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WALKS WITH SMALL STEPS IN THE QUARTER PLANE

MIREILLE BOUSQUET-MÉLOU AND MARNI MISHNA

Abstract. Let S ⊂ {−1, 0, 1}2 \ {(0, 0)}. We address the enumeration of plane lattice walks
with steps in S, that start from (0, 0) and always remain in the first quadrant {(i, j) : i ≥
0, j ≥ 0}. A priori, there are 28 problems of this type, but some are trivial. Some others are
equivalent to a model of walks confined to a half-plane: such models can be solved system-
atically using the kernel method, which leads to algebraic generating functions. We focus on
the remaining cases, and show that there are 79 inherently different problems to study.

To each of them, we associate a group G of birational transformations. We show that this
group is finite (of order at most 8) in 23 cases, and infinite in the 56 other cases.

We present a unified way of solving 22 of the 23 models associated with a finite group.
For all of them, the generating function is found to be D-finite. The 23rd model, known as
Gessel’s walks, has recently been proved by Bostan et al. to have an algebraic (and hence
D-finite) solution. We conjecture that the remaining 56 models, associated with an infinite
group, have a non-D-finite generating function.

Our approach allows us to recover and refine some known results, and also to obtain new
results. For instance, we prove that walks with N, E, W, S, SW and NE steps have an algebraic
generating function.

1. Introduction

The enumeration of lattice walks is a classical topic in combinatorics. Many combinatorial
objects (trees, maps, permutations, lattice polygons, Young tableaux, queues...) can be encoded
by lattice walks, so that lattice path enumeration has many applications. Given a lattice,
for instance the hypercubic lattice Zd, and a finite set of steps S ⊂ Zd, a typical problem is
to determine how many n-step walks with steps taken from S, starting from the origin, are
confined to a certain region A of the space. If A is the whole space, then the length generating
function of these walks is a simple rational series. If A is a half-space, bounded by a rational
hyperplane, the associated generating function is an algebraic series. Instances of the latter
problem have been studied in many articles since at least the end of the 19th century [1, 6]. It
is now understood that the kernel method provides a systematic solution to all such problems,
which are, in essence, one-dimensional [14, 2]. Other generic approaches to half-space problems
are provided in [20, 25].

A natural next class of problems is the enumeration of walks constrained to lie in the intersec-
tion of two rational half-spaces — typically, in the quarter plane. Thus far, a number of instances
have been solved, but no unified approach has emerged yet, and the problem is far from being
completely understood. The generating functions that have been found demonstrate a more
complicated structure than those of half-space problems. Some examples are algebraic, but for
reasons that are poorly understood combinatorially [26, 13, 40, 9]. Some examples are, more
generally, D-finite, meaning that the generating function satisfies a linear differential equation
with polynomial coefficients [31, 15, 11, 47]. Some examples are not D-finite, having infinitely
many singularities in the complex plane [15, 41].

We focus in this paper on walks in the plane confined to the first quadrant. The four examples
of Figure 1 illustrate the complexity of this problem:
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• Kreweras’ walks (steps W, S, and NE): these were first counted in 1965 by Krew-
eras [37]. He obtained a complicated expression for the number of n-step walks ending
at (i, j), which simplifies drastically when j = 0. It was then proved by Gessel that the
associated 3-variable generating function is algebraic [26]. Since then, simpler deriva-
tions of this series have been obtained [42, 13], including an automated proof [36], and
a purely bijective one for walks ending at the origin [4]. See also [23, 21, 13], where the
stationary distribution of a related Markov chain in the quarter plane is obtained, and
found to be algebraic.
• Gessel’s walks (steps E, W, NE and SW): Around 2001, Gessel conjectured a sim-

ple hypergeometric formula for the number of n-step walks ending at the origin. This
conjecture was proved recently by Kauers, Koutschan and Zeilberger [35]. Even more
recently, Bostan and Kauers proved that the associated 3-variable generating function
(which counts all quarter plane walks by the length and the coordinates of the endpoint)
is in fact algebraic [9]. Strangely enough, the simple numbers conjectured by Gessel had
not been recognized as the coefficients of an algebraic series before. Both approaches
involve, among other tools, heavy computer algebra calculations.
• Gouyou-Beauchamps’s walks (steps E, W, NW and SE): Gouyou-Beauchamps

discovered in 1986 a simple hypergeometric formula for walks ending on the x-axis [29].
We derive in this paper similar expressions for the total number of walks, and for those
ending at a prescribed position. The associated series are D-finite, but transcendental.
These walks are related to Young tableaux of height at most 4 [30]. An affine deformation
transforms them into square lattice walks (with N, S, E and W steps) confined to the
wedge 0 ≤ j ≤ i. An enumeration of these walks involving the number of visits to the
diagonal appears in [32, 44, 43].
• A non-D-finite case is provided by walks with NE, NW and SE steps. Mishna and Rech-

nitzer established a complicated expression for the generating function of these walks,
from which they were able to prove that this series has infinitely many singularities, and
thus cannot be D-finite [41].

Observe that we have defined S, the set of steps, as a subset of Z2 but that we often use a more
intuitive terminology, referring to (1, 1) as a NE step, for instance. We occasionally abuse the
coordinate notation and directly write our steps using x’s and y’s, writing for example xȳ for a
SE step.

q(3m) = 4m(3m)!
(m+1)!(2m+1)! q(m) = 0q(2m) = 6(2m)!(2m+2)!

m!(m+1)!(m+2)!(m+3)!q(2m) = 16m (5/6)m(1/2)m

(5/3)m(2)m

Figure 1. Four models of walks in the quarter plane: Kreweras’ walks, Gessel’s
walks, Gouyou-Beauchamps’s walks, and the non-D-finite example of Mishna
and Rechnitzer. The numbers q(n) count walks of length n confined to the
quarter plane that start and end at the origin. We have used the notation
(a)n = a(a+ 1) · · · (a+ n− 1).
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Ideally, we seek generic results or combinatorial conditions which assure D-finite (or even
algebraic) generating functions. One criterion of this type states that if the set S is invariant by
reflection around a vertical axis (we say for short that it has a vertical symmetry) and consists
of steps (i, j) such that |i| ≤ 1, then the generating function of quarter plane walks with steps in
S is D-finite [15, 11]. This is also true when the set of steps is left invariant by a Weyl group and
the walks are confined to a corresponding Weyl chamber [28]. We are not aware of any other
such criteria.

1.1. Results

We restrict our attention to the quarter plane and small steps (i.e., the step set S is a subset
of {−1, 0, 1}2 \ {(0, 0)}). This includes the four examples above. We first narrow down the 28

possible cases to 79 distinct non-trivial problems (Section 2). Their step sets S are listed in
Tables 1 to 4 in Section 8. These problems fall into two categories, depending on whether a
certain group associated with S is finite or infinite (Section 3). The 23 models associated with
a finite group turn out to be those that satisfy at least one of the following properties:

– the step set possesses a vertical symmetry,
– the vector sum of the vectors in the step set is 0.

In Section 4 we develop certain general tools that apply to all models —in particular, we
explain how to write for each of them a functional equation that defines the generating function
of the walks. Then, we describe a uniform way to solve this equation for all of the models
associated with a finite group, except one (Gessel’s walks). The solutions are all D-finite, and
even algebraic in three cases (Sections 5 and 6). Note that Gessel’s walks are also known to
have an algebraic generating function [9]. We conjecture that all the solutions to models with an
infinite group are non-D-finite. We conclude in Section 7 with some comments and questions.
The tables of Section 8 list the 79 models, classified according to the order of the corresponding
group, and provide references to both the existing literature and to the relevant result of this
paper.

1.2. Comments and detailed outline of the paper

The following technical and/or bibliographical comments may be of interest to readers who
have already worked on similar problems. One will also find here a more detailed description of
the contents of the paper.

The starting point of our approach is a functional equation defining the generating function
Q(x, y; t) that counts quarter plane walks by the length (variable t) and the coordinates of the
endpoint (variables x and y). This equation merely reflects a step by step construction of quarter
plane walks. For instance, the equation obtained for Kreweras’ walks (first example in Figure 1)
reads:

(1− t(1/x+ 1/y + xy))Q(x, y; t) = 1− t/xQ(0, y; t)− t/y Q(x, 0; t).

Note that there is no obvious way to derive from the above identity an equation for, say, Q(0, 0; t)
or Q(1, 1; t). Following Zeilberger’s terminology [56], we say that the variables x and y are
catalytic. One of our objectives is to provide some general principles that may be applied to any
such linear equation with two catalytic variables. The case of linear equations with one catalytic
variable is well-understood, and the solutions are always algebraic [14].

