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Abstract

The conditions for localization in a material described by a non-local damage-based

constitutive relation coupled with a Kelvin type creep relation are derived in a

closed form. The inception of a localized mode is considered as a bifurcation into
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a harmonic mode. The criterion of bifurcation is reduced to the classical form of

singularity of a pseudo acoustic tensor ; this tensor involves the ratio between the

elasto-damage strain and the total one at the inception of localization and the wave-

length of the bifurcation mode through the Fourier transform of the weight function

used in the definition of non-local damage. A geometrical approach was adopted to

analyze localization. The proposed coupled model preserves the properties of lo-

calization limiters; the minimum wavelength of the localization modes cannot be

zero. This wavelength increases when the material parameter α (0 ≤ α ≤ 1), which

is the fraction of creep strain entering into the evolution of damage, is decreasing.

Moreover, the normal n to the localization band depends only upon the elasto-

damage state of strain. Under some conditions on the growth of the yield function

of damage, the wavelength decreases as the creep strain increases. The proposed

model fails to predict creep rate-effects when damage is supposed, as it is common

practice, to be driven solely from the elastic release energy (α = 0).
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1 Introduction

The growth of micro-cracks in progressively fracturing rate-independent ma-

terials is a fairly distributed process which is associated with stable material

response. For certain stress trajectories, however, a different deformation mode

may prevail, consisting of formation of discrete failure planes (macro-cracks).

In the latter case, the mechanical response as observed at the macroscale

becomes, in general, unstable. The inception of a localized mode may be con-

sidered as a bifurcation problem related to the loss of positive definiteness of

the tangent material stiffness operator governing the homogeneous deforma-

tion (Rudnicki and Rice, 1975; Rice, 1976). In mathematical terms, the elliptic

character of the set of partial differential equations governing equilibrium is

lost (ill-posedness of the related boundary value problem). This result was de-

rived for the linearized rate equation problem, considering what is commonly

denoted as a linear comparison solid (Hill, 1959). Loss of ellipticity may result

in a discontinuous rate of deformation and constant total energy consumption.

Path stability considerations indicate that this particular solution is expected

and consequently failure occurs without energy dissipation (Bažant, 1988). In

dynamics, the situation is similar. The hyperbolic differential equations of mo-

tion may become parabolic or elliptic and consequently the initial-boundary

value problem ill-posed (Hadamart, 1903).

Non-conventional constitutive relations, called localization limiters, based on
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sophisticated techniques that enrich the standard continuum, have been adopted

by many authors to eliminate the deficiencies caused by ill-posedness of bound-

ary value problems. A wide class of localization limiters is based on the as-

sumption that the stress of a material point is not only determined by the

history of strain at this point but also by interactions with other material

points (non-local integral continuum). The distance over which interactions

are important is related to an internal length that prevents energy dissipation

to become zero as failure occurs (Simo and Fox, 1989; Bažant and Pijaudier-

Cabot, 1988). Another class of localization limiters relies on enrichment by

terms that contain gradients of the state variables. Some of these models deal

with strain gradients, i.e. higher-order gradients of the displacement field. In

the above theories the rate-independent nature of the material model is pre-

served. Incorporation of rate-dependent viscous terms can limit localization

due to softening (Needleman, 1988; Loret and Prevost, 1990; Dubé et al.,

1996). The size of the localization zone, however, is controlled by this rate ef-

fect and it may not be possible to fit, with the same expression of the evolution

of damage or viscoplastic strains, the rate effect on the stress-strain response

and the width of the localization zone that is consistent with experimental

observations.

In this contribution, attention is focused on concrete structures and we are

interested in predicting the failure due to localization of damage of those

structures. In common practice, it is usually assumed for concrete that lin-
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ear viscoelasticity takes place for low stress levels where the instantaneous

mechanical behavior is elastic. In the contrary, for high stress levels the lin-

earity hypothesis fails. Bazant and co-workers (Bažant, 1993) have shown that

creep at high stress levels cannot be captured merely by a non-linear general-

ization of viscoelastic stress-strain relation. Experimental evidence associate

creep strains at high stress levels to microcracking nucleation and growth,

i.e. to damage (Rüsch was the first one to conduct such experiments (Rüsch,

1960)). As recalled by Bazant and Planas (Bažant and Planas, 1998), time-

dependent fracture of concrete is caused by viscoelasticity of the material, and

(or) breakage of bonds in the fracture process zone. The difference between

these two effects can be observed on structural responses and size effect. In

the range of quasi-static loading, that is, in the absence of inertia forces and

wave propagation effects, viscoelasticity in the bulk (linear creep) causes an

increase of the bearing capacity for increasing loading rates, with a decreasing

peak displacement. For geometrically similar structures of different sizes and

mode I crack propagation, the set of data points corresponding to the nomi-

nal stresses at failure shifts toward increasing brittleness on the size effect plot

