left(T_{2} U\right)}^{\prime}\right)_{E, E}$ is an isomorphism according to Theorem 3.20, we deduce by Proposition 1.23 that $\left(u_{c r\left(T_{2} U\right)}^{\prime}\right)$ is a natural equivalence and $\left(u_{c r\left(T_{2} U\right)}^{\prime}\right)_{X, X}$ is an isomorphism. Furthermore $1 \otimes 1 \otimes \overline{c r_{2}\left(t_{2}\right)}$ and $t_{1} \otimes$ $t_{1} \otimes t_{11}$ are surjective by construction. It follows that

$$
\operatorname{coker}\left(\left(\phi_{1}\right)_{X}\right)=\operatorname{coker}\left(\left(S_{2}^{T_{2} U}\right)_{X}\right)=T_{1}\left(T_{2} U\right)(X)
$$

by Proposition 1.8
Since $\operatorname{Im}\left(\phi_{1}\right) \subset \operatorname{Im}(\phi)$ we see that $\operatorname{coker}(\phi)$ is a quotient of $\operatorname{coker}\left(\phi_{1}\right)=T_{1}\left(T_{2} U\right) \otimes_{\Lambda}$ M_{e} which is a linear functor. Thus $\operatorname{coker}(\phi)$ is a linear functor by Propositon 1.6. But the cross-effect functor is exact by Proposition 1.4 so applying it to sequence (5.8.1) shows that $c r_{2}(\hat{\phi})$ is pointwise surjective.

Proof of Proposition 5.6. The functor $\mathbb{T}_{11}\left(M_{e e}\right)$ is bilinear and bireduced, so by Lemma 1.20. $\mathbb{T}_{11}\left(M_{e e}\right) \Delta_{\mathcal{C}}$ is quadratic. By Proposition [1.14, we deduce that $\left.\left(\mathbb{T}_{11}\left(M_{e e}\right) \Delta_{\mathcal{C}}\right)\right)_{\mathfrak{S}_{2}}$ is quadratic. Consequently $c r_{2}\left(\left(\mathbb{T}_{11}\left(M_{e e}\right) \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}\right)$ is bilinear. Since $c r_{2}(-\otimes M)$ is a quotient of $c r_{2}\left(\left(\mathbb{T}_{11}\left(M_{e e}\right) \Delta_{\mathcal{C}}\right) \mathfrak{S}_{2}\right)$ by Lemma 5.7, the functor $c r_{2}(-\otimes M)$ is also bilinear, so $-\otimes M$ is quadratic.

Proposition 5.6 leads to the following definition.

Definition 5.9. The functor

$$
\mathbb{T}_{2}: Q M o d_{\mathcal{C}}^{E} \rightarrow \operatorname{Quad}(\mathcal{C}, A b)
$$

is defined as follows: for $M \in Q M o d_{\mathcal{C}}^{E}$ let $\mathbb{T}_{2}(M)=-\otimes M$, and for a morphism of quadratic \mathcal{C} - modules $\left(\phi_{e}, \phi_{e e}\right): M \rightarrow N$ let $\mathbb{T}_{2}\left(\phi_{e}, \phi_{e e}\right)=\varphi$ where $\varphi_{X}: X \otimes M \rightarrow X \otimes N$ is given by the universal property of a push-out.

Remark 5.10. The functor \mathbb{T}_{2} extends the tensor product functor \mathbb{T}_{1} in the following sense: it improves the approximation of a quadratic functor F by $\overline{u^{\prime}}: T_{2} U(-) \otimes_{\Lambda} F(E) \rightarrow$ F by taking into account the cross-effect of F in "amalgamating" $T_{2} U(X) \otimes_{\Lambda} F(E)$ with the image of $F(X \mid X)$ under $\left(S_{2}^{F}\right)_{X}$. We expect that this idea can be extended to polynomial functors of higher degree.
Remark 5.11. Since the functor $-\otimes M$ is quadratic by Proposition 5.6, the computation of $(-\otimes M)\left(E^{\vee n}\right)$ for $n \geq 1$ reduces to computing $(-\otimes M)(E)$ and cr $r_{2}(-\otimes M)(E, E)$, see Proposition 1.3.
5.3. Computation of the quadratic tensor product $E \otimes M$. In section 6, in order to obtain the desired equivalence between quadratic functors and quadratic \mathcal{C}-modules, we need to compute $E \otimes M$ for $M \in Q M o d_{\mathcal{C}}^{E}$, as follows.
Proposition 5.12. For $M \in Q M o d_{\mathcal{C}}^{E}$, there exists an isomorphism of abelian groups

$$
E \otimes M \xrightarrow{\simeq} M_{e} .
$$

In order to define this isomorphism we need the following lemmas.
Lemma 5.13. For $M \in Q M o d_{\mathcal{C}}^{E}$, there exists an isomorphism $\overline{\mu_{e}}:\left(T_{2} U\right)(E) \otimes_{\Lambda} M_{e} \rightarrow$ M_{e} making the following diagram commutative

where μ_{e} is the canonical isomorphism. In particular, the map $t_{2} \otimes 1$ is an isomorphism.
Proof. To prove that $\overline{\mu_{e}}$ exists we have to prove that $\mu_{e}\left(\operatorname{Ker}\left(t_{2} \otimes 1\right)\right)=0$. By Proposition 1.19 we have

$$
T_{2}(F)=\operatorname{coker}\left(\operatorname{ker}\left(c r_{2} F(X \mid X) \xrightarrow{t_{11}}\left(T_{11} c r_{2} F\right)(X \mid X)\right) \xrightarrow{S_{2}^{U}} F(X)\right) .
$$

So we have $\operatorname{ker}\left(t_{2}\right)=S_{2}^{U}\left(\operatorname{ker}\left(t_{11}\right)\right)$ and

$$
\mu_{e}\left(\operatorname{ker}\left(t_{2} \otimes 1\right)\right)=\mu_{e}\left(S_{2}^{U} \otimes 1\right)\left(\operatorname{ker}\left(t_{11}\right) \otimes M_{e}\right)=P \hat{H}\left(t_{11} \otimes I d\right)\left(\operatorname{ker}\left(t_{11}\right) \otimes M_{e}\right)=0
$$

where the second equality is given by Proposition 4.9.
Since $t_{2} \otimes 1$ is surjective and μ_{e} is an isomorphism we deduce that $\overline{\mu_{e}}$ is an isomorphism.
As a consequence we obtain that $t_{2} \otimes 1$ is also an isomorphism.
Lemma 5.14. For $M \in Q M o d_{\mathcal{C}}^{E}$, there exists a morphism $\bar{P}:\left(M_{e e}\right)_{\mathfrak{S}_{2}} \rightarrow M_{e}$ making the following diagram commutative

Proof. This is due to the relation $P T=P$ in Definition 4.6.

Lemma 5.15. There exists an isomorphism

$$
\left.\overline{\mu_{e e}}:\left(\left(T_{1} U\right)(E) \otimes\left(T_{1} U\right)(E)\right) \otimes_{\Lambda \otimes \Lambda} M_{e e}\right)_{\mathfrak{S}_{2}} \rightarrow\left(M_{e e}\right)_{\mathfrak{S}_{2}}
$$

making the following diagram commutative

where $\left(\left(T_{1} U\right)(E) \otimes\left(T_{1} U\right)(E)\right) \otimes_{\Lambda \otimes \Lambda} M_{e e} \xrightarrow{\mu_{e e}} M_{e e}$ is the canonical isomorphism.
Proof. This is immediate from the fact that the canonical isomorphism

$$
\left(\left(T_{1} U\right)(E) \otimes\left(T_{1} U\right)(E)\right) \otimes_{\Lambda \otimes \Lambda} M_{e e} \xrightarrow{\mu_{e e}} M_{e e}
$$

is compatible with the involutions.
Proposition 5.12 is a direct consequence of the following lemma.
Lemma 5.16. For $M \in Q M o d_{\mathcal{C}}^{E}$, there exists an isomorphism

$$
\left(\bar{P} \overline{\mu_{e e}}, \overline{\mu_{e}}\right): E \otimes M \rightarrow M_{e}
$$

such that $\left(\bar{P} \overline{\mu_{e e}}, \overline{\mu_{e}}\right) \hat{\phi}=\bar{P} \overline{\mu_{e e}}$ and $\left(\bar{P} \overline{\mu_{e e}}, \overline{\mu_{e}}\right) \hat{\psi}=\overline{\mu_{e}}$ where the maps $\bar{P}, \overline{\mu_{e e}}$ and $\overline{\mu_{e}}$ are defined in Lemma 5.14, 5.15 and 5.13 respectively and the maps $\hat{\phi}$ and $\hat{\psi}$ appear in the pushout diagram of Proposition 5.3 .
Proof. To prove that the morphism $\left(\bar{P} \overline{\mu_{e e}}, \overline{\mu_{e}}\right)$ exists, it is sufficient to prove that $\bar{P} \overline{\mu_{e e}} \psi=\overline{\mu_{e}} \phi$ by the universal property of the push-out.

For $f \in \mathcal{C}(E, E)$ and $m \in M_{e e}$ we have:

$$
\begin{aligned}
\bar{P} \overline{\mu_{e e}} \pi(\delta \otimes 1)(f \otimes m) & =P \mu_{e e}(\bar{f} \otimes \bar{f} \otimes m) \quad \text { by Lemmas 5.14 and 5.15 } \\
& =P((\bar{f} \otimes \bar{f}) . m) \quad \text { by definition of } \mu_{e e} \\
& =f P(m) \quad \text { by Definition 4.4 } \\
& =\mu_{e}(f \otimes P(m)) \quad \text { by definition of } \mu_{e} \\
& =\overline{\mu_{e}}\left(t_{2} \otimes I d\right)(f \otimes P(m)) \quad \text { by Lemmat5.13 } \\
& =\overline{\mu_{e}}\left(t_{2} \otimes P\right)(f \otimes m) .
\end{aligned}
$$

For $f, g \in \mathcal{C}(E, E), x \in U(E \mid E), a \in M_{e}$ we have:

$$
\begin{aligned}
& \bar{P} \overline{\mu_{e e}} \pi\left(t_{1} \otimes t_{1} \otimes \hat{H}\left(t_{11} \otimes 1\right)\right)(f \otimes g \otimes x \otimes a) \\
& =P \mu_{e e}\left(\bar{f} \otimes \bar{g} \otimes \hat{H}\left(t_{11}(x) \otimes a\right)\right) \quad \text { by Lemmas } 5.14 \text { and } 5.15 \\
& =P\left((\hat{f} \otimes \bar{g}) \hat{H}\left(t_{11}(x) \otimes a\right)\right) \quad \text { by definition of } \mu_{e e} \\
& =P \hat{H}\left((\bar{f} \otimes \bar{g})\left(t_{11}(x) \otimes a\right)\right) \quad \text { since } \hat{H} \text { is a morphism of } \bar{\Lambda} \otimes \bar{\Lambda} \text {-modules by Definition } 4.4 \\
& =P \hat{H}\left(t_{11}(U(f \mid g)(x)) \otimes a\right) \quad \text { by the structure of } \bar{\Lambda} \otimes \bar{\Lambda}-\text { module of } T_{11} c r_{2} U(E, E) \\
& =P \hat{H}\left(t_{11} \otimes I d\right)(U(f \mid g)(x) \otimes a) \\
& =\mu_{e}\left(S_{2}^{U} \otimes I d\right)(U(f \mid g)(x) \otimes a) \quad \text { by Proposition } 4.9 \\
& =\overline{\mu_{e}}\left(t_{2} \otimes I d\right)\left(S_{2}^{U} \otimes I d\right)(U(f \mid g)(x) \otimes a) \quad \text { by Lemma } 5.13 \\
& =\overline{\mu_{e}}\left(t_{2} S_{2}^{U} U(f \mid g)(x) \otimes a\right) .
\end{aligned}
$$

Hence the morphism $\left(\bar{P} \overline{\mu_{e e}}, \overline{\mu_{e}}\right): E \otimes M \rightarrow M_{e}$ exists.
For $m \in M_{e e}$, we have:

$$
\overline{\mu_{e e}} \pi(\delta \otimes 1)(1 \otimes m)=\bar{m}
$$

Since $\overline{\mu_{e e}}$ is an isomorphism by Lemma 5.15 we deduce that $\pi(\delta \otimes 1)$ is surjective. Consequently ψ is surjective and by general properties of push-out diagrams we obtain
that $\hat{\psi}:\left(T_{2} U\right)(E) \otimes M_{e} \rightarrow E \otimes M$ is surjective. Now, since $\left(\bar{P} \overline{\mu_{e e}}, \overline{\mu_{e}}\right) \hat{\psi}=\overline{\mu_{e}}$ is an isomorphism by Lemma 5.13, it follows that ($\left.\bar{P} \overline{\mu_{e e}}, \overline{\mu_{e}}\right)$ is an isomorphism.

In particular, by Proposition 4.14 for F a quadratic functor, M^{F} is a quadratic \mathcal{C}-module, so we can apply the previous lemma to M^{F} to obtain:

Lemma 5.17. For $F \in \operatorname{Quad}(\mathcal{C}, A b)$ the morphism

$$
\left(\left(\overline{S_{2}^{F}}\right)_{E} \overline{\mu_{e e}}, \overline{\mu_{e}}\right): E \otimes M^{F} \rightarrow F(E)
$$

is an isomorphism.
5.4. Computation of the cross-effect of $-\otimes M$. The aim of this section is to prove the following theorem which allows to compute the cross-effect of $-\otimes M$ in Corollary 5.21 and to complete the proof of Proposition 4.14 in Corollary 6.7.

