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Abstract 

Genetic algorithms are used in scheduling leading to efficient heuristic methods for large sized problems. The efficiency 
of a GA based heuristic is closely related to the quality of the used GA scheme and the GA operators: mutation, selection 
and crossover. In this paper, we propose a Joint Genetic Algorithm (JGA), for joint production and maintenance scheduling 
problem in permutation flowshop, in which different genetic joint operators are used. We also proposed a joint structure to 
represent an individual in with two fields: the first one for production data and the second one for maintenance data. We 
used different Taillard benchmarks to compare the performances of JGA with each proposed operator. 
 

Keywords : GA, Production, Maintenance, joint scheduling, joint crossover, joint mutation. 

 
 

 

1. INTRODUCTION 

Most production scheduling problems are NP-Hard [1]. 
The joint scheduling of production and maintenance is, in 
our sense, a complex problem due to the scheduling of 
two different activities: production jobs and systematic 
preventative maintenance tasks which use the same 
resources. Many approximation approaches and 
algorithms exist in the literature to attempt to solve NP-
Hard problems. In this paper, we will focus on the 
Genetic Algorithms (GA) which gave interesting results 
for many NP-Hard problems [2, 3]. GAs have also been 
successfully applied to a variety of scheduling problems 
including jobshop and flowshop [15, 16, 17]. 
This paper proposes new genetic operators based on 
common representation of production and maintenance 
data. This was done in order to solve preventive 
maintenance and production joint scheduling in 
permutation flowshop, where each machine must be 
maintained periodically within known intervals of times.  
We chose the genetic algorithms for their proven 
effectiveness in the production scheduling problems. 
Moreover we use them for their flexibility on individuals’ 
representation which lends itself perfectly to our problem.  
The aim is to optimize an objective function which takes 
into account the criteria of maintenance and production. 

This paper is organized as follows: in section 2, a brief 
definition of joint production and maintenance scheduling 
is given. Section 3 presents the importance and drawbacks 
of each step of a standard GA. Section 4 presents the new 
genetic operators proposed for solving joint 
production/maintenance scheduling. Some results are 
given in section 5. 
 

2. JOINT PRODUCTION AND MAINTENANCE SCHEDULING 

Maintenance and production are two functions, which act 
on the same resources. However the scheduling of their 
respective activities is independent, and does not take 
account this constraint. These two elements having been 
established separately, their integration in the operation of 
the workshop poses a problem that is often solved by 
negotiation between the respective persons in charge of 
the two services in a sequential way. 
We chose the systematic preventive maintenance, for this 
study, because it is preset and periodic. These two aspects 
are suits very well the maintenance scheduling. In that 
case, the search of a solution for the production 
scheduling is correlated with the search of a solution for 
the maintenance scheduling. Every search mechanism is 
constraint by other one, justifying so the need of a high 
collaboration between both functions. 
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Generally we have to schedule the production under the 
constraint of respect of the deadlines, cost and quality of 
the products. At the same time, the planning of 
maintenance is done under the constraints of equipment 
reliability. So, the execution of both schedules generates 
conflicts on the use of common resources (fig. 1).  
 

 

 

 

 

 

 

 

 
Fig. 1. production and maintenance separate scheduli

 
The interaction between maintenance and produ
particularly their joint scheduling, is rather recent 
literature [4, 5, 6, 7, 8, 9, 22, 23, 24]. The majo
works concerning the interaction between productio
maintenance use probabilistic approaches. The aim
determine the best moment to plan maintenanc
according to a compromise between the maintenanc
and the risk of machines unavailability [9, 10, 11]. 
Binding together these two functions is natural. I
one notices that small maintenance tasks are d
integrated in the production scheduling. The objec
to plan the execution of maintenance tasks, 
changing the least possible the production pla
respecting the equipment maintenance periodicity. 
One counts in the literature several strategies of
scheduling. We will describe below the sequenti
integrated strategies which aim is to solve the ex
conflicts between maintenance and production. 
- The sequential strategy consists in planning, at fir
of the two activities (production or maintenance).
the obtained schedule will be an additional constra
machine unavailability in the resolution of the probl
- The integrated strategy consists in generating a joi
simultaneous scheduling of maintenance and prod
tasks. This planning strategy diminishes the ris
interference between production and mainte
activities and allows optimizing the quality o
schedule. 
 
The qualifier: sequential or integrated, of the 
strategies, refers to the resolution method used and 
the obtained result. In both cases, simulta
scheduling of production and maintenance tas
generated. 