(Bažant and Planas, 1998), upon a decrease of the loading rate. It means that

the set of data points are getting closer to the LEFM criterion (Figure (B.1)).

The size of the fracture process zone decreases (see e.g. (Haidar et al., 2005)).

This shift has been observed experimentally by Bazant and Gettu (Bažant and

Gettu, 1992; Bažant and Li, 1997), as shown in Figure (B.1). On the other

hand, if the rate dependence is caused only by bond breakages, the peak loads
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correspond to increasing displacements and there is no shift of this kind on

the size effect plot. Note that ductility and brittleness are defined here, and

in the remaining, as the position of the experimental data with respect to the

two asymptotic criteria: strength of materials and LEFM (see Figure (B.1)).

Ductility increases when the set of data points shift to the left and brittleness

increases when they shift to the right.

[Fig. 1 about here.]

Many writers have used coupled models to capture mechanical, viscoelastic

and non-linear instantaneous behaviors. In these models, linear viscoelasticity

is coupled to a rate independent elasto-plastic model (de Borst et al., 1993),

to a smeared crack model (Rots, 1988) or to a damage model (Mazzotti and

Savoia, 2003). The aim of this paper is to investigate the condition of local-

ization for such a coupled model and to see the influence of creep on failure.

Since the influence of viscoelasticity on the strength of concrete structures

may be of importance (decrease of bearing capacity, increase of brittleness)

it is important for engineering practice to check that available constitutive

models are capable of predicting such effects.

In the present study we will consider as an example a viscoelastic model cou-

pled to rate independent damage inspired from Omar et al. (Omar et al.,

2004), in which the relationship between the effective stress, defined in a stan-

dard way according to continuum damage (Lemaitre and Chaboche, 1985),
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and the strain follows a Kelvin chain. The analysis follows the method used

by Benallal (Benallal, 1992) for thermo-mechanical problems and Pijaudier-

Cabot and Benallal (Pijaudier-Cabot and Benallal, 1993) for the case of a rate

independent non-local model. This paper is organized as follows: In Section 2,

the creep and damage models are briefly recalled and the rate formulation

for creep-damage model is derived based on the small strain assumption. In

Section 3, the strain localization analysis is performed. The rate constitutive

relations for the linear comparison solid, as well as the bifurcation conditions

under the assumption that the solid considered is either infinite or at least

large enough so that boundary layers effects can be neglected, are derived.

Moreover, the dependence of the admissible wavelength on the parameters

of constitutive law and on the state variables is discussed. An illustration is

presented in the case of a uniaxial response in Section 4.

2 Constitutive relation

2.1 Creep model

Consider first a quasi-brittle material, such as concrete, exhibiting non-ageing

linear viscoelasticity and characterized by the uniaxial compliance function

J(t, t
′

), representing the uniaxial strain at age t caused by a unit stress enforced

at any age t
′

(the linearity hypothesis agrees very well with test results in which

no strain reversals have taken place, in the case of basic creep, and for stress
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levels less than 40% of the strength limit). The assumption of a non-ageing

material will be used throughout this paper for the sake of simplicity, and

causes J(t, t
′

) to be a function of just the time lag (t− t
′

).

