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Abstract. Milner’s bigraphs [1] are a general framework for reasoning
about distributed and concurrent programming languages. Notably, it
has been designed to encompass both the π-calculus [2] and the Ambient
calculus [3].
This paper is only concerned with bigraphical syntax: given what we
here call a bigraphical signature K, Milner constructs a (pre-) category
of bigraphs Bbg(K), whose main features are (1) the presence of relative

pushouts (RPOs), which makes them well-behaved w.r.t. bisimulations,
and that (2) the so-called structural equations become equalities. Exam-
ples of the latter are, e.g., in π and Ambients, renaming of bound vari-
ables, associativity and commutativity of parallel composition, or scope
extrusion for ν-bound names. Also, bigraphs follow a scoping discipline
ensuring that, roughly, bound variables never escape their scope.
Here, we reconstruct bigraphs using a standard categorical tool: symmet-

ric monoidal closed (smc) theories. Our theory enforces the same scoping
discipline as bigraphs, as a direct property of smc structure. Further-
more, it elucidates the slightly mysterious status of so-called edges in
bigraphs. Finally, our category is also considerably larger than the cat-
egory of bigraphs, notably encompassing in the same framework terms
and a flexible form of higher-order contexts.

1 Overview

A central object of study in universal algebra is a many-sorted algebraic theory. It
is specified by first giving a signature—a set of sorts X and a set Σ of operations
with arities—together with a set of equations over that signature. For example,
the theory for monoids is specified by taking only one sort x, and operations
m : x× x → x and e : 1 → x, together with the usual associativity and unitality
equations. We may equally well view this signature as given by a graph

(x × x)
m

- x �
e

1 (1)

with vertices in the free monoid generated by X , which happen to be exactly
the objects of the free category with finite products generated by X .

In this paper, we follow the same route, but replacing from the start finite
products with smc structure. Thus, an smc signature is given by a set of sorts



X together with a graph whose vertices are objects of the free smc category
generated by X . Instead of cartesian product, we have the logical connectives
of Girard’s [4,5] Intuitionistic Multiplicative Linear Logic (henceforth imll): a
tensor product ⊗, its right adjoint ⊸, and its unit I.

Here, we translate any bigraphical signature K into an smc theory TK, and
then construct a faithful functor T : Bbg(K) → S(TK), where S(TK) is the free
(or initial) smc category generated by TK. This functor is moreover essentially
injective on objects (i.e., two objects with the same image are isomorphic).

In the category S(TK), whose construction is essentially due to Trimble [6],
morphisms are very much like intuitionistic multiplicative linear logic proof
nets [4,5]: they are kind of graphs, whose correctness is checked by (a mild
generalisation of) the well-known Danos-Regnier criterion [7]. And this crite-
rion turns out to precisely enforce the same scoping discipline as bigraphs: our
functor T induces an isomorphism on closed terms, i.e., of hom-sets

S(TK)(I, t) ∼= Bbg(K)(I, t),

where I is the unit of tensor product, and t is a particular object representing
terms3. Our construction thus provides a logical explanation for the treatment
of scope in bigraphs. Even more: our functor is not full, which means that smc

structure locally relaxes Milner’s constraints on scope, preserving the overall
discipline (i.e., the closed terms).

Furthermore, the status of so-called edges in bigraphs is fully elucidated:
we translate differently bound edges (used for name restriction, much like ν in
the π-calculus) and free edges (used for linking so-called binding ports to their
peers). In the former case, we translate the edge into a ν node (which may also
be understood as representing the private name in question); in the latter case,
we simply remove the edge, and rely on our use of directed graphs to represent
the flow from the binding port to its peers.

Finally, our category is also considerably larger than the category of bigraphs.
Notably, it contains both the equivalent of terms and a kind of multi-hole, higher-
order, binding contexts, all happily cohabiting in the same category S(TK).

Related work The construction of the free smc category generated by an smc

theory is essentially due to Trimble [6], followed by others [8,9,10,11]. The con-
struction we use is a variant of Hughes’ [10] construction, defined in our joint
work with Richard Garner [12]. It was known that smc (or cartesian closed)
structure precisely represents various kinds of variable binding [13,14,15,16].

