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Reducing Sensitivity Analysis Time-Cost of
Compound Model

Benoit Delinchant, Frédéric Wurtz, and Eric Atienza

Abstract—This paper deals with the sensitivity analysis of com-
pound models in the case of gradient based optimization. Multidis-
ciplinary optimization (MDO) may use time-consuming analysis
such as the finite-element method (FEM) resolution, their sensi-
tivity analysis must then be managed efficiently in order to limit
their evaluations. A composition model implementation based on
differential propagation mechanism has been used. Different solu-
tions of sensitivity analysis based on forward finite difference are
proposed at the level of each inner model. These solutions have
been implemented for the design of a transformer, using mixed
modeling (FEM + analytic). It has led to a reduction by a factor
of two then three of an optimization iteration time cost.

Index Terms—Finite difference, mixed model, optimization, sen-
sitivity computation, transformer design.

I. INTRODUCTION

OPTIMIZATION of numerical models is a great chal-
lenge for the computer-aided design, but has still to

be improved. The cost-fidelity tradeoff has to be managed to
face the increasing design variable number and disciplinary
coupling. System design leads engineers from single-analysis
optimization to multidisciplinary optimization (MDO). An
MDO is based on a compound model which can be seen as
black boxes composition. A black box (called inner model in
the following) can be a parameterized finite-element method
(FEM) resolution as well as an analytical model.

Two pieces of information are needed to perform an optimal
gradient-based sensitivity analysis of a compound model. First
is composition information (what is the information exchanged
between inner models). Second is the global sensitivities which
will be studied (depending on optimizable inputs, constraints
outputs and objective function). If both are known, a global sen-
sitivity equation [1] can be used to perform an optimal-sensi-
tivity analysis. Unfortunately, some optimization structures do
not necessarily know both, as the one used in this paper.

When composing models based on different analysis soft-
ware, we are facing with the implementation of the glue, which
enables communication with other models and with the opti-
mization software. This glue is a generally hand-made computer
program because it depends on connected computing models,
but it may be automated for specified communication protocol
like file exchanges [5].
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Sensitivity evaluations being time consuming, several
methods may improve the global analysis. Coding sensitivity
at the level of inner models allows specific sensitivity analysis,
like adjoin field technique for magnetic field problems solving
[2]. However, in the case of compound model, an efficient
analysis is not sufficient if it is called unnecessarily. Improving
global time cost of compound model sensitivity analysis at the
level of the glue has then to be considered.

The paper highlights some generic implications of model
composition for sensitivity analysis. It proposes several tech-
niques, trying to reduce the analysis number for each inner
model. Some results are then presented, corresponding to the
sizing (with an optimization software: Pro@Design)1 of a
model composed of an FEM resolution (Flux2D2 software)
and analytical equations.

II. SENSITIVITY PROPAGATION INSIDE A COMPOUND MODEL

As studied in [3], two kinds of sensitivity propagation mecha-
nisms can be considered to build global sensitivities. A forward
mode crosses the dependency graph from inputs to outputs. This
graph is made of nodes, which are inner models, and arcs, which
are connections between nodes. A backward mode crosses the
graph from outputs to inputs.

A. Sensitivity Propagation Using Partial Derivatives

Two sensitivities information may be considered crossing the
graph. First can be partial derivatives (e.g., ), which
require the knowledge of graph branches

(1)

where
branches from global Input 1 to Ouput 1 ( to );
nodes of each branches ;
input and output branches value at node .

Indeed, the global-differentiation algorithm must know
branches from input to output in forward mode, or from output
to input in backward mode.

In the following example, the partial derivative is the compo-
sition of each inner partial derivative (see Fig. 1):

(2)

where is the intermediary parameter number .

1http://www.designprocessing.com/.
2http://www.cedrat.com/.
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Fig. 1. Compound model based on partial derivative propagation.

Fig. 2. Compound model based on differential propagation.

B. Sensitivity Propagation Using Differentials

Differentials can be considered as a possible second propaga-
tion information. A total differential is defined by

(3)

Propagation of differential in forward mode does not require
any information about a dependency graph. Indeed, as shown
in Fig. 2, differentials can be propagated with parameter values
leading to the automatic evaluation of output differentials

(4)

C. Choosing a Sensitivity Propagation Method

Each method owns its advantages and disadvantages. For in-
stance, using graph knowledge may improve computation time
when only some specific output sensitivities are analyzed.

The choice of forward differential propagation (Fig. 2) has
been made (in the optimization software Pro@Design) to build
a network which “only depends on local information” [4]. This
means that adding a model in the beginning of the propagation
process does not affect following connections.

Taking this property into account, we will now study how
to implement sensitivity analysis at the level of inner model to
optimize time of the global sensitivity evaluation.

To deal with this issue, three methods are proposed in the fol-
lowing, using a finite-difference method to illustrate our pur-
pose. Some techniques, like the adjoin field technique, can be
considered with the same approach, but is not treated in this
paper.

III. THREE SENSITIVITY ANALYSIS METHODS

A. Method Using Differentials

To perform the sensitivity analysis during an optimization it-
eration, inner models may be evaluated several times. Indeed,
the size of the Jacobian matrix depends on the optimization
specifications. The key to an optimized analysis is then to re-
member some information between each evaluation along iter-
ation.

Fig. 3. Adapting differential propagation method to partial derivative
sensitivity analysis of inner models thanks to glue code.

A first significant improvement is to remember the compu-
tation point (list of input and corresponding output values). In-
deed, using sensitivity method such as forward finite difference
requires only one extra model evaluation per derivative.