By approximating the compliance function by a Dirichlet series

J(t, t
′

) ' 1

E
+

N
∑

i=1

1

Ei

[

1 − exp

(

−t− t
′

τi

)]

, (1)

where τi, i = 1, 2, ....N , are fixed parameters called retardation times, E is

Young’s modulus and Ei, i = 1, 2, ...N , are age-independent moduli which

can be determined by least-square fitting to the ”exact” compliance function,

it can be proved that

εtot(t) = εel,d(t) +
N
∑

i=1

εcri (t), i = 1, 2, ...N, (2)

where the strains εel,d and εcri , i = 1, 2, ...N, are governed by the following

equations

Eεel,d(t) = σ(t), (3)

and

Eiε
cr
i (t) + τiEiε̇

cr
i (t) = σ(t), i = 1, 2, ...N. (4)

The total stress σ in (4) is expressed as the sum of two terms. The first term,

Eiε
cr
i , corresponds to the stress of an elastic spring of stiffness Ei. The second

term, τiEiε̇
cr
i , is the stress generated by the strain rate ε̇cri in a linear dashpot of

viscosity ηi = τiEi. This means that in the non-ageing case the approximation

of the compliance function by the Dirichlet series corresponds to a Kelvin
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chain with constant properties of individual elements. The initial conditions

for εcri are εcri (0) = 0.

Using (2), (3) and (4) , we finally obtain the rate form

σ̇ = Eε̇tot − E
N
∑

i=1

(

σ

τiEi
− εcri

τi

)

. (5)

A generalization of this uniaxial stress-strain constitutive relation is performed

under the simplifying assumption that the Poisson ratio for creep is approx-

imately time-independent and about the same as the elastic Poisson ratio ν.

Thus, in view of the assumed isotropy and based on the principle of superpo-

sition, the following relation holds:

ε
tot(t) = C−1

ν J(t, t
′

)σ(t
′

) + C−1
ν

∫ t

t′
J(t, τ)dσ(τ), (6)

where σ(t) is the column matrix of stress at time t, εtot(t) is the column matrix

of engineering strain components, and

C−1
ν =







































1 −ν −ν 0 0 0

1 −ν 0 0 0

1 0 0 0

2 (1 + ν) 0 0

sym. 2 (1 + ν) 0

2 (1 + ν)







































,

is the unit elastic compliance matrix, corresponding to Young’s modulus E = 1

(for a review see (Bažant, 1993)) and leads to the following incremental form

σ̇ = ECν ε̇
tot + ECν

N
∑

i=1

εcr
i

τi
− E

N
∑

i=1

σ

τiEi

. (7)
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2.2 Non-local damage model

We will use in the following the scalar continuum damage model proposed by

Pijaudier-Cabot and Bazant (Pijaudier-Cabot and Bažant, 1987). The descrip-

tion of the model is that of Pijaudier-Cabot and Benallal (Pijaudier-Cabot

and Benallal, 1993). Despite its simplicity (namely the fact that the model

response is the same in tension and compression), this model bears the essen-

tial characteristics pertaining to a non-local integral model. The constitutive

relation reads:

σ = (1 −D)ECνε
el,d, (8)

where D is the damage variable and εel,d is the (elastic) strain.

The growth of damage is defined by a loading function f

f(ȳ, D) =
∫ ȳ

0
F (z)dz −D, (9)

where F is a function deduced from experimental data and ȳ(x) is the average

energy release rate due to damage at point x of the solid

ȳ(x) =
∫

V
ψ(x − s)y(s)ds. (10)

V is the volume of the structure, ψ(x− s) is a normalized weighting function

and y(s) is the energy release rate due to damage at point s defined by

y(s) =
1

2
ε

el,d(s)ECνε
el,d(s). (11)

The evolution law is prescribed according to the standard format of non-
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associated irreversible processes:

Ḋ = φ
∂g

∂ȳ
, (12)

with the classical Kuhn-Tucker conditions φ ≥ 0, f ≤ 0 and φf = 0. The dot

over a variable indicates differentiation with respect to time, g is the evolution

potential controlling the growth of damage and φ is the damage multiplier. In

this paper for the sake of simplicity, we assume g = ȳ.

The rate form of (8) reads

σ̇ = (1 −D)ECν

(

ε̇
el,d − Ḋ

1 −D
ε

el,d

)

. (13)

2.3 Rate-type creep-damage law

The proposed rate-type formulation of a viscoelastic damageable non-ageing

continuum assumes a deteriorating Young’s modulus E. In fact, the effective

stress σ
t is defined first according to:

σ
t =

σ

1 −D
(14)

Then, it is assumed that the relationship between the effective stress and

the total strain follows a linear viscoelastic model. This is a rather classical

approach, inspired from Lemaitre and Chaboche (Lemaitre and Chaboche,

1985), which turns out to induce a decrease of the Young’s modulus in the
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constitutive relations in our case (without affecting the characteristic times in

the Kelvin chain). Consequently, we obtain the following stress-strain relation

σ̇ = (1 −D)ECν ε̇
tot − ḊECνε

el,d + (1 −D)ECν

N
∑

i=1

εcr
i

τi
− (1−D)E

N
∑

i=1

σ

τiEi

.