One key tool in our approach is a certain group G(S) of birational transformations that
leaves the kernel of the functional equation (that is, the coefficient of Q(x, y; t)) unchanged
(Section 3). We have borrowed this group from the little yellow book by Fayolle, Iasnogorodski
and Malyshev [21], in which the authors study the stationary distributions of Markov chains
with small steps in the quarter plane. Ever since it was imported from probability theory to
combinatorics, this group has proved useful (in several disguises, like the obstinate, algebraic, or
iterated kernel method) to solve various enumeration problems, dealing with walks [11, 13, 15,
33, 40, 41], but also with other objects, like permutations [12] or set partitions [17, 55] — the
common feature of all these problems being that they boil down to solving a linear equation
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with two catalytic variables. A striking observation, which applies to all solutions obtained so
far, is that the solution is D-finite if and only if the group is finite. We find that exactly 23 out
of our 79 quarter plane models give rise to a finite group.

We then focus on these 23 models. For each of them, we derive in Section 4 an identity
between various specializations of Q(x, y; t) which we call the orbit sum (or half-orbit sum, when
there is an x/y symmetry in G(S)).

In Section 5, we show how to derive Q(x, y; t) from the orbit sum in 19 out of the 20 models
that have a finite group and no x/y symmetry. The number of n-step walks ending at (i, j)
is obtained by extracting the coefficient of xiyjtn in a rational series which is easily obtained
from the step set and the group. This implies that the generating function Q(x, y; t) is D-finite.
The form of the solution is reminiscent of a formula obtained by Gessel and Zeilberger for the
enumeration of walks confined to a Weyl chamber, when the set of steps is invariant under the
associated Weyl group [28]. Indeed, when the quarter plane problem happens to be a Weyl
chamber problem, our method can be seen as an algebraic version of the reflection principle
(which is the basis of [28]). However, its range of applications seems to be more general. We
work out in details three cases: walks with N, W and SE steps (equivalent to Young tableaux
with at most 3 rows), walks with N, S, E, W, SE and NW steps (which do not seem to have been
solved before, but behave very much like the former case), and finally walks with E, W, NW and
SE steps (studied in [29]), for which we obtain new explicit results.

The results of Section 6 may be considered more surprising: For the 3 models that have a
finite group and an x/y symmetry, we derive the series Q(x, y; t) from the half-orbit sum and
find, remarkably, that Q(x, y; t) is always algebraic. We work out in details all cases: walks
with S, W and NE steps (Kreweras’ walks), walks with E, N and SW steps (the reverse steps of
Kreweras’ steps) and walks with N, S, E, W, NE and SW steps, which, to our knowledge, have
never been studied before. In particular, we find that the series Q(1, 1; t) that counts walks of
the latter type, regardless of their endpoint, satisfies a simple quartic equation.

1.3. Preliminaries and notation

Let A be a commutative ring and x an indeterminate. We denote by A[x] (resp. A[[x]]) the
ring of polynomials (resp. formal power series) in x with coefficients in A. If A is a field, then
A(x) denotes the field of rational functions in x, and A((x)) the field of Laurent series in x.
These notations are generalized to polynomials, fractions and series in several indeterminates.
We denote x̄ = 1/x, so that A[x, x̄] is the ring of Laurent polynomials in x with coefficients in A.
The coefficient of xn in a Laurent series F (x) is denoted [xn]F (x). The valuation of a Laurent
series F (x) is the smallest d such that xd occurs in F (x) with a non-zero coefficient.

The main family of series that we use is that of power series in t with coefficients in A[x, x̄],
that is, series of the form

F (x; t) =
∑

n≥0,i∈Z

f(i;n)xitn,

where for all n, almost all coefficients f(i;n) are zero. The positive part of F (x; t) in x is the
following series, which has coefficients in xQ[x]:

[x>]F (x; t) :=
∑

n≥0,i>0

f(i;n)xitn.

We define similarly the negative, non-negative and non-positive parts of F (x; t) in x, which we
denote respectively by [x<]F (x; t), [x≥]F (x; t) and [x≤]F (x; t).

In our generating functions, the indeterminate t keeps track of the length of the walks. We
record the coordinates of the endpoints with the variables x and y. In order to simplify the
notation, we often omit the dependence of our series in t, writing for instance Q(x, y) instead of
Q(x, y; t) for the generating function of quarter plane walks.

Recall that a power series F (x1, . . . , xk) ∈ K[[x1, . . . , xk]], where K is a field, is algebraic (over
K(x1, . . . , xk)) if it satisfies a non-trivial polynomial equation P (x1, . . . , xk, F (x1, . . . , xk)) = 0.
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It is transcendental if it is not algebraic. It is D-finite (or holonomic) if the vector space over
K(x1, . . . , xk) spanned by all partial derivatives of F (x1, . . . , xk) has finite dimension. This
means that for all i ≤ k, the series F satisfies a (non-trivial) linear differential equation in xi

with coefficients in K[x1, . . . , xk]. We refer to [38, 39] for a study of these series. All algebraic
series are D-finite. In Section 5 we use the following result.

Proposition 1. If F (x, y; t) is a rational power series in t, with coefficients in C(x)[y, ȳ], then
[y>]F (x, y; t) is algebraic over C(x, y, t). If the latter series has coefficients in C[x, x̄, y], its
positive part in x, that is, the series [x>][y>]F (x, y; t), is a 3-variable D-finite series (in x, y
and t).

The first statement is a simple adaptation of [25, Thm. 6.1]. The key tool is to expand F (x, y; t)
in partial fractions of y. The second statement relies on the fact that the diagonal of a D-finite
series is D-finite [38]. One first observes that there is some k such that [y>]F (x, y; txk) has
polynomial coefficients in x and y, and then applies Remark (4), page 377 of [38].

Below we also use the fact that a series F (t) with real coefficients such that [tn]F (t) ∼ κµnn−k

with k ∈ {1, 2, 3, . . .} cannot be algebraic [22].

2. The number of non-equivalent non-simple models

Since we restrict ourselves to walks with “small” steps (sometimes called steps with small
variations), there are only a finite number of cases to study, namely 28, the number of sets
S formed of small steps. However, some of these models are trivial (for instance S = ∅, or
S = {x̄}). More generally, it sometimes happens that one of the two constraints imposed by
the quarter plane holds automatically, at least when the other constraint is satisfied. Such
models are equivalent to problems of walks confined to a half-space: their generating function
is always algebraic and can be derived automatically using the kernel method [14, 2]. We show
in Section 2.1 that, out of the 28 = 256 models, only 138 are truly 2-constraint problems and
are thus worth considering in greater detail. Then, some of the remaining problems coincide up
to an x/y symmetry and are thus equivalent. As shown in Section 2.2, one finally obtains 79
inherently different, truly 2-constraint problems.

2.1. Easy algebraic cases

Let us say that a step (i, j) is x-positive if i > 0. We define similarly x-negative, y-positive
and y-negative steps. There are a number of reasons that may make the enumeration of quarter
plane walks with steps in S a simple problem:

(1) If S contains no x-positive step, we can ignore its x-negative steps, which will never be
used in a quarter plane walk: we are thus back to counting walks with vertical steps on
a (vertical) half-line. The solution of this problem is always algebraic, and even rational
if S = ∅ or S = {y} or S = {ȳ};

(2) Symmetrically, if S contains no y-positive step, the problem is simple with an algebraic
solution;

(3) If S contains no x-negative step, all walks with steps in S that start from (0, 0) lie in
the half-plane i ≥ 0. Thus any walk lying weakly above the x-axis is automatically a
quarter plane walk, and the problem boils down to counting walks confined to the upper
half-plane: the corresponding generating function is always algebraic;

(4) Symmetrically, if S contains no y-negative step, the problem is simple with an algebraic
solution.

We can thus restrict our attention to sets S containing x-positive, x-negative, y-positive and
y-negative steps. An inclusion-exclusion argument shows that the number of such sets is 161.
More precisely, the polynomial that counts them by cardinality is

P1(z) = (1 + z)8 − 4(1 + z)5 + 2(1 + z)2 + 4(1 + z)3 − 4(1 + z) + 1

= 2 z2 + 20 z3 + 50 z4 + 52 z5 + 28 z6 + 8 z7 + z8.
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In the expression of P1(z), one of the 4 terms (1 + z)5 counts sets with no x-positive step, one
term (1 + z)2 those with no x-positive nor x-negative step, one term (1 + z)3 those with no x-
positive nor y-positive step, and so on. All the sets S we have discarded correspond to problems
that either are trivial or can be solved automatically using the kernel method.

Among the remaining 161 sets S, some do not contain any step with both coordinates non-
negative: in this case the only quarter plane walk is the empty walk. These sets are subsets of
{x̄, ȳ, xȳ, x̄ȳ, x̄y}. But, as we have assumed at this stage that S contains x-positive and y-positive
steps, both xȳ and x̄y must belong to S. Hence we exclude 23 of our 161 step sets, which leaves
us with 153 sets, the generating polynomial of which is

P2(z) = P1(z)− z2(1 + z)3 = z2 + 17 z3 + 47 z4 + 51 z5 + 28 z6 + 8 z7 + z8.