Theorem 5.18. For \mathcal{C} a pointed theory generated by E and M a pre-quadratic \mathcal{C}-module relative to E, the following natural transformation of functors is an equivalence if and only if M is a quadratic \mathcal{C}-module.

$$
c r_{2}(\hat{\phi}): c r_{2}\left(\left(\left(\left(T_{1} U(-) \otimes T_{1} U(-)\right) \otimes_{\Lambda \otimes \Lambda} M_{e e}\right) \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}\right) \rightarrow c r_{2}(-\otimes M)
$$

Here $\hat{\phi}$ is the map in the push-out diagram in Definition 5.3.
The proof of this theorem relies on the following lemmas.
Lemma 5.19. If $B: \mathcal{C} \times \mathcal{C} \rightarrow A b$ is a bilinear bireduced bifunctor, the natural map given by

$$
B(X, Y) \xrightarrow{\left(\iota_{(1,2)}^{2}\right)^{-1} \pi B\left(i_{1}^{2}, i_{2}^{2}\right)} c r_{2}\left(B \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}(X, Y)
$$

for $X, Y \in \mathcal{C}$, is a natural equivalence.
Proof. For $X, Y \in \mathcal{C}$, we have $B \Delta_{\mathcal{C}}(X \vee Y)=B(X, X) \oplus B(X, Y) \oplus B(Y, X) \oplus B(Y, Y)$ since B is a bilinear functor. Let $T: B(X \vee Y, X \vee Y) \rightarrow B(X \vee Y, X \vee Y)$ be the involution we have $T(B(X, X))=B(X, X), T(B(Y, Y))=B(Y, Y)$ and $T(B(X, Y))=$ $T(Y, X)$. So $\left(B \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}(X \vee Y)=B(X, X)_{\mathfrak{S}_{2}} \oplus B(Y, Y)_{\mathfrak{S}_{2}} \oplus(B(X, Y) \oplus B(Y, X))_{\mathfrak{S}_{2}}$ and $c r_{2}\left(B \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}(X \vee Y)=(B(X, Y) \oplus B(Y, X))_{\mathfrak{S}_{2}}$. We have $\left(\iota_{(1,2)}^{2}\right)^{-1} \pi B\left(i_{1}^{2}, i_{2}^{2}\right)(x)=\overline{(x, 0)}$. An inverse of this map is defined as follows: let $B(X, Y) \oplus B(Y, X) \xrightarrow{f} B(X, Y)$ such that $f(x, y)=x+T y$. We have $f((x, y)-T(x, y))=f((x, y)-(T(y), T(x)))=$ $f(x-T(y), y-T(x))=0$. So, f defines a map $(B(X, Y) \oplus B(Y, X))_{\mathfrak{S}_{2}} \xrightarrow{\bar{f}} B(X, Y)$, and one easily checks that \bar{f} is the inverse of $\left(l_{(1,2)}^{2}\right)^{-1} \pi B\left(i_{1}^{2}, i_{2}^{2}\right)$.

Lemma 5.20. For $a \bar{\Lambda} \otimes \bar{\Lambda}$-module A, let $\mu_{A}: \mathbb{T}_{11}(A)(E, E) \rightarrow A$ denote the canonical isomorphism. Then the following diagram is commutative:

where: $N=T_{11}\left(\operatorname{cr}_{2}(U)\right)(E, E) \otimes_{\Lambda} M_{e}, k_{1}=\left(\iota_{(1,2)}^{2}\right)^{-1} \pi \mathbb{T}_{11}(N)\left(i_{1}^{2}, i_{2}^{2}\right)\left(\mu_{N}\right)^{-1} \oplus 1, k_{2}=$ $\left(\hat{H}, k_{2}^{\prime}\right)$ with $k_{2}^{\prime}\left(\rho_{(1,2)}^{2}(\xi) \otimes m\right)=\left(r_{1}^{2} \xi \otimes r_{2}^{2} \xi\right) .(m+T m)$ for $\xi \in \mathcal{C}(E, E \vee E)$ and $m \in M_{e e}$, and $k_{3}=\left(\iota_{(1,2)}^{2}\right)^{-1} \pi \mathbb{T}_{11}\left(M_{e e}\right)\left(i_{1}^{2}, i_{2}^{2}\right)\left(\mu_{M_{e e}}\right)^{-1}$.

Proof. The morphisms k_{1} and k_{3} are isomorphisms since $\mu_{M_{e e}}$ and μ_{N} are the canonical isomorphisms and $\left(\iota_{(1,2)}^{2}\right)^{-1} \pi \mathbb{T}_{11}(N)\left(i_{1}^{2}, i_{2}^{2}\right)$ and $\left(\iota_{(1,2)}^{2}\right)^{-1} \pi \mathbb{T}_{11}\left(M_{e e}\right)\left(i_{1}^{2}, i_{2}^{2}\right)$ are isomorphisms by Lemma 5.19. The fact that k_{2}^{\prime} is welldefined follows from the fact that k_{3} is an isomorphism and by commutativity of the diagram which we prove now.

By Lemma 5.5, $c r_{2}(\bar{\psi})=\left(c r_{2}(\overline{1 \otimes 1 \otimes \hat{H}}), c r_{2}(\pi(\delta \otimes 1))\right)$.
The commutativity of the diagram on N follows from the naturality of μ and by the fact that $\mathbb{T}_{11}(-)(-,-)$ is a trifunctor.

To prove the commutativity of the diagram on $U(E \mid E) \otimes M_{e e}$ we consider the injection $\left.\iota_{(1,2)}^{2}: \operatorname{cr}_{2}\left(\left(\mathbb{T}_{11}\left(M_{e e}\right) \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}\right)(E, E) \rightarrow\left(\mathbb{T}_{11}\left(M_{e e}\right) \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}\right)(E \vee E)$ and we prove that $\iota_{(1,2)}^{2} c r_{2}(\bar{\psi}) k_{1}=\iota_{(1,2)}^{2} k_{3} k_{2}$ on $U(E \mid E) \otimes M_{e e}$.

$$
\begin{aligned}
& \iota_{(1,2)}^{2} c r_{2}(\bar{\psi}) k_{1}\left(\rho_{(1,2)}^{2}(\xi) \otimes m\right) \\
& =\iota_{(1,2)}^{2} c r_{2}(\pi(\delta \otimes 1))\left(\rho_{(1,2)}^{2}(\xi) \otimes m\right) \\
& =\pi(\delta \otimes 1) \iota_{(1,2)}^{2}\left(\rho_{(1,2)}^{2}(\xi) \otimes m\right) \\
& =\pi(\delta \otimes 1)\left(\left(\xi-i_{1}^{2} r_{1}^{2} \xi-i_{2}^{2} r_{2}^{2} \xi\right) \otimes m\right) \text { by } \overline{2.0 .2} \\
& =\pi\left(\left(\bar{\xi} \otimes \bar{\xi}-\overline{i_{1}^{2} r_{1}^{2} \xi} \otimes \overline{i_{1}^{2} r_{1}^{2} \xi-} \overline{i_{2}^{2} r_{2}^{2} \xi \otimes} \overline{i_{2}^{2} r_{2}^{2} \xi}\right) \otimes m\right) \\
& \left.=\pi\left(\left(\left(\overline{i_{1}^{2} r_{1}^{2} \xi}+\overline{i_{2}^{2} r_{2}^{2} \xi}\right) \otimes \overline{i_{1}^{2} r_{1}^{2} \xi}+\bar{i}_{2}^{2} r_{2}^{2} \xi\right)-\overline{i_{1}^{2} r_{1}^{2} \xi} \otimes \overline{i_{1}^{2} r_{1}^{2} \xi}-\overline{i_{2}^{2} r_{2}^{2} \xi} \otimes \overline{i_{2}^{2} r_{2}^{2} \xi}\right) \otimes m\right)
\end{aligned}
$$

by Lemma 3.7 (3) since $T_{1} U$ is linear
$=\pi\left(\overline{i_{1}^{2} r_{1}^{2} \xi} \otimes \overline{i_{2}^{2} r_{2}^{2} \xi} \otimes m+\overline{\overline{i_{2}^{2}} r_{2}^{2} \xi} \otimes \overline{i_{1}^{2} r_{1}^{2} \xi} \otimes m\right)$
$=\pi\left(\overline{i_{1}^{2} r_{1}^{2} \xi} \otimes \overline{i_{2}^{2} r_{2}^{2} \xi} \otimes m+t \overline{\overline{i_{1}^{2}} r_{1}^{2} \xi} \otimes \overline{\left.\overline{i_{2}^{2} r_{2}^{2} \xi} \otimes T m\right)}\right.$) where t is defined in Lemma 5. 1
$=\pi\left(\overline{i_{1}^{2} r_{1}^{2} \xi} \otimes \overline{\bar{i}_{2}^{2} r_{2}^{2} \xi} \otimes m+\overline{\bar{i}_{1}^{2} r_{1}^{2} \xi} \otimes \overline{\bar{i}_{2}^{2} r_{2}^{2} \xi} \otimes T m\right)$ since $\pi(t x)=\pi(x)$
$=\pi\left(\overline{i_{1}^{2} r_{1}^{2} \xi} \otimes \overline{i_{2}^{2} r_{2}^{2} \xi} \otimes(m+T m)\right)$
$=\pi \mathbb{T}_{11}\left(M_{e e}\right)\left(i_{1}^{2}, i_{2}^{2}\right)\left(\overline{r_{1}^{2} \xi} \otimes \overline{r_{2}^{2} \xi} \otimes(m+T m)\right)$
$=\pi \mathbb{T}_{11}\left(M_{e e}\right)\left(i_{1}^{2}, i_{2}^{2}\right)\left(\overline{1} \otimes \overline{1} \otimes\left(r_{1}^{2} \xi \otimes r_{2}^{2} \xi\right) .(m+T m)\right)$
$=\pi \mathbb{T}_{11}\left(M_{e e}\right)\left(i_{1}^{2}, i_{2}^{2}\right) \mu_{M_{e e}}^{-1}\left(\left(r_{1}^{2} \xi \otimes r_{2}^{2} \xi\right) .(m+T m)\right)$
$=\iota_{(1,2)}^{2} k_{3}\left(\left(r_{1}^{2} \xi \otimes r_{2}^{2} \xi\right) \cdot(m+T m)\right)$
$=\iota_{(1,2)}^{2} k_{3} k_{2}\left(\rho_{(1,2)}^{2}(\xi) \otimes m\right)$

Proof of Theorem 5.18. By Lemma 1.20 and Proposition 1.14 the source functor is bilinear and we deduce from Proposition 5.6 that the target functor is bilinear. So according to Proposition 1.23 it suffices to check that $\operatorname{cr}_{2}(\hat{\phi})_{(E, E)}$ is an isomorphism if and only if M is a quadratic \mathcal{C}-module. By Lemma 5.7 we know that, for M a prequadratic \mathcal{C} module, $c r_{2}(\hat{\phi})_{(E, E)}$ is surjective. So it is sufficient to prove that $c r_{2}(\hat{\phi})_{(E, E)}$ is injective if and only if the condition (QM2) is satisfied.

As a pushout of abelian groups can be written as a right exact sequence in an obvious way and as the cross-effect functor is exact, we deduce from Lemma 5.5 that the following diagram is also a pushout.

$$
\begin{gathered}
c r_{2}\left(\left(\mathbb{T}_{11}(N) \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}\right)(E, E) \oplus c r_{2}(U)(E, E) \otimes M_{e e} \xrightarrow{c r_{2}(\bar{\phi})_{E, E}} c r_{2}\left(T_{2} U\right)(E, E) \otimes_{\Lambda} M_{e} \\
c r_{2}(\bar{\psi})_{E, E} \downarrow \\
c r_{2}\left(\left(\mathbb{T}_{11}\left(M_{e e}\right) \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}\right)(E, E) \xrightarrow[c r_{2}(\hat{\psi})_{E, E}]{ } \begin{array}{c}
c r_{2}(\hat{\phi})_{E, E} \\
\end{array} r_{2}(-\otimes M)(E, E) .
\end{gathered}
$$

By the previous Lemma we obtain the following commutative diagram (where, for simplicity, we omit the subscript E, E):

$$
\begin{aligned}
& N \oplus U(E \mid E) \otimes M_{e e} \xrightarrow{k_{1}} c r_{2}\left(\left(\mathbb{T}_{11}(N) \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}\right)(E, E) \oplus c r_{2}(U)(E, E) \otimes M_{e e} \xrightarrow{c r_{2}(\bar{\phi})} c r_{2}\left(T_{2} U\right)(E, E) \otimes_{\Lambda} M_{e}
\end{aligned}
$$

As k_{1} and k_{3} are isomorphisms, we deduce that the exterior diagram is a pushout too.

By a general property of pushouts in $A b$ we deduce that:

$$
\begin{equation*}
\operatorname{ker}\left(c r_{2}(\hat{\phi})\right)=k_{3} \operatorname{ker}\left(c r_{2}(\hat{\phi}) k_{3}\right)=k_{3} k_{2} \operatorname{ker}\left(c r_{2}(\bar{\phi}) k_{1}\right) \tag{5.20.1}
\end{equation*}
$$

Recall that $c r_{2}(\bar{\phi})=\left(c r_{2}\left(\overline{\phi_{1}^{\prime} \otimes 1}\right), c r_{2}\left(t_{2}\right) \otimes P\right)$. So, we have

$$
c r_{2}(\bar{\phi}) k_{1}=\left(c r_{2}\left(\overline{\phi_{1}^{\prime} \otimes 1}\right)\left(\iota_{(1,2)}^{2}\right)^{-1} \pi \mathbb{T}_{11}(N)\left(i_{1}^{2}, i_{2}^{2}\right)\left(\mu_{N}\right)^{-1}, c r_{2}\left(t_{2}\right) \otimes P\right) .
$$

In the sequel, we compute $c r_{2}\left(\overline{\phi_{1}^{\prime} \otimes 1}\right)\left(\iota_{(1,2)}^{2}\right)^{-1} \pi \mathbb{T}_{11}(N)\left(i_{1}^{2}, i_{2}^{2}\right)\left(\mu_{N}\right)^{-1}$. For $x \in c r_{2}(U)(E, E)$ and $a \in M_{e}$ we have:

$$
\begin{aligned}
& \iota_{(1,2)}^{2} c r_{2}\left(\overline{\phi_{1}^{\prime} \otimes 1}\right)\left(\iota_{(1,2)}^{2}\right)^{-1} \pi \mathbb{T}_{11}(N)\left(i_{1}^{2}, i_{2}^{2}\right)\left(\mu_{N}\right)^{-1}\left(t_{11}(x) \otimes a\right) \\
& \left.=\left(\overline{\phi_{1}^{\prime} \otimes 1}\right) \iota_{(1,2)}^{2}\left(\iota_{(1,2)}^{2}\right)\right)^{-1} \pi \mathbb{T}_{11}(N)\left(i_{1}^{2}, i_{2}^{2}\right)\left(\mu_{N}\right)^{-1}\left(t_{11}(x) \otimes a\right) \\
& =\left(\overline{\phi_{1}^{\prime} \otimes 1}\right) \pi \mathbb{T}_{11}(N)\left(i_{1}^{2}, i_{2}^{2}\right)\left(\overline{1} \otimes \overline{1} \otimes\left(t_{11}(x) \otimes a\right)\right) \\
& =\left(\phi_{1}^{\prime} \otimes 1\right)\left(\overline{i_{1}^{2}} \otimes \overline{i_{2}^{2}} \otimes\left(t_{11}(x) \otimes a\right)\right) \\
& =\phi_{1}^{\prime}\left(t_{1} \otimes t_{1} \otimes t_{11}\right)\left(i_{1}^{2} \otimes i_{2}^{2} \otimes x\right) \otimes a \\
& =t_{2} S_{2}^{U} U\left(i_{1}^{2} \mid i_{2}^{2}\right)(x) \otimes a \quad \text { by the proof of Lemma } \overline{5.5} \\
& =t_{2} U\left(\nabla^{2}\right) U\left(i_{1}^{2} \vee i_{2}^{2}\right) \iota_{(1,2)}^{2}(x) \otimes a \\
& =t_{2} \iota_{(1,2)}^{2}(x) \otimes a \\
& =\iota_{(1,2)}^{c} r_{2}\left(t_{2}\right)(x) \otimes a \\
& =\iota_{(1,2)}^{2}\left(c r_{2}\left(t_{2}\right) \otimes 1\right)\left(t_{11}(x) \otimes a\right) .
\end{aligned}
$$

