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Abstract

In a non-parametric framework, we establish some non-asymptotic bounds for self-normalized

sums and quadratic forms in the multivariate case for symmetric and general random variables. This

bounds are entirely explicit and essentially depends in the general case on the kurtosis of the Euclidean

norm of the standardized random variables.
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1 Introduction

Let Z, Z1, ..., Zn be i.i.d. random centered vectors from a probability space (Ω,A, Pr) to (Rq,B, P). We
denote E the expectation under P. In the following we put Zn = n−1

∑n
i=1 Zi. Define S a square root

of the matrix S2 = E(ZZ ′) and similarly Sn a square root of S2
n = n−1

∑n
i=1 ZiZ

′

i . We assume in the
following that S2 and S2

n are full rank. For further use, we define γr = E(‖S−1Z‖r
2), r > 0, where || ||2

is the Euclidean norm on R
q. Now consider the self normalized sum

n1/2S−1
n Zn =

(
n∑

i=1

ZiZ
′

i

)−1/2 n∑

i=1

Zi. (1)

and its Euclidean norm
nZ

′
nS−2

n Zn (2)

Self-normalized sums have recently given rise to an important literature : see for instance Jing and
Wang (1999), Chistyakov and Götze (2003) or Bercu et al. (2002) for self-normalized processes. It has
been proved that non-asymptotic exponential bounds can be obtained for these quantities under very
weak conditions on the underlying moments of the variables Zi. Unfortunately, except in the symmetric
case, these bounds established in the real case (q = 1) are not universal and depend on the skewness
γ3 = E|S−1Z|3 or even an higher moments for instance γ10/3 = E|S−1Z|10/3, see Jing and Wang (1999).
Actually, uniform bounds in P are impossible to obtain, otherwise this would contradict Bahadur and
Savage’s Theorem, see Bahadur and Savage (1956), Romano and Wolf (2000). Recall that the behaviour
of self-normalized sums is closely linked to the behaviour of the statistics of Student, which is the basic
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asymptotic root for constructing confidence intervals (see Remark 2 below). Moreover, available bounds
are not explicit and only valid for n ≥ n0, n0 large and unknown. To our knowledge, non-asymptotic
exponential bounds with explicit constants are only available for symmetric distribution Hoeffding
(1963), Efron (1969), Pinelis (1994), in the unidimensional case (q = 1). In this paper, we obtain
generalizations of these bounds for (2) in the multivariate case by using a multivariate extension of the
symmetrization method developed by Panchenko (2003) as well as arguments taken from the literature
on self-normalized process, see Bercu et al. (2002). Our bounds are explicit but depend on the kurtosis
γ4 of the Euclidean norm of S−1Z rather than on the skewness. They hold for any value of the parameter
size q. One technical difficulty in the multidimensional case is to obtain an explicit exponential bound
for the smallest eigenvalue of the empirical variance which allows to control the deviation of S2

n from S2,
a result which has its own interest.

2 Exponential bounds for self-normalized sums

Some bounds for self-normalized sums may be quite easily obtained in the symmetric case (that is for
random variables having a symmetric distribution) and are well-known in the unidimensional case. In
non-symmetric and/or multidimensional case theses bounds are new and not trivial to prove. One of the
main tools for obtaining exponential inequalities in various setting is the famous Hoeffding inequality
(see Hoeffding (1963)) yielding that for independent real random variables (r.v.) Yi, i = 1, ..., n, with
finite support say [0, 1], we have

Pr


n−1

(
n∑

i=1

Yi

)2

≥ t


 ≤ 2 exp

(
− t

2

)
.

A direct application of this inequality to self-normalized sums (via a randomization step introducing
Rademacher r.v.’s) yields (see Efron (1969), Eaton and Efron (1970)) that, for n independent random
variables Zi symmetric about 0, and not necessarily bounded (nor identically distributed), we have

Pr

(
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

≥ t

)
≤ 2 exp

(
− t

2

)
. (3)

In the general non-symmetric case, the master result of Jing and Wang (1999) for q = 1 states that
if γ10/3 < ∞, then for some A ∈ R and some a ∈]0, 1[,

Pr

(
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

≥ t

)
≤ 2F 1(t) + Aγ10/3n

−1/2e−at/2, (4)

where F q is the survival function of a χ2(q) distribution defined by F q(t) =
∫ +∞

t fq(y)dy with fq(y) =
1

2q/2Γ(q/2)
yq/2−1e−

y
2 and Γ(p) =

∫ +∞
0

yp−1e−ydy.