The difference between the integrated strategy and the 
sequential one lies in the fact that for the first strategy 
both types of tasks (production and maintenance) are 
taken into account during the resolution. This implies a 
definition of an appropriate structure for the presentation 
of a joint scheduling.  
 
We are interested, in this work, in the resolution of the 
problem of joint production/maintenance scheduling with 
the integrated strategy in permutation flowshop. We will 
develop the following two particular aspects of our 
problem in section 5: adapted representation for a joint 
solution (production and maintenance) and adapted 
operators.  
 

3. GENETIC ALGORITHMS (GA): ADVANTAGES AND 
DRAWBACKS 
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GAs are based on the living species evolution phenomena. 
The evolution is provided by two interesting mechanisms: 
natural selection and reproduction. These phenomena, 
when repeated on a large population, after many 
generations, produce individuals that are well adapted to 
the environment in which they live. 
A standard GA consists of the followings steps: 
- Random generation of the initial population 
- Selection 
- Reproduction (crossover and mutation) 
- Replacement of the current population 
 
We will, quickly, go through each step of a standard GA 
to show its advantages and drawbacks. 
The first step consists on generating the initial population. 
This is done randomly. The process is quick; however, we 
might not have a diversified population to work on. 
 
Then a selection is performed. The most adapted 
individuals are selected for reproduction. The best 
individuals are always selected. This might lead to a 
premature convergence to a local optimum. 
 
Crossover is then applied, with a certain probability, to 
selected individuals. This operator combines two 
solutions to produce two new ones. It is very quick as it 
does not take into account the nature of the problem. It 
generates blindly new solutions. 
 
Mutation, an operator not as important as the crossover, is 
applied to individuals at a defined rate. The role of this 
operator is to change the characteristics of a solution. As a 
matter of fact, it tries to diversify the population by 
introducing new solutions in it. From the current 
population and the generated one (after crossover and 
mutation), a set of individuals has to be chosen to form 
the new generation. This population will enclose the best 
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individuals (solutions). After few generations, the GA 
tends to converge rapidly to the same solution. 
 
The crossover operator has been considered to be the 
central component of GA and makes GA distinctively 
different from other problem solvers. By using this 
operator a pair of solutions (parents) generates new 
solutions (offsprings) by mutually exchanging and 
recombining information. A simple GA uses a bit string as 
a genotype representation and a bit manipulation 
crossover e.g., a 1- or 2- point or a uniform crossover. 
The increasing complexity of the problems to be solved, 
however, has made the simple approach difficult to use. 
Now, more powerful and tailored representations and 
their corresponding crossover operators are constructed to 
effectively solve more difficult problems. For example, 
permutation of the symbols denoting visiting cities might 
be used for TSP (traveling salesman problem), and 
permutation of the symbols denoting jobs or Gantt chart 
representations might be used for a scheduling 
problem[12, 13]. 
 

4. CONTEXT OF STUDY 

4.1. Production data 

The flow-shop problem can be presented as a set of N 
jobs J1, J2… JN to be scheduled on M machines. Machines 
are critical resources: one machine can be assigned to two 
jobs simultaneously. Each job Ji is composed of M 
consecutives tasks ti1, …,tiM where tij represents the jth task 
of the job Ji requiring the machine mj. To each task tij is 
associated a processing time pij. Each job Ji must be 
achieved before the due date di. 
In our study, we are interested in permutation flow-shop 
problems where jobs must be scheduled in the same order 
on all machines. We have to minimize the total 
completion time (Cmax). 
The task tij is scheduled at the time sij. The objective 
function can be computed as follows: 
 
f1=Cmax=Max{siM+piM / i∈ [1..N]}                              (1) 
 
In the R.L.Graham&al. notation [25] this problem can be 
defined by F/perm,di/(Cmax,T). 
 

4.2. Maintenance data  

The maintenance used is a systematic preventive one.  The 
tasks are periodic interventions occurring every T*

ij periods (T*
ij 

indicates the task of maintenance i on the machine j). Each 
preventive maintenance task is characterized by a range of 
maintenance pre-established by the maintenance service or the 
manufacturer of the considered equipment. It consists of a 
succession of elementary operations which duration p’ij is 
evaluated with more or less certainty. Moreover, the periodicity 

T* of these jobs is authorized to vary in a tolerance interval 
noted [Tminij,Tmaxij]. This interval represents a compromise 
between the maintenance cost and the machine unavailability 
risk (fig. 2). 
 