We deduce that:

$$
c r_{2}(\bar{\phi}) k_{1}=\left(\overline{c r_{2}\left(t_{2}\right)} \otimes 1, c r_{2}\left(t_{2}\right) \otimes P\right)
$$

By Theorem [1.24, $\overline{c r_{2}\left(t_{2}\right)}$ is an isomorphism, whence we have the following exact sequence:

$$
U(E \mid E) \otimes_{\Lambda} M_{e e} \xrightarrow{k_{4}} N \oplus\left(U(E \mid E) \otimes_{\Lambda} M_{e e}\right) \xrightarrow{c r_{2}(\bar{\phi}) k_{1}} T_{2} U(E \mid E) \otimes_{\Lambda} M_{e}
$$

where: $k_{4}=\left(\left(\overline{c r_{2}\left(t_{2}\right)} \otimes 1\right)^{-1}\left(c r_{2}\left(t_{2}\right) \otimes P\right),-1\right)^{t}=\left(\left(\overline{c r_{2}\left(t_{2}\right)}\right)^{-1} c r_{2}\left(t_{2}\right) \otimes P,-1\right)^{t}=\left(t_{11} \otimes\right.$ $P,-1)^{t}$. Since k_{3} is an isomorphism, we deduce from 5.20.1 and the last exact sequence that:

$$
\operatorname{ker}\left(c r_{2}(\hat{\phi}) k_{3}\right)=k_{2} \operatorname{ker}\left(c r_{2}(\bar{\phi}) k_{1}\right)=k_{2} \operatorname{Im}\left(k_{4}\right)
$$

For $\xi \in \mathcal{C}(E, E \vee E)$ and $m \in M_{e e}$ we have:

$$
\begin{gathered}
k_{2} k_{4}\left(\rho_{(1,2)}^{2}(\xi) \otimes m\right)=k_{2}\left(t_{11} \rho_{(1,2)}^{2}(\xi) \otimes P m,-\rho_{(1,2)}^{2}(\xi) \otimes m\right) \\
=\hat{H}\left(t_{11} \rho_{(1,2)}^{2}(\xi) \otimes P m\right)-\left(r_{1}^{2} \xi \otimes r_{2}^{2} \xi\right) \cdot(m+T m) .
\end{gathered}
$$

It follows that $\operatorname{ker}(\operatorname{cr} 2(\hat{\phi}))=0$ if and only if the condition (QM2) holds.
We now are ready to compute the cross-effect of $-\otimes M$.
Corollary 5.21. Let $M \in Q M o d_{C}^{E}$, there is a natural isomorphism of bifunctors:

$$
\gamma:\left(T_{1} U(-) \otimes T_{1} U(-)\right) \otimes_{\Lambda \otimes \Lambda} M_{e e} \xlongequal{\simeq} c r_{2}(-\otimes M)(-,-)
$$

such that, for all $X, Y \in\langle E\rangle_{\mathcal{C}}$:

$$
(\gamma)_{X, Y}\left(t_{1}(f) \otimes t_{1}(g) \otimes m\right)=\left(\iota_{(1,2)}^{2}\right)^{-1} \hat{\phi} \pi\left(t_{1}\left(i_{1} f\right) \otimes t_{1}\left(i_{2} g\right) \otimes m\right)
$$

where $f \in \mathcal{C}(E, X), g \in \mathcal{C}(E, Y), m \in M_{e e}, i_{1}: X \rightarrow X \vee Y$ and $i_{2}: Y \rightarrow X \vee Y$.
Proof. Recall that $\mathbb{T}_{11}\left(M_{e e}\right)(X, Y)=\left(T_{1} U(X) \otimes T_{1} U(Y)\right) \otimes_{\Lambda \otimes \Lambda} M_{e e}$ by Definition 3.18, We have the following natural factorization of $(\gamma)_{X, Y}$:
$\mathbb{T}_{11}\left(M_{e e}\right)(X, Y) \xrightarrow{\left(\iota_{(1,2)}^{2}\right)^{-1} \pi \mathbb{T}_{11}\left(M_{e e}\right)\left(i_{1}, i_{2}\right)} c r_{2}\left(\left(\mathbb{T}_{11}\left(M_{e e}\right) \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}\right)(X, Y) \xrightarrow{c r_{2}(\hat{\phi})} c r_{2}(-\otimes M)(X, Y)$.
Since $\mathbb{T}_{11}\left(M_{e e}\right)$ is bilinear we deduce from Proposition 5.19 that $\left(l_{(1,2)}^{2}\right)^{-1} \pi \mathbb{T}_{11}\left(M_{e e}\right)\left(i_{1}, i_{2}\right)$ is a natural equivalence, and we deduce from Theorem 5.18 that $c r_{2}(\hat{\phi})$ is an isomorphism. Hence γ is a natural equivalence, too.

6. Equivalence between quadratic functors and quadratic \mathcal{C}-modules

The aim of this section is to prove the following theorem which is the main result of this paper.

Theorem 6.1. The functors

$$
\operatorname{Quad}(\mathcal{C}, A b) \underset{\mathbb{S}_{2}}{\stackrel{\mathbb{T}_{2}}{\longleftrightarrow}} Q M o d_{\mathcal{C}}^{E}
$$

where \mathbb{S}_{2} is defined in Definition 4.15 and $\mathbb{T}_{2}(M)=-\otimes M$, form a pair of adjoint functors extending \mathbb{T}_{1} and \mathbb{S}_{1} given in Proposition 3.12 (see also Poposition 4.16).

For $\mathcal{C}=\langle E\rangle_{\mathcal{C}}$, the functors \mathbb{S}_{2} and \mathbb{T}_{2} form a pair of adjoint equivalences.
To prove this theorem we begin by constructing the co-unit and prove that it is an isomorphism thanks to the computations of $E \otimes M$ given in Proposition 5.12 and of the cross-effect of $-\otimes M$ given in Corollary 5.21. Then we construct the unit of this adjunction and prove that it is an isomorphism.
6.1. The co-unit of the adjunction. The co-unit of the adjunction of Theorem 6.1 is a natural map of quadratic functors $\epsilon:-\otimes M^{F} \rightarrow F$. To define this map we need a sequence of lemmas.
Lemma 6.2. For $F \in \operatorname{Quad}(\mathcal{C}, A b)$, there exists a natural transformation $\overline{u_{F}^{\prime}}:\left(T_{2} U\right)(-) \otimes_{\Lambda}$ $F(E) \rightarrow F(-)$ such that we have the following natural commutative diagram

for $X \in \mathcal{C}$ and u_{F}^{\prime} the co-unit of the adjunction between \mathbb{S} and \mathbb{T} given in Proposition 3.6

Proof. This is immediate from the universal property of t_{2}.
Lemma 6.3. For $F \in \operatorname{Quad}(\mathcal{C}, A b)$, there exists a morphism $\left(\overline{S_{2}^{F}}\right)_{X}: F(X \mid X)_{\mathfrak{S}_{2}} \rightarrow$ $F(X)$ making the following diagram commutative

for $X \in \mathcal{C}$.
Proof. To prove that $\overline{S_{2}^{F}}$ exists we have to prove that $S_{2}^{F} T^{F}=S_{2}^{F}$ where T^{F} is the involution of $F(-\mid-)$. Recall that T^{F} is defined by the following commutative diagram

where τ is the canonical switch. Thus:

$$
\left(S_{2}^{F}\right)_{X} T^{F}=F\left(\nabla^{2}\right) \iota_{(1,2)}^{2} T^{F}=F\left(\nabla^{2} \tau\right) \iota_{(1,2)}^{2}=F\left(\nabla^{2}\right) \iota_{(1,2)}^{2}=\left(S_{2}^{F}\right)_{X}
$$

Lemma 6.4. For $F \in \operatorname{Quad}(\mathcal{C}, A b)$, there exists a natural transformation of functors:

$$
\left.\overline{u_{c r(F)}^{\prime}}:\left(\left(\left(T_{1} U\right)(-) \otimes\left(T_{1} U\right)(-)\right) \otimes_{\Lambda \otimes \Lambda} F(E \mid E)\right) \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}} \rightarrow\left(c r_{2} F(-,-) \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}
$$

where $\Delta_{\mathcal{C}}: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ is the diagonal functor, making the following diagram naturally commutative.

Here $X \in \mathcal{C}$, and $\left(\left(T_{1} U\right)(X) \otimes\left(T_{1} U\right)(X)\right) \otimes_{\Lambda \otimes \Lambda} F(E \mid E) \xrightarrow{\left(u_{c r 2(F)}^{c}\right) X, X} F(X \mid X)$ is the co-unit of the adjunction in Proposition 3.19.
Proof. For $x, y \in U(X)$ and $m \in F(E \mid E)$ we have:

$$
\begin{aligned}
T^{F} u_{c r_{2}(F)}^{\prime}\left(t_{1}(f) \otimes t_{1}(g) \otimes m\right) & =T^{F}\left(c r_{2} F(f, g)\right)(m) \\
& =\left(\iota_{(1,2)}^{2}\right)^{-1} F(\tau) \iota_{(1,2)}^{2} c r_{2} F(f, g)(m) \\
& =\left(\iota_{(1,2)}^{2}\right)^{-1} F(\tau) F(f \vee g) \iota_{(1,2)}^{2}(m) \\
& =\left(\iota_{(1,2)}^{2}\right)^{-1} F(g \vee f) F(\tau) \iota_{(1,2)}^{2}(m) \\
& =c r_{2} F(g, f)\left(\iota_{(1,2)}^{2}\right)^{-1} F(\tau) \iota_{(1,2)}^{2}(m) \\
& =c r_{2} F(g, f)\left(T^{F}(m)\right) \\
& =u_{c r_{2}(F)}^{\prime}\left(t_{1}(g) \otimes t_{1}(f) \otimes T^{F}(m)\right) \\
& =u_{c r_{2}(F)}^{\prime}\left(t\left(t_{1}(f) \otimes t_{1}(g) \otimes m\right)\right)
\end{aligned}
$$

Thus $u_{c r_{2}(F)}^{\prime}$ is \mathfrak{S}_{2}-equivariant and hence passes to coinvariants.
We deduce the following proposition.
Proposition 6.5. For $F \in \operatorname{Quad}(\mathcal{C}, A b)$, there exists a natural map $\epsilon:-\otimes M^{F} \rightarrow F$ given by:

$$
\epsilon_{X}=\left(\left(\overline{S_{2}^{F}}\right)_{X}\left(\overline{u_{c r_{2}(F)}^{\prime}}\right)_{X},\left(\overline{u_{F}^{\prime}}\right)_{X}\right): X \otimes M^{F} \rightarrow F(X)
$$

for $X \in \mathcal{C}$ such that
and
where the natural maps $\overline{u_{F}^{\prime}}, \overline{S_{2}^{F}}$ and $\overline{u_{c_{2}(F)}^{\prime}}$ are defined in Lemmas 6.2, 6.3 and 6.4 respectively and the maps $\hat{\phi}$ and $\hat{\psi}$ appear in the pushout diagram of Proposition 5.3.

Proof. To prove the existence of ϵ_{X} it is sufficient to show that $\left(\overline{S_{2}^{F}}\right)_{X}\left(\overline{u_{c r_{2}(F)}^{\prime}}\right)_{X} \psi=$ $\left(\overline{u_{F}^{\prime}}\right)_{X} \phi$ where ψ and ϕ are the maps in the pushout diagram of Proposition 5.3.

For $f \in \mathcal{C}(E, X)$ and $m \in F(E \mid E)$ we have:
$\left(\overline{S_{2}^{F}}\right)_{X}\left(\overline{u_{c r_{2}(F)}^{\prime}}\right)_{X} \pi(\delta \otimes 1)(f \otimes m)=\left(\overline{S_{2}^{F}}\right)_{X} \pi\left(u_{c r_{2}(F)}^{\prime}\right)_{X}(\delta \otimes 1)(f \otimes m)$ by Lemma 6.4
$=\left(S_{2}^{F}\right)_{X}\left(u_{c r_{2}(F)}^{\prime}\right)_{X}(\delta \otimes 1)(f \otimes m)$ by Lemma 6.3
$=\left(S_{2}^{F}\right)_{X}\left(u_{c r_{2}(F)}^{\prime}\right)_{X}\left(t_{1}(f) \otimes t_{1}(f) \otimes m\right)$ by definition of δ
$=\left(S_{2}^{F}\right)_{X} c r_{2} F(f, f)(m)$ by definition of $u_{c r_{2}(F)}^{\prime}$
$=F\left(\nabla^{2}\right) \iota_{(1,2)}^{2} c r_{2} F(f, f)(m)$ by definition of S_{2}^{F}
$=F\left(\nabla^{2}\right) F(f \vee f) \iota_{(1,2)}^{2}(m)$ by definition of $c r_{2} F(f, f)$
$=F\left(\nabla^{2}(f \vee f)\right) \iota_{(1,2)}^{2}(m)$ by functoriality
$\left.=F\left(f \nabla^{2}\right) \iota_{(1,2)}^{2}(m)\right)$ since $\nabla^{2}(f \vee f)=f \nabla^{2}$
$\left.=F(f) F\left(\nabla^{2}\right) \iota_{(1,2)}^{2}(m)\right)$ by functoriality
$=\left(u_{F}^{\prime}\right)_{X}\left(f \otimes F\left(\nabla^{2}\right) \iota_{(1,2)}^{2}(m)\right)$ by definition of u_{F}^{\prime}
$=\left(\overline{u_{F}^{\prime}}\right)_{X}\left(t_{2} \otimes I d\right)\left(f \otimes F\left(\nabla^{2}\right) \iota_{(1,2)}^{2}(m)\right)$ by Lemma 6.2
$=\left(\overline{u_{F}^{\prime}}\right)_{X}\left(t_{2} \otimes I d\right)\left(f \otimes S_{2}^{F}(m)\right)$ by definition of S_{2}^{F}
$=\left(\overline{u_{F}^{\prime}}\right)_{X}\left(t_{2} \otimes S_{2}^{F}\right)(f \otimes m)$
For $f, g \in \mathcal{C}(E, X), \xi \in \mathcal{C}(E, E \vee E), x=\left(\iota_{(1,2)}^{2}\right)^{-1}\left(\xi-i_{1 *}^{2} r_{1 *}^{2}(\xi)-i_{2 *}^{2} r_{2 *}^{2}(\xi)\right)(x \in$ $U(E \mid E)$ by (2.0.2) and $a \in F(E)$ we have:

$$
\begin{aligned}
& \left(\overline{S_{2}^{F}}\right)_{X}\left(\overline{u_{c r_{2}(F)}^{\prime}}\right)_{X} \psi_{1}(f \otimes g \otimes x \otimes a) \\
& =\left(\overline{S_{2}^{F}}\right)_{X}\left(\overline{u_{c r_{2}(F)}^{\prime}}\right)_{X} \pi\left(t_{1} \otimes t_{1} \otimes\left(H^{F}\right)_{E}\left(t_{11} \otimes 1\right)\right)(f \otimes g \otimes x \otimes a) \\
& =\left(S_{2}^{F}\right)_{X}\left(u_{c r_{2}(F)}^{\prime}\right) X\left(\bar{f} \otimes \bar{g} \otimes\left(H^{F}\right)_{E}\left(t_{11} \otimes 1\right)(x \otimes a)\right) \quad \text { by Lemmas } 6.3 \text { and } 6.4 \\
& \left.=\left(S_{2}^{F}\right)_{X}\left(u_{c r_{2}(F)}^{\prime}\right)\right)_{X}\left(\bar{f} \otimes \bar{g} \otimes\left(c r_{2}\left(u_{F}^{\prime}\right)\right)_{E}(x \otimes a)\right) \quad \text { by Lemma 4.13 } \\
& \left.=\left(S_{2}^{F}\right)_{X} c r_{2} F(f, g)\left(c r_{2}\left(u_{F}^{\prime}\right)\right)_{E}(x \otimes a)\right) \quad \text { by definition of } u_{c r_{2}(F)}^{\prime} \\
& \left.=F\left(\nabla^{2}\right)_{(1,2)}^{2} c r_{2} F(f, g)\left(c r_{2}\left(u_{F}^{\prime}\right)\right)_{E}(x \otimes a)\right) \\
& =F\left(\nabla^{2}\right) F(f \vee g)\left(u_{F}^{\prime}\right)_{E}\left(\iota_{(1,2)}^{2} x \otimes a\right) \\
& =F\left(\nabla^{2}\right) F(f \vee g) F\left(\iota_{(1,2)}^{2} x\right)(a) \quad \text { by definition of } u_{F}^{\prime} \\
& =F\left(\nabla^{2}(f \vee g) \iota_{(1,2)}^{2} x\right)(a) \quad \text { by functoriality } \\
& =\left(u_{F}^{\prime}\right)_{X}\left(\nabla^{2}(f \vee g) \iota_{(1,2)}^{2} x \otimes a\right) \quad \text { by definition of } u_{F}^{\prime} \\
& =\left(u_{F}^{\prime}\right)_{X}\left(U\left(\nabla^{2}\right) U(f \vee g) \iota_{(1,2)}^{2} x \otimes a\right) \\
& =\left(u_{F}^{\prime}\right)_{X}\left(U\left(\nabla^{2}\right) \iota_{(1,2)}^{2} c r_{2} U(f, g) x \otimes a\right) \\
& =\left(\overline{u_{F}^{\prime}}\right)_{X}\left(t_{2} \otimes 1\right)\left(U\left(\nabla^{2}\right) \iota_{(1,2)}^{2} c r_{2} U(f, g) x \otimes a\right) \quad \text { by Lemma } 6.2 \\
& =\left(\overline{u_{F}^{\prime}}\right)_{X}\left(t_{2} S_{2}^{U} c r_{2} U(f, g)(x) \otimes a\right) \\
& =\left(\overline{u_{F}^{\prime}}\right)_{X} \phi_{1}(f \otimes g \otimes x \otimes a) .
\end{aligned}
$$

In the following proposition we compute the cross-effect of ϵ.
Proposition 6.6. Let $F: \mathcal{C} \rightarrow A b$ be a quadratic functor. Then the natural map:

$$
c r_{2}(\epsilon)_{X, Y}: c r_{2}\left(-\otimes M^{F}\right)(X, Y) \rightarrow c r_{2} F(X, Y)
$$

is an isomorphism for all $X, Y \in\langle E\rangle_{\mathcal{C}}$.

Proof. For X, Y arbitrary objects of \mathcal{C} we have the following diagram whose right hand square commutes by definition of $c r_{2}(\epsilon)_{X, Y}$:

$$
\begin{aligned}
& c r_{2}\left(\mathbb{T}_{11}(F(E \mid E)) \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}(X, Y) \xrightarrow{c r_{2}(\hat{\phi})} c r_{2}\left(-\otimes M^{F}\right)(X, Y) \xrightarrow{\iota_{(1,2)}^{2}}\left(-\otimes M^{F}\right)(X \vee Y)
\end{aligned}
$$

In the following, we prove that the left hand square is commutative. Since $\iota_{(1,2)}^{2}$ is injective, it is sufficient to prove that

$$
\iota_{(1,2)}^{2} c r_{2}(\epsilon)_{X, Y} c r_{2}(\hat{\phi})\left(\iota_{(1,2)}^{2}\right)^{-1} \pi \mathbb{T}_{11}(F(E \mid E))\left(i_{1}, i_{2}\right)=\iota_{(1,2)}^{2} u_{c r_{2} F}^{\prime} .
$$

For $f \in \mathcal{C}(E, X), g \in \mathcal{C}(E, Y)$ and $m \in F(E \mid E)$ we have:
$\iota_{(1,2)}^{2} c r_{2}(\epsilon)_{X, Y} c r_{2}(\hat{\phi})\left(\iota_{(1,2)}^{2}\right)^{-1} \pi \mathbb{T}_{11}(F(E \mid E))\left(i_{1}, i_{2}\right)(\bar{f} \otimes \bar{g} \otimes m)$
$=(\epsilon)_{X \vee Y} \iota_{(1,2)}^{2} c r_{2}(\hat{\phi})\left(\iota_{(1,2)}^{2}\right)^{-1} \pi\left(\overline{i_{1} f} \otimes \overline{i_{2} g} \otimes m\right)$
$=(\epsilon)_{X \vee Y} \hat{\phi} \pi\left(\overline{\overline{i_{1} f}} \otimes \overline{i_{2} g} \otimes m\right)$
$=\left(\overline{S_{2}^{F}}\right)_{X \vee Y}\left(\overline{u_{c r(F)}^{\prime}}\right)_{X \vee Y} \pi\left(\overline{i_{1} f} \otimes \overline{i_{2} g} \otimes m\right) \quad$ by definition of ϵ given in Proposition 6.5
$=\left(S_{2}^{F}\right)_{X \vee Y}\left(u_{c r(F)}^{\prime}\right)_{X \vee Y}\left(\overline{i_{1} f} \otimes \overline{i_{2} g} \otimes m\right)$
$=\left(S_{2}^{F}\right)_{X \vee Y} c r_{2} F\left(i_{1} f, i_{2} g\right)(m)$ by definition of $u_{c r(F)}^{\prime}$ given in Proposition 3.19
$=F\left(\nabla^{2}\right) \iota_{(1,2)}^{2} c r_{2} F\left(i_{1} f, i_{2} g\right)(m) \quad$ by definition of S_{2}^{F}
$=F\left(\nabla^{2}\right) F\left(i_{1} f \vee i_{2} g\right) \iota_{(1,2)}^{2}(m)$
$=F(f \vee g) \iota_{(1,2)}^{2}(m)$ since $\nabla^{2}\left(i_{1} f \vee i_{2} g\right)=f \vee g$
$=\iota_{(1,2)}^{2} c r_{2} F(f, g)(m)$
$=\iota_{(1,2)}^{2} u_{c r_{2}(F)}^{\prime}(\bar{f} \otimes \bar{g} \otimes m) \quad$ by definition of $u_{c r_{2}(F)}^{\prime}$.
Since F is quadratic, $c r_{2}(F)$ is bilinear and by Theorem 3.20. $\left(u_{c r_{2}(F)}^{\prime}\right)_{X, Y}$ is an isomorphism. By commutativity of the left hand square this implies that $c r_{2}(\hat{\phi})$ is injective and by Lemma 5.7 we know that $c r_{2}(\hat{\phi})$ is surjective. Thus $c r_{2}(\hat{\phi})$ is an isomorphism, hence so is $\operatorname{cr}(\epsilon)_{X, Y}$.

In particular, we obtain the following corollary which achieves the proof of Proposition 4.14

Corollary 6.7. The property (QM2) is satisfied for M^{F}.
Proof. By Theorem 5.18 it is sufficient to prove that

$$
c r_{2}(\hat{\phi}): c r_{2}\left(\left(\left(\left(T_{1} U(-) \otimes T_{1} U(-)\right) \otimes_{\Lambda \otimes \Lambda} F(E \mid E)\right) \Delta_{\mathcal{C}}\right)_{\mathfrak{S}_{2}}\right) \rightarrow c r_{2}\left(-\otimes M^{F}\right)
$$

is an equivalence. This is part of the proof of Proposition 6.6.

Proposition 6.8. If $\mathcal{C}=\langle E\rangle_{\mathcal{C}}$, for $F \in \operatorname{Quad}(\mathcal{C}, A b)$ the natural map $\epsilon:-\otimes M^{F} \rightarrow F$ is a natural equivalence.
Proof. Since F is quadratic by hypothesis and $-\otimes M^{F}$ is quadratic by Proposition 5.6] it is sufficient to prove that $(\epsilon)_{E}$ and $c r_{2}(\epsilon)_{(E, E)}$ are isomorphisms according to Proposition 1.22

By Lemma 5.17 we know that $(\epsilon)_{E}$ is an isomorphism since

$$
\left.\left(\left(\overline{S_{2}^{F}}\right)_{E}\left(\overline{u_{c r(F)}^{\prime}}\right)\right)_{E},\left(\overline{u_{F}^{\prime}}\right)_{E}\right)=\left(\left(\overline{S_{2}^{F}}\right)_{E} \overline{\mu_{e e}}, \overline{\mu_{e}}\right) .
$$

By Proposition 6.6 we know that $c r_{2}(\epsilon)_{(E, E)}$ is an isomorphism.
Proposition 6.9. The natural map $\epsilon:-\otimes M^{F} \rightarrow F$ is the counit of the adjunction given in Theorem 6.1.
Proof. For $M \in Q M o d_{\mathcal{C}}^{E}$ and $\alpha:-\otimes M \rightarrow F$ we want to prove that there exists a unique $\beta: M \rightarrow M^{F}$ such that $\epsilon(-\otimes M)(\beta)=\alpha$. Since ϵ is a natural equivalence the latter relation implies that: $(-\otimes M)(\beta)=\epsilon^{-1} \alpha$. One can check that β such that $\beta_{e}=\alpha_{e}\left(\bar{P} \overline{\mu_{e e}}, \overline{\mu_{e}}\right)^{-1}$ and $\beta_{e e}=c r_{2}(\alpha)_{E, E} \gamma_{E, E}\left(\mu_{e e}\right)^{-1}$ is the unique solution.

6.2. The unit of the adjunction.

Definition 6.10. Let $\eta: I d_{Q M o d_{C}^{E}} \rightarrow \mathbb{S}_{2} \mathbb{T}_{2}$ be the natural map such that, for $M \in$ $Q M o d_{\mathcal{C}}^{E}, \eta_{M}: M \rightarrow \mathbb{S}_{2} \mathbb{T}_{2}(M)$ is given by $\left(\eta_{M}\right)_{e}=\left(\bar{P} \overline{\mu_{e e}}, \overline{\mu_{e}}\right)^{-1}$ and $\left(\eta_{M}\right)_{e e}=(\gamma)_{E, E} \mu_{e e}^{-1}$ where $\mu_{e e}$ is the canonical isomorphism and γ is the natural equivalence of Corollary 5.21 .

Proposition 6.11. The natural map $\eta: I d_{Q M o d_{\mathcal{C}}^{E}} \rightarrow \mathbb{S}_{2} \mathbb{T}_{2}$ is a natural equivalence.
Proof. By Lemma 5.16 and Corollary [5.21 $\left(\eta_{M}\right)_{e}$ and $\left(\eta_{M}\right)_{e e}$ are isomorphisms.
Proposition 6.12. The natural map $\eta: I d_{Q M o d_{C}^{E}} \rightarrow \mathbb{S}_{2} \mathbb{T}_{2}$ is the unit of the adjunction in Theorem 6.1.
Proof. For $F \in \operatorname{Quad}(\mathcal{C}, A b)$ and $\alpha: M \rightarrow M^{F}$ a morphism in $Q M o d_{\mathcal{C}}^{E}$, we want to prove that there exists a unique natural map $\beta:-\otimes M \rightarrow F$ such that $\mathbb{S}_{2}(\beta) \eta_{M}=\alpha$. Let β be the composition $\epsilon(-\otimes \alpha)$. We check that β is the unique solution of $\mathbb{S}_{2}(\beta) \eta_{M}=\alpha$.

Together with Proposition 6.11, 6.9 and 6.8 this achieves the proof of Theorem 6.1.