Damgaard and Birkedal [17] precisely axiomatise the category of bigraphs
as an equational theory over a term language with variable binding. Our work
may be seen as an essentially algebraic counterpart of theirs (which relies on
α-equivalence). But our translation also provides a new viewpoint, tracing a
path from the initial ingredients of distributed and concurrent languages to the
graphical representation.

3 We cheat a little here, see the actual result Lemma 3.



Future work On the down side, we address the category of abstract bigraphs, not
the precategory of concrete bigraphs (only the latter having RPOs). Briefly, the
morphisms of our category S(TK) are actually equivalence classes of proof nets
modulo Trimble’s [6] rewiring relation. We briefly discuss this in Section 4.4.

Another natural research direction from this paper concerns the dynamics of
bigraphs. Our hope is that Bruni et al.’s [15] very modular approach to dynamics
may be revived, and work better with smc structure than with cartesian closed
structure. Specifically, with smc structure, there is no duplication at the static
level, which might simplify matters.

Finally, it might be fruitful to play with the categorical structure we use, to
better explain the use of smc structure, or possibly find better structures. In
particular, Section 2.3 optimises the presentation by inlining the commutative
monoid object structure of the sort t. It seems useful to look for a similar simpli-
fication on the sort v for variables, inlining its cocommutative comonoid. Indeed,
this is likely to occur in many applications of our framework, those where vari-
ables are not restricted to a linear usage. But then, it might be useful to build this
into the categorical structure. In other words, if we eventually give up linearity
for v by adding new operations, why not accept this from the start and tune the
categorical structure accordingly? In the same vein, it might be instructive to
investigate (analogues of) RPOs in our setting, and search for those categorical
structures having them.

Structure of the paper In Section 2, we introduce our variant of smc theories, and
their associated free smc categories. We include a specialisation to the case where
a sort is equipped with a commutative monoid object structure. In Section 3,
we recall the definition of bigraphs, defining along the way our translation of
bigraphical signatures. In Section 4, we construct our functor from bigraphs to
the corresponding free smc category, and show that it is an isomorphism on
closed terms. Finally, we sketch the variant dealing with concrete bigraphs.

2 Symmetric monoidal closed theories

This section reviews the graphical presentation of smc theories and models; for
a more detailed version with proofs, we refer to our note [12].

2.1 The free symmetric monoidal closed category over a set

First, recall that a monoidal category is a category C with a functor C×C
⊗
- C

called tensor product (and written in infix notation) and an object I, equipped
with associativity and unit natural isomorphisms

A ⊗ (B ⊗ C)
α
- (A ⊗ B) ⊗ C A ⊗ I

ρ
- A I ⊗ A

λ
- A

satisfying so-called coherence conditions [18]. It is symmetric monoidal when it

is furthermore equipped with a natural isomorphism (A⊗B)
γ
- (B⊗A) such



that γ−1
A,B = γB,A. It is finally symmetric monoidal closed (smc) when for every

object A, tensor product with A (e.g., on the right − ⊗ A) has a right-adjoint,
usually denoted by A ⊸ −. This means that for each A, there is a natural
bijection C(B ⊗ A, C) ∼= C(B, A ⊸ C).

A (strict) smc functor C → D between two smc categories is a functor
(strictly) preserving these data. This defines a category SMCCat, which has a
forgetful functor U to the category Set of sets and functions: it sends each smc

category to its set of objects, and each smc functor to the corresponding function
on objects. Trimble [6], followed by others, has shown (as a particular case, see
below) that U has a left adjoint S sending each set X to an smc category S(X),
free (or initial) in the sense that for any other smc category C and function

X
f
- U(C), there is a unique smc functor S(X)

f∗

- C such that f decomposes

as X
η

- US(X)
U(f∗)

- U(C).

How does S(X) look like? Among its various characterisations, we find Hughes’
easiest to grasp: it has objects the formulae of Girard’s Intuitionnistic Multiplica-
tive Linear Logic [4,5] (henceforth imll), described by the grammar

A, B, . . . ::= x | I | A ⊗ B | A ⊸ B (where x ∈ X),

and morphisms A → B special graphs linking the leaf occurrences of A and B,
which we call ports. Specifically, each such port is polarised, according to the
number of times it goes left in a ⊸. Equivalently, writing A for the classical
MLL formula equal to A, i.e., written using only ⊗, �, 1, ⊥, and negation on
atoms in X , polarity of a port in A is the polarity of the corresponding atom
in A. A morphism is then a function A+ + B− → A− + B+, so that ports in
A++B− are globally negative, the others being globally positive. Our function is
then required to link (i) each globally negative port labeled x ∈ X (or x port) to
a globally positive x port, all this bijectively, (ii) and additionally, each globally
negative I port to any globally positive port.