 
Fig. 2.  Tolerance interval of a maintenance task. 

 
we will note: 

 Mj : periodical maintenance task associated to 
machine j ; 

 p’j : processing time of task Mj (its assumed know 
and constant) ; 

 t'ij :     date of beginning of the ith maintenance task  
Mj ; 

 E’ij : Advance of ith maintenance task  Mj ; 
E’ij = Max (0, (t’i-1j + p’j + Tmin j) – t’ij) ; 

 L’ij : Delay of the ith maintenance task Mj ; 
L’ij =  Max (0, t’ij - (t’i-1j + p’j + Tmax j)). 

 
From the point of view of the supplier, the respect of the 
maintenance periods influences the constraints of the 
production system. One will note f2 this objective 
function, which can be expressed as follows: 

 
 
                               (2)  
 

Where maxij is the effective maintenance task number Mij.  
 
The goal is to propose a method that provides a common 

planning for the production jobs and maintenance tasks. Thus, 
the objective of optimization must be a compromise between the 
target objective maintenance and production functions. 

To optimize the two criteria, we take into account the 
following common objective function:  

  
f=α.f1 + βf2.                                                                 (3) 
α and β are chosen by the user. 
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5. JOINT PRODUCTION AND MAINTENANCE GENETIC 
ALGORITHM 

5.1. Representation of a common production and 
maintenance solution 

Encoding problems have been observed in the GA 
literature [18], where slightly different problems require 
completely different genetic encodings for a good solution 
to be found. Choosing a good representation is important 
to solve any search problem. However, choosing a good 
representation for a problem is as difficult as choosing a 
good search algorithm for a problem. Care must be taken 
to adopt both representational schemes and the associated 
genetic operators for an effective genetic search. 
Traditionally, chromosomes are simple binary vectors. 
This simple representation is an excellent choice for the 
problems in which a point naturally maps into a string of 
zeros and ones. Unfortunately, this approach cannot 
usually be used for real word engineering problems such 
as combinatorial ones [19].  
 
Some different encodings are proposed in the literature 
[20, 21]. These encodings are split into two categories. 
The first one is the direct chromosome representation. For 
example, we can represent a scheduling problem by using 
the schedule itself as a chromosome. This method 
generally requires developing specific genetic operators. 
The second category is the indirect chromosome 
representation. The chromosome does not directly 
represent a schedule. It should be decoded to obtain a 
valid schedule prior to evaluation.  
 
In this paper, we chose a direct representation to give 
viability and legibility to a chromosome and simplicity of 
utilization for a user. We suggest a direct representation 
for chromosome with its genetic operators. 
 
Each individual is coded by a structure with two fields: 
the first field is a sequence S that represents the order of 
execution of the production jobs. The second is a matrix 
M that represents the sites of the maintenance tasks 
insertion. The element M [i,j] represents the insertion of 
the jth job of maintenance of the ith machine in the 
sequence S. 
Example: 
 

Sequence: S 9 8 5 3 1 2 0 7 4 
          

 0 1 4 6      
Matrix M 1 2 5       

 0 4 7 8      
 
M [3,2] = 4 means that the second maintenance task on 

the third machine is inserted in position 4 (after the 
production job 8) in sequence S. The execution of the 
tasks on the three machines according of the preceding 
example is the following: 
 
M1 : M01,P1,M11,P9,P3,P8,M21,P5,P6,M31,P7,P4,P2, P0 
M2 : P1,M02,P9,M12,P3,P8,P5, M22, P6,P7,P4,P2,P0  
M3 : M03,P1,P9,P3,P8,M13,P5,P6,P7,M23,P4,M33,P2,P0 
 
Where 
Mij: the ith maintenance task on the machine j, Pi: 
production job i. 
 

5.2. Joint crossover  

A valid individual should be generated from two parents. 
This individual should inherit its information from the 
production and the maintenance of its parents. This led us 
to define the following crossover operators: 
1. The crossover on Production only. They are the 

classical crossover on production defined for GA [2, 
19]. 

2. The crossover on Maintenance only. It was inspired 
from the k-points crossover [19] to define two new 
operators on maintenance: a horizontal crossover with 
even k-points and a horizontal crossover with odd k-
points.  

 
a- Horizontal crossover with even K-points: it consists in 
generating randomly a number k then performing the 
classical    k-points crossover [19] but only on the 
maintenance tasks. The principle of this operator is 
presented in algorithm 1. 
 

Algorithm Horizontal crossover with even K-points 
Begin 
Generate K points randomly ∈  [0.. a number of 
machines]. 
The sites of the maintenance jobs on the machines, 
which are in even parts of the first parent, are copied in 
the descendent 1, and the sites of the maintenances jobs 
that are in the remaining parts (odd) of the descendent 1 
are copied from the odd parts of the second parent. 
End 

Algorithm 1. Horizontal crossover with even k points. 
 
b- Horizontal crossover with odd K-points: It is the same 
principle as the horizontal crossover with K even points, 
except that in this case the odd parts are copied from the 
first parent and the even parts from the second. 
 