However the constants A and a are not explicit and, despite of its great interest to understand the
large deviation behaviour of self normalized sums, the bound is of no direct practical use. In the non-
symmetric case our bounds are worse than (4) as far as the control of the approximation by a χ2(q)
distribution are concerned, but entirely explicit.

Theorem 1 Let Z, (Zi)1≤i≤n, be an i.i.d. sample in R
q with probability P. Suppose that S2 is of rank

q. Then the following inequalities hold, for finite n > q and for t < nq,

a) if Z has a symmetric distribution, then, without any moment assumption,

Pr
(
nZ

′
nS−2

n Zn ≥ t
)
≤ 2qe−

t
2q ; (5)
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b) for general distribution of Z, with γ4 < ∞, for any a > 1,

Pr
(
nZ

′
nS−2

n Zn ≥ t
)
≤ 2qe1− t

2q(1+a) + C(q) n3q̃γ−q̃
4 e

− n
γ4(q+1) (1− 1

a )2

(6)

≤ 2qe1− t
2q(1+a) + K(q) n3q̃e

− n
γ4(q+1) (1− 1

a )2

with q̃ = q−1
q+1 and

C(q) =
(2eπ)2q̃(q + 1)

22/(q+1)(q − 1)3q̃
and K(q) =

C(q)

q2q̃
≤ 8.

Moreover for nq ≤ t, we have

Pr
(
nZ

′
nS−2

n Zn ≥ t
)

= 0.

The proof is postponed to Appendix (1). Part a) in the symmetric multidimensional case follows by an
easy but crude extension of Hoeffding (1963) or Efron (1969), Eaton and Efron (1970). The exponential
inequality (5) is classical in the unidimensional case. Other type of inequalities with suboptimal rate in
the exponential term have also been obtained by Major (2004).

In the general multidimensional framework, the main difficulty is actually to keep the self-normalized
structure when symmetrizing the original sum. We first establish the inequality in the symmetric case
by an appropriate diagonalization of the estimated covariance matrix, which reduces the problem to q
-unidimensional inequalities. The next step is to use a multidimensional version of Panchenko’s sym-
metrization lemma(see Panchenko (2003)). However this symmetrization lemma destroyes partly the
self-normalized structure (the normalization is then S2

n + S2 instead of the expected S2
n), which can be

retrieved by obtaining a lower tail control of the distance between S2
n and S2. This is done by studying

the behavior of the smallest eigenvalue of the normalizing empirical variance. The second term in the
right hand side of inequality (6) is essentially due to this control.

However, for q > 1, the bound of part a) is clearly not optimal. A better bound, which has not
exactly an exponential form, has been obtained by Pinelis (1994) following previous works by Eaton
(1974). Pinelis’ result gives a much more precise evaluation of the tail for moderate q. It essentially says
that in the symmetric case the tail of the self-normalized sum can essentially be bounded by the tail of
a χ2(q) distribution. Notice that this tail F q satisfies the following approximation (see Abramovitch and
Stegun (1970), p. 941, result 26.4.12 )

F q(t) ∼
t→∞

1

Γ( q
2 )

(
t

2

) q
2−1

exp(− t

2
).

This bounds gives the right behavior of the tail (in q) as t grows, which is not the case for a). However,
in the unidimensional case a) still gives a better approximation than Pinelis (1994). a) can still be used
in the multidimensional case to get crude but exponential bounds. We expect however Pinelis’ inequality
to give much better bounds for moderate q and moderate sample size n in the symmetric case. For these
reason, we will extend the results of Theorem 1 by using a χ2(q) type of control. This essentially consists
in extending lemma 1 of Panchenko (2003) to non exponential bound.

