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INTERFACE CRACK PROPAGATION IN POROUS AND
TIME-DEPENDENT MATERIALS ANALYZED WITH
DISCRETE MODELS

THEOCHARIS BAXEVANIS, FREDERIC DUFOUR, AND GILLES PIJAUDIER-CABOT

ABSTRACT. A model describing the crack propagation at the interface between
a rigid substratum and a beam is considered. The interface is modeled using
a fiber bundle model (i.e. using a discrete set of elements having a random
strength). The distribution of avalanches, defined as the distance over which
the crack is propagated under a fixed force, is studied in order to capture the
effect of ageing and time dependent response of the interface. The avalanches
depend not only on the statistical distribution of strength but more impor-
tantly on time (or displacement) correlations. Namely, local fiber breakage
kinetics is related to a correlation length, which sets the size of the fracture
process zone which occurs ahead of the crack due to progressive failure. First,
a variation of porosity of the interface is considered. It corresponds for instance
to diffusion controlled dissolution processes. Interpreting the results in [11],
it is shown that the size of the fracture process zone increases with increasing
porosity in accordance with experimental observations [12]. The creep - frac-
ture interaction is analyzed in the second part of the paper. It is found based
on a Maxwell model that the size of the process zone depends on the fracture
propagating velocity and on the distribution of forces in the interface due to
the interaction between the interface and the rest of the specimen. The ob-
served decrease of the size of the process zone, in creep experiments, compared
to the size of the process zone in a static process, is justified by the proposed
model for an interface that is less viscous than the rest of the material.

1. INTRODUCTION

Progressive failure of quasi-brittle heterogeneous materials is a succession of
micro-cracks nucleation, propagation and arrest. First, the material response is
elastic, then microcracking appears and eventually these microcracks coalesce in
order to form a macro-crack which propagates suddenly. The above rupture events
are controlled by the randomness of the distribution of the material properties and
also by internal correlation lengths that are in general unknown. Such correlation
lengths have a strong influence on the failure of quasi-brittle materials. Instead
of a perfect crack, with a very small process zone of nonlinear response at its tip,
a rather large fracture process zone (FPZ) develops in the material ahead of the
tip of the macrocrack [8]. This process zone induces a size effect, which is typical
of quasi-brittle heterogeneous structures. Among several possible explanations for
such a size effect on the structural strength, a simple one is that it is a purely
deterministic effect, resulting from the energetic interaction between the elastic
part of the structure and the FPZ. From the point of view of design of structures,
e.g. reinforced concrete structures, this size effect is important. According to the
size effect law proposed by Bazant, the nominal strength of a structural component
can be decreased by as much as 50 percent if the real size of the structure is five
times larger than the laboratory specimen size. This size effect law incorporates also
the definition of a fracture energy, seen as the energy dissipation in the asymptotic

Key words and phrases. Zip model, FPZ size, size effects, creep, ageing, fracture, viscoelastic-
ity, time effect, concrete failure, discrete approach.
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FIGURE 1. Evolution of the width of the FPZ measured experi-
mentally ({ppz), internal length (I.), and the Irwin’s length (I.;)
with polystyrene content in model materials.

limit of a structure of infinite size with a very large initial notch which would fail
at crack initiation.