(15)

The above model in tensorial notation reads

σ̇ = (1−D)C : ε̇tot − ḊC : εel,d +(1−D)C :
N
∑

i=1

εcr
i

τi
− (1−D)E

N
∑

i=1

σ

τiEi

, (16)

where the colon denotes the contracted tensorial product, C is the elastic

material stiffness tensor, and by X we denote the tensorial transcription of the

engineering matrix X.

The present model is also based on the assumption that only a fraction of

the energy release rate due to creep contributes to the damage evolution with

time. The motivation for introducing this parameter into the constitutive law

is that for low stress levels although creep strain can be large (even larger than

that corresponding to peak stress for short term loading) there is no significant

variation of the elastic modulus; that is no significant damage (Mazzotti and

Savoia, 2001). Hence, we assume that the function y(s) defined in (11) is now

equal to

y(s) =
1

2

(

σt(s) : εel,d(s) + ασt(s) :
N
∑

i=1

εcr
i (s)

)

, (17)

or equivalently:

y(s) =
1

2

(

εel,d(s) : C : εel,d(s) + αεel,d(s) : C :
N
∑

i=1

εcr
i (s)

)

, (18)
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where the creep strain is

N
∑

i=1

εcr
i = εtot − εel,d, (19)

and the coefficient α is such that 0 ≤ α ≤ 1.

Consider now an initial state of equilibrium at time t0 denoted by the state

variables εel,d
0 and D0. The rate constitutive relation describing the behavior

of the material from this state is

σ̇ = (1−D0)C : ε̇tot−ḊC : εel,d
0 +(1−D0)C :

N
∑

i=1

εcr
i0

τi
−(1−D0)E

N
∑

i=1

σ0

τiEi
. (20)

3 Strain localization analysis

3.1 Equations of motion

The equations of motion are a set of non-linear integro-differential equations

since the constitutive relations themselves are non-linear. Upon linearization of

the equation of motion about the initial state
(

εtot
0 , εel,d

0 , D0

)

, the momentum

equations become

divσ̇(x) = ρ
∂2v

∂t2
, (21)

where v is the time derivative of the perturbation applied to the initial state.

Equations (21) are still non-linear due to the constitutive relations. Lineariza-

tion is now performed under the assumption ḟ = 0. This assumption is clas-

sical in the analyses of localization. The solid that follows such a constitutive
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relation is called linear comparison solid (Hill, 1959). Under this assumption

and using the damage law (12) and equation (18), the equations of motion

become

div



 (1 −D0) C : ε̇tot − C : εel,d
0 F (ȳ0)

∫

V

1

2
ψ(s)

(

2εel,d
0 (x + s) : C : ε̇el,d(x + s)

+ α
(

εel,d
0 (x + s) : C :

M
∑

i=0

ε̇cr
i (x + s) +

M
∑

i=0

εcr
i0

(x + s) : C : ε̇el,d(x + s)
)

)

d(s)

+ (1 −D0)C :
N
∑

i=1

εcr
i0

τi
− (1 −D0)E

N
∑

i=1

σ0

τiEi



 = ρ
∂2v

∂t2
. (22)

The initial state of deformation and damage is assumed homogeneous through

out the solid of volume V . The volume of the solid is assumed to be large

enough so that boundary layer effects introduced by spatial averaging can be

neglected.