Theorem 2 The following inequalities hold, for finite n > q and for t < nq:

a) (Pinelis 1994) if Z has a symmetric distribution, without any moment assumption, then we have

Pr
(
nZ

′
nS−2

n Zn ≥ t
)
≤ 2e3

9
F q(t), (7)
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b) for general distribution of Z with kurtosis γ4 < ∞, for any a > 1 and for t ≥ 2q(1+a) and q̃ = q−1
q+1

we have

Pr
(
nZ

′
nS−2

n Zn ≥ t
)

≤ 2e3

9Γ( q
2 + 1)

(
t − q(1 + a)

2(1 + a)

) q
2

e−
t−q(1+a)
2(1+a) + C(q)

(
n3

γ4

)q̃

e
−

n(1− 1
a )2

γ4(q+1)

≤ 2e3

9Γ( q
2 + 1)

(
t − q(1 + a)

2(1 + a)

) q
2

e−
t−q(1+a)
2(1+a) + K(q) n3q̃e

−
n(1− 1

a )2

γ4(q+1) (8)

For t ≥ nq, we have Pr
(
nZ

′
nS−2

n Zn ≥ t
)

= 0.

Remark 1 Notice that the constant K(q) does not increase with large q as it can be seen on Figure 1.
A close examination of the bounds shows that essentially γ4(q + 1) has to be small compared to n for
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Figure 1: Value of K(q) as a function of q

practical use of these bounds. Of course practically γ4 is not known, however one may use an estimator
or an upper bound for this quantity to get some insight on a given estimation problem.

Remark 2 It can be tempting to compare our bounds with some more classical results in statistics. We
recall that, in an unidimensional framework, the studentized ratio is given by T̃n =

√
nS̃−1

n Z̄n where S̃n

is the unbiased estimator of the variance S̃n = ( 1
n−1

∑n
i=1(Zi − Z̄n)2)−1/2. In a Gaussian framework,

T̃n has a Student distribution with (n − 1) degrees of freedom. In opposition, our self-normalized sum is

defined by Tn =
√

n
(

1
n

∑n
i=1 Z2

i

)−1/2
Z̄n. It is related to T̃n by the relation Tn = fn(T̃n) with fn(x) =

√
n

n−1

(
1 + x2

n−1

)−1/2

x. As a consequence, one gets in an unidimensional symmetric case, for t > 0,

Pr(T̃n ≥ t) ≤ exp

{
−1

2

n

n − 1

t2

1 + t2

n−1

}
.

For large n we recover an sub-gaussian type of inequality. At fixed n, , this inequality is noninformative
for t → ∞ since the right-hand side tends to 1. Recall that, in a Gaussian framework, the tail Pr(T̃n > t)
is of order O( 1

tn−1 ) as t → ∞.

Remark 3 In the best case, past studies give some bounds for n sufficiently large, without an exact value
for ”sufficiently large”. Here, the bounds are valid and explicit for any n > q.

These bounds are motivated by some statistical applications to the construction of non-asymptotic
confidence intervals with conservative coverage probability in a semi-parametric setting. Self-normalized
sums appear naturally in the context of empirical likelihood and its generalization to Cressie-Read di-
vergences, see Harari-Kermadec (2006), Owen (2001). In particular, Bertail et al. (2005) shows how the
bounds obtained here may be used to construct explicit non asymptotic confidence regions, even when q
depends on n.
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A Proofs of the main results

A.1 Some lemmas

The first lemma is a direct extension of Panchenko, 2003, Corollary 1 to the mutidimensional case, which
will be used both in theorem 1 and 2.

Lemma 1 Let Jq be the unit sphere of R
q, Jq = {λ ∈ R

q, ‖λ‖2 = 1}. Let Z(n) = (Zi)1≤i≤n and
Y (n) = (Yi)1≤i≤n be i.i.d. centered random vectors in R

q with Z(n) independent of Y (n). We denote, for
any random vector W = (Wi)1≤i≤n, S2

n,W = 1
n

∑n
i WiW

′
i .