A relevant continuum model has to take into account this size effect, and at
the same time to capture strain softening due to progressive cracking in a way
that is physically and mathematically sound. This is usually performed by the
introduction of an internal length in the continuum model (see e.g. the review in
[4]). The internal length serves two purposes at the same time: (1) it is a way of
constraining the energy dissipation to occur in a region of finite size upon strain
localization due to softening and to keep the governing equations well posed [19], (2)
the occurrence of the FPZ upon cracking and the inherited size effect are captured
at the same time. As a matter of fact, size effect, e.g. of geometrically similar
notched three point bending beams, is an indirect technique for the calibration
of the internal length and other model parameters for isotropic non local damage
models for concrete [15]. Theoretical strain localization analyses show that the
width of the fracture process zone ought to be proportional to the internal length.
Such a result was already observed numerically by Bazant et al [6] and used in order
to design an approximate method for the determination of the internal length [7].
Experiments and finite element analyses on several model materials made with mix
of mortar and polystyrene beads [12] have shown that the width of the FPZ and
Irwin’s length (which can be seen as the length of the FPZ ahead of the macrocrack
tip) are also correlated to the variation of the internal length in the non local
continuum. Figure (1) shows that the FPZ measured experimentally from acoustic
events analysis during fracture, the internal length obtained after calibration of the
non local damage model on the various model materials (using size effect test data)
and Irwin’s length correlate quite well. Irwin’s length is defined as

= G 1)

in this equation, E is the Young’s modulus, Gy is the fracture energy and o is the
tensile strength.

These experiments on model materials, with various amount of polystyrene
beads, were designed in order to mimic the ageing process in cementitious ma-
terials due to calcium leaching, i.e. a progressive dissolution of the material due

hl
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FIGURE 2. Evolution of size effect test data for 3 point bending
tests on notched specimens subjected to creep prior fracture (after
Pijaudier-Cabot et al. [20])

to contact with water. In this case, the width and the length of the FPZ increase
with the amount of material porosity and can be considered as proportional to the
internal length, at least in the three point bending beam tests on notched spe-
cimen considered in [12]. Furthermore, the same experimental study has shown
that large variations of the fracture energy occur with the amount of polystyrene
content. Such variations were also observed in fracture tests performed after accele-
rated leaching on mortar beams [16]. Without variations of the internal length, it
was not possible to model the consequences of the leaching process on the fracture
properties of aged materials, and in particular the variations of the size effect pa-
rameters observed by Le Bellégo et al [16] which indicate variations of the size of
the FPZ.

There is another situation of structural response where similar variations of the
size effect properties have been observed. It is the case of creep — fracture interaction
studied in [3]. The authors conducted size effect tests on geometrically similar
specimens loaded at different rates and observed that the slower the loading rate,
the more brittle the response. Pijaudier-Cabot et al [20] performed a series of
three point bending beam tests (notched specimens) with and without applying a
sustained load for 3 months up to 85 percent of the maximum load prior to the
fracture test. They arrived to a similar conclusion, namely that creep influences the
residual capacity of the beams, but also that upon size effect tests, the specimens
which were subjected to creep exhibited a more brittle response. This property
yields a shift to the right of the data set on the size effect plot as shown in Figure (2).
The same phenomena has been observed by Bazant and Gettu [3] and Bazant and
Li [5] for linear creep.

In the present paper, we use a discrete random modeling based on a fiber bundle
model in order to investigate the size of the FPZ. It is the so-called ZIP model
developed in [11]. We consider the two examples depicted in the above paragraphs,
namely the case of a material whose porosity increases and the case of creep —
fracture interaction. As we will see in section 2, it is quite straightforward to
demonstrate that, according to the discrete model, when the microstructural size
increases (in order to capture the heterogeneities in a representative volume) the
FPZ length ought to increase too. The case of creep — fracture interaction needs
additional mathematical considerations, but upon some simplifying assumptions, it
will be shown in section 3 that the FPZ length decreases as creep develops.
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FIGURE 3. Schematic representation of ”zip” model. The wedge
moves along the z-axis.