Let us now consider the propagation of a harmonic wave in the direction

defined by n

v = Ae−iξ(n.x−ct), (23)

where ξ is the wave number, c is the phase velocity, A is the amplitude of the

perturbation and i is the imaginary constant such that i2 = −1. The resulting

rate of deformation is

ε̇tot = −1

2
iξ (A ⊗ n + n ⊗ A) e−iξ(n.x−ct), (24)

where ⊗ denotes the tensorial product.
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This harmonic perturbation is admissible if it satisfies the rate equation of

equilibrium. Under the assumption that the state variables εel,d
0 and D0 are

constant throughout the solid, taking into account (19) and noticing that ε̇cr
i

defined by

ε̇cr
i =

σ0

τiEi

− εcr
i0

τi
(25)

depends on the initial state only and is homogeneous over the solid, the fol-

lowing relation is obtained:

(

n.(1 −D0)C.n

−ψ̄(ξn)F (ȳ0)
(

n.
1

2

(

2−α
)

C : εel,d
0 ⊗εel,d

0 : C.n+n.
1

2
αC : εel,d

0 ⊗εtot
0 : C.n

)

)

.A

= ρc2A, (26)

where ψ̄(ξn) is defined by

ψ̄(ξn) =
∫

V
ψ(s)e−iξn.sd(s). (27)

In order to obtain (26), one must substitute (23), (24) and (25) into (22).

Since the solid is assumed large, ψ̄(ξn) reduces to the Fourier transform of the

weighting function. By considering the weighting function as isotropic, ψ̄(ξn)

becomes independent of the direction n, hence ψ̄(ξn) ≡ ψ̄(ξ). Equation (26)

can be written equivalently as an eigenvalue problem

[n.H∗.n − ρc2I].A = 0, (28)
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where I is the second order identity tensor and

n.H∗.n = n.(1 −D0)C.n

− ψ̄(ξn)F (ȳ0)
(

n.
1

2

(

2 − α
)

C : εel,d
0 ⊗ εel,d

0 : C.n

+ n.
1

2
αC : εel,d

0 ⊗ εtot
0 : C.n

)

. (29)

Equation (26) admits non-trivial solutions if and only if

det[n.H∗.n − ρc2I] = 0. (30)

3.2 Statics - Solutions at the bifurcation point

Condition

det[n.H∗.n] = 0, (31)

is similar to the localization condition in a non-local continuum derived by

Pijaudier-Cabot and Benallal (Pijaudier-Cabot and Benallal, 1993). Now, we

restrict our analysis for the sake of simplicity to the uniaxial case or to loading

paths such that

εel,d
0 = κ0ε

tot
0 , (32)

where κ0 is a real such that 0 ≤ κ0 ≤ 1 (Appendix A). Using (32), we obtain

after some algebra

1

2

(

(2 − α)κ2
0 + ακ0

)

n.C : εtot
0 . (n.C.n)−1 .εtot

0 : C.n =
(1 −D0)

ψ̄(ξn)F (ȳ0

. (33)
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Let now,

ψ(x) = ψ0 exp

(

−‖x‖2

2l2c

)

, (34)

where lc is the internal length of the non-local continuum and ψ0 is a normal-

izing factor. The Fourier transform of the above is

ψ̄(ξn) = exp

(

−ξ
2l2c
2

)

. (35)

Solving (31) consists in finding the normal n and the wavelength 2π/ξ satis-

fying this equation. A geometrical approach proposed by Benallal (Benallal,

1992) for the analysis of localization phenomena in thermo-elasto-plasticity is

used here. Under the assumption of constant Poisson ratio

C ≡ λδklδmn + µ (δkmδln + δknδlm) , (36)

where

λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
, (37)

are the Lamé constants. One then gets

(n.C.n)−1 =
I

µ
− λ+ µ

µ (λ+ 2µ)
n ⊗ n, (38)

C : εtot
0 .n = λ tr(εtot

0 )n + 2µεtot
0 .n, (39a)

n.C : εtot
0 .n = λ tr(εtot

0 )n + 2µn.εtot
0 .n. (39b)
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Substitution of (38), (39) into (33) yields after some algebra

4µ(E tot)2 +
4µ2

λ+ 2µ

(

e
tot +

λ

2µ
tr(εtot

0 )

)2

=
1 −D0

1
2

(

(2 − α)κ2
0 + ακ0

)

ψ̄(ξ)F (ȳ0)
,

(40)

where we have set

e
tot = n.εtot

0 .n, (41a)

(E tot)2 =
(

εtot
0 .n

)

.
(

εtot
0 .n

)

−
(

n.εtot
0 .n

)2
. (41b)