But, crucially, not all such graphs qualify as morphisms of S(X): they have to
satisfy the Danos-Regnier [7] criterion, which goes as follows. For a classical MLL
formula A, a switching is a graph obtained by removing in its abstract syntax tree

exactly one premise edge of each �. Now, for a candidate morphism A
f
- B,

a switching is a graph obtained by gluing f (seen as an undirected graph) along

the ports with (i) a switching of the dual4 A
⊥

of A, and (ii) a switching of B. A
candidate graph is a morphism, or is correct iff all its switchings are trees.

Finally, morphisms are quotiented by Trimble rewiring: a morphism rewires
to another by changing the target of an edge from some globally negative I

port, as soon as this preserves correctness. Rewiring is the smallest equivalence
relation generated by this relation.

We now gradually extend the construction of S(X) to signatures, then arbi-
trary theories.

4 This is in the sense of De Morgan duality between ⊗ and �, I and ⊥, and x and x
⊥.



2.2 Symmetric monoidal closed theories

Symmetric monoidal closed signatures An smc signature is a pair (X, Σ) of a
set X of sorts and a graph Σ with vertices in S(X), as recalled in the previous
section. A morphism of signatures (X, Σ) → (Y, Σ′) is given by a function f :
X → Y , together with a morphism Σ → Σ′ of graphs, whose vertex component
is S(f).

We then mimick Lawvere [19] in defining a model of such a signature to
consist of an smc category C, with a function M : X → ob C, and for each
operation f : A → B a morphism Mf : A → B in C. (A and B actually denote
their images under the free extension M∗ : S(X) → C of M .) Morphisms of
models are defined in the expected way, as strict smc functors preserving the
operations.

As in the case of a set X , there turns out to be a free model for each smc

signature. The construction is essentially due to Trimble [6], but we will use a
variant, based on Hughes’ [10] construction of S(X), whose detailed exposition
may be found in our note [12]. Here, we only briefly sketch this, and then directly
put it to use to recover bigraphs.

The category S(X, Σ) is much like S(X), except that morphisms may contain
cells, with one kind of cell per edge in Σ. In morphisms, each cell offers new ports
to connect, one per leaf occurrence of its type, i.e., A ⊸ B for an edge A → B.
But this A ⊸ B counts as the domain of the morphism, which is thus a function
A+ + C+ + B− → A− + C− + B+, with C the set of cells.

The Danos-Regnier criterion extends by decreeing that a switching of a mor-

phism is as above, but replacing each cell A → B with a a switching of A ⊸ B
⊥

.
Moreover, since we have cells, morphisms are both considered equivalent modulo
Trimble rewiring and modulo the choice of cells.

Taking X = {x, y} and Σ = {α : x → x ⊗ y, β : y ⊗ (x ⊸ y) → y}, a correct
morphism of S(X, Σ) is pictured in Fig. 1. The dotted link from the globally
negative I port can be rewired to any globally positive port without violating the
Danos-Regnier criterion; the morphims obtained are thus equivalent by Trimble
rewiring.

Fig. 1. A morphism of S(X, Σ).



Symmetric monoidal closed theories Finally, we extend the construction to smc

theories: define a theory T to be given by a signature (X, Σ), together with a set
EA,B of equations between morphisms in S(X, Σ)(A, B), for each imll formulae
A, B. The free smc category S(T ) generated by such a theory is defined in
our note [12] to be the quotient of S(X, Σ) by the equations. Constructing the
quotient graphically is more direct than could have been feared: we first define

the binary predicate f1 ∼ f2 relating two morphisms C
f1,f2

-
- D in S(X, Σ) as

soon as each fi decomposes as

C
∼=

- I ⊗ C
pgiq ⊗ C

- (A ⊸ B) ⊗ C
f

- D

with a common f , with (g1, g2) ∈ EA,B and where pgq is the currying of g. Then,
we take the smallest generated equivalence relation, prove it stable under com-
position, and quotient S(X, Σ) accordingly, which yields the free smc category
S(T ) generated by the theory T = (X, Σ, E).