2. Z1P MODEL — CASE OF INTERFACE WITH VARIATION OF POROSITY

During the past decades, fiber bundle models have received considerable atten-
tion and have been studied extensively. Originally introduced to explain ruptures in
heterogeneous materials under tension [9], fiber bundle models have been applied to
cracks and fractures, earthquakes, and other related breakdown phenomena [1] and
[21]. They are directed towards the study of the material heterogeneities, i.e. at a
scale much smaller than the representative volume of the material. These models
consist of a set of parallel fibers having statistical distributed strength. The sample
is loaded parallel to the fiber direction, and a fiber breaks if its elongation exceeds a
threshold value. When a fiber breaks, its load is transferred to other surviving fibers
in the bundle, according to a specific transfer rule. Among the possible options of
load transfer are the assumption of equal load sharing (global-sharing rule) [9] and
the much studied variants - local load-sharing rule- where the load on the failing
fiber is distributed equally among the nearest surviving fibers [13]. There are also
a number of studies that may be placed among the two extremes that global and
local load-sharing rules constitute. Among them is the study by Delaplace et al
[11], who constructed an hierarchically connected fiber bundle model. They have
worked out analytically and numerically the statistics of avalanches in a system
whose geometry mimics the propagation of crack front at the interface between a
rigid support and an elastic beam. Other work on hierarchical fiber bundle models
can be found in [18], [10] and [22]. For a review of the literature in the subject, one
may refer for instance to the work of Batrouni et al [2].

In this section, we focus on a system of elastic-perfectly brittle fibers loaded in
parallel between a rigid substratum and a semi-infinite elastic beam. The geometry
is suited to an inhomogeneous, but steady state of loading and it can be considered
as a schematic model for mode I crack propagation (the rigid side of the interface
representing an axis of symmetry). The nonlinear interface serves to concentrate
cracking onto a line, the same as in the cohesive crack model. A normal displace-
ment is imposed at one point of the elastic beam that can move along the interface
as if a wedge was pushed in a double cantilever geometry (Figure (3)). The fiber
strength is randomly distributed with a uniform probability of critical fiber extension
between 0 and 1. As the wedge is moving along the z-axis, the interface decouples
into three different parts due to the randomness of fiber strength. Namely, under
the wedge and in a small area ahead all fibers are broken. This region constitutes
the crack itself. Further ahead there is an active area. Moving along this zone,
broken fibers become more and more scarce and their influence can be neglected.
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The exponential decay of fiber rupture ahead of the crack tip provides the means
to define the size of the fracture process zone.

A simplified model where the displacement profile along the upper beam is im-
posed is used. The interface opening has an exponential shape: for any abscissa x,

the profile y is given by
Ut)—=x
vio) e (121 8

& =Va(EI/R", (3)
is fixed (E is the Young modulus of the beam, I its transverse geometrical inertia
and k the stiffness of the fibers divided by the spacing in between the fibers), and
U (t) is the time-dependent horizontal displacement of the wedge. As shown in [11],
this simplified model has the same statistical properties as the one where an elastic
beam is connected with elastic-perfectly brittle fibers to the rigid substratum. We
are not going to derive again the complete results obtained by the authors of [11]
who used analytical solutions and analyzed the distribution of avalanches. We will
recall just the main useful results, and in particular the motivations for using a
simplified approach, with a fixed beam profile (2) instead of a deformable one.

In the spirit of continuum modeling (i.e. for length scales much larger than the
fiber separation) and using beam theory, one can write an equation for the mean
deflection of the beam y(x) (also fiber elongation), based on the survival uniform
force that fibers apply onto the beam. This force for elastic fibers would be simply

where the length scale

4

o1y -y ), (W
where

Y (@) = max (y(). (5)

This equation holds for a uniform distribution of critical fiber extension between 0
and 1, and for y < 1, whereas d*y(z)/dz* = 0 for larger y. The boundary condi-
tions are y(oo) = dy(00)/dz = 0, y(0) = 1 and d?y(0)/dz? = 0 (no bending moment
applied at the loading point). The distinction between y and Y is made because
damage is an irreversible process and thus one has to compute the maximum dam-
age having been met by the corresponding section of fibers. (1 —Y(x)) actually
represents the probability of survival of fibers. There is no analytical solution to
this problem. However, since the quadratic nonlinear term becomes unimportant
at a large distance from the origin, the asymptotic shape will have the form

’

y (@) = Ae~/€ cos (w/€ + ), (6)

where ¢ is defined in (3), ¢ is such that cos(¢) = 1/A > 0 in order for y  to satisfy
the boundary conditions, while A is chosen such that

WE L1yt "

ox

is equal to the corresponding value of the exact solution. The oscillatory component
is the one that makes the deflection nonmonotonous and requires the distinction
between y and Y. Omitting this oscillatory term and the nonlinearity, one re-
trieves (2) which is found to yield a correct assumption compared to full numerical
calculations with a deformable beam in the zip model [11].