Another, slightly less obvious, source of simplicity of the model is when one of the quarter plane
constraints implies the other. Assume that all walks with steps in S that end at a non-negative
abscissa automatically end at a non-negative ordinate (we say, for short, that the x-condition
forces the y-condition). This implies in particular that the steps ȳ and xȳ do not belong to S.
As we have assumed that S contains a y-negative step, x̄ȳ must be in S. But then x cannot
belong to S, otherwise some walks with a non-negative final abscissa would have a negative
final ordinate, like x followed by x̄ȳ. We are left with sets S ⊂ {x̄, y, xy, x̄y, x̄ȳ} containing
x̄ȳ, and also xy (because we need at least one x-positive step). Observe that these five steps
are those lying above the first diagonal. Conversely, it is easy to realize that for any such set,
the x-condition forces the y-condition. The generating polynomial of such super-diagonal sets
is z2(1 + z)3. Symmetrically, we need not consider sub-diagonal sets. An inclusion-exclusion
argument reduces the generating polynomial of non-simple cases to

P3(z) = P2(z)− 2z2(1 + z)3 + z2 = 11 z3 + 41 z4 + 49 z5 + 28 z6 + 8 z7 + z8,

that is to say, to 138 sets S.

2.2. Symmetries

The eight symmetries of the square act on the step sets. However, only the x/y symmetry
(reflection across the first diagonal) leaves the quarter plane fixed. Thus two step sets obtained
from one another by applying this symmetry lead to equivalent counting problems. As we want
to count non-equivalent problems, we need to determine how many among the 138 sets S that
are left have the x/y symmetry. We repeat the arguments of the previous subsection, counting
only symmetric models. We successively obtain

P sym
1 = (1 + z)2(1 + z2)3 − 2(1 + z)(1 + z2) + 1,

P sym
2 = P sym

1 − z2(1 + z)(1 + z2),

P sym
3 = P sym

2 − z2 = 3 z3 + 5 z4 + 5 z5 + 4 z6 + 2 z7 + z8.

For instance, the term we subtract from P sym
1 to obtain P sym

2 counts symmetric subsets of
{x̄, ȳ, xȳ, x̄ȳ, x̄y} containing xȳ and x̄y. The generating polynomial of (inherently different)
models that are neither trivial, nor equivalent to a 1-constraint problem is thus

1

2
(P3 + P sym

3 ) = 7 z3 + 23 z4 + 27 z5 + 16 z6 + 5 z7 + z8.

This gives a total of 79 models, shown in Tables 1 to 4.

3. The group of the walk

Let S be a set of small steps containing x-positive, x-negative, y-positive and y-negative steps.
This includes the 79 sets we wish to study. Let S(x, y) denote the generating polynomial of the
steps of S:

S(x, y) =
∑

(i,j)∈S

xiyj. (1)
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It is a Laurent polynomial in x and y. Recall that x̄ stands for 1/x, and ȳ for 1/y. Let us write

S(x, y) = A−1(x)ȳ +A0(x) +A1(x)y = B−1(y)x̄+B0(y) +B1(y)x. (2)

By assumption, A1, B1, A−1 and B−1 are non-zero. Clearly, S(x, y) is left unchanged by the
following rational transformations:

Φ : (x, y) 7→
(

x̄
B−1(y)

B1(y)
, y

)

and Ψ : (x, y) 7→
(

x, ȳ
A−1(x)

A1(x)

)

.

Note that both Φ and Ψ are involutions, and thus bi rational transformations. By composition,
they generate a group that we denote G(S), or G if there is no risk of confusion. This group
is isomorphic to a dihedral group Dn of order 2n, with n ∈ N ∪ {∞}. For each g ∈ G, one has
S(g(x, y)) = S(x, y). The sign of g is 1 (resp. −1) if g is the product of an even (resp. odd)
number of generators Φ and Ψ.

Examples
1. Assume S is left unchanged by a reflection across a vertical line. This is equivalent to saying
that S(x, y) = S(x̄, y), or that B1(y) = B−1(y), or that Ai(x) = Ai(x̄) for i = −1, 0, 1. Then
the orbit of (x, y) under the action of G reads

(x, y)
Φ←→(x̄, y)

Ψ←→(x̄, C(x)ȳ)
Φ←→(x,C(x)ȳ)

Ψ←→(x, y),

with C(x) = A
−1(x)

A1(x) , so that G is finite of order 4.

Note that there may exist rational transformations on (x, y) that leave S(x, y) unchanged but
are not in G. For instance, if S = {N, S,E,W}, the map (x, y) 7→ (y, x) leaves S(x, y) unchanged,
but the orbit of (x, y) under G is {(x, y), (x̄, y), (x̄, ȳ), (x, ȳ)}.
2. Consider the case S = {x̄, y, xȳ}. We have A−1(x) = x, A1(x) = 1, B−1(y) = 1, B1(y) = ȳ.
The transformations are

Φ : (x, y) 7→ (x̄y, y) and Ψ : (x, y) 7→ (x, xȳ),

and they generate a group of order 6:

(x, y)
Φ←→(x̄y, y)

Ψ←→(x̄y, x̄)
Φ←→(ȳ, x̄)

Ψ←→(ȳ, xȳ)
Φ←→(x, xȳ)

Ψ←→(x, y). (3)

3. Consider now the case S = {x̄, ȳ, xy}, which differs from the previous one by a rotation of 90
degrees. We have A−1(x) = 1, A1(x) = x, B−1(y) = 1, B1(y) = y. The two transformations are

Φ : (x, y) 7→ (x̄ȳ, y) and Ψ : (x, y) 7→ (x, x̄ȳ),

and they also generate a group of order 6:

(x, y)
Φ←→(x̄ȳ, y)

Ψ←→(x̄ȳ, x)
Φ←→(y, x)

Ψ←→(y, x̄ȳ)
Φ←→(x, x̄ȳ)

Ψ←→(x, y).

As shown by the following lemma, this is not a coincidence.

Lemma 2. Let S and S̃ be two sets of steps differing by one of the 8 symmetries of the square.
Then the groups G(S) and G(S̃) are isomorphic.

Proof. The group of symmetries of the square is generated by the two reflections ∆ (across
the first diagonal) and V (across a vertical line). Hence it suffices to prove the lemma when

S̃ = ∆(S) and when S̃ = V (S). We denote by Φ and Ψ the transformations associated with S,

and by Φ̃ and Ψ̃ those associated with S̃.
Assume S̃ = ∆(S). We have Ãi(x) = Bi(x) and B̃i(y) = Ai(y). Denote by δ the involution

that swaps the coordinates of a pair: δ(x, y) = (y, x). An elementary calculation gives

Φ̃ = δ ◦Ψ ◦ δ and Ψ̃ = δ ◦ Φ ◦ δ
so that the groups G(S) and G(S̃) are conjugate by δ.
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Assume now S̃ = V (S). We have Ãi(x) = Ai(x̄) and B̃i(y) = B−i(y). Denote by v the
involution that replaces the first coordinate of a pair by its reciprocal: v(x, y) = (x̄, y). An
elementary calculation gives

Φ̃ = v ◦ Φ ◦ v and Ψ̃ = v ◦Ψ ◦ v
so that the groups G(S) and G(S̃) are conjugate by v.

Theorem 3. Out of the 79 models under consideration, exactly 23 are associated with a finite
group:

– 16 have a vertical symmetry and thus a group of order 4,
– 5 have a group of order 6,
– 2 have a group of order 8.

Proof. Given that Φ and Ψ are involutions, the group they generate is finite of order 2n if and
only if Θ := Ψ ◦ Φ has finite order n. It is thus easy to prove that one of the groups G(S) has

order 2n: one computes the mth iterate Θm for 1 ≤ m ≤ n, and checks that only the last of
these transformations is the identity.

We have already seen in the examples above that models with a vertical symmetry have a
group of order 4. We leave it to the reader to check that the models of Tables 2 and 3 have
groups of order 6 and 8, respectively. These tables give the orbit of (x, y) under the action of G,
the elements being listed in the following order: (x, y), Φ(x, y), Ψ ◦ Φ(x, y), and so on.

Proving that one of the groups G(S) is infinite is a more difficult task. We apply two different
strategies, depending on S. The first one uses valuations and works for the five step sets of
Figure 2. These are the sets of our collection for which all elements (i, j) satisfy i+ j ≥ 0. We
are very grateful to Jason Bell, who suggested to us a second strategy which turned out to apply
to the remaining cases.

Figure 2. Five step sets with an infinite group.