The combination of the crossovers of production and 
those of maintenance enabled to define more operators. 
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The principle of horizontal crossover with even 1-point is 
illustrated by the following example with 1 point 
crossover (k=1), m=3 (3 machines) and 8 maintenance 
tasks. 
 

 
 

5.3. Joint mutation 

The mutation can also be done on the production or 
maintenance. Three operators of mutation are proposed: 
- Production mutation: it is done by generating two 
positions randomly, then changing the sites of the two 
production jobs which are within these two positions. 
- Maintenance mutation: We define two types of mutation 
on maintenance: random mutation and vertical mutation. 
a- Random mutation consists in shifting randomly 
towards the left or the right-hand side one or more 
maintenance jobs. The principle of this type of mutation is 
introduced in algorithm 2. 
 
 

Algorithm Random mutation on maintenance 
Local variables tm: rate of mutation (0≤ tm≤n) ; S=1 or 
0; 
Begin 

For each machine j 
Do Generate a random number r (r ∈  [0 , 1]) 
  If (r ≤  tm)  
  Then Choose randomly a maintenance task on this  
            machine 
            Generate a random number S (0 or 1). 
            If S=0 
            Then  shift this maintenance task on the left 
            Else   shift this maintenance task on the right      
            End If 
   End If 

End. 
Algorithm 2. Random mutation on maintenance. 

 
 
 

b- Vertical mutation: The principle of this operator is to 
permute the sites of the production jobs, which are in two 
different parts, by preserving the sites of the maintenance 
tasks that are inside of each part compared to the 
production jobs which are in the same part.  Its 
effectiveness increases when the maintenance tasks are 
well positioned compared to the production jobs. 
We defined two operators of vertical mutation: 1-point 
vertical mutation and 2-points vertical mutation.  
The principle of 1-point vertical mutation consists in 
generating randomly a position p in the sequence of 
production S, then the sites of both groups of production 
jobs, which are respectively between position 0 and p 
(first group) and between p+1 and n (second group) are 
permuted. This principle is introduced in algorithm 3. 
 

Algorithm Vertical mutation with 1-point 
Local variables n: number of machines; p: random 
number (0≤p≤n); 
Begin 
- Generate a random number p 
- Permute the sites of both groups of production jobs  
which are respectively between position 0 and p (group 
1) and between p+1 and n (group 2). 
- Update the maintenance tasks matrix M. 
End.  

Algorithm 3. Horizontal crossover with even 1-point. 
 
The following example illustrates the principle of this 
operator for 3 machines and 10 maintenance tasks with p 
= 4  
                                          p 
     S 
 
              0  1 4  6 
    M      2  3 
              0  4  7  8   
                                   

6 7 8 9 0 1 2 3 4 5 
 
                1  5  6  9 
                 6  7  8 
                2  3  5  9 
 
The principle of the 2-points vertical mutation is similar 
to the 1-point. Following example illustrates the principle 
of this operator with 10 maintenance tasks and 2 machines 
for: p1=2 and p2 =7  
 
 
 
 
 
 
 

1 2 3 4 5 6 7 8 9 0 

Machine1        1   2   3 4   
Machine2        0  1   5 
Machine3        0   2  5  7 

 

Parent 1 
 

Machine 1        0   3   6 
Machine 2        1   4   5    6 
Machine  3       0   2   5   7 

 

Child 2 
 

Machine 1       1   2   3  4   
Machine 2       0   1   5 
Machine  3      2   3   4 

 

 

Machine 1            0   3   6 
Machine 2            1   4   5   6 
Machine 3            2   3   4 

Parent 2 
 

k 
 

k 
 

Child 1 
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                              p1                                              p2 
      S 
 
      M      0   1   2   4   5   8  
                3   5   10 
 

7 8 9 3 4 5 6 0 1 2 
 
                1   2   4   5   7   8   9 
                3   5  10 
 
In what follows, we are going to introduce the tests which 
we performed on benchmarks of Taillard [14] as well as 
the results of these tests. 
 