7. Application to theories of cogroups

In this section, we apply Theorem 6.1 to the particular case where \mathcal{C} is a theory of cogroups \mathcal{T} with generator E. The interest in this case comes from the paper [4] where the authors define, in Proposition 3.6, a functor:

$$
u: \operatorname{Quad}(\mathcal{T}, G r) \rightarrow \text { Square }
$$

to the category Square of so-called square groups, sending $F \in \operatorname{Quad}(\mathcal{T}, G r)$ to the square group $u(F)(E)=(F(E) \xrightarrow{H} F(E \mid E) \xrightarrow{P} F(E))$, see Definition 7.12 below. They prove that u is an equivalence of categories when \mathcal{T} is the category $\langle\mathbb{Z}\rangle_{G r}$ of free groups of finite rank. This is no longer true for more general theories of cogroups, even when restricting to quadratic functors with values in $A b$. In fact, we here show how for general \mathcal{T} the structure of square group has to be enriched in order to obtain an equivalence with quadratic functors from \mathcal{T} to $A b$. In particular, a second map relating $F(E)$ to $F(E \mid E)$ has to be added to the picture; in the case where $\mathcal{T}=\langle\mathbb{Z}\rangle_{G r}$ this turns out to provide a new interpretation of the map Δ associated with a square group in [4]. Recall that a theory of cogroups is a pointed category \mathcal{T} with finite sums such that each object X has the structure of a cogroup given by the maps $\mu: X \rightarrow X \vee X$ and $\tau: X \rightarrow X$. Then, for $X, Y \in \mathcal{T}, \mathcal{T}(X, Y)$ is a group with $f \bullet g=(f, g) \mu$ and $f^{-1}=f \tau$. The identity element of \bullet is the nul map 0 . Moreover, for $Z \in \mathcal{T}$ and $h \in \mathcal{T}(Y, Z)$ the map $h_{*}: \mathcal{T}(X, Y) \rightarrow \mathcal{T}(X, Z)$ is a homomorphism of groups.
Notation. For brevity, we write in this section i_{1}, i_{2}, r_{1} and r_{2} instead of $i_{1}^{2}, i_{2}^{2}, r_{1}^{2}$ and r_{2}^{2}, respectively.

For a theory of cogroups \mathcal{T} we have a simpler description of a quadratic \mathcal{T}-module relative to E given in the following theorem. In particular, note that the functor U disappears from the picture.

Theorem 7.1. Let \mathcal{T} be a theory of cogroups. The category of quadratic \mathcal{T}-modules relative to E is equivalent to the category of diagrams of group homomorphisms:

$$
M=\left(\begin{array}{c}
\substack{H_{2} \\
T_{11} c r_{2}(\mathcal{T}(E,-))(E, E)} \\
M_{\otimes_{\Lambda} \operatorname{coker}(P)}
\end{array} M_{e e} \xrightarrow{M_{e}} M_{e}\right)
$$

where

- M_{e} is a left Λ-module;
- $M_{e e}$ is a left $\bar{\Lambda} \otimes \bar{\Lambda}$-module;
- $P: M_{e e} \rightarrow M_{e}$ is a homomorphism of Λ-modules with respect to the diagonal action of Λ on $M_{e e}$;
- H_{1} is a homomorphism of abelian groups;
- H_{2} is a homomorphism of $\bar{\Lambda} \otimes \bar{\Lambda}$-modules,
satisfying the following relations for $a \in M_{e}, m \in M_{e e}, \gamma \in \operatorname{cr}_{2}(\mathcal{T}(E,-))(E, E)$, $\alpha, \beta \in \mathcal{T}(E, E):$

$$
\begin{gather*}
P H_{1} P=2 P \tag{T1}\\
H_{1} P((\bar{\alpha} \otimes \bar{\beta}) m)-(\bar{\beta} \otimes \bar{\alpha}) H_{1} P(m)=(\bar{\alpha} \otimes \bar{\beta}) m-(\bar{\beta} \otimes \bar{\alpha}) m \tag{T2}\\
H_{1} P H_{1}(a)=2 H_{1}(a)+H_{2}\left(t_{11}\left(\left[i_{2}, i_{1}\right]\right) \otimes \bar{a}\right) \tag{T3}\\
H_{1} P H_{2}\left(t_{11} \gamma \otimes \bar{a}\right)=H_{2}\left(t_{11}(\gamma \bullet \tau \gamma) \otimes \bar{a}\right) \tag{T4}\\
\left(\nabla^{2} \gamma \bullet \alpha \bullet \beta\right) a=\alpha a+\beta a+P\left((\bar{\alpha} \otimes \bar{\beta}) H_{1}(a)\right)+P H_{2}\left(t_{11} \gamma \otimes \bar{a}\right) \\
H_{1}(\alpha a)=H_{2}\left(t_{11} h(\alpha) \otimes \bar{a}\right)+(\bar{\alpha} \otimes \bar{\alpha}) H_{1}(a)
\end{gather*}
$$

where $\left[i_{2}, i_{1}\right]=i_{2} \bullet i_{1} \bullet\left(i_{2}\right)^{-1} \bullet\left(i_{1}\right)^{-1}$, τ is the canonical switch of $E \vee E$ and h : $\mathcal{T}(E, E) \rightarrow \mathcal{T}(E, E \mid E)$ is given by

$$
h(\alpha)=\left(\iota_{(1,2)}^{2}\right)^{-1}\left(\left(\left(i_{1} \bullet i_{2}\right) \alpha\right) \bullet\left(i_{2} \alpha\right)^{-1} \bullet\left(i_{1} \alpha\right)^{-1}\right) .
$$

Note that the map h describes the deviation of endomorphisms of E from being morphisms of cogroups.

The plan of the proof of Theorem 7.1 is as follows: we first compute, in several steps, the symmetric bifunctor $T_{11}\left(c r_{2} U\right)$. The result is then used to split up the map \hat{H} in a given quadratic \mathcal{T}-module into the two maps H_{1} and H_{2} occuring in Theorem [7.1] and to translate the properties of the map \hat{H} in terms of H_{1} and H_{2}, which leads to the relations (T1)-(T6).

As a main tool we need some elementary facts about augmentation ideals of group rings.
7.1. Augmentation ideals: recollections and action of the linearization functor. Recall that the augmentation ideal $I G$ of a group G is the kernel of the augmentation map $\epsilon: \mathbb{Z}[G] \rightarrow \mathbb{Z}$ of the group ring $\mathbb{Z}[G] . I G$ is a free \mathbb{Z}-module generated by the elements $g-1$ for $g \in G \backslash\{1\}$. For a subset H of G we denote by $I H$ the subgroup of $I G$ generated by the elements of the form $h-1$ for $h \in H$. The key ideas of this section are to use the natural isomorphism $\Xi: I(\mathcal{T}(E, X)) \rightarrow U(X)$ such that $\Xi(f-1)=f$ and the trivial but useful formula $a . b-1=(a-1)+(b-1)+(a-1) .(b-1)$ in $I G$. Moreover, we need the following elementary result which is wellknown.
Proposition 7.2. For $G \in G r$ we have a natural isomorphism of abelian groups:

$$
\theta: I G /(I G)^{2} \xrightarrow{\cong} G /[G, G]
$$

such that for $g \in G, \theta(\overline{g-1})=\bar{g}$.
7.2. Computation of $c r_{2} U(X, Y)$. In a first step we compute the cross-effect of the functor U, which by the isomorphism Ξ above comes down to computing the crosseffect of the composite functor $I \mathcal{T}(E,-)$ where $I: G r \rightarrow A b$ is given by taking the augmentation ideal. More generally, we have the following result.

Proposition 7.3. Let $F: \mathcal{C} \rightarrow G r$ be a reduced functor. There is an isomorphism of bifunctors $\mathcal{T} \times \mathcal{T} \rightarrow A b$:
$\Theta: I(F(X \mid Y)) \oplus(I F(X) \otimes I F(Y)) \oplus(I(F(X \mid Y)) \otimes I(F(X) \times F(Y))) \xrightarrow{\leftrightharpoons} c r_{2}(I F)(X, Y)$ given by

$$
\begin{gathered}
\Theta(x-1,0,0)=x-1 \\
\Theta(0,(y-1) \otimes(z-1), 0)=\left(i_{1 *} y-1\right) \cdot\left(i_{2 *} z-1\right) \\
\Theta(0,0,(u-1) \otimes(v-1))=(u-1) \cdot(s v-1)
\end{gathered}
$$

where s: $F(X) \times F(Y) \rightarrow F(X \vee Y)$ is the map defined by $s(x, y)=i_{1 *} x . i_{2 *} y$, the point. denoting the group structure on $F(X \vee Y)$.

The proof requires the following elementary fact.
Lemma 7.4. Let G be a group and H, K be two subsets of G containing 1 such that each $g \in G$ admits a unique decomposition $g=h_{g} k_{g}$ with $h_{g} \in H$ and $k_{g} \in K$. Then the map:

$$
\phi: I H \oplus I K \oplus(I H \otimes I K) \rightarrow I G
$$

given by $\phi(h-1,0,0)=h-1, \phi(0, k-1,0)=k-1$ and $\phi\left(0,0,\left(h^{\prime}-1\right) \otimes\left(k^{\prime}-1\right)\right)=$ ($h^{\prime}-1$). $\left(k^{\prime}-1\right)$ is an isomorphism of \mathbb{Z}-modules.

Proof. We define

$$
\psi: I G \rightarrow I H \oplus I K \oplus(I H \otimes I K)
$$

by

$$
\psi(g-1)=\left(h_{g}-1, k_{g}-1,\left(h_{g}-1\right) \otimes\left(k_{g}-1\right)\right) .
$$

One readily checks that ψ is the inverse of ϕ, using the fact that the unique decomposition of $h \in H \subset G$ (resp. $k \in K \subset G$) in $H K$ is $h .1$ (resp. 1.k).

Proof of Proposition 7.3. For $X, Y \in \mathcal{C}$ we have a short exact sequence:

$$
1 \rightarrow F(X \mid Y) \rightarrow F(X \vee Y) \xrightarrow{\left(r_{1 *}, r_{2 *}\right)^{t}} F(X) \times F(Y) \rightarrow 1 .
$$

Since $i_{1 *}$ and $i_{2 *}$ are group morphisms we have $s(1,1)=1$ and since F is reduced, s is a set-theoretic section of $\left(r_{1 *}, r_{2 *}\right)^{t}$ natural in X and Y. Hence the subsets $H=F(X \mid Y)$ and $K=s(F(X) \times F(Y))$ of the group $F(X \vee Y)$ satisfy the conditions of Lemma 7.4 and we have an isomorphism of bifunctors:

$$
I(F(X \vee Y)) \simeq I(F(X \mid Y)) \oplus I(s(F(X) \times F(Y))) \oplus(I(F(X \mid Y)) \otimes I(s(F(X) \times F(Y))))
$$

Since the map s is a bijection of $F(X) \times F(Y)$ onto the set K, applying Proposition 7.4 to $F(X) \times F(Y)$ provides an isomorphism of bifunctors:

$$
\begin{aligned}
I(F(X \vee Y)) \simeq & I(F(X \mid Y)) \oplus(I F(X) \oplus I F(Y) \oplus I F(X) \otimes I F(Y)) \\
& \oplus(I(F(X \mid Y)) \otimes I(F(X) \times F(Y)))
\end{aligned}
$$

Now the assertion follows from (2.0.3).
The following application of Proposition 7.3 illustrates the power of the linearization functor T_{1}.

Proposition 7.5. Let $F: \mathcal{C} \rightarrow G r$ be a reduced functor. Then we have a natural isomorphism:

$$
\theta^{F}: T_{1}(I F) \rightarrow T_{1} F
$$

defined by $\theta^{F}\left(t_{1}(x-1)\right)=t_{1}(x)$ for $X \in \mathcal{C}$ and $x \in F(X)$.
Proof. By the isomorphism Θ in Proposition 7.3 we have

$$
\begin{gathered}
T_{1}(I F)(X)=\operatorname{coker}\left(\operatorname{cr}_{2}(I F)(X, X) \xrightarrow{S_{2}^{I F(-)}} I F(X)\right) \\
=\operatorname{coker}\left(I(F(X \mid X)) \oplus(I F(X) \otimes I F(X)) \oplus\left(I(F(X \mid X)) \otimes I(F(X) \times F(X)) \xrightarrow{S_{2}^{I F(-)} \Theta} I F(X)\right)\right. \\
S_{2}^{I F(-)} \Theta(x-1,0,0)=S_{2}^{I F(-)}(x-1)=I\left(S_{2}^{F}\right)(x-1) \\
S_{2}^{I F(-)} \Theta(0,(y-1) \otimes(z-1), 0)=S_{2}^{I F(-)}\left(\left(i_{1 *} y-1\right) \cdot\left(i_{2 *} z-1\right)\right)=I F\left(\nabla^{2}\right)\left(\left(i_{1 *} y-1\right) \cdot\left(i_{2 *} z-1\right)\right) \\
\left.=\left(\nabla_{*}^{2} i_{1 *} y-1\right) \cdot\left(\nabla_{*}^{2} i_{2 *} z-1\right)\right)=(y-1) \cdot(z-1) \in(I F(X))^{2} \\
S_{2}^{I F(-)} \Theta(0,0,(u-1) \otimes(v-1))=I F\left(\nabla^{2}\right)((u-1) \cdot(s v-1))=\left(\nabla^{2} u-1\right) \cdot\left(\nabla^{2} s v-1\right) \in(I F(X))^{2} .
\end{gathered}
$$

By Proposition 7.2 we obtain:

$$
\begin{aligned}
& T_{1}(I F)(X)=\operatorname{IF}(X) /\left(\operatorname{Im}\left(I\left(S_{2}^{F}\right)\right)+(\operatorname{IF}(X))^{2}\right) \simeq F(X)^{a b} / a b\left(\operatorname{Im}\left(S_{2}^{F}\right)\right) \\
& \simeq\left(F(X) / \operatorname{Im}\left(S_{2}^{F}\right)\right)^{a b} \simeq\left(T_{1} F(X)\right)^{a b} \simeq T_{1} F(X) \text { by Proposition } 1.10
\end{aligned}
$$

where $-^{a b}: G r \rightarrow A b$ is the abelianization functor and $a b: F(X) \rightarrow F(X)^{a b}$.
7.3. Computation of $T_{11} c r_{2} U(X, Y)$. In order to compute $T_{11} c r_{2} U(E, E)$ as a right Λ-module we apply the results of section 7.2 to the reduced functor $\mathcal{T}(E,-): \mathcal{C} \rightarrow G r$.
Notation 7.6. In the sequel we use the following abbreviations:

$$
\begin{aligned}
T_{1} I \mathcal{T}(E, X) & :=T_{1}(I \mathcal{T}(E,-))(X) \\
I(\mathcal{T}(E, X \mid Y)) & :=\operatorname{Icr}_{2}(\mathcal{T}(E,-))(X, Y) \\
T_{11} I \mathcal{T}(E, X \mid Y) & :=T_{11}\left(\operatorname{Icr}_{2}(\mathcal{T}(E,-))\right)(X, Y)
\end{aligned}
$$