2.3 Commutative monoid objects

We now slightly extend the results of our note [12] to better handle the special
case of commutative monoids objects. This will be useful in our translation of
bigraphs, where parallel composition and 0 have a commutative monoid object
structure. Assume a theory (X, Σ, E) where a sort t is equipped with two oper-
ations m and e as in (1), with equations making it into a commutative monoid
object (m is associative and commutative, e is its unit). Further assume that m

and e do not occur in other equations.
Let Σ′ be the result of removing the operations m and e in Σ. We define a

relaxed version of our morphisms where each globally negative t port is connected
to a globally positive one, but not necessarily bijectively. This defines a category
isomorphic to S(X, Σ), in which the operations m and e are built into the linking.
The isomorphism is pictured in Fig. 2.

Fig. 2. Contracting m cells and deleting e cells.

3 Binding bigraphs and the translation of signatures

We now proceed to recall (a mild variant of) some definitions from Milner [1],
along which we give our translation of bigraphical signatures K into smc theories
TK. We then turn to our translation from the corresponding category of bigraphs
to the free model S(TK).



3.1 Signatures

Definition 1. A bigraphical (binding) signature is a 4-uple (K, B, F, A) where
K is a set of controls, B, F : K → N are maps providing a binding and a free
arity for each control and A ⊆ K is a set of atomic controls.

We fix such a bigraphical signature K for the rest of the paper. This signature
can be translated into a smc signature ΣK over two sorts {t, v}. It consists of the
following structural operations, accounting for the built-in structure of bigraphs:

v

t ⊗ t I

w
� v ⊗ v

c
-

t

0

�

|
-

v

ν
-

plus, for all controls k, a logical operation

(v⊗B(k)
⊸ x) ⊗ v⊗F (k) Kk

- t

where x = I if k is atomic and x = t otherwise.
We call TK the theory consisting of the operations in ΣK, with the equations

making

– (v, c, w) into a cocommutative comonoid object (c is coassociative, cocom-
mutative, and w is its unit),

– (t, |,0) into a commutative monoid object, and
– ν and w annihilate each other, as in

·

We now proceed to describe the category Bbg(K) of abstract binding bigraphs
over K, which we relate in Section 4 to the free model S(TK) of TK.

3.2 Interfaces

We now assume an infinite and totally ordered set X of names.

Definition 2. A bigraphical (binding) interface is a triple (n, X, loc) where n

is a finite ordinal, X a finite set of names and loc : X → n + {⊥} a function
called locality map.

A name x is said global if loc(x) = ⊥ and local or located at i when loc(x) = i ∈ n.
Bigraphical interfaces are the objects of the category Bbg(K). We define a

function T from these objects to imll formulas, i.e., the objects of L, by:

T : (n, X, loc) 7→ v⊗ng ⊸

⊗

i∈n

(v⊗ni ⊸ t)

where ng = |loc−1(⊥)| and for all i ∈ n, ni = |loc−1(i)|. The ordering of X
induces a bijection between X and v leaves in the formula.

In [20], Milner presents a slight generalisation of binding bigraphs, where
names have multiple locality. Some interfaces cannot be simply translated into
imll formulas as before, e.g., if x is located in 0 and 1 and y in 1 and 2, this
dependency cannot be expressed directly in an imll formula.



3.3 Place graph

Let n and m be two finite ordinals.

Definition 3. A place graph (V, ctrl , prnt) : n → m is a pair where:

– V is a finite set of nodes,
– ctrl : V → K is a function called control map and
– prnt : n+V → V +m is an acyclic function called parent map whose image

does not contain any atomic node.

The ordinals n and m index respectively the sites and roots. A node is said barren
if it has no preimage under the parent map (atomic nodes are thus necessarily
barren).

The relation ≺ over sites, roots and nodes defined by:

x ≺ y ⇐⇒ ∃k > 0 , prntk(x) = y

is a (strict) partial order. The maximal elements of ≺ are the roots; the minimal
elements are the barren nodes (including atomic nodes) and the sites.