A typical time variation of total force acting on the beam (see Fig ...) shows a
constant mean value through time with large fluctuation though. There exists vari-
ous definitions of avalanches. The one used in [11] is the most natural. It consists
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FIGURE 4. Avalanche distribution for the simplified model of
imposed beam deformation (eqn (2)) for two different values of £,
namely £ =100 (A) and € = 1000 (x). Scaled variable A/¢" and
scaled distribution ¢ *p(A) are used. The dashed line is guideline
with slope -1.5; continuous line is guideline with slope -2.05.

in fixing a level of force, and computing the distance AU over which the crack
can propagate which is the retrival of the force level. The smallest avalanche is
1 (fiber spacing) and the largest one can be in theory infinite when computed for
a level of force corresponding to the mazimum ever reached but with an infinitely
small probability. The avalanches are characterized by their statistical distribution,
p(AU, F). In order to give a global characterization of the signal without consid-
ering a specific value of the force, one may consider the above avalanches for any
crack length AU such that a fiber would break, and then average over all breaking
events. These avalanches are the “forward” avalanches as described in Fig .... In
order to investigate the effect of & on the size of the FPZ, we shall just consider
that the avalanche distribution follows two regimes with respect to a crossover value
A* of the avalanche size A = AU. In the first regime the statistical distribution of
avalanches is a power law p(A) oc A™ with an exponent 7;. In this regime the force
versus crack length displays correlations similar to a random walk (7 ~ —1.5). In
the second regime, the distribution of avalanches is again a power law but with a
different exponent 75. In this regime, it can be shown that the forces are uncorre-
lated (12 ~ —2) (Figure (4)). The cross over value A* scales the extent of the FPZ.
Same as in Hillerborg’s fictitious crack model [14], it is the length of the FPZ, i.e.
the size beyond which fiber breakage is not influenced by the crack tip.

In Figure (4) the scaled variable A /¢ and the scaled distribution £~ p(A) were
used to show that curves corresponding to different values of fl collapse onto one
master curve. Hence, the size of the fracture process zone scales as EI. More
specifically the size of the FPZ increases as £ increases (Figure (5)).

The Young modulus E of the beam is a positive, monotonically decreasing func-
tion IF of porosity g; E = EoF(g), where Fy is a reference value. Porosity ¢ here is
defined as the ratio of the voids area to the total area of the beam. Furthermore,
the ratio k of the average stiffness of the interface is the same function: k = koF(g),
where kg is a reference value. In the fracture process zone, however, it is not the
average porosity of the interface that is of importance. In the 2D material that
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FIGURE 5. Avalanche distributions for the simplified model of
imposed beam deformation (eqn (2)) for two different values of
¢, namely ¢ = 100 (A) and ¢ = 1000 (x). The size of the
fracture process zone (crossover value) for ¢ = 100 is less than the
respective size for §/ = 1000. The dashed lines are guidelines with
slope -2.05 and the dotted one with slope -1.5, while the continuous
ones mark the crossover values.
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FIGURE 6. Schematic representation of a material as a square of
edge R. The circles of radius r in within represent n? uniformly
distributed voids.