The following expression of the output differential is based on
a directional derivative finite difference, and requires computing
inner model and only one extra model evaluation

(5)
Parameter “ ” is a normalization parameter which can be as

following: or .
This configuration of differentials computation and propaga-

tion gives a quick sensitivity analysis due to the independency
of model call number in relation to optimizable input number.
Despite its advantage, this method has a bad robustness because
directional derivative mixes all input differentials together in the
finite difference step [see (5)].

B. Method Using Partial Derivatives

Unfortunately, lots of models compute a sensitivity analysis
based on partial derivatives. Glue must then be defined to create
the required inner model with differentials (see Fig. 3).

Differential calls must be transformed into partial derivative
calls and results must be returned into differential forms. The
differential is then made of the sum of systematic partial
derivations, which are built with the following finite-difference
method:

(6)

(7)

This method increases the model call number due to the de-
pendency of this number to the optimizable inputs ,
(7).

C. Method Reminding Computed Partial Derivatives

During optimization iteration, the same local partial deriva-
tive may be used to compute different global partial derivatives,
depending on the linkage of variables before the corresponding
inner model.

In the following example (Fig. 4), the optimizer is looking
for the gradient of depending on and . Two calls are
performed on the global model to compute these two partial
derivatives. First call (9) allows building Jacobian and part
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Fig. 4. Example in which a local partial derivative is used twice during the
global Jacobian evaluation.

Fig. 5. Composition of models to create a global model of a transformer which
can be used to perform optimizations.

of the one. Second call (10) can use part of the Jacobian
to perform only one analysis on

(8)

(9)

An improvement can be done by memorizing local Jacobians
along the global sensitivity analysis. Indeed, during global sen-
sitivity analysis, the model performs the analysis of several local
partial derivatives, which can be stored in memory and reused
for other global sensitivity analysis.

Thus, partial derivatives of the inner model are only computed
once, reducing the model evaluation number by a factor which
depends on the coupling between inner models.

These three methods will then be compared for the design of
a transformer using such a compound model.

IV. APPLICATION ON A TRANSFORMER DESIGN

A. Transformer Model Description and Building

A compound model (FEM analytic) of a transformer has
been produced. To do so, a visual composer has been used,
which enables to create a global model from the connection of
several models [7].

Fig. 5 describes the composition of four models, (electromag-
netic, geometric, losses, and economic) where the electromag-
netic part is composed of a numeric model, based on an FEM
software [5].

Analytical expressions are well suited to models like eco-
nomical, losses, or geometrical ones. However, an FEM model
is considered to take into account some phenomenon like coil
border effects (Fig. 6) in the leakage reactance analysis.

Each analytical inner model is able to compute sensitivity
thanks to symbolic differentiation and is based on differentials
evaluation. Unfortunately, the numerical model is not dedicated
to compute sensitivities and is considered as a black box, whose
content can not be modified.

Fig. 6. Using the FEM model to ensure precision of leakage reactance
evaluation.

TABLE I
MODEL PARAMETERS CONSTRAINING THE SIZING PROCESS

TABLE II
TRANSFOMER OPTIMIZATION OF 5 SPECIFICATION SHEETS WITH 3 SENSITIVITY

ANALYSIS METHOD. COMPUTER USED WAS A P-IV 1-GHZ RAM 512 MO

The aim of this study is, therefore, to test the three previous
methods to implement sensitivities over the numerical model.

B. Transformer Sizing Specifications and Performances

Five specification sheets have been applied on the global
model to optimize the transformer [6]. Constrained inputs and
outputs, as well as the objective function (cost), are shown in
Table I.

The three methods proposed in this paper were applied to per-
form a sensitivity analysis of the FEM model and performances
are resumed in Table II.

The first method uses directional derivative finite difference.
Parameter “ ” of (5) was defined twice to ensure stable results
for the sensitivity computation. Indeed, regarding to various
input model values, this method is hard to configure. However,
when the appropriate normalization parameter “ ” is found, this
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Fig. 7. (a) Leakage reactance depending on the transformer height. (b)
Finite-difference step influence on sensitivity analysis precision of leakage
reactance depending on the transformer height.

method give the quickest sensitivity analysis over the five spec-
ifications (Table II, column 1).

The second method uses systematic partial derivative. This
technique is more robust because sensitivities are configured
and computed separately. However, regarding the previous
method, this one is three to four times slower (Table II,
column 2).

The third method, which uses Jacobian memorization, has the
stability advantage of the previous one and is two times quicker
in this study (Table II, column 3).

C. Sensitivity Analysis Configuration

We saw that each sensitivity analysis method needs to be con-
figured. The first method, using directional derivative finite dif-
ference, is configured by the normalization parameter “ ” used
in (5). For our transformer model sensitivity analysis and with
specific constrained inputs which are defined in Table II, nor-
malization does not work. Then, nor-
malization was tried to take into account huge
differences between each differentials. This last formula gave
stable results for the sensitivity analysis.

For the two last methods, the step of the finite difference has
to be chosen regarding to numerical remeshing errors. This pa-

rameter is easier to change than normalization formula of the
first method. Indeed, some analysis are sufficient to find an ap-
propriate step (10 for instance) (Fig. 7).

V. CONCLUSION

This paper has highlighted issues and given solutions to re-
duce the time cost taken by compound model sensitivity anal-
ysis, during an optimization process. This time cost has been
reduced in a particular study by a factor of two with local Jaco-
bian reminding, then by three with the differentials method.

Naturally, the total optimization time depends on the sen-
sitivity quality, so these methods can not be applied without
checking this one. Moreover, sensitivity analysis is subject to
numerical errors, especially with the finite differences we used
in this study. Robustness and configuration easiness are then im-
portant factors to choose one particular method.

Our study can be extended to other sensitivity methods, like
adjoin field techniques, which can be used and optimized as well
as finite difference, ensuring specific sensitivity analysis at the
level of inner models.
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