3.4 Link graph

Let X and Y be two finite sets of names.

Definition 4. A link graph (V, E, ctrl , link) : X → Y is a tuple where:

– V is a finite set of nodes,
– E is a finite set of edges,
– ctrl : V → K is a control map and
– link : P + X → E + Y is a function called the link map

with P being the set of ports, i.e., the coproduct of binding ports defined by
PB =

∐
v∈V B(ctrl(v)) and free ports PF =

∐
v∈V F (ctrl(v)). Moreover, link

must satisfy the binding rule:

For all binding ports p ∈ PB, link (p) 6∈ Y .

We define the binders of N to be the local names of Y (located at a root) and
the binding ports (located at a node) PB .

Two distinct points (i.e., two elements of P + X) x and y are peers when
link (x) = link (y). An edge is idle when it has no preimage under the link map.

3.5 Abstract binding bigraphs

Let U = (n, X, loc) and W = (m, Y, loc′) be two bigraphical interfaces.

Definition 5. A bigraph G = (V, E, ctrl , prnt , link) : U → W is a tuple where:

– (V, ctrl , prnt) : n → m is a place graph,



– (V, E, ctrl , link) : X → Y is a link graph,
– G satisfies the scope rule:

If p is a binder located at w, then each of its peers is located at some
w′ ≺ w.

The scope rule ensures that no binding port p is peer of a name in Y , hence
link (p) has to be an edge. Moreover, by acyclicity of prnt, no two binding ports
may be peers, hence edges are linked to at most one binding port. The set of
edges may thus be decomposed into a set of free edges EF (without binding
port) and a set of bound edges EB in one-to-one correspondence with PB by the
link map: E = EF ⊎ EB

∼= EF + PB.
Finally, two bigraphs are lean-support equivalent when after discarding their

idle edges, there is an isomorphism between their sets of nodes and edges pre-
serving the structure.

Definition 6. The category Bbg(K) of abstract binding bigraphs over K has
bigraphical interfaces as objects and lean-support equivalence classes of bigraphs
as morphisms.

The composition of two bigraphs U1 → U2 → U3 is defined by taking the
coproduct of their nodes, edges and control maps and the composition of parent
and link maps (modulo some bijections on sets), forgetting the roots/sites from
U2. Acyclicity of the parent map, and the binding and scope rules are preserved
by composition.

4 Translation

We now want to show how a binding bigraph G = (V, E, ctrl , prnt , link ) : U → W

over K can be translated into a morphism T(G) : T(U) → T(W ) in the free model
L = S(TK) of the smc theory TK.

Let U = (n, X, loc) and W = (m, Y, loc ′). We will define the support C of
T(G) as the disjoint union of:

– a logical support C containing a Kk cell for every node whose control is k

and a ν cell for every free edge in EF , and
– a structural support C′ consisting of c and w cells, which we define below.

We then specify the graph T(G) for each sort in {t, v} separately, and for I.

4.1 Places

First, since (t, |,0) has a commutative monoid object structure, the represen-
tation of Section 2.3 applies: we just have to define a function from globally
negative t ports to globally positive ones. Now, for any set X labeled in formu-
lae, denote by X+

t its set of positive t ports, and similarly for X
+,−
t,v,I . Now, we

have:



– C+
t

∼= V , because each type of cell Kk has one positive t port,
– C−

t
∼= Vna →֒ V , where Vna is the set of non-atomic nodes, because there is

one globally negative t port for each non-atomic cell,
– T(U)+t

∼= n, because for each i ∈ n there is a positive t port in T(U),
– similarly, T(W )+t

∼= m, and finally
– T(W )−t

∼= T(U)+t
∼= ∅.

Our morphism T(G) is thus defined on the sort t by the function ft:

T(U)+t + C+
t + T(W )−t

∼=
- T(U)+t + C+

t

∼=
- n + V

T(U)−t + C−
t + T(W )+t

ft

?

�

∼=
T(V )+t + C−

t
�

∼=
m + Vna .

prnt
?

4.2 Links

The function fv for v requires more work, and involves defining the structural
support C′. Recall that the data is the function link : P ⊎ X → E ⊎ Y .

We start with an informal description of fv based on Fig. 3, in which bold
arrows come from binders. First, we deal with points sent to edges. There are
two kinds of edges.