the zip model aims at describing, fracture follows the weakest possible path. Con-
sequently, the porosity of the interface should be less than the average interface
porosity as the crack connects the pores in the material in such a way that the
work of fracture is minimum. In the case of a regular array of voids for instance,
the interface porosity g; along the dotted line in Figure (6) is g; = n2r/R o \/g.
One can generalize this remark and set that g; scales as ¢°, where b will be in prin-
ciple a real number smaller than 1. One can argue also that in the porous material,
the roughness of the crack will increase, thus increasing the fracture energy. In the
zip model, it would be equivalent to change the fiber spacing which is not sensitive
on the avalanche statistics. Hence, submitting stiffnesses accounting for porosity
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into (3), one gets

: EoF(g)I\'/*
“ = (%) ®

Since g < 1 and F is a positive, monotonically decreasing function of g, one can
conclude that F(g)/F(g%) increases with increasing g. It is then obvious from (8)
that increasing porosity yields an increase in & " and consequently an increase in the
size of the FPZ. So the present theoretical model is consistent with experimental
observations on the dependence of the size of FPZ on porosity, as well as with
numerical computations with a non local damage model.

3. Z1p MODEL — CASE OF VISCOELASTIC FIBERS LOADED BETWEEN A RIGID
SUBSTRATUM AND A VISCOELASTIC BEAM

The model described below is a generalization in viscoelasticity of the previous
model developed in [11], (Figure (3)). All fibers are viscoelastic, following a Maxwell
model, and perfectly brittle (i.e. fail suddenly at a given elongation) with the same
stiffness k and viscous coefficient p. However, the strength of the fibers are random
uncorrelated variables in order to incorporate inhomogeneity into the model, same
as in the elastic case. The fibers are loaded in parallel between a rigid support
and a semi-infinite viscoelastic beam of Young modulus FE, transverse geometrical
inertia I and viscous coefficient M. One could as well consider, instead of the rigid
part, another viscoelastic beam even with different properties without any change
in the formulation of the problem and in the qualitative results that will be drawn
eventually.

In notation, the position of the fiber 7 is denoted as x; and its deformation as
yi. The strength of each fiber denoted as y{" is, as mentioned above, a random
uncorrelated variable having a statistical distribution in the interval [0,1]. The
spacing between the fibers is set to 1 (i.e. x;41 — 2; = 1), thus defining a fixed
microstructural size. A normal displacement of 1 is imposed at one point of the
beam, which may move along the interface, as if a wedge is pushed in a double
cantilever geometry (Figure (3)).

The fiber deformation y; is related to force F; as

OF(D) | by Oull)

ot 1 ot

where ¢ denotes the time and 0 denotes partial differentiation with respect to the

indicated variable. It can also be shown without altering the assumptions of beam

theory that the deformation of the beam y(x,t) satisfies a similar equation, if again
the Maxwell model is used,

OF (z,t) FE L 0%y(at)
o Pt =Bl

where F'(z,t) denotes the force acting on the beam and the other parameters are
already defined.

In the spirit of continuum modeling (i.e., for length scales much larger than the
fiber separation) the system defining the mean deflection of the beam y(z,t) reads:

(Mazwell model), 9)

(10)

OF (z,t)/0t + £F(z,t) = EI 9°y(x,t)/0t0x*
OF (,)/0t + £ F(x,1) = —k 8(y(x,t)(1 - Y(x,t)))/&t, (11)
where
Y (2,1) = max (y(gcnf/)) . (12)
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The above system holds for a uniform distribution of fiber extension between 0 and
1, and for y < 1, whereas 9%*y/0x* = 0 for larger y. The boundary conditions are
such that

Vt, y(oo,t) = dy(oco,t)/0x =0, d%y (U(t),t) /0z* =0, (13a)
and for t > tg, y(U(t),t) =1, (13b)

where U(t) denotes the time-dependent horizontal displacement of the wedge along
the z-axis, tg is the time at which the wedge starts moving, and the relation
0%y (U(t),t) /0x®> = 0 implies that no bending moment is being applied at the
loading point, while the initial conditions are

y(z,0) = yo(z) and F(z,0) = Fy(x). (14)