If there exists D > 0 and d > 0 such that, for all t ≥ 0,

Pr


 sup

λ∈Jq




√
nλ′(Zn − Y n)√

λ′S2
n,(Z(n)−Y (n))

λ


 ≥

√
t


 ≤ De−dt,

then, for all t ≥ 0,

Pr

(
sup
λ∈Jq

√
nλ′Zn√

λ′S2
nλ + λ′S2λ

≥
√

t

)
≤ De1−dt. (9)

Proof : This proof follows Lemma 1 of Panchenko (2003) with some adaptations to the multidimensional
case. Denote

An(Z(n)) = sup
λ∈Jq

sup
b>0

{
E
[
4b(λ′(Zn − Y n) − bλ′S2

n,Z(n)−Y (n)λ)|Z(n)
]}

Cn(Z(n), Y (n)) = sup
λ∈Jq

sup
b>0

{
4b(λ′(Zn − Y n) − bλ′S2

n,Z(n)−Y (n)λ)
}

.

By Jensen inequality, we have Pr-almost surely

An(Z(n)) ≤ E[Cn(Z(n), Y (n))|Z(n)]

and, for any convex function Φ, by Jensen inequality, we also get

Φ(An(Z(n))) ≤ E[Φ(Cn(Z(n), Y (n)))|Z(n)].

We obtain
E(Φ(An(Z(n)))) ≤ E(Φ(Cn(Z(n), Y (n)))). (10)

Now remark that

An(Z(n)) = sup
λ∈Jq

sup
b>0

{
4b
(
λ′Zn − bλ′S2

nλ − bλ′S2λ
)}

= sup
λ∈Jq

(
λ′Zn√

λ′S2
nλ + λ′S2λ

)2

and

Cn(Z(n), Y (n)) = sup
λ∈Jq


 λ′(Zn − Y n)√

λ′S2
n,Z−Y λ




2

.

Now, notice that supλ∈Jq

λ′Zn√
λ′S2

nλ
> 0 and apply the arguments of the proof of Panchenko (2003)’s

Corollary 1 applied to inequality (10) to obtain the result.
The next lemma allows to establish an non exponential version of the preceding lemmas. Indeed

a consequence of this lemma is that, if the tail of the symmetrized version in (A.1) is controlled by a
chi-square tail, then the non symmetrized version may be controlled by an exponential multiplied by a
polynomial. The rate in the exponential is asymptotically correct.
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Lemma 2 Let ν and ξ, be two r.v.’s, satisfying E(ξ) ≤ E(ν) and such that, there exists a constant
C > 0, such that, for t > 0,

Pr(ν > t) ≤ CF q(t)

then, for t ≥ 2q, we have

Pr(ξ > t) ≤ C

(
(t − q)

2

) q
2 e−

(t−q)
2

Γ(q/2 + 1)
.

and for t > q, we have
Pr(ξ > t) ≤ CF q+2(t − q).

Proof : We follow the lines of the proof of Panchenko’s lemma, with function Φ given by Φ(x) =
max(x − t + q; 0) for some t > q. Remark that Φ(0) = 0 and Φ(t) = q, then we have

Pr(ξ ≥ t) ≤ 1

Φ(t)

(
Φ(0) +

∫ +∞

0

Φ′(x) Pr(ν ≥ x)dx

)

≤ C

q

∫ +∞

t−q

F q(x)dx.

By integration by parts, we have

∫ +∞

t−q

F q(x)dx =

∫ +∞

t−q

xfq(x)dx − (t − q)

∫ +∞

t−q

fq(x)dx.

It follows by straightforward calculations that, for t > q,

Pr(ξ ≥ t) ≤ C

q

∫ +∞

t−q

F q(x)dx = C

(
F q+2(t − q) − t − q

q
F q(t − q)

)
.

For t ≥ 2q, and using the recurrence relation 26.4.8 of Abramovitch and Stegun (1970), page 941.

Pr(ξ ≥ t) ≤ C
(
F q+2(t − q) − F q(t − q)

)
=

(
(t − q)

2

)q/2
Ce−

(t−q)
2

Γ( q
2 + 1)

.

Moreover, for t > q we have Pr(ξ ≥ t) ≤ CF q+2(t − q).

We now extend a result of Barbe and Bertail (2004), which controls the behavior of the smallest
eigenvalue of the empirical variance. In the following, for a given symmetric matrix A, we denote µ1(A)
its smallest eigenvalue.