First, we understand each free edge e as the creation of a fresh name, and each
free point p in PF ⊎X sent to e as an occurrence of this free name. Accordingly,
e is replaced by its ν cell in C, and each p becomes a v port in T(U)− +C−. We
hence link the v port of the ν cell to each corresponding p, through a tree of c

and w cells, as depicted in the bottom row.
Second, we understand each bound edge e as an indirection to its binding

port p0 ∈ PB, itself understood as a bound name. We further understand each
free peer p ∈ PF ⊎X of p0 as an occurrence of the bound name. Accordingly, we
completely forget about e, p0 becomes a v port in C+, and each p becomes a v

port in C− + T(U)+, hence we link p0 to each corresponding p, again through a
tree of c and w cells.

Finally, points p not sent to an edge are sent to some name y ∈ Y . But each
such p becomes a v port in T(U)− + C− and each such y becomes a v port in
T(W )−, hence we link y to each p, again using c and w cells. This determines
the structural support C′, as well as fv. Finally, for the I part fI , each globally
negative I port arises from a structural w cell. But in the above each cell is
generated by one v port (the fresh name or the binder). In the former case, we
may safely link our I port to any valid t port. In the latter, the binder occurs to
the left of a ⊸, whose right-hand side is a t port, to which we safely link our I

port.
More formally, observe from our translation of signatures and interfaces, plus

the logical support C defined above, that:

– each free edge in EF corresponds to one ν cell, hence to one port in C+
v ,



Fig. 3. Translation of link .

– each binding port in PB corresponds to one negative occurrence of v in the
domain of some cell in C, hence to one port in C+

v ,
– each local name in Y corresponds one port in T(W )−v .

Thus, we have an isomorphism EF + PB + Y ∼= C+
v + T(W )−v . Similarly, free

points in PF +X correspond to ports in C−
v +T(U)+v , i.e., PF +X ∼= C−

v +T(U)+v .
We may thus define a first function link ′ by:

C−
v + T(U)+v

∼=
- PF + X ⊂ - PB + PF + X

C+
v + T(W )−v

link′

?

�

∼=
EF + PB + Y �

∼=
E + Y .

link
?

We then encode this function by a forest of c and w cells C′ (as pictured in

Fig. 4), to obtain a function C+
v + C′+

v + T(W )−v
fv
- C−

v + C′−
v + +T(U)+v ,

which qualifies as the v part of our morphism. The rest follows similarly.

Fig. 4. Translation of a function using w and c cells.

This defines a function from bigraphs to candidate proof structures (respect-
ing domain and codomain). We now show that it extends to a functor.

4.3 The functor

First, we prove that the image of a bigraph is correct, i.e., is a proper morphism.



Lemma 1. All switchings of T(G) are connected.

Proof. Consider a switching of T(G).

Given a site or a node p, we denote by T(p) the globally negative t port
corresponding to it in the switching. If p is a root, then T(p) denotes the globally
positive t port of its image.

Free ports of a node p (resp. local names of a site p′) have their image (a
globally positive v port) connected to T(p) (resp. T(p′)) as shown in Fig. 5.
Moreover, either one globally negative v port (corresponding to a binding port)
or the globally positive t port of the cell p is connected to T(p) by the switched
formula.

Fig. 5. Domain, codomain and a node of a switching.

We now prove by induction that all binding ports (located at a node or a
root p) have their image connected to T(p). Let b be a binding port, and T(b)
its image by T (a globally negative v port).

If b has no peers (this is necessarily the case if p is a barren node), then T(b)
is connected to a w cell whose I port is connected to T(p).

If b has peers, then T(b) is connected, in the morphism, to their translations
through a tree of c cells. But this tree is heavily switched and only connects
T(b) to one globally positive v port f (whose preimage is) located, thanks to the
scope rule, to a site or a node p′ ≺ p.

By induction f is connected to T(p′) and T(p′) is connected to T(p) through
the (unswitched) parent map. Indeed, the parent map connects the t ports of
cells between p′ and p, and these cells have their t ports connected thanks to the
induction hypothesis. The port T(b) and T(p) are thus connected.