Proposition 7.7. There is a binatural isomorphism:

$$
\begin{equation*}
\Upsilon: T_{11} \mathcal{T}(E, X \mid Y) \oplus\left(T_{1} \mathcal{T}(E, X) \otimes T_{1} \mathcal{T}(E, Y)\right) \stackrel{\simeq}{\rightarrow} T_{11} c r_{2}(I \mathcal{T}(E,-))(X, Y) \tag{7.7.1}
\end{equation*}
$$

such that

$$
\Upsilon\left(t_{11} \xi, t_{1} f \otimes t_{1} g\right)=t_{11}\left(\iota_{(1,2)}^{2}\right)^{-1}\left((\xi-1)+\left(i_{1} f-1\right) \bullet\left(i_{2} g-1\right)\right) .
$$

Moreover, the right action of Λ on $T_{11} c r_{2}(I \mathcal{T}(E,-))(X, Y)$ induced by precomposition in \mathcal{T} is given by

$$
\begin{equation*}
\Upsilon\left(t_{11} \xi, 0\right) \cdot \alpha=\Upsilon\left(t_{11}(\xi \alpha), 0\right) \tag{7.7.2}
\end{equation*}
$$

$$
\begin{equation*}
\Upsilon\left(0, t_{1} f \otimes t_{1} g\right) \cdot \alpha=\Upsilon\left(t_{11}((f \vee g) h(\alpha)), t_{1}(f \alpha) \otimes t_{1}(g \alpha)\right) \tag{7.7.3}
\end{equation*}
$$

for $\alpha \in \mathcal{T}(E, E)$.
Proof. Taking $F=\mathcal{T}(E,-)$ in Proposition 7.3 gives an isomorphism of bifunctors

$$
\begin{aligned}
& I(\mathcal{T}(E, X \mid Y)) \oplus(I(\mathcal{T}(E, X)) \otimes I(\mathcal{T}(E, Y))) \oplus(I(\mathcal{T}(E, X \mid Y)) \otimes I(\mathcal{T}(E, X) \times \mathcal{T}(E, Y))) \\
& \xrightarrow{\ominus} c r_{2}(I \mathcal{T}(E,-))(X, Y) .
\end{aligned}
$$

We have the following binatural isomorphisms

$$
\begin{aligned}
I(\mathcal{T}(E, X \mid Y)) \otimes I(\mathcal{T}(E, X) \times \mathcal{T}(E, Y)) \simeq & (I(\mathcal{T}(E, X \mid Y)) \otimes I(\mathcal{T}(E, X))) \\
& \oplus(I(\mathcal{T}(E, X \mid Y)) \otimes I(\mathcal{T}(E, Y))) \\
& \oplus(I(\mathcal{T}(E, X \mid Y)) \otimes I(\mathcal{T}(E, X)) \otimes I(\mathcal{T}(E, Y)))
\end{aligned}
$$

Thus $I(\mathcal{T}(E, X \mid Y)) \otimes I(\mathcal{T}(E, X) \times \mathcal{T}(E, Y))$ is a sum of bifunctors which are diagonalizable as functors in X or in Y. So Proposition 1.12 implies that $T_{11}(I(\mathcal{T}(E, X \mid$ $Y)) \otimes I(\mathcal{T}(E, X) \times \mathcal{T}(E, Y)))=0$. Using Proposition 7.5 and Example 1.17 the isomorphism $T_{11}(\Theta)$ thus becomes the desired isomorphism Υ.

The structure of right Λ-module on $T_{11} I \mathcal{T}(E, X \mid Y)$ is induced by the inclusion $\mathcal{T}(E, X \mid Y) \rightarrow \mathcal{T}(E, X \vee Y)$; this implies relation (7.7.2). To prove relation (7.7.3) let $f \in \mathcal{T}(E, X)$ and $g \in \mathcal{T}(E, Y)$. Then:

$$
\begin{aligned}
\iota_{(1,2)}^{2} \Theta(0,(f-1) \otimes(g-1), 0) . \alpha & =\left(\left(i_{1} f-1\right) \bullet\left(i_{2} g-1\right)\right) \cdot \alpha \\
& =\left(\left(i_{1} f \bullet i_{2} g-1\right)-\left(i_{1} f-1\right)-\left(i_{2} g-1\right)\right) . \alpha \\
& =\left(\left(i_{1} f \bullet i_{2} g\right) \circ \alpha-1\right)-\left(i_{1} f \circ \alpha-1\right)-\left(i_{2} g \circ \alpha-1\right) \\
& =\left(\omega \bullet\left(i_{1} f \alpha\right) \bullet\left(i_{2} g \alpha\right)-1\right)-\left(i_{1} f \alpha-1\right)-\left(i_{2} g \alpha-1\right)
\end{aligned}
$$

where $\omega=\left(\left(i_{1} f \bullet i_{2} g\right) \circ \alpha\right) \bullet\left(i_{2} g \circ \alpha\right)^{-1} \bullet\left(i_{1} f \circ \alpha\right)^{-1}$. Hence:

$$
\begin{aligned}
& \iota_{(1,2)}^{2} \Theta(0,(f-1) \otimes(g-1), 0) . \alpha \\
& =(\omega-1)+\left(\left(i_{1} f \alpha\right) \bullet\left(i_{2} g \alpha\right)-1\right)+(\omega-1) \bullet\left(\left(i_{1} f \alpha\right) \bullet\left(i_{2} g \alpha\right)-1\right)-\left(i_{1} f \alpha-1\right) \\
& =\left(\omega-\left(i_{2} g \alpha-1\right)\right. \\
& =(\omega-1)+\left(i_{1} f \alpha-1\right) \bullet\left(i_{2} g \alpha-1\right)+(\omega-1) \bullet\left(\left(i_{1} f \alpha\right) \bullet\left(i_{2} g \alpha\right)-1\right) .
\end{aligned}
$$

Now observe that

$$
\begin{equation*}
\left(i_{1} f\right) \bullet\left(i_{2} g\right)=(f \vee g)_{*}\left(i_{1} \bullet i_{2}\right) . \tag{7.7.4}
\end{equation*}
$$

Thus $\omega=(f \vee g)_{*}\left(\left(i_{1} \bullet i_{2}\right) \alpha\right) \bullet(f \vee g)_{*}\left(i_{2} \alpha\right)^{-1} \bullet(f \vee g)_{*}\left(i_{1} \alpha\right)^{-1}=(f \vee g)_{*}(h(\alpha))$. It follows that $\omega=\mathcal{T}(E, f \mid g)(h(\alpha)) \in \mathcal{T}(E, X \mid Y)$. Hence

$$
(\omega-1) \bullet\left(\left(i_{1} f \alpha\right) \bullet\left(i_{2} g \alpha\right)-1\right) \in \mathcal{T}(E, X \mid Y) \otimes I(\mathcal{T}(E, X) \times \mathcal{T}(E, Y)),
$$

and we deduce that

$$
\begin{aligned}
\Upsilon\left(0, t_{1} f \otimes t_{1} g\right) \cdot \alpha & =t_{11}(\Theta(0,(f-1) \otimes(g-1), 0) \cdot \alpha) \\
& =\Upsilon\left(t_{11}((f \vee g) h(\alpha)), t_{1}(f \alpha) \otimes t_{1}(g \alpha)\right),
\end{aligned}
$$

as desired.
Using the natural isomorphism $\Xi: I(\mathcal{T}(E, X)) \rightarrow U(X)$ we finally obtain:
Corollary 7.8. We have a natural isomorphism of right Λ-modules:

$$
T_{11} c r_{2}(\Xi) \Upsilon: T_{11} \mathcal{T}(E, X \mid Y) \oplus\left(T_{1} \mathcal{T}(E, X) \otimes T_{1} \mathcal{T}(E, Y)\right) \rightarrow T_{11} c r_{2} U(X, Y)
$$

such that:

$$
T_{11} c r_{2}(\Xi) \Upsilon\left(t_{11} \xi, t_{1} f \otimes t_{1} g\right)=t_{11}\left(\xi+\rho_{(1,2)}^{2}\left(i_{1} f \bullet i_{2} g\right)\right)
$$

and where the action of Λ on the domain of $T_{11} c r_{2}(\Xi) \Upsilon$ is given by:

$$
\left(t_{11} \xi, t_{1} f \otimes t_{1} g\right) . \alpha=\left(t_{11}((\xi \alpha) \bullet(f \vee g) h(\alpha)), t_{1}(f \alpha) \otimes t_{1}(g \alpha)\right) .
$$

Proof. It suffices to combine Proposition [7.7 with the isomorphism $T_{11} c r_{2}(\Xi)$. In fact,

$$
\begin{aligned}
T_{11} c r_{2}(\Xi) \Upsilon\left(t_{11} \xi, t_{1} f \otimes t_{1} g\right) & =T_{11} c r_{2}(\Xi) t_{11}\left(\iota_{(1,2)}^{2}\right)^{-1}\left((\xi-1)+\left(i_{1} f-1\right) \bullet\left(i_{2} g-1\right)\right) \\
& =t_{11}\left(\iota_{(1,2)}^{2}\right)^{-1} \Xi\left((\xi-1)+\left(i_{1} f-1\right) \bullet\left(i_{2} g-1\right)\right) \\
& =t_{11}\left(\iota_{(1,2)}^{2}\right)^{-1} \Xi\left((\xi-1)+\left(i_{1} f \bullet i_{2} g-1\right)-\left(i_{1} f-1\right)-\left(i_{2} g-1\right)\right) \\
& =t_{11}\left(\iota_{(1,2)}^{2}\right)^{-1}\left(\xi+i_{1} f \bullet i_{2} g-i_{1} f-i_{2} g\right) \\
& =t_{11}\left(\xi+\rho_{12}^{2}\left(i_{1} f \bullet i_{2} g\right)\right) \text { by (2.0.2) }
\end{aligned}
$$

7.4. The action of the involution on $T_{11} c r_{2} U(X, Y)$. Since \hat{H} is a morphism of symmetric $\bar{\Lambda} \otimes \bar{\Lambda}$-modules we have to understand the action of the involution on the two components of $T_{11} c r_{2} U(E, E)$ according to Corollary [7.8.

The canonical switch τ induces a map $\tau_{*}: \mathcal{T}(E, X \mid Y) \rightarrow \mathcal{T}(E, Y \mid X)$; for $X=$ $Y=E$ we have $\tau_{*}=T^{\mathcal{T}(E,-)}$ and thus

$$
\bar{T}^{U} t_{11}(\xi)=t_{11} T^{\mathcal{T}(E,-)}(\xi)
$$

for $\xi \in \mathcal{T}(E, E \mid E)$, see Propositions 4.2 and 4.3,
For $f, g \in \mathcal{T}(E, X)$ we have

$$
\begin{aligned}
I(\tau) \iota_{(1,2)}^{2} \Theta(0,(f-1) \otimes(g-1), 0)= & I(\tau)\left(\left(i_{1} f-1\right) \bullet\left(i_{2} g-1\right)\right) \\
= & \left(i_{2} f-1\right) \bullet\left(i_{1} g-1\right) \\
= & \left(i_{2} f \bullet i_{1} g-1\right)-\left(i_{2} f-1\right)-\left(i_{1} g-1\right) \\
= & \left(\left[i_{2} f, i_{1} g\right] \bullet i_{1} g \bullet i_{2} f-1\right)-\left(i_{2} f-1\right)-\left(i_{1} g-1\right) \\
= & \left(\left[i_{2} f, i_{1} g\right]-1\right)+\left(i_{1} g \bullet i_{2} f-1\right)+ \\
& \left(\left[i_{2} f, i_{1} g\right]-1\right) \bullet\left(i_{1} g \bullet i_{2} f-1\right)-\left(i_{2} f-1\right)-\left(i_{1} g-1\right) \\
= & \left(\left[i_{2} f, i_{1} g\right]-1\right)+\left(i_{1} g-1\right) \bullet\left(i_{2} f-1\right)+ \\
& \left(\left[i_{2} f, i_{1} g\right]-1\right) \bullet\left(i_{1} g \bullet i_{2} f-1\right)
\end{aligned}
$$

But $\left[i_{2} f, i_{1} g\right] \in \mathcal{T}(E, X \mid Y)$, hence we obtain for $f=\alpha$ and $g=\beta$ in $\mathcal{T}(E, E)$:

$$
\begin{aligned}
\bar{T}^{U} \Upsilon\left(0, t_{1} \alpha \otimes t_{1} \beta\right) & =t_{11}\left(\iota_{(1,2)}^{2}\right)^{-1} I(\tau) \iota_{(1,2)}^{2} \Theta(0,(\alpha-1) \otimes(\beta-1), 0) \\
& =\Upsilon\left(t_{11}\left[i_{2} \alpha, i_{1} \beta\right], t_{1} \beta \otimes t_{1} \alpha\right)
\end{aligned}
$$

Combining this relation with (7.4) and Corollary 7.8 we obtain

$$
\begin{equation*}
\bar{T}^{U} t_{11}\left(\xi+\rho_{(1,2)}^{2}\left(\left(i_{1} \alpha\right) \bullet\left(i_{2} \beta\right)\right)\right)=t_{11}\left(T^{\mathcal{T}(E,-)}(\xi)+\left[i_{2} \alpha, i_{1} \beta\right]+\rho_{(1,2)}^{2}\left(\left(i_{1} \beta\right) \bullet\left(i_{2} \alpha\right)\right)\right) \tag{7.8.1}
\end{equation*}
$$

7.5. The homomorphism \hat{H}. By definition of a quadratic \mathcal{C}-module the map

$$
\hat{H}: T_{11}\left(c r_{2}(U)\right)(E, E) \otimes_{\Lambda} M_{e} \rightarrow M_{e e}
$$

is a morphism of symmetric $\bar{\Lambda} \otimes \bar{\Lambda}$-modules. In the case of cogroups we have the following equivalent description of \hat{H} :
Proposition 7.9. For a theory of cogroups \mathcal{T}, the morphism of symmetric $\bar{\Lambda} \otimes \bar{\Lambda}$ modules \hat{H} is equivalent to the following data:
(1) a morphism of abelian groups:

$$
H_{1}: M_{e} \rightarrow M_{e e}
$$

(2) a morphism of symmetric $\bar{\Lambda} \otimes \bar{\Lambda}$-modules

$$
H_{2}^{\prime}: T_{11} \mathcal{T}(E, X \mid Y) \otimes_{\Lambda} M_{e} \rightarrow M_{e e}
$$

satisfying the following relations for $\alpha \in \mathcal{T}(E, E)$ and $a \in M_{e}$:

$$
\begin{equation*}
H_{1}(\alpha a)=H_{2}^{\prime}\left(t_{11} h(\alpha) \otimes a\right)+(\bar{\alpha} \otimes \bar{\alpha}) H_{1}(a) \tag{7.9.1}
\end{equation*}
$$

$$
\begin{equation*}
T H_{1}(a)=H_{1}(a)+H_{2}^{\prime}\left(t_{11}\left(\left[i_{2}, i_{1}\right]\right) \otimes a\right) . \tag{7.9.2}
\end{equation*}
$$