Lemma 3 Let (Zi)1≤i≤n be i.i.d. random vectors in R
q with common mean 0. Assume 1 ≤ γ̃4 =

E(‖Z1‖4
2) < +∞. Then, for any 1 ≤ q < n and 0 < t ≤ µ1(S

2),

Pr
(
µ1(S

2
n) ≤ t

)
≤ C(q)

n3eqµ1(S
2)2q̃

γ̃ q̃
4

exp

(
−n(µ1(S

2) − t)2

γ̃4(q + 1)

)
∧ 1,

with

C(q) = π2q̃(q + 1)e2q̃(q − 1)−3q̃22q̃− 2
q+1 (11)

≤ 4π2(q + 1)e2(q − 1)−3q̃. (12)
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Proof : The proof of this result is adapted from Barbe and Bertail (2004) and makes use of some idea
of Bercu et al. (2002) .

We first have by a truncation argument and applying Markov’s inequality on the last term in the
inequality (see the proof of Barbe and Bertail, 2004, Lemma 4), for every M > 0,

Pr

(
µ1

(
n∑

i=1

ZiZ
′
i

)
≤ nt

)
≤

Pr

(
inf

v∈Jq

n∑

i=1

(v′Zi)
2 ≤ nt, sup

i=1,...,n
||Zi||2 ≤ M

)
+ n

γ̃4

M4
(13)

We call I the first term on the right hand side of this inequality.
Notice that by symmetry of the sphere, we can always work with the northern hemisphere of the

sphere rather than the sphere. In the following, we denote by Nq the northern hemisphere of the sphere..
Notice that, if the supremum of the ||Zi||2 is smaller than M , then for u, v in Nq, we have

∣∣∣∣∣

n∑

i=1

(v′Zi)
2 −

n∑

i=1

(u′Zi)
2

∣∣∣∣∣ ≤ 2n||u − v||2M2.

Thus if u and v are apart of tη/(2M2) then |∑n
i=1(v

′Zi)
2 −∑n

i=1(u
′Zi)

2| ≤ ηnt. Now let N(Nq, ε) be
the smallest number of caps of radius ε centered at some points on Nq (for the ||.||2 norm) needed to
cover Nq. Following the same arguments as Barbe and Bertail (2004), we have, for any η > 0,

I ≤ N

(
Nq,

tη

2M2

)
max
u∈Nq

Pr

(
n∑

i=1

(u′Zi)
2 ≤ (1 + η)nt

)
.

The proof is now divided in three steps, i) control of N(Nq,
tη

2M2 ), ii) control of the maximum over Nq of
the last expression in I, iii) optimization over all the free parameters.
i) On the one hand, we have, for some constant b(q) > 0,

N(Nq, ε) ≤ b(q)ε−(q−1) ∨ 1. (14)

For instance, we may choose b(q) = πq−1. Indeed, following Barbe and Bertail (2004), the northern
hemisphere can be parameterized in polar coordinates, realizing a diffeomorphism with Jq−1 × [0, π].
Now proceed by induction, notice that for q = 2, Nq, the half circle can be covered by [π/2ε] ∨ 1 + 1 ≤
2([π/2ε]∨ 1) ≤ π/ε∨ 1 caps of diameter 2ε, that is, we can choose the caps with their center on a ε−grid
on the circle. Now, by induction we can cover the cylinder Jq−1× [0, π] with [π/2ε (π)q−2/εq−2]∨1+1 ≤
πq−1/εq−1 intersecting cylinders which in turn can be mapped to region belonging to caps of radius ε,
covering the whole sphere (this is still a covering because the mapping from the cylinder to the sphere is
contractive).
ii) On the other hand, for all t > 0, we have by exponentiation and Markov’s inequality, and independence
of (Zi)1≤i≤n, for any λ > 0

max
u∈Nq

Pr

(
n∑

i=1

u′ZiZ
′
iu ≤ nt

)
≤ enλt max

u∈Nq

(
E
[
e−λu′Z1Z′

1u
])n

.
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Now, using the classical inequalities, log(x) ≤ x − 1 and e−x − 1 ≤ −x + x2/2, both valid for x > 0, we
have

max
u∈Nq

(
E
[
e−λu′Z1Z′

1u
])n

= max
u∈Nq

exp
{
n log

(
E
[
e−λu′Z1Z′

1u
])}

≤ max
u∈Nq

exp
{
nE
[
e−λu′Z1Z′

1u − 1
]}

(15)