E and e are respectively the tangent and normal components of the total strain

vector in the direction n. Therefore, the initial state of deformation εtot
0 maps

the (e, E) plane into the Mohr circles of deformation for all the directions n

and the bifurcation criterion maps into a set of ellipses in this plane. The size

of the ellipses increases as the wave number ξ increases. Before localization

the smallest possible ellipse contains the largest Mohr circle. Bifurcation will

occur for the first time when the smallest possible ellipse is tangent to the

largest Mohr circle of deformation (the smallest possible ellipse corresponds

to ψ̄(ξ) = 1 or equivalently to ξ = 0). The normal vector n can be calculated

geometrically from standard Mohr analysis (see Figure (B.2). After the first

occurrence of bifurcation the ellipse will intersect the largest Mohr circle. In

this case there is a finite set of normal vectors n such that bifurcation is

possible. However, each vector n corresponds to the same ellipse whose radius

is defined by ξ (Figure (B.3)). The wavelength corresponding to each vector
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n is unique and it is obtained after (40)

l(n) =
2π

ξ
= πlc

√
2

/

√

√

√

√

√log

(

(

4µ(E tot)2 +
4µ2

λ+ 2µ

(

etot +
λ

2µ
tr(εtot

0 )
)2
) 1

2

(

(2 − α)κ2
0 + ακ0

)

F (ȳ0)

(1 −D0)

)

.

(42)

This wavelength is related to the width of the localization zone.

[Fig. 2 about here.]

The above relation can be written also in terms of the elasto-damage strain

l(n) =
2π

ξ
= πlc

√
2

/

√

√

√

√

√log

(

(

4µ(Eel,d)2 +
4µ2

λ+ 2µ

(

eel,d +
λ

2µ
tr(εel,d

0 )
)2
)

1
2

(

2 − α + α
κ0

)

F (ȳ0)

(1 −D0)

)

.

(43)

[Fig. 3 about here.]

Creep effect on the width of the localization zone

In order to study the effect of creep on the width of the localization zone, we

consider two different load histories. The state variables will be denoted with

the index sc for the first one, and with index mc for the second one, in which

the ratio κ0 of elasto-damage to total strain is smaller
(

κsc
0 > κmc

0

)

.

We assume that at the bifurcation points of the two different histories, the
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elasto-damage strain is the same ε
(el,d),mc
0 = ε

(el,d),sc
0 , an assumption that yields

Dmc
0 > Dsc

0 . Moreover, since the initial elasto-damage strain is the same for

both loading paths one may prove that the normal n will be the same as well

(Appendix B). Considering α constant and from (43), the wavelengths of the

localized mode are such that
(

l
mc(n) < l

sc(n)
)

as long as

F (ȳmc
0 )

1 −Dmc
0

>
F (ȳsc

0 )

1 −Dsc
0

, (44)

or equivalently, in account of (9), as long as

d logF

dȳ
≤ −1. (45)

Hence, provided the above conditions are fulfilled, the larger the creep strain

at constant total strain, the smaller the wavelength of the localized mode. This

decrease of wavelength provides also a decrease of the fracture process zone,

an increase of brittleness and a shift on the size effect plot for geometrically

similar specimens that is consistent with the experimental results in Fig.(B.1).

Role of α on the width of the localization zone

The role of α, defined in Eqn. (18) is quite straightforward. If we replace

α in (43) by α
′

such that α
′ ≤ α, then we conclude that the width of the

localization zone increases. In other words, if the contribution of the creep

strain in the growth of damage decreases, the wavelength of the localized

mode increases. This produces an increase of the size of the fracture process
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zone and an increase of ductility. For geometrically similar specimens, this

increase of ductility is materialized by a shift of the experimental data point

towards a strength criterion, to the left.

When damage depends solely upon the elastic energy (α = 0), the bifurcation

criterion becomes a function of only the elastic strain and creep effects can no

longer be reproduced.

4 Numerical example

Consider the uniaxial initial state of strain

εtot
0 =















εtot
01 0 0

0 −νεtot
01 0

0 0 −νεtot
01















.