Proof. Using Corollary 7.8 and relation (7.7.4) one easily verifies that when dropping the symmetry conditions, the map \hat{H} is equivalent with the maps H_{1} and H_{2}^{\prime} as in (1) and (2) satisfying relation (7.9.1). In fact, given \hat{H} we may define

$$
\begin{equation*}
H_{1}(a)=\hat{H}\left(t_{11} \rho_{(1,2)}^{2}\left(i_{1} \bullet i_{2}\right) \otimes a\right) \tag{7.9.3}
\end{equation*}
$$

$$
\begin{equation*}
H_{2}^{\prime}\left(t_{11} \xi \otimes a\right)=\hat{H}\left(t_{11} \xi \otimes a\right) \tag{7.9.4}
\end{equation*}
$$

Conversely, given H_{1} and H_{2}^{\prime} the associated map \hat{H} is determined by the relations (7.9.4) and

$$
\hat{H}\left(t_{11} \rho_{(1,2)}\left(\left(i_{1} \alpha\right) \bullet\left(i_{2} \beta\right)\right) \otimes a\right)=(\bar{\alpha} \otimes \bar{\beta}) H_{1}(a)
$$

for $\alpha, \beta \in \mathcal{T}(E, E)$. It remains to check that \hat{H} commutes with the respective involutions if and only if relation (7.9.2) holds. In fact,

$$
\begin{aligned}
& \hat{H} \bar{T}^{U}\left(t_{11}\left(\xi+\rho_{(1,2)}^{2}\left(\left(i_{1} \alpha\right) \bullet\left(i_{2} \beta\right)\right)\right) \otimes a\right) \\
& =\hat{H}\left(t_{11}\left(T^{\mathcal{T}(E,-)}(\xi)+\left[i_{2} \alpha, i_{1} \beta\right]+\rho_{(1,2)}^{2}\left(\left(i_{1} \beta\right) \bullet\left(i_{2} \alpha\right)\right)\right) \otimes a\right) \text { by (17.7.4) } \\
& =\hat{H}\left(t_{11}\left(T^{\mathcal{T}(E,-)}(\xi)+\left[i_{2} \alpha, i_{1} \beta\right]+c r_{2} U(\beta, \alpha) \rho_{(1,2)}^{2}\left(i_{1} \bullet i_{2}\right)\right) \otimes a\right) \\
& =H_{2}^{\prime}\left(t_{11}\left(T^{\mathcal{T}(E,-)}(\xi)+\left[i_{2} \alpha, i_{1} \beta\right]\right) \otimes a\right)+(\bar{\beta} \otimes \bar{\alpha}) H_{1}(a) \\
& =H_{2}^{\prime}\left(t_{11} T^{\mathcal{T}(E,-)}(\xi) \otimes a\right)+(\bar{\beta} \otimes \bar{\alpha}) H_{2}^{\prime}\left(\left[i_{2}, i_{1}\right] \otimes a\right)+(\bar{\beta} \otimes \bar{\alpha}) H_{1}(a)
\end{aligned}
$$

since $\left[i_{2} \alpha, i_{1} \beta\right]=(\beta \vee \alpha)_{*}\left[i_{2}, i_{1}\right]=\mathcal{T}(E, \beta \mid \alpha)\left(\left[i_{2}, i_{1}\right]\right)$ and H_{2}^{\prime} is $\bar{\Lambda} \otimes \bar{\Lambda}$-linear. On the other hand,

$$
\begin{aligned}
T \hat{H}\left(t_{11}\left(\xi+\rho_{(1,2)}^{2}\left(\left(i_{1} \alpha\right) \bullet\left(i_{2} \beta\right)\right)\right) \otimes a\right) & =T \hat{H}\left(t_{11}\left(\xi+c r_{2} U(\alpha, \beta) \rho_{(1,2)}^{2}\left(i_{1} \bullet i_{2}\right)\right) \otimes a\right) \\
& =T H_{2}^{\prime}\left(t_{11} \xi \otimes a\right)+T\left((\bar{\alpha} \otimes \bar{\beta}) H_{1}(a)\right) \\
& =H_{2}^{\prime}\left(t_{11} T^{\mathcal{T}(E,-)}(\xi) \otimes a\right)+(\bar{\beta} \otimes \bar{\alpha}) T H_{1}(a)
\end{aligned}
$$

Thus if relation (7.9.2) holds, \hat{H} commutes with the respective involutions; the converse is also true as we may take $\alpha=\beta=1_{E}$.
7.6. The conditions $(Q M 1)$ and ($Q M 2$). In this section we translate the conditions (QM1) and (QM2) to the case of cogroups. We begin by the remark that for each $\xi \in \mathcal{T}(E, E \vee E)$, there exists $\gamma \in \mathcal{T}(E, E \mid E)$ such that $\xi=\gamma \bullet i_{1} r_{1} \xi \bullet i_{2} r_{2} \xi$. In fact, $\left(r_{1 *}, r_{2 *}\right)^{t}(\xi)=\left(r_{1} \xi, r_{2} \xi\right)=\left(r_{1 *}, r_{2 *}\right)^{t}\left(i_{1} r_{1} \xi \bullet i_{2} r_{2} \xi\right)$ hence $\xi \bullet\left(i_{1} r_{1} \xi \bullet i_{2} r_{2} \xi\right)^{-1} \in \mathcal{T}(E, E \mid$ $E)$. Hence any element of $\mathcal{T}(E, E \vee E)$ can be written in the form $\gamma \bullet i_{1} \alpha \bullet i_{2} \beta$ for $\alpha, \beta \in \mathcal{T}(E, E)$ and $\gamma \in \mathcal{T}(E, E \mid E)$.
Proposition 7.10. For a theory of cogroups \mathcal{T}, the condition ($Q M 1$) is equivalent to the following equation:

$$
\left(\nabla^{2} \gamma \bullet \alpha \bullet \beta\right) . a=\alpha a+\beta a+P\left((\alpha \otimes \beta) H_{1}(a)\right)+P H_{2}^{\prime}\left(t_{11} \gamma \otimes a\right)
$$

for $\alpha, \beta \in \mathcal{T}(E, E), a \in M_{e}$ and $\gamma \in \mathcal{T}(E, E \mid E)$.
Proof. For $\xi \in \mathcal{T}(E, E \vee E)$ such that $\xi=\gamma \bullet i_{1} \alpha \bullet i_{2} \beta$ and $a \in M_{e}$, we have the following equations in $U(E \vee E)$:

$$
\begin{aligned}
\iota_{(1,2)}^{2} \circ \rho_{(1,2)}^{2}(\xi) & =\iota_{(1,2)}^{2} \circ \rho_{(1,2)}^{2}\left(\gamma \bullet i_{1} \alpha \bullet i_{2} \beta\right) \\
& =\gamma \bullet i_{1} \alpha \bullet i_{2} \beta-i_{1} r_{1}\left(\gamma \bullet i_{1} \alpha \bullet i_{2} \beta\right)-i_{2} r_{2}\left(\gamma \bullet i_{1} \alpha \bullet i_{2} \beta\right) \text { by 2.0.2 } \\
& =\gamma \bullet i_{1} \alpha \bullet i_{2} \beta-0 \bullet i_{1} \alpha \bullet 0-0 \bullet 0 \bullet i_{2} \beta \\
& =\gamma \bullet i_{1} \alpha \bullet i_{2} \beta-i_{1} \alpha-i_{2} \beta .
\end{aligned}
$$

Hence:

$$
\begin{aligned}
& (\Xi)^{-1}\left(\iota_{(1,2)}^{2} \circ \rho_{(1,2)}^{2}(\xi)\right) \\
& =\left(\gamma \bullet i_{1} \alpha \bullet i_{2} \beta-1\right)-\left(i_{1} \alpha-1\right)-\left(i_{2} \beta-1\right) \\
& =(\gamma-1)+\left(i_{1} \alpha \bullet i_{2} \beta-1\right)+(\gamma-1) \bullet\left(i_{1} \alpha \bullet i_{2} \beta-1\right)-\left(i_{1} \alpha-1\right)-\left(i_{2} \beta-1\right) \\
& =(\gamma-1)+\left(i_{1} \alpha-1\right) \bullet\left(i_{2} \beta-1\right)+(\gamma-1) \bullet\left(i_{1} \alpha \bullet i_{2} \beta-1\right)
\end{aligned}
$$

and:

$$
(\Upsilon)^{-1}\left(T_{11} c r_{2}(\Xi)\right)^{-1}\left(t_{11} \rho_{12}^{2}(\xi)\right)=\left(t_{11} \gamma, t_{1} \alpha \otimes t_{1} \beta\right)
$$

We deduce that:

$$
\begin{aligned}
\hat{H}\left(t_{11} \rho_{12}^{2}(\xi) \otimes a\right) & =\hat{H}\left(T_{11} c r_{2}(\Xi) \Upsilon\left(t_{11} \gamma, t_{1} \alpha \otimes t_{1} \beta\right) \otimes a\right) \\
& =\hat{H}\left(t_{11}\left(\gamma+\rho_{(1,2)}^{2}\left(i_{1} \alpha \bullet i_{2} \beta\right)\right) \otimes a\right) \text { by Corollary } 7.8 \\
& =H_{2}^{\prime}\left(t_{11} \gamma \otimes a\right)+\left(t_{1} \alpha \otimes t_{1} \beta\right) H_{1}(a) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
P\left(\hat{H}\left(t_{11} \rho_{12}^{2}(\xi) \otimes a\right)\right)=P H_{2}^{\prime}\left(t_{11} \gamma \otimes a\right)+P\left(\left(t_{1} \alpha \otimes t_{1} \beta\right) H_{1}(a)\right) \tag{7.10.1}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
\left(\nabla^{2} \xi\right) a-\left(r_{1}^{2} \xi\right) a-\left(r_{2}^{2} \xi\right) a & =\left(\nabla^{2}\left(\gamma \bullet i_{1} \alpha \bullet i_{2} \beta\right)\right) a-\left(r_{1}^{2}\left(\gamma \bullet i_{1} \alpha \bullet i_{2} \beta\right)\right) a-\left(r_{2}^{2}\left(\gamma \bullet i_{1} \alpha \bullet i_{2} \beta\right)\right) a \\
& =\left(\nabla^{2} \gamma \bullet \alpha \bullet \beta\right) a-(0 \bullet \alpha \bullet 0) a-(0 \bullet 0 \bullet \beta) a \\
& =\left(\nabla^{2} \gamma \bullet \alpha \bullet \beta\right) a-\alpha a-\beta a .
\end{aligned}
$$

Proposition 7.11. For a theory of cogroups \mathcal{T}, the condition (QM2) is equivalent to the following equations for $m \in M_{e e}$ and $\gamma \in \mathcal{T}(E, E \mid E)$:

$$
\begin{array}{ll}
(Q M 2-1) & H_{2}^{\prime}\left(t_{11} \gamma \otimes P m\right)=0 \\
(Q M 2-2) & H_{1}(P m)=m+T m
\end{array}
$$

Proof. For $m \in M_{e e}$ and $\xi \in \mathcal{T}(E, E \vee E)$ such that $\xi=\gamma \bullet i_{1} \alpha \bullet i_{2} \beta$ as above, we have:

$$
\hat{H}\left(t_{11} \rho_{(1,2)}^{2}(\xi) \otimes P m\right)=H_{2}^{\prime}\left(t_{11} \gamma \otimes P m\right)+\left(t_{1} \alpha \otimes t_{1} \beta\right) H_{1}(P m)
$$

by (7.10.1). On the other hand:

$$
\left(t_{1} r_{1}(\xi) \otimes t_{1} r_{2}(\xi)\right)(m+T m)=\left(t_{1} \alpha \otimes t_{1} \beta\right)(m+T m)
$$

Hence the condition (QM2) is equivalent to the condition:

$$
H_{2}^{\prime}\left(t_{11} \gamma \otimes P m\right)+\left(t_{1} \alpha \otimes t_{1} \beta\right) H_{1}(P m)=\left(t_{1} \alpha \otimes t_{1} \beta\right)(m+T m)
$$

Since α, β and γ are independent, taking $\alpha=0$ we deduce $(Q M 2-1)$ and taking $\gamma=0$ and $\alpha=\beta=1_{E}$ we deduce ($Q M 2-2$). The converse is clear.
7.7. Proof of Theorem [7.1, This is now an easy combination of Corollary 7.8 and the Propositions 7.9 and 7.11 let M be a quadratic \mathcal{C}-module relative to E. First use Proposition 7.9 to replace the map \hat{H} by H_{1} and H_{2}^{\prime}, then H_{2}^{\prime} by H_{2} using relation (QM2-1). Now the main feature is that relation (QM2-2) implies that T is determined by H_{1} and P, as

$$
T=H_{1} P-1
$$

Using this, the relation $P T=P$ becomes (T1), which, in the converse proof, implies that T is an involution. Next (T2) translates the relation $T((\alpha \otimes \beta) m)=(\beta \otimes \alpha) T(m)$. Relation (7.9.2) becomes (T3), while (T4) translates the fact that H_{2} is compatible with the respective involutions. Finally, (T5) is relation (QM1) and (T6) is (7.9.1).
7.8. Application: quadratic functors from free groups of finite rank to $A b$. In this section we apply Theorem 7.1 to the category $\mathcal{C}=\langle\mathbb{Z}\rangle_{G r}$ of free groups of finite rank. Baues and Pirashvili described these quadratic functors in terms of simpler data in [4]. We start by recalling the simplified version of this description given in [3].

Definition 7.12 (4). A square group is a diagram

$$
M=\left(M_{e} \xrightarrow{H} M_{e e} \xrightarrow{P} M_{e}\right)
$$

where M_{e} is a group and $M_{e e}$ is an abelian group. Both groups are written additively. Moreover P is a homomorphism and H is a quadratic map, that is, the cross effect

$$
(a \mid b)_{H}=H(a+b)-H(a)-H(b)
$$

is linear in $a, b \in M_{e}$. In addition the following identities are satisfied for all $x, y \in M_{e}$ and $a, b \in M_{e e}$:

$$
\begin{gathered}
(P a \mid y)_{H}=0=(x \mid P b)_{H} ; \\
P(x \mid y)_{H}=-x-y+x+y ; \\
P H P(a)=2 P(a) .
\end{gathered}
$$

Theorem 7.13 (4). The category of quadratic functors from $\langle\mathbb{Z}\rangle_{G r}$ to $A b$ is equivalent to the category of square groups with H linear.