≤ max
u∈Nq

exp

{
n

(
−λu′S2u +

λ2

2
γ̃4

)}

= exp

(
λ2

2
nγ̃4 − λnµ1(S

2)

)
. (16)

iii) From (16) and (14), we deduce that, for any t > 0, λ > 0, η > 0,

I ≤ b(q)

(
2M2

tη

)q−1

eλ(1+η)nt+ λ2

2 neγ4−λnµ1(S2).

Optimizing the expression exp(−(q − 1) log(η) + ληnt) in η > 0, yields immediately, for any t > 0,
any M > 0, any λ > 0

I ≤ b(q)

(
2enM2λ

q − 1

)q−1

eλn(t−µ1(S2))+nλ2eγ4/2.

The infimum in λ in the exponential term is attained at λ = µ1(S2)−teγ4
, provided that 0 < t < µ1(S

2).

Therefore, for these t and all M > 0, we get that Pr(µ1(
∑n

i=1 ZiZ
′
i) ≤ nt) is less than

b(q)

(
2enM2µ1(S

2)

γ̃4(q − 1)

)q−1

exp

(
− n

2γ̃4

(
µ1(S

2) − t
)2
)

+ n
γ̃4

M4
.

We now optimize in M2 > 0 and the optimum is attained at

M2
∗ =

(
2nγ̃4

(q − 1)b(q)

) 1
q+1
(

2en

q − 1

µ1(S
2)

γ̃4

)− (q−1)
q+1

exp

(
n(µ1(S

2) − t)2

2γ̃4(q + 1)

)
,

yielding the bound

Pr

(
µ1

(
n−1

n∑

i=1

ZiZ
′
i

)
≤ t

)
≤ C̃(q) n3 q−1

q+1 µ1(S
2)

2(q−1)
q+1 γ̃

− q−1
q+1

4 exp

(
−n

(
µ1(S

2) − t
)2

γ̃4(q + 1)

)
,

with
C̃(q) = b(q)

2
q+1 (q + 1)e

2(q−1)
q+1 (q − 1)−3 q−1

q+1 2
2q−4
q+1 .

Using the constant b(q) = πq−1 we get the expression of C(q), which is bounded by the simpler bound

(for large q this bound will be sufficient) 4π2(q + 1)e2(q − 1)−3 q−1
q+1 , using the fact that γ̃4 ≥ 1.

The result of the Lemma follows by using this inequality combined with inequality 13.

A.2 Proof of Theorem 1

Proof : Notice that we have always Z̄ ′
nS−2

n Z̄n ≤ q. Indeed, there exists an orthogonal transformation
On and a diagonal matrix Λ2

n := diag[µ̂j]1≤j≤q with µ̂j > 0 being the eigenvalues of S2
n, such that

S2
n = O

′

nΛ2
nOn. Now put Yi,n := [Yi,j,n]1≤j≤q = OnZi. It is easy to see that by construction the empirical

variance of the Yi,n is

1

n

n∑

i=1

Yi,nY ′
i,n =

1

n

n∑

i=1

OnZiZ
′
iO

′
n = OnS2

nO
′

n = Λ2
n.
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It also follows from this equality that, for all j = 1, · · · , q, 1
n

∑n
i=1 Y 2

i,j,n = µ̂j , and

Z̄ ′
nS−2

n Z̄n = Ȳ ′
nΛ−2

n Ȳn =

q∑

j=1

(
1

n

n∑

i=1

Yi,j,n

)2

/µ̂j.

This quantity is lower than q by Cauchy-Schwartz inequality. So, it follows that, for all t > qn

Pr
(
nZ̄ ′

nS−2
n Z̄n ≥ t

)
= 0.

a) In the symmetric and unidimensional framework (q = 1), this bound follows from Hoeffding inequality
(see Efron (1969)). Consider now the symmetric multidimensional framework (q > 1). Let σi, 1 ≤ i ≤ n be
Rademacher random variables, independent from (Zi)1≤i≤n, P(σi = −1) = P(σi = 1) = 1/2. We denote

σn(Z) =
(

1√
n

∑n
i=1 σiZi

)
and remark that S2

n = 1
n

∑n
i=1 σiZiZ

′
iσi. Since the Zi’s have a symmetric

distribution, meaning that −Zi has the same distribution as Zi, we make use of a first symmetrization
step:

Pr
(
nZ

′
nS−2

n Zn ≥ t
)

= Pr(σn(Z)
′

S−2
n σn(Z) ≥ t).