1. The valuation argument
Let z be an indeterminate, and let x and y be Laurent series in z with coefficients in Q, of
respective valuations a and b. We assume that the trailing coefficients of these series, namely
[za]x and [zb]y, are positive. Let us define x′ by Φ(x, y) = (x′, y). Then the trailing coefficient
of x′ (and y) is positive, and the valuation of x′ (and y) only depends on a and b:

φ(a, b) := (val(x′), val(y)) =







(

−a+ b(v
(y)
−1 − v

(y)
1 ), b

)

if b ≥ 0,
(

−a+ b(d
(y)
−1 − d

(y)
1 ), b

)

if b ≤ 0,

where v
(y)
i (resp. d

(y)
i ) denotes the valuation (resp. degree) in y of Bi(y), for i = ±1. Similarly,

Ψ(x, y) := (x, y′) is well-defined, and the valuations of x and y′ only depend on a and b:

ψ(a, b) := (val(x), val(y′)) =







(

a,−b+ a(v
(x)
−1 − v

(x)
1 )
)

if a ≥ 0,
(

a,−b+ a(d
(x)
−1 − d

(x)
1 )
)

if a ≤ 0,

where v
(x)
i (resp. d

(x)
i ) denotes the valuation (resp. degree) in x of Ai(x), for i = ±1.

In order to prove that G is infinite, it suffices to prove that the group G′ generated by φ and
ψ is infinite. To prove the latter statement, it suffices to exhibit (a, b) ∈ Z2 such that the orbit
of (a, b) under the action of G′ is infinite.
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Let S be one of the five sets of Figure 2. Then A−1(x) = x and B−1(y) = y, so that

v
(x)
−1 = d

(x)
−1 = v

(y)
−1 = d

(y)
−1 = 1. Also, v

(x)
1 = v

(y)
1 = −1 as S contains the steps x̄y and xȳ. Hence

the transformations φ and ψ read:

φ(a, b) =

{

(−a+ 2b, b) if b ≥ 0,
(

−a+ b(1− d(y)
1 ), b

)

if b ≤ 0,
ψ(a, b) =

{

(a, 2a− b) if a ≥ 0,
(

a,−b+ a(1− d(x)
1 )
)

if a ≤ 0.

It is easy to check, by induction on n ≥ 0, that

(ψ ◦ φ)n(1, 2) = (2n+ 1, 2n+ 2) and φ(ψ ◦ φ)n(1, 2) = (2n+ 3, 2n+ 2).

(All these pairs have positive entries, so that we never need to know d
(y)
1 or d

(x)
1 .) Hence the

orbit of (1, 2) under the action of φ and ψ is infinite, and so are the groups G′ and G.
We believe, from our computer experiments, that the groups G′ associated with the remaining

51 models of Table 4 are finite, and hence, cannot be used to prove that G is infinite. Instead,
we use for these models a different argument based on the fixed points of Θ = Ψ ◦ Φ.

2. The fixed point argument
We are left with 51 models. Thanks to Lemma 2, we only need to prove that (roughly) a quarter

of them are associated with a finite group: if G(S) is infinite, then G(S̃) is infinite for all sets

S̃ that differ from S by a symmetry of the square1. This leaves 14 models to study, listed in
Table 5.

Assume Θ = Ψ ◦ Φ is well-defined in the neighborhood of (a, b) ∈ C2, and that this point is
fixed by Θ. Note that a and b are algebraic over Q. Let us write Θ = (Θ1,Θ2), where Θ1 and
Θ2 are the two coordinates of Θ. Each Θi sends the pair (x, y) to a rational function of x and
y. The local expansion of Θ around (a, b) reads

Θ(a+ u, b+ v) = (a, b) + (u, v)Ja,b +O(u2) +O(v2) +O(uv),

where Ja,b is the Jacobian matrix of Θ at (a, b):

Ja,b =











∂Θ1

∂x
(a, b)

∂Θ2

∂x
(a, b)

∂Θ1

∂y
(a, b)

∂Θ2

∂y
(a, b)











.

Iterating the above expansion gives, for m ≥ 1,

Θm(a+ u, b+ v) = (a, b) + (u, v)Jm
a,b +O(u2) +O(v2) +O(uv).

Assume G(S) is finite of order 2n, so that Θ has order n. Then Θn(a+u, b+ v) = (a, b)+ (u, v),
and the above equation shows that Jn

a,b is the identity matrix. In particular, all eigenvalues of
Ja,b are roots of unity.

This gives us a strategy for proving that a group G(S) is infinite: find a fixed point (a, b)
for Θ, and compute the characteristic polynomial χ(X) of the Jacobian matrix Ja,b. This is a
polynomial in X with coefficients in Q(a, b). In order to decide whether the roots of χ are roots
of unity, we eliminate a and b (which are algebraic numbers) from the equation χ(X) = 0 to
obtain a polynomial χ̄(X) ∈ Q[X ] that vanishes for all eigenvalues of Ja,b: if none of its factors is
cyclotomic, we can conclude that G(S) is infinite. As all cyclotomic polynomials of given degree
are known, this procedure is effective.

Let us treat one case in detail, say S = {x, y, ȳ, x̄ȳ} (the first case in Table 5). We have

Θ(x, y) = Ψ ◦ Φ(x, y) = (x̄ȳ, x+ ȳ) .

1Why a quarter, rather than an eighth? Recall that, if two (distinct) models differ by an x/y symmetry, only
one of them appears in Table 4.
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Every pair (a, b) such that a4 + a3 = 1 and b = 1/a2 is fixed by Θ. Let us choose one such pair.
The Jacobian matrix reads

Ja,b =

(

−1 1
−a3 −a4

)

,

and its characteristic polynomial is

χ(X) := det(X Id−Ja,b) = X2 +X(1 + a4) + a3 + a4.

Let X be a root of this polynomial. By eliminating a (which satisfies a4 + a3 = 1), we obtain

χ̄(X) := X8 + 9X7 + 31X6 + 62X5 + 77X4 + 62X3 + 31X2 + 9X + 1 = 0.

This polynomial is irreducible, and distinct from all cyclotomic polynomials of degree 8. Hence
none of its roots are roots of unity, no power of Ja,b is equal to the identity matrix, and the
group G(S) is infinite.

This strategy turns out to work for all models of Table 5. This table gives, for each model, the
algebraic equations defining the fixed point (a, b) that we choose (for instance, the “condition”
a4 +a3−1 occurring on the first line means that a4+a3−1 = 0), and a polynomial χ̄(X) ∈ Q[X ]
that vanishes at all eigenvalues of the Jacobian matrix, in factored form. One then checks that
no factor of this polynomial is cyclotomic.

It may be worth noting that this second strategy does not work for the five models of Figure 2:
in the first three cases, Θ has no fixed point; in the last two cases, it has a fixed point (a, b),
but the sixth power of the Jacobian matrix Ja,b is the identity (of course, Θ6 is not the identity;
more precisely, the expansion of Θ6(a+ u, b+ v) involves cubic terms in u and v).

Remark. To put this discussion in a larger framework, let us mention that the group of
birational transformations or C2 (or of the projective plane P2(C)), called the Cremona group, has
been the object of many studies in algebraic geometry since the end of the 19th century [34, 54].
It seems possible that, given the attention already paid to the classification of finite subgroups of
this group (see e.g. [7, 3]), there is a generic or automatic test for finiteness that can be applied
to all our examples.

4. General tools

Let S be one of the 79 step sets of Tables 1 to 4. LetQ be the set of walks that start from (0, 0),
take their steps from S and always remain in the first quadrant. Let q(i, j;n) be the number
of such walks that have length n and end at position (i, j). Denote by Q(x, y; t) ≡ Q(x, y) the
associated generating function:

Q(x, y; t) =
∑

i,j,n≥0

q(i, j;n)xiyjtn.

It is a formal power series in t with coefficients in Q[x, y].

4.1. A functional equation

Lemma 4. As a power series in t, the generating function Q(x, y) ≡ Q(x, y; t) of walks with
steps taken from S starting from (0, 0) and staying in the first quadrant is characterized by the
following functional equation:

K(x, y)xyQ(x, y) = xy − txA−1(x)Q(x, 0) − tyB−1(y)Q(0, y) + tǫQ(0, 0)

where

K(x, y) = 1− tS(x, y) = 1− t
∑

(i,j)∈S

xiyj

is called the kernel of the equation, the polynomials A−1(x) and B−1(y) are the coefficients of ȳ
and x̄ in S(x, y), as described by (2), and ǫ is 1 if (−1,−1) is one of the allowed steps, and 0
otherwise.
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Proof. We construct walks step by step, starting from the empty walk and concatenating a
new step at the end of the walk at each stage. The empty walk has weight 1. The generating
function of walks obtained by adding a step of S at the end of a walk of Q is tS(x, y)Q(x, y).
However, some of these walks exit the quadrant: those obtained by concatenating a y-negative
step to a walk ending at ordinate 0, and those obtained by concatenating an x-negative step
to a walk ending at abscissa 0. Walks ending at ordinate (resp. abscissa) 0 are counted by
the series Q(x, 0) (resp. Q(0, y)). Hence we must subtract the series tȳA−1(x)Q(x, 0) and
tx̄B−1(y)Q(0, y). However, if (−1,−1) ∈ S, we have subtracted twice the series counting walks
obtained by concatenating this step to a walk ending at (0, 0): we must thus add the series
ǫtx̄ȳQ(0, 0). This inclusion-exclusion argument gives

Q(x, y) = 1 + tS(x, y)Q(x, y)− tȳA−1(x)Q(x, 0)− tx̄B−1(y)Q(0, y) + ǫtx̄ȳQ(0, 0),

which, multiplied by xy, gives the equation of the lemma.
The fact that it characterizes Q(x, y; t) completely (as a power series in t) comes from the

fact that the coefficient of tn in Q(x, y; t) can be computed inductively using this equation. This
is of course closely related to the fact that we have used a recursive description of walks in Q to
obtain the equation.