3.1. Simplified version of the model: constant displacement profile. Let
us derive a simplified model, where the displacement profile along the upper beam
is imposed, that serves for analytical study. For this purpose we neglect oscillatory
and non linear term due to Y. 222 This simplifying assumption will allow for closed-
form expressions. In the same spirit as in [11] (Eqns. (4)-(7)), the profile of the
upper beam is derived, but now for the case of a viscoelastic beam connected to a
viscoelastic interface, although the interface still fails for a sufficient elongation.
The governing equations read now

{8F(a:, 1)/0t + LF(x,t) = EI 9°y(x,t)/0t0x"

OF (z,t)/0t + %F(x, t) = —k Oy(x,t)/0t. (15)

In notation, we denote the system (15) with boundary conditions (13) and initial
conditions (14) as (X*).
We eliminate F' in (15) to obtain

0 (0% t) L oyl,t)\ _ k. yt) E 0yt
&(EI oot or )__;EI oot o 19
By separation of variables, i.e. by assuming that
Ay(x,t)/0t = u(t)v(x), (17)

we take from (16)

du(t)/ot —gEI (0*v(z)/02*) — %kv(aj)
u(t)  EI(0%*(x)/0z*) + kv(2)
where « is a positive constant. Indeed, the displacement y(z,t) is a monotoni-
cally increasing function and hence u(t) and Ou(t)/0t are both positives. Solving
the above equation for u and v, and then integrating (17), we find a solution of
system (15)

=a, (18)

y(x,t) = Le=7/E cos(x/€)et
F(x,t) = &LJrO[e*‘T/€ cos(z/€)e, (19)
where
ErEta 1/4
E=Vv2 |4 . (20)
k i + «

By multiplying in (19) with «, taking into account the linearity of (15) (i.e. any
linear combination of solutions is a solution itself), and omitting the oscillatory
term cos(x/€), we end up to another solution of (15)
Y $7t = e(aft*‘f)/ﬁ
{ o ak_(agt-a)/¢ (21)
F(x,t) = 2 elost=2)/8,

k
- «
Ey
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x

FIGURE 7. At time tg, such that e — 1 = a, the vertical dis-
placement of the loading point is equal to 1. The wedge now starts
moving along the z-axis.

Further, for initial conditions

y(2,0) = /¢, Fla,0) = 25 _emwe) (22)
;4—04

(21) is a solution of system (X*) for tg = 0. It represents the problem of the wedge
moving along z-axis under constant velocity v = a&, (Figure (3)). Indeed, for the
deformation y(x,t) at position x to become equal to 1,

yla,t) = elogt=2)/& — 1 (23)

time t = z/ (af) is needed.

It should be noted here that « is a parameter that characterizes the deformation
rate. Although the deformation rate is not constant (Jy(z,t)/0t = e(*6¢=%)/€) the
process can be viewed as quasi-static since for constant £ the total force exerted
on the wedge, which is the sum of all fiber contributions, remains fixed within the
statistical randomness of the fiber strength.

Suppose now that the initial conditions are

(yo(z) = 0, Fo(x) =0), (24)
then

(25)

y(z,t) = ge /8 (e — 1)
F(z,t) = ﬁlfr e~/ (e — 1),

(e

is one solution of system (15). For tg, such that e’® — 1 = «, the above equation
(25) gives

<y(x,to):e—f/5, Flo,to) = % e—f/5>. (26)

% +a
Hence, for ¢ > tg, solution (25) reads

y(z,t) = eUD-2)/€
F(z,t) = 2k oUD-2)/E, (27)

where U(t) =£&1In (ea‘—1 ) U (t) represents the time-horizontal displacement of the

[e3%

wedge for t > to (Figure (7)). In this form it is apparent that (25) satisfies the
boundary conditions (13). Thus (25) is a solution of (£*).
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Although the wedge does not move, in this case, under constant velocity, the
process is still quasi-static since again the total force exerted on the wedge remains
constant within the statistical randomness.