Now, we have

σn(Z)
′

S−2
n σn(Z) = σn(Y )

′

Λ−2
n σn(Y )

=

q∑

j=1

(
n∑

i=1

σiYi,j,n

)2

/

n∑

i=1

Y 2
i,j,n.

It follows that, for t > 0,

Pr(σn(Z)
′

S−2
n σn(Z) ≥ t) ≤

q∑

j=1

Pr


 |∑n

i=1 σiYi,j,n|√∑n
i=1 Y 2

i,j,n

≥
√

t/q




≤ 2

q∑

j=1

E Pr



∑n

i=1 σiYi,j,n√∑n
i=1 Y 2

i,j,n

≥
√

t/q

∣∣∣∣∣∣
(Zi)1≤i≤n


 .

Apply now Hoeffding inequality to each unidimensional self-normalized term in this sum to conclude.
b) The Zi’s are not anymore symmetric. Our first step is to control the probability Pr(nZ̄ ′

nS−2
n Z̄n ≥ t).

Define

Bn = sup
λ∈Jq

{
λ′Zn√
λ′S2

nλ

}
and Dn = sup

λ∈Jq

{√
1 +

λ′S2λ

λ′S2
nλ

}
.

First of all, remark that the following events are equivalent

{
nZ

′
nS−2

n Zn ≥ t
}

=

{
Bn ≥

√
t

n

}
.

and notice that

Pr

(
Bn ≥

√
t

n

)
≤ inf

a>−1

{
Pr

(
BnD−1

n ≥
√

t

n(1 + a)

)
+ Pr(Dn ≥

√
1 + a)

}
.

The control of the first term on the right side is obtained in two steps. First apply part a) of Theorem 1

to n1/2 supλ∈Jq

λ′Zn−Y nq
λ′S2

n,Z−Y
λ̃

. Then, by application of Lemma 1 and the previous remark, we get
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√
nBnD−1

n ≤ n1/2 supλ∈Jq

λ′Zn√
λ′S2

nλ̃+λ′S2λ̃
, we have for all t > 0,

Pr

(
BnD−1

n ≥
√

t

n(1 + a)

)
≤ 2qe1− t

2q(1+a) .

For a ≤ 0, the control of the second term is trivial and useless. Whereas, for all a > 0, and all t > 0 we
have

{
Dn ≥

√
1 + a

}
=

{
sup
λ∈Jq

(
1 +

λ′S2λ

λ′S2
nλ

)
≥ 1 + a

}

=

{
inf

λ∈Jq

(
λ′S−1S2

nS−1λ
)
≤ 1

a

}
⊂
{

µ1(S
−1S2

nS−1) ≤ 1

a

}
.

We now use Lemma 3 applied to the r.v.’s (S−1Zi)1≤i≤n with covariance matrix equal to Idq. It is easy
to check that γ4 = γ̃4. For all 1 < a, we have,

Pr(Dn >
√

1 + a) ≤ C(q)

(
n3

γ4

)q̃

e
− n

(q+1)γ4
(1− 1

a
)2

.

Since infa>−1 ≤ infa>1, we conclude that, for any t > 0,

Pr

(
Bn >

√
t

n

)
≤ inf

a>1

{
2qe e−

t
2q(1+a) + C(q)

(
n3

γ4

)q̃

e
− n

(q+1)γ4
(1− 1

a
)2

}
.

We achieve the proof by noticing that γ4 ≥ q2 from Jensen’s inequality and E(‖S−1Z‖2
2) = q.

A.3 Proof of Theorem 2.

Part a) is proved in Pinelis (1994). Now, the proof of part b) follows the same lines as the Theorem 1
combining Lemmas 1, 2 and 3.
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