4.2. Orbit sums

We have seen in Section 3 that all transformations g of the groupG associated with the step set
S leave the polynomial S(x, y) unchanged. Hence they also leave the kernelK(x, y) = 1−tS(x, y)
unchanged. Write the equation of Lemma 4 as

K(x, y)xyQ(x, y) = xy − F (x)−G(y) + tǫQ(0, 0),

with F (x) = txA−1(x)Q(x, 0) and G(y) = tyB−1(y)Q(0, y). Replacing (x, y) by Φ(x, y) = (x′, y)
gives

K(x, y)x′yQ(x′, y) = x′y − F (x′)−G(y) + tǫQ(0, 0).

The difference between the former and latter identities reads:

K(x, y)
(

xyQ(x, y)− x′yQ(x′, y)
)

= xy − x′y − F (x) + F (x′).

The term G(y) has disappeared. We can repeat this process, and add to this identity the
functional equation of Lemma 4, evaluated at (x′, y′) = Ψ(x′, y). This gives:

K(x, y)
(

xyQ(x, y)− x′yQ(x′, y) + x′y′Q(x′, y′)
)

= xy − x′y + x′y′ − F (x) −G(y′) + tǫQ(0, 0).

Now the term F (x′) has disappeared. If G is finite of order 2n, we can repeat the procedure
until we come back to (Ψ ◦Φ)n(x, y) = (x, y). That is to say, we form the alternating sum of the
equations over the orbit of (x, y). All unknown functions on the right-hand side finally vanish,
giving the following proposition, where we use the notation

for g ∈ G, g(A(x, y)) := A(g(x, y)).

Proposition 5 (Orbit sums). Assume the group G(S) is finite. Then

∑

g∈G

sign(g)g(xyQ(x, y; t)) =
1

K(x, y; t)

∑

g∈G

sign(g)g(xy). (4)

Observe that the right-hand side is a rational function in x, y and t. We show in Section 5
that this identity implies immediately that 19 of the 23 models having a finite group have a
D-finite solution.

The 4 remaining models are Gessel’s model {x, x̄, xy, x̄ȳ} (which we do not solve in this paper)
and the three models with steps S1 = {x̄, ȳ, xy}, S2 = {x, y, x̄ȳ}, and S = S1 ∪ S2. For each of
these three models, the orbit of (x, y) is

(x, y)
Φ←→(x̄ȳ, y)

Ψ←→(x̄ȳ, x)
Φ←→(y, x)

Ψ←→(y, x̄ȳ)
Φ←→(x, x̄ȳ)

Ψ←→(x, y),
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and exhibits an x/y symmetry. That is, (y, x) belongs to the orbit of (x, y). Moreover, if
g((x, y)) = (y, x), then sign(g) = −1. Thus the right-hand side of (4) vanishes, leaving

xyQ(x, y)− x̄Q(x̄ȳ, y) + ȳQ(x̄ȳ, x) = xyQ(y, x)− x̄Q(y, x̄ȳ) + ȳQ(x, x̄ȳ).

But this identity directly follows from the obvious relation Q(x, y) = Q(y, x) and does not bring
much information. In Section 6, we solve these three obstinate models by summing the functional
equation over one half of the orbit only. Given that A−1(x) = B−1(x), the identity resulting
from this half-orbit summation reads as follows.

Proposition 6 (Half-orbit sums). Denote S1 = {x̄, ȳ, xy} and S2 = {x, y, x̄ȳ}. If the set of
steps is S1, S2 or S1 ∪ S2, then

xyQ(x, y)− x̄Q(x̄ȳ, y) + ȳQ(x̄ȳ, x) =
xy − x̄+ ȳ − 2txA−1(x)Q(x, 0) + tǫQ(0, 0)

K(x, y)
.

Remark. For Gessel’s walks, the orbit of (x, y) is shown in Table 3. Proposition 5 reads
∑

g∈G

sign(g)g(xyQ(x, y)) = 0,

although no obvious symmetry explains this identity.

4.3. The roots of the kernel

Recall that the kernel of the main functional equation (Lemma 4) is

K(x, y) = 1− t
∑

(i,j)∈S

xiyj.

Lemma 7. Let

∆(x) = (1− tA0(x))
2 − 4t2A−1(x)A1(x).

Let Y0(x) and Y1(x) denote the two roots of the kernel K(x, y), where K(x, y) is seen as a
polynomial in y. These roots are Laurent series in t with coefficients in Q(x):

Y0(x) =
1− tA0(x) −

√

∆(x)

2tA1(x)
, Y1(x) =

1− tA0(x) +
√

∆(x)

2tA1(x)
. (5)

Their valuations in t are respectively 1 and −1. Moreover, 1/K(x, y) is a power series in t with
coefficients in Q[x, x̄, y, ȳ], and the coefficient of yj in this series can be easily extracted using

1

K(x, y)
=

1
√

∆(x)

(

1

1− ȳY0(x)
+

1

1− y/Y1(x)
− 1

)

. (6)

Proof. The equation K(x, Y ) = 0 also reads

Y = t
(

A−1(x) + Y A0(x) + Y 2A1(x)
)

. (7)

Solving this quadratic provides the expressions of Y0(x) and Y1(x) given above. As ∆(x) =
1 +O(t), the series Y1 has valuation −1 in t, and first term 1/(tA1(x)). The equation

Y0(x)Y1(x) =
A−1(x)

A1(x)

then shows that Y0(x) has valuation 1. This is also easily seen on (7), which in turn implies that
Y0 has coefficients in Q[x, x̄]. The equation

Y0(x) + Y1(x) =
1

tA1(x)
− A0(x)

A1(x)

shows that for n ≥ 1, the coefficient of tn in Y1(x) is also a Laurent polynomial in x. This is not
true, in general, of the coefficients of t−1 and t0.
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The identity (6) results from a partial fraction expansion in y. Note that both Y0 and 1/Y1

have valuation 1 in t. Hence the expansion in y of 1/K(x, y) gives

[yj ]
1

K(x, y)
=























Y0(x)
−j

√

∆(x)
if j ≤ 0

Y1(x)
−j

√

∆(x)
if j ≥ 0.

(8)

4.4. Canonical factorization of the discriminant ∆(x)

The kernel can be seen as a polynomial in y. Its discriminant is then a (Laurent) polynomial
in x:

∆(x) = (1 − tA0(x))
2 − 4t2A−1(x)A1(x).

Say ∆ has valuation −δ, and degree d in x. Then it admits δ + d roots Xi ≡ Xi(t), for
1 ≤ i ≤ δ + d, which are Puiseux series in t with complex coefficients. Exactly δ of them, say
X1, . . . , Xδ, are finite (and actually vanish) at t = 0. The remaining d roots, Xδ+1, . . . , Xδ+d,
have a negative valuation in t and thus diverge at t = 0. (We refer to [52, Chapter 6] for
generalities on solutions of algebraic equations with coefficients in C(t).) We write

∆(x) = ∆0∆−(x̄)∆+(x),

with

∆−(x̄) ≡ ∆−(x̄; t) =

δ
∏

i=1

(1 − x̄Xi),

∆+(x) ≡ ∆+(x; t) =

δ+d
∏

i=δ+1

(1− x/Xi),

and

∆0 ≡ ∆0(t) = (−1)δ [x̄δ]∆(x)
∏δ

i=1Xi

= (−1)d[xd]∆(x)
δ+d
∏

i=δ+1

Xi.

It can be seen that ∆0 (resp. ∆−(x̄), ∆+(x)) is a formal power series in t with constant term 1
and coefficients in C (resp. C[x̄], C[x]). The above factorization is an instance of the canonical
factorization of series in Q[x, x̄][[t]], which was introduced by Gessel [25], and has proved useful
in several walk problems since then [10, 16, 13]. It will play a crucial role in Section 6.

5. D-finite solutions via orbit sums

In this section, we first show that 19 of the 23 models having a finite group can be solved
from the corresponding orbit sum. This includes the 16 models having a vertical symmetry, plus
3 others. Then, we work out the latter 3 models in details, obtaining closed form expressions for
the number of walks ending at prescribed positions.