Finally, we remark that:



– roots are connected to each other in the codomain’s formula (by their t or v

ports, see Fig 5),
– global variables of the domain are connected to a site (by the domain’s

formula, see Fig. 5) and
– remaining globally negative v ports (global variable of the codomain and ν

cells) are connected to the other globally positive ports by a switched tree
of c cells or a w cell.

We can conclude that all ports of our switching are connected.

The following seems known [21]:

Lemma 2. Any switching of a morphism in S(TK) is acyclic iff it is connected.

Proof (sketch). One proves by induction on the domain and codomain formulae
that the graph induced by the switching has one more vertex than it has edges.

Proposition 1. The map T : Bbg(K) → L is a functor.

Proof. T sends lean-support equivalent bigraphs to equivalent morphisms (in
particular discarding idle edges corresponds to annihilation of ν and w), which we
have just proved correct. The identity property is easily verified. The equations
of TK defined in Section 3.1 ensure that T behaves well w.r.t. composition.

One sees at once that T is not full. For example, the morphism in Fig. 6 has
no preimage – any such preimage would violate the scope rule. This example

Fig. 6. A correct morphism violating the scope rule.

reflects that it is not necessary to distinguish global and local variables in a
bigraph with only one site. Nevertheless, the notion of scope is preserved by T

because closed morphisms can actually be translated into bigraphs. In Bbg(K),

define the interfaces I = (0, ∅, ∅̂) and t = (1, ∅, ∅̂).

Lemma 3. The functor T induces an isomorphism S(TK)(I, t) ∼= Bbg(K)(I, t).

Proof. Consider any f : I → t. We have T(I) = (I ⊸ I) ∼= I and T(t) =
I ⊸ (I ⊸ t) ∼= t, which justifies our “induces” above. We now define G =
(V, E, ctrl , prnt , link ) : I → t such that T(G) = f .

Let the set of nodes V be the set of logical cells in f ; the control map ctrl
sends each Kk cell to k ∈ K.



The set of edges is the coproduct of binding v ports in the support of f and
of ν cells (where a v port is binding when it occurs to the left of a ⊸, e.g., a
cell of type ((v ⊗ v) ⊸ t) ⊗ v → t has two binding ports).

The parent map prnt : 0+V → 1+V is exactly the restriction of f to t ports.
The link map link : PB +PF +∅ → E +∅ is obtained from the restriction of f to
v ports as follows. From any v port p, following the tree of contractions towards
its root leads to a maximal globally positive v port in the support, which may
be either a port from a ν cell, or a binding port of a logical cell. In each case,
there is a corresponding edge ep. Our link map sends each port p to ep. Since in
each tree there is only one root, the binding rule is respected.

We then prove that G is correct. Suppose that the parent map contains a
cycle, then any switching where, for all cells of the cycle, the two t ports are
connected contains this cycle. Suppose that the scope rule is not satisfied for a
binder p and one of its peers p′. Then, in f , p is the root of a contraction tree
with p′ as a leaf: among the switchings connecting them, choose again one that
connects both t ports of each logical cell: every logical cell then has a path to the
root r (the t port in the codomain), which forms a cycle involving p, p′, and r,
hence contradicting correctness of f . The binding rule is automatically satisfied
because the codomain has no name. An atomic node has no antecedent in the
parent map because the corresponding cell in f has no globally positive t port.

All in all, we have

Theorem 1. The functor T : Bbg(K) → L is faithful, essentially injective on
objects, and surjective on L(I, t).

It is however not full and far from surjective on objects.

4.4 Tuning the presentation

We end the paper with a brief discussion of concrete vs. abstract bigraphs. We
could hope to recover Milner’s concrete bigraphs, which differ from abstract bi-
graphs mainly in that they are not considered equivalent modulo the choice of
cells. In our setting, we will want to quotient by Trimble rewiring and structural
equations, which seems problematic, because neutrality of w w.r.t. contraction
adds (or removes) a cell. We would thus have to consider our morphisms equiv-
alent modulo choice of w cells, which is not that satisfactory.

Finally, within the full subcategory with objects the images of bigraphical
interfaces, we observe that edges from (globally negative) occurrences of I may
be rewired to any globally positive port without breaking correctness. Hence,
such edges may be safely omitted. This brings us even closer to Milner’s repre-
sentation.
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