The critical wavelengths can be obtained when the ellipse corresponding to

the above initial state of deformation is tangent to the largest Mohr circle

leading to the localization criterion

E(1 + ν)

2

(

εtot
01 sin(2θ)

)2

+
E(1 − 2ν)(1 + ν)

4(1 − ν)

(

1 + cos(2θ)
)2

(εtot
01 )2

− (1 −D0)
1
2

(

(2 − α)κ2
0 + ακ0

)

F (ȳ0)ψ̄(ξ)
= 0, (46)
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where the angle θ defines the normal n = (cos θ, 0, sin θ) to the localization

band and satisfies

tan2(2θ) =
2E(1−ν)(1+ν)

1−2ν

(

(2 − α)κ2
0 + ακ0

)

F (ȳ0)ψ̄(ξ)(εtot
01 )2 − (1 −D0)

(1 −D0) − E(1 + ν)
(

(2 − α)κ2
0 + ακ0

)

F (ȳ0)ψ̄(ξ)(εtot
01 )2

, (47)

as it can be proved with Mohr analysis.

[Fig. 4 about here.]

We particularize function F , for illustration purposes, as

F (ȳ) =
b1 + 2b2(ȳ − y0)

(

1 + b1(ȳ − y0) + b2(ȳ − y0)2
)2 , (48)

where the numerical values of the model parameters are E = 32.000 MPa ,

ν = 0.2, b1 = 605 MPa−1, b2 = 5.42 104 MPa−2 and y0 = 6 10−5 MPa.

Damage is then given by

D(ȳ) = 1 − 1

1 + b1(ȳ − y0) + b2(ȳ − y0)2
. (49)

As we have an infinite body ȳ = y = 1
2

(

1 − α + α/κ0

)

E
(

εtot
01

)2
. Function

F satisfies criterion (45) for y ≤ ycr = 2.995. ycr yields the damage value

Dcr w 0.999998 (Figure (B.4)).

[Fig. 5 about here.]

Solving (47) for ψ̄(ξ) and substituting in (46) yields

E(1 − 2ν)(1 + ν)

4(1 − ν)

(

1 + cos(2θ)
)2 − 4

E(1 − ν)(1 + ν)

1 − 2ν
cos2(2θ)

+
5E(1 + ν)

2
sin2(2θ) = 0. (50)
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Thus, the direction of the normal n to the localization band does not depend,

in the uniaxial case, upon the state of strain or on the damage or on the

yield function of damage but only upon the elastic parameters of the mate-

rial. Solving (50), one gets θ = π/4. This angle corresponds to a direction of

localization in the (x1, x2) or (x1, x3) planes.

[Fig. 6 about here.]

[Fig. 7 about here.]

Figure (B.5) shows the admissible wavelengths normalized to the character-

istic length lc as a function of the initial state of damage D0 for a uniaxial

time-independent process (α = 0 and κ0 = 1). In Figure (B.6) the normalized

admissible wavelengths of the proposed model at the initial uniaxial elasto-

damage state of strain εel,d03 = εel,d02 = −νεel,d01 = −0.00032ν are plotted against

the initial state of damage D0 for α = 0.2. We see that as D0 increases, i.e.

as the creep strains increase, the admissible wavelengths decrease. Moreover,

when the parameter α decreases the normalized admissible wavelengths in-

crease (Figure (B.7)). In Figure (B.7) the admissible wavelengths are plotted

against the initial state of total strain εtot
03 = εtot

02 = −νεtot
01 = −0.00032ν be-

cause against the initial damage D0 the difference is negligible.

23



5 Conclusion

The localization properties of a rate-dependent material described by a non-

local damage-based constitutive relation coupled to linear viscoelasticity has

been investigated. The localization condition is similar to that of the rate-

independent underlying damage model. The normal n to the localization band

at the onset of bifurcation depends only on the state of elastic strain and not

on the creep strain.

The proposed coupled model preserves localization limiting properties, same

as in the rate independent case (Pijaudier-Cabot and Benallal, 1993) and it

is consistent with the effect of creep observed experimentally. Namely, the

minimum wavelength of the localization modes cannot be zero in accordance

with energy considerations and the admissible wavelengths decrease when the

creep effect (strains) increases, at least under a certain condition on the growth

of the yield function of damage. This last property should induce a variation

on size effect data for geometrically similar specimens: a shift in the size effect

plot towards increasing brittleness for an increasing creep strain. Moreover,

when the fraction of creep strain which contributes to damage is decreasing,

a shift on the size effect plot occurs towards the left hand side, i.e. towards

the strength criterion and an increase of ductility is expected. The model fails

to predict the influence of creep on the wavelength of localized modes when

damage is considered to depend solely upon the elastic energy.
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Such analytical results are expected to be recovered in computational fail-

ure analyses. They are expected to have important practical consequences:

as creep develops, the residual capacity of a given structure may decrease;

the structure is becoming more brittle, safety margins may be reduced. This

of course should hold for severely loaded concrete structures, where damage

interacts with creep. It may typically occur in some regions of prestressed

concrete structures subjected to stress concentrations.