5.1. A general result

Proposition 8. For the 23 models associated with a finite group, except from the four cases
S = {x̄, ȳ, xy}, S = {x, y, x̄ȳ}, S = {x, y, x̄, ȳ, xy, x̄ȳ} and S = {x, x̄, xy, x̄ȳ}, the following
holds. The rational function

R(x, y; t) =
1

K(x, y; t)

∑

g∈G

sign(g)g(xy)

is a power series in t with coefficients in Q(x)[y, ȳ] (Laurent polynomials in y, having coefficients
in Q(x)). Moreover, the positive part in y of R(x, y; t), denoted R+(x, y; t), is a power series in
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t with coefficients in Q[x, x̄, y]. Extracting the positive part in x of R+(x, y; t) gives xyQ(x, y; t).
In brief,

xyQ(x, y; t) = [x>][y>]R(x, y; t). (9)

In particular, Q(x, y; t) is D-finite. The number of n-step walks ending at (i, j) is

q(i, j;n) = [xi+1yj+1]





∑

g∈G

sign(g)g(xy)



S(x, y)n (10)

where

S(x, y) =
∑

(p,q)∈S

xpyq.

Proof. We begin with the 16 models associated with a group of order 4 (Table 1). We will then
address the three remaining cases, S = {x̄, y, xȳ}, S = {x, x̄, xȳ, x̄y} and S = {x, x̄, y, ȳ, xȳ, x̄y}.

All models with a group of order 4 exhibit a vertical symmetry. That is, K(x, y) = K(x̄, y).
As discussed in the examples of Section 3, the orbit of (x, y) reads

(x, y)
Φ←→(x̄, y)

Ψ←→(x̄, C(x)ȳ)
Φ←→(x,C(x)ȳ)

Ψ←→(x, y),

with C(x) = A
−1(x)

A1(x) . The orbit sum of Proposition 5 reads

xyQ(x, y)− x̄yQ(x̄, y) + x̄ȳC(x)Q(x̄, C(x)ȳ) + xȳC(x)Q(x,C(x)ȳ) = R(x, y).

Clearly, both sides of this identity are series in t with coefficients in Q(x)[y, ȳ]. Let us extract
the positive part in y: only the first two terms of the left-hand side contribute, and we obtain

xyQ(x, y)− x̄yQ(x̄, y) = R+(x, y).

It is now clear from the left-hand side that R+(x, y) has coefficients in Q[x, x̄, y]. Extracting the
positive part in x gives the expression (9) for xyQ(x, y), since the second term of the left-hand
side does not contribute.

Let us now examine the cases S = {x̄, y, xȳ}, S = {x, x̄, xȳ, x̄y} and S = {x, x̄, y, ȳ, xȳ, x̄y}.
For each of them, the orbit of (x, y) consists of pairs of the form (xayb, xcyd) for integers a, b, c and
d (see Tables 2 and 3). This implies that R(x, y) is a series in t with coefficients in Q[x, x̄, y, ȳ].
When extracting the positive part in x and y from the orbit sum of Proposition 5, it is easily
checked, in each of the three cases, that only the term xyQ(x, y) remains in the left-hand side.
The expression of xyQ(x, y) follows.

Proposition 1 then implies that Q(x, y; t) is D-finite. The expression of q(i, j;n) follows from
a mere coefficient extraction.

5.2. Two models with algebraic specializations: {x̄, y, xȳ} and {x, x̄, y, ȳ, xȳ, x̄y}
Consider the case S = {x̄, y, xȳ} ≡ {W,N, SE}. A walk w with steps taken from S remains

in the first quadrant if each of its prefixes contains more N steps that SE steps, and more SE

steps than W steps. These walks are thus in bijection with Young tableaux of height at most 3
(Figure 3), or, via the Schensted correspondence [49], with involutions having no decreasing
subsequence of length 4. The enumeration of Young tableaux is a well-understood topic. In par-
ticular, the number of tableaux of a given shape —and hence the number of n-step walks ending
at a prescribed position— can be written in closed form using the hook-length formula [49]. It is
also known that the total number of tableaux of size n and height at most 3 is the nth Motzkin
number [48]. Here, we recover these two results (and refine the latter), using orbit and half-orbit
sums. Then, we show that the case S = {x, x̄, y, ȳ, xȳ, x̄y}, which, to our knowledge, has never
been solved, behaves very similarly. In particular, the total number of n-step walks confined to
the quadrant is also related to Motzkin numbers (Proposition 10).
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6 7 10

95

2 4 81

3

W

SE

N

N-N-SE-N-SE-W-W-N-SE-W

Figure 3. A Young tableau of height 3 and the corresponding quarter plane
walk with steps in {W,N, SE}.

Proposition 9. The generating function of walks with steps W, N, SE confined to the quar-
ter plane is the non-negative part (in x and y) of a rational series in t having coefficients in
Q[x, x̄, y, ȳ]:

Q(x, y; t) = [x≥y≥]R̃(x, y; t), with R̃(x, y; t) =
(1− x̄ȳ)

(

1− x̄2y
) (

1− xȳ2
)

1− t(x̄+ y + xȳ)
.

In particular, Q(x, y) is D-finite. The number of walks of length n = 3m+ 2i+ j ending at (i, j)
is

q(i, j;n) =
(i+ 1)(j + 1)(i+ j + 2)(3m+ 2i+ j)!

m!(m+ i+ 1)!(m+ i+ j + 2)!
.

In particular,

q(0, 0; 3m) =
2(3m)!

m!(m+ 1)!(m+ 2)!
∼
√

3
33m

πm4
,

so that Q(0, 0; t) —and hence Q(x, y; t)— is transcendental.
However, the specialization Q(x, 1/x; t) is algebraic of degree 2:

Q(x, 1/x; t) =
1− tx̄−

√
1− 2 x̄t+ t2x̄2 − 4 t2x

2xt2
.

In particular, the total number of n-step walks confined to the quadrant is the nth Motzkin
number:

Q(1, 1; t) =
1− t−

√

(1 + t)(1− 3t)

2t2
=
∑

n≥0

tn
⌊n/2⌋
∑

k=0

1

k + 1

(

n

2k

)(

2k

k

)

.

Proof. The orbit of (x, y) under the action ofG is shown in (3). The first result of the proposition

is a direct application of Proposition 8, with R̃(x, y) = R(x, y)/(xy). It is then an easy task to

extract the coefficient of xiyjtn in R̃(x, y; t), using

[xiyj ](x̄+ y + xȳ)n =
(3m+ 2i+ j)!

m!(m+ i)!(m+ i+ j)!

if n = 3m+ 2i+ j.

The algebraicity of Q(x, x̄) can be proved as follows: let us form the alternating sum of the
three equations obtained from Lemma 4 by replacing (x, y) by the first 3 elements of the orbit.
These elements are those in which y occurs with a non-negative exponent. This gives

K(x, y)(xyQ(x, y)− x̄y2Q(x̄y, y) + x̄2yQ(x̄y, x̄)) = xy − x̄y2 + x̄2y − tx2Q(x, 0)− tx̄Q(0, x̄).

We now specialize this equation to two values of y. First, replace y by x̄: the second and third
occurrence of Q in the left-hand side cancel out, leaving

K(x, x̄)Q(x, x̄) = 1− tx2Q(x, 0)− tx̄Q(0, x̄).

For the second specialization, replace y by the root Y0(x) of the kernel (see (5)). This is a
well-defined substitution, as Y0(x) has valuation 1 in t. The left-hand side vanishes, leaving

0 = xY0(x)− x̄Y0(x)
2 + x̄2Y0(x)− tx2Q(x, 0)− tx̄Q(0, x̄).
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By combining the last two equations, we obtain

K(x, x̄)Q(x, x̄) = 1− xY0(x) + x̄Y0(x)
2 − x̄2Y0(x).

The expression of Q(x, x̄) follows.

The case S = {N, S,W,E, SE,NW} is very similar to the previous one. In particular, the
orbit of (x, y) is the same in both cases. The proof of the previous proposition translates almost
verbatim. Remarkably, Motzkin numbers occur again.

Proposition 10. The generating function of walks with steps N, S, W, E, SE, NW confined to
the quarter plane is the non-negative part (in x and y) of a rational function:

Q(x, y; t) = [x≥y≥]R̃(x, y; t), with R̃(x, y; t) =
(1 − x̄ȳ)

(

1− x̄2y
) (

1− xȳ2
)

1− t(x+ y + x̄+ ȳ + xȳ + x̄y)
.

In particular, Q(x, y; t) is D-finite. The specialization Q(x, 1/x; t) is algebraic of degree 2:

Q(x, 1/x; t) =
1− tx− tx̄+

√

(1− t(x+ x̄))2 − 4t2(1 + x)(1 + x̄)

2t2 (1 + x) (1 + x̄)
.

In particular, the total number of n-step walks confined to the quadrant is 2n times the nth

Motzkin number:

Q(1, 1; t) =
1− 2t−

√

(1 + 2t)(1− 6t)

8t2
=
∑

n≥0

tn
⌊n/2⌋
∑

k=0

2n

k + 1

(

n

2k

)(

2k

k

)

.