We showed above that, at least for two different initial conditions, namely for
(22) and (24), the system (X*) admits an asymptotic solution of the form

y(x,t) = eWH—2)/¢
{F(it,t) _ ka—ke(U(t)"'”)/g, (see (21) and (27)) (28)
we

These solutions represent the motion of a wedge whose time-dependent horizontal
displacement for ¢t > ¢ is U(t) while before is at rest. To derive the above solutions
(27), we omitted the oscillatory component cos(z/€) and made the assumption
that a fiber breaks when it is strained up to its critical extension y{" which is
statistically distributed in the interval [0, 1]. Although from experimental evidence
we know that in viscoelasticity the threshold cannot be placed in general neither
to the total deformation nor to the elastic deformation. Indeed for low stress levels
although creep strain can be large -even larger than that corresponding to peak
stress for short term loading- there is no significant damage [17]). On the other
hand, if one wishes to model the coupling between creep and damagen the threshold
cannot be set only on the elastic part. Our assumption is justified by the fact that
the loading path is identical for all fibers and thus they are expected to fail at the
same total deformation. Indeed, the elastic deformation y¢! of every fiber remains
through out the process the same fraction of its total deformation 32t

i

ak
v (z,t) = T——yi" (,1). (29)
ha + e
n
This situation corresponds to experimental material tests.

3.1.1. Awalanche distribution. As it is already pointed out, the model described here
is the “viscoelastic” analog of the model in [11]. For matters of convenience, we
refer to the model described here as “viscoelastic” model and to the one developed
in [11] as “elastic” model. Looking now at the parameters ¢ (20) and ¢ (3) that
scale the size of the fracture process zone in the two models respectively, we see
that in the “viscoelastic” model £ depends not only on the stiffness fraction FE/k as
it is for the “elastic” model (£) but on the relaxation times x/p and E/M as well,
and on the parameter a which is related to the rate of deformation. a may also
be seen as a parameter that scales the fracture propagating velocity. Indeed, the
time-horizontal displacement of the wedge U(t) depends on « (see (21) and (27))
and in turn sets the fracture propagating velocity. Indeed Figure (8) shows that the
average distance between the moving wedge and the crack tip remains constant, up
to the randomness of the model, thoughout the total time of computations. Further,
when both the interface and the rest of the material are elastic in the “limit”
(b, M — +00), the “elastic” case can be reproduced, & — f/. This is also the
case (€ — &) when the rate of deformation is too large to allow for creep, i.c.
when o — 400 or when the interaction between the interface and the rest of the
material does not depend on their relaxation times, i.e. when (k/u = E/M). £
can be either greater or less than f/, with the two end members of the spectrum
to be the case of an elastic beam and a viscoelastic interface and the case of a
viscoelastic beam and an elastic interface (Figure (9)). The case of a beam with
relaxation time F/M greater than that k/u of the interface corresponds to the
observed decrease of the size of the fracture process zone in creep experiments
compared to the size of the FPZ in a rate independent process. This should be the
case, i.e. the composite should be more viscous than the interface, in order for our
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average (U'(t)-U(t))

0 2000 4000 6000 8000 10000
time t*

F1GURE 8. The evolution of the averages on the relative displace-
ment of the crack tip, U’ (), minus the relative displacement of
the wedge U (t) in time intervals of 10000 broken fibers, is plotted,
against time ¢*, which is equal to the total time (which corresponds
to 10® broken fibers) divided by the length of the aforementioned
time intervals. Since these averages remain through out the pro-
cess very close to zero, the velocity of the crack tip coincides with
the velocity of the wedge.

model to be realistic; in order for the fibers to remain alive when the matriz material
in between has failed. The fibers may represent for example, based on the work of
Hillerborg et al [14] who studied fracture in concrete with the help of a cohesive
crack, the aggregates that bridge the crack and allow for stress transfer across the
crack. The fiber bundle model developed in this paper mimics the propagation of the
crack front at an interface which ahead of the crack tip collapses onto a line as in
the cohesive crack model. The relazation time of the aggregates is usually less than
that of concrete.