A

Consider a time-independent process until the column matrix stress takes

the value σind and then the loading state remains fixed for the time interval

[tind, t0], where t0 is the time at which bifurcation occurs. For this loading

path relations (4) would give

ε
cr
0 =

N
∑

i=1

ε
cr
i0

=
N
∑

i=1

1 − e−t/τi

Ei

C−1
ν σind. (A.1)

Since

ε
el,d
0 =

1

(1 −D0)E
C−1

ν σind, (A.2)

one may conclude that (32) holds true for

κ0 =
1/
(

(1 −D0)E
)

1/
(

(1 −D0)E
)

+
∑N

i=1

(

1 − e−t/τi

)

/Ei

. (A.3)

In the same spirit, relation (32) can be proved for more general loading

paths for which the loading state is either fixed or changes through a time-
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independent process.

In the uniaxial loading now, at the onset of bifurcation, relation (6) reads





εtot
01 −νεtot

01 −νεtot
01 0 0 0







T

= aC−1
ν





σ01 0 0 0 0 0







T

, (A.4)

that is

ε
tot
0 = C−1

ν aσ0, (A.5)

where for simplicity we assumed t
′

= 0 and a is a number such that

aσ0 =
∫ t0

0
J(t, τ)dσ(τ).

Moreover,

ε
el,d
0 =

1

(1 −D0)E
C−1

ν σ0, (A.6)

holds true. Using now (A.5) and (A.6), we deduce (32) with κ0 = 1/
(

(1 −

D0)Ea
)

.

B

The normal n = (cos θ, 0, sin θ) to the localization band can be obtained when

the ellipse corresponding to the initial state of strain εtot
0 is tangent to the

largest Mohr circle leading to system

tan2(2θ) =
2(λ+ 2µ)

(

(2 − α)κ2
0 + ακ0

)

F (ȳ0)ψ̄(ξ)(εtot
01 − εtot

03 )2 − (1 −D0)

(1 −D0) − 2µ
(

(2 − α)κ2
0 + ακ0

)

F (ȳ0)ψ̄(ξ)(εtot
01 − εtot

03 )2
,

(B.1)
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4µ

(

εtot
01 − εtot

03

2
sin(2θ)

)2

+
4µ2

λ+ 2µ

(

εtot
01 + εtot

03

2
+
εtot
01 − εtot

03

2
cos(2θ)+

λ

2µ
tr(εtot

0 )

)2

=
1 −D0

1
2

(

(2 − α)κ2
0 + ακ0

)

ψ̄(ξ)F (ȳ0)
. (B.2)

Solving (B.1) for ψ̄(ξ) and substituting into (B.2) yields

4µ

(

εtot
01 − εtot

03

2
sin(2θ)

)2

+
4µ2

λ+ 2µ

(

εtot
01 + εtot

03

2
+
εtot
01 − εtot

03

2
cos(2θ)+

λ

2µ
tr(εtot

0 )

)2

= 4
λ+ 2µ+ µ tan2(2θ)

1 + tan2(2θ)
(εtot

01 − εtot
03 )2. (B.3)

If (32) is satisfied, the above equation (B.3) reads

4µ

(

εel,d01 − εel,d03

2
sin(2θ)

)2

+
4µ2

λ+ 2µ

(

εel,d01 + εel,d03

2
+
εel,d01 − εel,d03

2
cos(2θ) +

λ

2µ
tr(εel,d

0 )

)2

= 4
λ+ 2µ+ µ tan2(2θ)

1 + tan2(2θ)
(εel,d01 − εel,d03 )2. (B.4)

It is then obvious from (B.4) that, as long as (32) holds true, the normal n

remains fixed for fixed initial elasto-damage strain εel,d
0 .
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different times to peak (after Bažant and Gettu 1992)
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