5.3. The case S = {x, x̄, xȳ, x̄y}
Consider quadrant walks made of E, W, NW and SE steps. These walks are easily seen to be

in bijection with pairs of non-intersecting prefixes of Dyck paths: To pass from such a pair to
a quadrant walk, parse the pair of paths from left to right and assign a direction (E, W, NW

or SE) to each pair of steps, as described in Figure 4. Hence the number of walks ending at a
prescribed position is given by a 2-by-2 Gessel-Viennot determinant [27] and we can expect a
closed form expression for this number.

j + 1

i
SENW

WE

Figure 4. A pair of non-intersecting prefixes of Dyck paths corresponding to
the quarter plane walk E-W-E-E-NW-SE-W-E-E-NW.

Also, note that the linear transformation (i, j) 7→ (i + j, j) maps these quarter plane walks
bijectively to walks with E, W, N and S steps confined to {(i, j) : 0 ≤ j ≤ i}. In this form,
they were studied by Gouyou-Beauchamps, who proved that the number of n-step walks ending
on the x-axis is a product of Catalan numbers [29]. His interest in these walks came from a
bijection he had established between walks ending on the x-axis and Young tableaux of height
at most 4 [30]. This bijection is far from being as obvious as the one that relates tableaux of
height at most 3 to quarter plane walks with W, N and SW steps (Section 5.2).

Here, we first specialize Proposition 8 to obtain the number of n-step walks ending at (i, j)
(Proposition 11). Then, we perform an indefinite summation on i, or j, or both i and j to obtain
additional closed form expressions, including Gouyou-Beauchamps’s (Corollary 12).
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Proposition 11. The generating function of walks with steps E, W, NW, SE confined to the
quarter plane is the non-negative part (in x and y) of a rational function:

Q(x, y; t) = [x≥y≥]R̃(x, y; t),

with

R̃(x, y; t) =
(1− x̄) (1 + x̄) (1− ȳ)

(

1− x̄2y
)

(1− xȳ) (1 + xȳ)

1− t(x+ x̄+ xȳ + x̄y)
.

In particular, Q(x, y; t) is D-finite. The number of walks of length n = 2m+ i ending at (i, j) is

q(i, j; 2m+ i) =
(i+ 1)(j + 1)(i+ j + 2)(i+ 2j + 3)

(2m+ i+ 1)(2m+ i+ 2)(2m+ i+ 3)2

(

2m+ i+ 3

m− j

)(

2m+ i+ 3

m+ 1

)

.

In particular,

q(0, 0; 2m) =
6(2m)!(2m+ 2)!

m!(m+ 1)!(m+ 2)!(m+ 3)!
∼ 24 · 42m

πm5

so that Q(0, 0; t) —and hence Q(x, y; t)— is transcendental.

Before we prove this proposition, let us perform summations on i and j. Recall that a hy-
pergeometric sequence (f(k))k is Gosper summable (in k) if there exists another hypergeometric
sequence (g(k))k such that f(k) = g(k + 1) − g(k). In this case, indefinite summation can be
performed in closed form [46, Chapter 5]:

k1
∑

k=k0

f(k) = g(k1 + 1)− g(k0).

The numbers q(i, j;n) of Proposition 11 have remarkable Gosper properties, from which we now
derive Gouyou-Beauchamps’s result for walks ending on the x-axis, and more.

Corollary 12. The numbers q(i, j;n) are Gosper-summable in i and in j. Hence sums of the

form
∑i1

i=i0
q(i, j;n) and

∑j1
j=j0

q(i, j;n) have closed form expressions. In particular, the number
of walks of length n ending at ordinate j is

q(−, j;n) :=
∑

i≥0

q(i, j;n) =























(j + 1)(2m)!(2m+ 2)!

(m− j)!(m+ 1)!2(m+ j + 2)!
if n = 2m,

2(j + 1)(2m+ 1)!(2m+ 2)!

(m− j)!(m+ 1)!(m+ 2)!(m+ j + 2)!
if n = 2m+ 1.

Similarly, the number of walks of length n = 2m+ i ending at abscissa i is

q(i,− ; 2m+ i) :=
∑

j≥0

q(i, j; 2m+ i) =
(i+ 1)(2m+ i)!(2m+ i+ 2)!

m!(m+ 1)!(m+ i+ 1)!(m+ i+ 2)!
.

In particular, as many 2m-step walks end on the x- and y-axes:

q(−, 0; 2m) = q(0,− ; 2m) =
(2m)!(2m+ 2)!

m!(m+ 1)!2(m+ 2)!
.

The numbers q(i,− ;n) and q(−, j;n) defined above are again Gosper-summable in i and j re-

spectively. Hence sums of the form

i1
∑

i=i0

q(i,− ;n) =

i1
∑

i=i0

∑

j

q(i, j;n) and

j1
∑

j=j0

q(−, j;n) =

j1
∑

j=j0

∑

i

q(i, j;n),
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which count walks ending between certain vertical or horizontal lines, have simple closed form
expressions. In particular, the total number of quarter plane walks of length n is

q(−,− ;n) :=
∑

i,j≥0

q(i, j;n) =























(2m)!(2m+ 1)!

m!2(m+ 1)!2
if n = 2m,

(2m+ 1)!(2m+ 2)!

m!(m+ 1)!2(m+ 2)!
if n = 2m+ 1.

The asymptotic behaviours of these numbers are found to be

q(−,− ;n) ∼ c1 · 4n/n2, q(0,− ;n) ∼ c2 · 4n/n3, q(−, 0;n) ∼ c3 · 4n/n3,

which shows that the series Q(1, 1; t), Q(0, 1; t) and Q(1, 0; t) are transcendental.

Proof of Proposition 11 and Corollary 12. The orbit of (x, y) under the action of G, of cardinality
8, is shown in Table 3. The expression of Q(x, y; t) given in Proposition 11 is a direct application

of Proposition 8, with R̃(x, y) = R(x, y)/(xy). It is then an easy task to extract the coefficient

of xiyjtn in R̃(x, y; t), using

x+ x̄+ x̄y + xȳ = (1 + ȳ)(x+ x̄y) and [xiyj](x + x̄+ x̄y + xȳ)n =

(

n

m+ i

)(

n

m− j

)

for n = 2m+ i. This proves Proposition 11.
For the first part of corollary, that is, the expressions of q(−, j;n) and q(i,− ;n), it suffices

to check the following identities, which we have obtained using the implementation of Gosper’s
algorithm found in the sumtools package of Maple:

q(2i, j; 2m) = g1(i, j;m)− g1(i+ 1, j;m),

q(2i+ 1, j; 2m+ 1) = g2(i, j;m)− g2(i+ 1, j;m),

q(i, j; 2m+ i) = g3(i, j;m)− g3(i, j + 1;m),

with

g1(i, j;m) =
2 (1 + j) (m+ 1 + 2 i (i+ 1 + j)) (2m)! (2m+ 1)!

(m− i− j)! (m− i+ 1)! (m+ i+ 1)! (m+ i+ j + 2)!
,

g2(i, j;m) =
2 (1 + j) (m+ 1 + j (1 + 2 i) + 2 (1 + i)

2
) (2m+ 1)! (2m+ 2)!

(m− i− j)! (m− i+ 1)! (m+ i+ 2)! (m+ i+ j + 3)!
,

g3(i, j;m) =
(1 + i) (m+ 1 + (i+ j + 1) (1 + j)) (2m+ i)! (2m+ i+ 2)!

(m− j)! (m+ 1)! (m+ i+ 2)! (m+ i+ j + 2)!
.

These three identities respectively lead to

q(−, j; 2m) = g1(0, j;m), q(−, j; 2m+ 1) = g2(0, j;m) and q(i,− ; 2m+ i) = g3(i, 0;m)

as stated in the corollary.
For the second part, we have used the following identities, also discovered (and proved) using

Maple:

q(2i,− ; 2m) = g4(i;m)− g4(i+ 1;m),

q(2i+ 1,− ; 2m+ 1) = g5(i;m)− g5(i+ 1;m),

q(−, j; 2m) = g6(j;m)− g6(j + 1;m),

q(−, j; 2m+ 1) = g7(j;m)− g7(j + 1;m),
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with

g4(i;m) =
(2m)! (2m+ 1)!

(m− i)! (m− i+ 1)! (m+ i)! (m+ i+ 1)!
,

g5(i;m) =
(2m+ 1)! (2m+ 2)!

(m− i)! (m− i+ 1)! (m+ i+ 1)! (m+ i+ 2)!
,

g6(j;m) =
(2m)! (2m+ 1)!

(m− j)!m! (m+ 1)! (m+ j + 1)!
,

g7(j;m) =
(2m+ 1)! (2m+ 2)!

(m− j)! (m+ 1)! (m+ 2)! (m+ j + 1)!
.