3.2. Model for the complete problem. We now come back to the complete
problem (X), i.e. system (11) with boundary conditions (13) and initial conditions
(14). Our aim is rather to compute the approximate average shape of the deformed
beam. One can see that in system (X) for the damaged interface the quadratic
nonlinear term 9(yY')/0t, which is additional compared to system (X*) for the
undamaged interface, becomes unimportant far away from the boundary =z = 0.
Thus the asymptotic shape can have a similar expression as the one used in the
previous section.

Y (z,1) = A(t)e2/% cos ( —24 QS(t))eo‘t
F(2,1) = 225 A(t)e /% cos ( —zy (;5(2?))6‘“,

m

(30)

where ¢ is such that cos(¢) = 1/A > 0 in order for the solution Yy to satisfy the
boundary condition ' (0,t) = e**, while A is chosen such that

1

oy wt) 1 - ) gor
— €<1+A(t) 1 (1/A(t))> (31)

ox

=0
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FIGURE 9. Avalanche distributions for the simplified model of im-
posed beam deformation (eqn (28)) for different mechanical prop-
erties of beam and fibers. Namely, the avalanche distributions
for elastic beam ET = 12 x 10'° and elastic fibers k = 1, (A), for
viscoelastic beam (EI =12 x 10'°, E/M = 10*) and elastic fibers
k=1, (x), and for elastic beam EI = 12 x 10'° and viscoelastic
fibers (k =1, k/pu=10%), (). The dashed lines are guidelines
with slope -2.05 and the dotted one with slope -1.5.

is equal to the corresponding values of the exact solution of system (3). Omitting
the oscillatory component one retrieves

 (.1) = A(t)e(et=o/e )
F (z,t) = ﬁafaA(t)e(aﬁt—f)/f
For initial conditions
—x ak —x
<y<x70> = AO)e™/5, F(@,0) = g——A(0)e “) : (33)
n

expression (32) solves the problem of a wedge moving along x-axis with a time
horizontal displacement of U*(t) = &(at+1In A(t)). This asymptotic solution has the
same statistical properties with the simplified version of the model (28) derived in
the previous section. Indeed, as it was pointed out in [11], the avalanche distribution
of (32) depends solely on ¢ and it is independent of U*. One may also come to the
same conclusions for the case of initial conditions (24).

4. CONCLUSIONS

A model describing the crack propagation at the interface between a rigid sub-
stratum and a beam has been considered. The interface is modeled using a fiber
bundle model (i.e. using a discrete set elements having a random strength). The dis-
tribution of avalanches, defined as the distance over which the crack is propagated
under a fixed force, has been studied in order to capture correlations of breaking
events in the course of fracture. Fiber breakage kinetics is related to a correlation
length, which sets the size of the fracture process zone that occurs ahead of the
crack due to progressive failure.

Ageing is considered as a variation of porosity of the interface. It corresponds
for instance to diffusion controlled dissolution processes in cementitious materials
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(e.g. calcium leaching). Results obtained in [11] and described in the present paper
show that the size of the fracture process zone is proportional to a length scale.
This length scale increases (so does the size of the FPZ) upon increasing porosity
and the discrete model is consistent with experiment data and numerical analysis.

The creep - fracture interaction has been analyzed in the second part of the pa-
per. A simplified model is proposed, which is very similar to the static model used
in the first part, but with a length scale that depends now on the time dependent
characteristics of viscoelastic fibers and viscoelastic beam. It has been found that
the size of the process zone depends on the fracture propagating velocity and on the
distribution of forces in the interface due to the interaction between the interface
and the rest of the specimen. The observed decrease of the size of the process zone,
in creep experiments, compared to the size of the process zone in a static process,
is justified by the proposed model for an interface that is less viscous than the rest
of the material. This condition is realistic since the fibers should remain alive when
the matriz material in between has failed, thus the proposed model is consistent with
experimental evidence.
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