6. TESTS AND RESULTS 

The production data on which we made the tests are 
Taillard benchmarks [14]. The data of maintenance are 
generated randomly, and are coded by Y-1 (Y indicates 
the number of machine).  We use one maintenance task 
per machine with a constant processing time. The selected 
objective function is:  f1 + f2 with α=1 and β=1.  
GA was executed 100 times. The best results are saved, as 
well as associated parameters. The following parameters 
are the same for all the executions of the genetic 
algorithms: 
Crossing rate:  0,7, Mutation rate : 0,01, strategy of 
renewal is N_best, the n best solutions are selected from 
the current population and the crossed one. The 
parameters of Sharing are αsharing= 0,99 and δsharing = 4. 
In all that follows, we will use the following notations: 
HCE: Horizontal crossover with even 1 point; HCO: 
Horizontal crossover with odd one-point; VM1: Vertical 
mutation with 1 point; VM2: Vertical mutation with 2 
points, RM: Random mutation. 
 

6.1. JGA with horizontal crossover on maintenance 

The classical one-point crossover is quick, as it does not 
take into consideration the nature of the problem. To 
overcome this drawback, we use a joint (production and 
maintenance) 1-point crossover. Table 1 summarizes the 
simulations performed with the joint crossover operators. 
 

TABLE I 
 INTEGRATED PRODUCTION/MAINTENANCE GA WITH CROSSOVER 

ON MAINTENANCE 
BENCHMARKS PS IT     MC SOLUTION 
20*5_1 50 506 HCO 1874 
20*5_2 50 186 HCE 2165 
20*10_1 50 142 HCE 4003 
20*10_2 100 326 HCE 3893 
20*20 100 94 HCE 3602 
50*5 60 493 HCO 12893 

50*10 60 591 HCO 21981 
50*20 60 580 HCE 33319 
100*5 60 777 HCE 26130 
100*10 60 246 HCO 80262 
100*20 40 999 HCE 86700 
200*10 40 197 HCO 328984 
200*20 20 197 HCO 460439 

PS: Population Size; IT: Iteration at which the best solution was found; 
MC: Maintenance Crossover; HCE: Horizontal Crossover with Even        
1-point; HCO: Horizontal Crossover with Odd 1-point. 
 
For the crossover on maintenance, we can assert that 
HCO is better than HCE. Horizontal crossover with even 
one-point crossover provided 51 % of the best results in 
comparison with the operator with odd one-point. We 
think that both operators are technically interesting. 
 

6.2. JGA with vertical mutation on maintenance 

After the selection step in a classical GA (section 3), only 
the best-fitted solutions are kept and become parents for 
the next generation. Mutation diversifies the new 
population by splitting the parent chromosomes to create 
new ones with crossover. Table 2 summarizes the 
simulations performed with the proposed joint mutation 
operators on maintenance. 
 
 

TABLE II 
 INTEGRATED PRODUCTION/MAINTENANCE GA WITH MUTATION ON 

MAINTENANCE 
BENCHMARKS PS IT MM SOLUTION 

20*5_1 50 506 VM1 2789 
20*5_2 50 186 VM1 2063 
20*10_1 50 142 VM1 3964 
20*10_2 100 326 VM2 3893 
20*20 100 94 RM 3602 
50*5 60 493 VM1 12930 
50*10 60 591 VM2 21789 
50*20 60 580 VM1 33430 
100*5 60 777 VM1 26130 
100*10 60 246 VM1 81760 
100*20 40 999 VM2 86860 
200*10 40 197 VM1 328796 
200*20 20 197 VM2 469823 
PS: Population Size; IT: Iteration at which the best solution was found; 
MM: Maintenance Mutation, VM1: 1-point Vertical Mutation, VM2: 2-
points Vertical Mutation, RM: Random Mutation. 
 
In the case of joint mutation operators, the one-point 
vertical mutation operator provided the best results.  
Indeed the principle to permute two groups in sequence S, 
and to perform the same operation on the associated 
matrix M is efficient. 
 
For JAG, we performed 100 tests with the same 

0 1 2 3 4 5 6 7 8 9 
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parameters and each operator defined in section 5. Table 3 
summarizes the best results obtained for each operator. 
 

TABLE III 
 RESULTS OF ALL OPERATORS 

 CROSSOVER MUTATION 

HCE HCO RM VM1 VM2 BEST  
RESULTS 51% 49% 11

% 
57

% 
32

% 
 

7. CONCLUSION 

In this paper, we have developed a genetic algorithm for 
the resolution of the joint production and maintenance 
scheduling problem. Our approach uses the power of 
genetic algorithms to produce adapted and joint genetic 
operators for this particular scheme where an individual 
represents the production data and also the maintenance 
data. 
The experimental results show that the use of horizontal 
crossover with even k-points as crossover on maintenance 
and the one-point vertical mutation on maintenance given 
the best results. 
Future research will be to investigate a bi-criterion 
approach to solve this problem. 
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