Proof. Since $\langle\mathbb{Z}\rangle_{G r}$ is a theory of cogroups we can apply Theorem [7.1] Let M be a diagram as in this theorem. Condition (T1) shows that

$$
\operatorname{Square}(M)=\left(M_{e} \xrightarrow{H_{1}} M_{e e} \xrightarrow{P} M_{e}\right)
$$

is a square group such that H_{1} is linear. So we have to prove that the remaining structure of M is determined and welldefined by $\operatorname{Square}(M)$ such that the conditions (T2) - (T6) hold.

First of all,

$$
\begin{aligned}
\bar{\Lambda} & =\left(T_{1} U\right)(\mathbb{Z}) \text { by Proposition 3.8 } \\
& \simeq\left(T_{1} I(G r(\mathbb{Z},-))\right)(\mathbb{Z}) \\
& \simeq T_{1}(G r(\mathbb{Z},-))(\mathbb{Z}) \text { by Proposition } 7.5 \\
& \simeq T_{1}\left(I d_{G r}\right)(\mathbb{Z}) \\
& \simeq \mathbb{Z} \text { by Proposition } 1.11
\end{aligned}
$$

We deduce that $\bar{\Lambda} \otimes \bar{\Lambda} \simeq \mathbb{Z}$ hence condition $\left(T_{2}\right)$ is trivially satisfied.
The isomorphism of endofunctors of $G r$:

$$
\nu: G r(\mathbb{Z},-) \rightarrow I d_{G r}, \quad \nu_{G}(f)=f(1)
$$

induces an isomorphism of bifunctors

$$
T_{11}\left(c r_{2} \nu\right): T_{11} c r_{2}(G r(\mathbb{Z},-)) \rightarrow T_{11} c r_{2}\left(I d_{G r}\right)
$$

such that

$$
\begin{equation*}
T_{11}\left(c r_{2} \nu\right)_{G, H}\left(t_{11}(\xi)\right)=t_{11}(\xi(1)) \tag{7.13.1}
\end{equation*}
$$

for $\xi \in c r_{2} G r(\mathbb{Z},-)(G, H)$. So by Proposition 1.18,

$$
\begin{equation*}
T_{11} c r_{2}(G r(\mathbb{Z},-))(\mathbb{Z}, \mathbb{Z}) \simeq \mathbb{Z} \tag{7.13.2}
\end{equation*}
$$

and $T_{11} c r_{2}(G r(\mathbb{Z},-))(\mathbb{Z}, \mathbb{Z})$ is generated by the commutator $t_{11}\left[i_{2}, i_{1}\right]$. We deduce that condition (T3) means that H_{2} is determined by $\operatorname{Square}(M)$ and satisfies

$$
P H_{2}=0 \quad \text { and } \quad H_{2}\left(t_{11} \gamma \otimes \bar{a}\right)=0
$$

by (T1). However, starting out with the square group Square (M), condition (T3) a priori only gives rise to a map

$$
\tilde{H}_{2}: T_{11} c r_{2}(G r(\mathbb{Z},-))(\mathbb{Z}, \mathbb{Z}) \otimes_{\mathbb{Z}} \operatorname{coker}(P) \rightarrow M_{e e} ;
$$

in order to check that it factors through the tensor product over Λ we must first consider the action of Λ on M_{e}.

Let $n: \mathbb{Z} \rightarrow \mathbb{Z}$ be the homomorphism such that $1 \mapsto n$. Consider condition (T5). By (7.13.2) we have $\gamma=k\left[i_{2}, i_{1}\right], k \in \mathbb{Z}$, whence $\nabla^{2} \gamma=k[I d, I d]=0$. As we know that $P H_{2}=0$, condition (T5) is equivalent to the relation

$$
\begin{equation*}
([n] \bullet[m]) a=[n] a+[m] a+P\left((\overline{[n]} \otimes \overline{[m]}) H_{1}(a)\right) . \tag{7.13.3}
\end{equation*}
$$

which by induction is equivalent to

$$
\begin{equation*}
[n] a=n a+\binom{n}{2} P H_{1}(a) . \tag{7.13.4}
\end{equation*}
$$

So (T5) means that the action of Λ on M_{e} is determined by Square (M), via (7.13.4); the property to be an action is a formal consequence of the identity

$$
\binom{n m}{2}=m\binom{n}{2}+n\binom{m}{2}+2\binom{n}{2}\binom{m}{2}
$$

for $n, m \in \mathbb{Z}$.
By (7.13.4), $[n] \bar{a}=n \bar{a}$ in $\operatorname{coker}(P)$. On the other hand, for $\gamma \in c r_{2}(G r(\mathbb{Z}, \mathbb{Z} \mid \mathbb{Z}))$ we have:

$$
\gamma([n+m])=\gamma([n] \bullet[m])=\gamma([n]) \bullet \gamma([m])
$$

Since $\gamma([1])=\gamma$ we deduce that $\gamma([n])=(\gamma([1]))^{\bullet n}=\gamma^{\bullet n}$. Hence the right action of Λ on $T_{11} c r_{2}(G r(\mathbb{Z},-))(\mathbb{Z}, \mathbb{Z})$ is given by

$$
t_{11}(\gamma) \cdot[n]=t_{11}(\gamma[n])=t_{11}\left(\gamma^{\bullet n}\right)=n t_{11}(\gamma)
$$

We deduce that:
$T_{11} \operatorname{cr}_{2}(G r(\mathbb{Z},-))(\mathbb{Z}, \mathbb{Z}) \otimes_{\Lambda} \operatorname{coker}(P)=T_{11} \operatorname{cr} r_{2}(G r(\mathbb{Z},-))(\mathbb{Z}, \mathbb{Z}) \otimes_{\mathbb{Z}} \operatorname{coker}(P) \simeq \operatorname{coker}(P)$. So finally we obtain that $H_{2}=\tilde{H}_{2}$ is welldefined.

The fact that P is Λ-equivariant is equivalent to condition ($T 1$) by (7.13.4).
Condition (T4) is trivially satisfied since $P H_{2}=0$ and $\gamma \bullet \tau \gamma=\left(k\left[i_{2}, i_{1}\right]\right) \bullet\left(k\left[i_{1}, i_{2}\right]\right)=$ 0.

So it remains to show that condition (T6) is a consequence of the others. For this we need the following lemma:

Lemma 7.14. Let G and H be two groups. Then for $g \in G, h \in H$ and $n \in \mathbb{Z}$, the following identity holds in $T_{11} c r_{2}\left(I d_{G r}\right)(G, H)$:

$$
t_{11}\left(\left(\left(i_{1} g\right)\left(i_{2} h\right)\right)^{n}\left(i_{2} h\right)^{-n}\left(i_{1} g\right)^{-n}\right)=t_{11}\left(\left[i_{2} h, i_{1} g\right]^{\binom{n}{2}}\right) .
$$

Proof. Consider the following diagram where $\gamma_{3}(G)=[[G, G], G]$, the isomorphism Γ_{11}^{\prime} is defined in the proof of Proposition 1.18 p is the canonical projection, and the map c is given by $c(\bar{g} \otimes \bar{h})=\left[i_{1} g, i_{2} h\right]$.

The diagram commutes as is easily checked on the canonical generators $t_{11}\left[i_{1} g, i_{2} h\right]$ of $T_{11} c r_{2}\left(I d_{G r}\right)(G, H)$, see Proposition 1.18. Thus

$$
\begin{aligned}
\left(c \Gamma_{11}^{\prime}\right) t_{11}\left(\left(\left(i_{1} g\right)\left(i_{2} h\right)\right)^{n}\left(i_{2} h\right)^{-n}\left(i_{1} g\right)^{-n}\right) & =p\left(\left(\left(i_{1} g\right)\left(i_{2} h\right)\right)^{n}\left(i_{2} h\right)^{-n}\left(i_{1} g\right)^{-n}\right) \\
& =p\left(\left[i_{2} h, i_{1} g\right]^{\binom{n}{2}}\right) \text { by the Hall-Petrescu formula } \\
& =\left(c \Gamma_{11}^{\prime}\right) t_{11}\left(\left[i_{2} h, i_{1} g\right]^{\binom{n}{2}}\right) .
\end{aligned}
$$

But the map c is injective, see [8, Proposition 1.2].
This implies that

$$
t_{11}(h([n]))=\binom{n}{2} t_{11}\left[i_{2}, i_{1}\right]
$$

in fact,

$$
\begin{aligned}
T_{11}\left(c r_{2} \nu\right)\left(t_{11}(h([n]))\right. & =t_{11}(h([n])(1)) \text { by (7.13.1) } \\
& \left.=t_{11}\left(\left(\left(i_{1} \bullet i_{2}\right)[n]\right) \bullet\left(i_{2}[n]\right)^{-1} \bullet\left(i_{1}[n]\right)^{-1}\right)(1)\right) \\
& =t_{11}\left(\left(\left(i_{1} \bullet i_{2}\right)(n)\right) i_{2}(n)^{-1} i_{1}(n)^{-1}\right) \\
& =t_{11}\left(\left(\left(i_{1} \bullet i_{2}\right)(1)\right)^{n} i_{2}(1)^{-n} i_{1}(1)^{-n}\right) \\
& =t_{11}\left(\left(\left(i_{1}(1) i_{2}(1)\right)^{n} i_{2}(1)^{-n} i_{1}(1)^{-n}\right)\right. \\
& \left.=t_{11}\left(\left[i_{2}(1), i_{1}(1)\right]^{(]_{2}} 2\right)\right) \text { by Lemma 7.14 } \\
& =t_{11}\left(\left[i_{2}, i_{1}\right]^{\bullet\binom{n}{2}}(1)\right) \\
& =T_{11}\left(\operatorname{cr}_{2} \nu\right)\left(t_{11}\left(\left[i_{2}, i_{1}\right]^{\bullet\binom{n}{2}}\right)\right) \\
& =T_{11}\left(c r_{2} \nu\right)\left(\binom{n}{2} t_{11}\left(\left[i_{2}, i_{1}\right]\right)\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
H_{2}\left(t_{11} h([n]) \otimes \bar{a}\right)+n^{2} H_{1}(a) & =\binom{n}{2} H_{2}\left(t_{11}\left[i_{2}, i_{1}\right] \otimes \bar{a}\right)+n^{2} H_{1}(a) \\
& =\binom{n}{2}\left(H_{1} P H_{1}(a)-2 H_{1}(a)\right)+n^{2} H_{1}(a) \text { by condition (T3) } \\
& =\binom{n}{2} H_{1} P H_{1}(a)+n H_{1}(a) \\
& \left.=H_{1}([n] a) \text { by (7.13.4 }\right),
\end{aligned}
$$

as desired.

Remark 7.15. In the definition of square group given in [4] the authors consider the map: $\Delta(a)=H P H(a)+H(2 a)-4 H(a)$. When H is linear we have $\Delta(a)=H P H(a)-$ $H(2 a)$. So the map Δ corresponds to our map H_{2} according to condition (T3).
Remark 7.16. The case of the theory of free groups of finite rank is very simple compared to a general theory of cogroups since a quadratic Gr-module relative to \mathbb{Z} must satisfy only the single condition (T1) instead of the six conditions (T1) - (T6) in the general situation.

Acknowledgement:

Le premier auteur tient à remercier vivement son ami Jean Wielchuda pour son accueil chaleureux et son excellente cuisine lors de ses deux séjours à Strasbourg.

References

1. Hans-Joachim Baues, Quadratic functors and metastable homotopy, J. Pure Appl. Algebra 91 (1994), no. 1-3, 49-107. MR MR1255923 (94j:55022)
2. Hans-Joachim Baues, Winfried Dreckmann, Vincent Franjou, and Teimuraz Pirashvili, Foncteurs polynomiaux et foncteurs de Mackey non linéaires, Bull. Soc. Math. France 129 (2001), no. 2, 237-257. MR MR1871297 (2002j:18004)
3. Hans-Joachim Baues, M. Jibladze, and T. Pirashvili, Quadratic algebra of square groups, Adv. Math. 217 (2008), no. 3, 1236-1300. MR MR2383899
4. Hans-Joachim Baues and Teimuraz Pirashvili, Quadratic endofunctors of the category of groups, Adv. Math. 141 (1999), no. 1, 167-206. MR MR1667150 (2000b:20073)
5. Francis Borceux, Handbook of categorical algebra. 2, Encyclopedia of Mathematics and its Applications, vol. 51, Cambridge University Press, Cambridge, 1994, Categories and structures. MR MR1313497 (96g:18001b)
6. Samuel Eilenberg and Saunders Mac Lane, On the groups $H(\Pi, n)$. II. Methods of computation, Ann. of Math. (2) $\mathbf{6 0}$ (1954), 49-139. MR MR0065162 (16,391a)
7. Manfred Hartl, Calculus of functors in several variables, (in preparation).
8. Mamuka Jibladze and Teimuraz Pirashvili, Quadratic envelope of the category of class two nilpotent groups, Georgian Math. J. 13 (2006), no. 4, 693-722. MR MR2309253 (2007k:20114)
9. B. Johnson and R. McCarthy, A classification of degree n functors. I, Cah. Topol. Géom. Différ. Catég. 44 (2003), no. 1, 2-38. MR MR1961524 (2004b:18016)
10. \qquad , A classification of degree n functors. II, Cah. Topol. Géom. Différ. Catég. 44 (2003), no. 3, 163-216. MR MR2003579 (2004e:18015)
11. Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, second ed., Dover Publications Inc., Mineola, NY, 2004, Presentations of groups in terms of generators and relations. MR MR2109550 (2005h:20052)
12. Teimuraz Pirashvili, Polynomial approximation of Ext and Tor groups in functor categories, Comm. Algebra 21 (1993), no. 5, 1705-1719. MR MR1213983 (94d:18020)
13. \qquad Dold-Kan type theorem for Γ-groups, Math. Ann. 318 (2000), no. 2, 277-298. MR MR1795563 (2001i:20112)

Université de Valenciennes, Laboratoire de Mathématiques et de leurs Applications, Valenciennes and FR CNRS 2956, France.

E-mail address: manfred.hartl@univ-valenciennes.fr
Université Louis Pasteur, Institut de Recherche Mathématique Avancée, Strasbourg, France.

E-mail address: vespa@math.u-strasbg.fr

[^0]: The first author is grateful to the Institut de Recherche Mathématique Avancé for its hospitality during the preparation of this paper.

 Date: October 24, 2008.