Note that these identities give two ways to determine the total number of n-step walks in the
quadrant, as

q(−,− ; 2m) = g4(0;m) = g6(0;m) and q(−,− ; 2m+ 1) = g5(0;m) = g7(0;m).

6. Algebraic solutions via half-orbit sums

In this section we solve in a unified manner the three models whose orbit has an x/y symmetry:
S1 = {x̄, ȳ, xy}, S2 = {x, y, x̄ȳ} and S = S1 ∪ S2. Remarkably, in all three cases the generating
function Q(x, y; t) is found to be algebraic. Our approach uses the algebraic kernel method
introduced by the first author to solve the case S = S1, that is, Kreweras’ model [13, Section 2.3].
We refer to the introduction for more references on this model. The case S = S2 was solved by
the second author in [40], and the case S = S1 ∪ S2 is, to our knowledge, new.

Recall from Proposition 6 that for each of these three models,

xyQ(x, y)− x̄Q(x̄ȳ, y) + ȳQ(x̄ȳ, x) =
xy − x̄+ ȳ − 2txA−1(x)Q(x, 0) + tǫQ(0, 0)

K(x, y)
.

Extract from this equation the coefficient of y0: in the left-hand side, only the second term
contributes, and its contribution is x̄Qd(x̄), where Qd(x) ≡ Qd(x; t) is the generating function
of walks ending on the diagonal:

Qd(x; t) =
∑

n,i≥0

tnxiq(i, i;n).

The coefficient of y0 in the right-hand side can be easily extracted using (8). This gives

−x̄Qd(x̄) =
1

√

∆(x)

(

xY0(x)− x̄+
1

Y1(x)
− 2txA−1(x)Q(x, 0) + tǫQ(0, 0)

)

,

or, given the expression (5) of Y0 and the fact that Y0Y1 = x̄,

x

tA1(x)
− x̄Qd(x̄) =

1
√

∆(x)

(

x(1− tA0(x))

tA1(x)
− x̄− 2txA−1(x)Q(x, 0) + tǫQ(0, 0)

)

.

Let us write the canonical factorization of ∆(x) = ∆0∆+(x)∆−(x̄) (see Section 4.4). Multiplying

the equation by A1(x)
√

∆−(x̄) gives

√

∆−(x̄)
(x

t
− x̄A1(x)Qd(x̄)

)

=

1
√

∆0∆+(x)

(

x(1− tA0(x))

t
− x̄A1(x)− 2txA−1(x)A1(x)Q(x, 0) + tǫA1(x)Q(0, 0)

)

. (11)

Each term in this equation is a Laurent series in t with coefficients in Q[x, x̄]. Moreover, very
few positive powers of x occur in the left-hand side, while very few negative powers in x occur
in the right-hand side. We will extract from this equation the positive and negative parts in x,
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and this will give algebraic expressions for the unknown series Qd(x) and Q(x, 0). From now on,
we consider each model separately.

6.1. The case S = {x̄, ȳ, xy}
We have A−1(x) = 1, A0(x) = x̄, A1(x) = x and ǫ = 0. The discriminant ∆(x) reads

(1 − tx̄)2 − 4t2x. The curve ∆(x; t) = 0 has a rational parametrization in terms of the series
W ≡W (t), defined as the only power series in t satisfying

W = t(2 +W 3). (12)

Replacing t by W/(2+W 3) in ∆(x) gives the canonical factorization as ∆(x) = ∆0∆+(x)∆−(x̄)
with

∆0 =
4t2

W 2
, ∆+(x) = 1− xW 2, ∆−(x̄) = 1− W (W 3 + 4)

4x
+
W 2

4x2
.

Extracting the positive part in x from (11) gives

x

t
= −

(

2 t2x2Q (x, 0)− x+ 2 t
)

W

2t2
√

1− xW 2
+
W

t
,

from which we obtain an expression of Q(x, 0) in terms of W . Extracting the non-positive part
in x from (11) gives

√

1− W (W 3 + 4)

4x
+
W 2

4x2

(x

t
−Qd (x̄)

)

− x

t
= −W

t
,

from which we obtain an expression of Qd(x̄). We recover the results of [13].

Proposition 13. Let W ≡ W (t) be the power series in t defined by (12). Then the generating
function of quarter plane walks formed of W, S and NE steps, and ending on the x-axis is

Q(x, 0; t) =
1

tx

(

1

2t
− 1

x
−
(

1

W
− 1

x

)

√

1− xW 2

)

.

Consequently, the length generating function of walks ending at (i, 0) is

[xi]Q(x, 0; t) =
W 2i+1

2.4i t

(

Ci −
Ci+1W

3

4

)

,

where Ci =
(

2i
i

)

/(i+ 1) is the i-th Catalan number. The Lagrange inversion formula gives the
number of such walks of length m = 3m+ 2i as

q(i, 0; 3m+ 2i) =
4m(2i+ 1)

(m+ i+ 1)(2m+ 2i+ 1)

(

2i

i

)(

3m+ 2i

m

)

.

The generating function of walks ending on the diagonal is

Qd(x; t) =
W − x̄

t
√

1− xW (1 +W 3/4) + x2W 2/4
+ x̄/t.

Note that Q(0, 0) is algebraic of degree 3, Q(x, 0) is algebraic of degree 6, and Q(x, y) (which
can be expressed in terms of Q(x, 0), and Q(0, y) = Q(y, 0) using the functional equation we
started from) is algebraic of degree 12.

6.2. The case S = {x, y, x̄ȳ}
The steps of this model are obtained by reversing the steps of the former model. In particular,

the series Q(0, 0) counting walks that start and end at the origin is the same in both models.
This observation was used in [40] to solve the latter case. We present here a self-contained
solution.
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We have A−1(x) = x̄, A0(x) = x, A1(x) = 1 and ǫ = 1. The discriminant ∆(x) is now
(1− tx)2 − 4t2x̄, and is obtained by replacing x by x̄ in the discriminant of the previous model.
In particular, the canonical factors of ∆(x) are

∆0 =
4t2

W 2
, ∆+(x) = 1− W (W 3 + 4)

4
x+

W 2

4
x2, ∆−(x̄) = 1− x̄W 2,

where W ≡W (t) is the power series in t defined by (12). Extracting the coefficient of x0 in (11)
gives

−W
2

2t
= −W

(

W 4 + 4W + 8tQ(0, 0)
)

16t
from which we obtain an expression of Q(0, 0). Extracting the non-negative part in x from (11)
gives

x

t
− W 2

2t
= −

(

2xt2Q(x, 0)− xt2Q(0, 0) + t− x2 + x3t
)

W

2xt2
√

1− xW (W 3 + 4)/4 + x2W 2/4
+
W

2xt

from which we obtain an expression ofQ(x, 0). Finally, extracting the negative part in x from (11)
gives

(

x

t
− Qd (x̄)

x

)

√

1− W 2

x
− x

t
+
W 2

2t
= − W

2xt
,

from which we obtain an expression of Qd(x̄). We have thus recovered, and completed, the
results of [40]. Note in particular how simple the number of walks of length n ending at a
diagonal point (i, i) is.

Proposition 14. Let W ≡ W (t) be the power series in t defined by (12). Then the generating
function of quarter plane walks formed of N, E and SW steps and ending on the x-axis is

Q(x, 0; t) =
W
(

4−W 3
)

16t
− t− x

2 + tx3

2xt2
−
(

2 x2 − xW 2 −W
)√

1− xW (W 3 + 4)/4 + x2W 2/4

2txW
.

The generating function of walks ending on the diagonal is

Qd(x; t) =
xW (x +W )− 2

2tx2
√

1− xW 2
+

1

tx2
.

Consequently, the length generating function of walks ending at (i, i) is

[xi]Qd(x; t) =
W 2i+1

4i+1t (i+ 2)

(

2i

i

)

(

2i+ 4− (2i+ 1)W 3
)

.

The Lagrange inversion formula gives the number of such walks of length n = 3m+ 2i as

q(i, i; 3m+ 2i) =
4m(i+ 1)2

(m+ i+ 1)(2m+ 2i+ 1)

(

2i+ 1

i

)(

3m+ 2i

m

)

.

Note that Q(0, 0) is algebraic of degree 3, Q(x, 0) is algebraic of degree 6, and Q(x, y) (which
can be expressed in terms of Q(x, 0), Q(0, y) = Q(y, 0) and Q(0, 0) using the functional equation
we started from) is algebraic of degree 12.

6.3. The case S = {x, y, x̄, ȳ, xy, x̄ȳ}
We have A−1(x) = 1 + x̄, A0(x) = x + x̄, A1(x) = 1 + x and ǫ = 1. The discriminant ∆(x)

is now (1 − t(x + x̄))2 − 4t2(1 + x)(1 + x̄), and is symmetric in x and x̄. Two of its roots, say
X1 and X2, have valuation 1 in t, and the other two roots are 1/X1 and 1/X2. By studying the
two elementary symmetric functions of X1 and X2 (which are the coefficients of ∆−(x̄)), we are
led to introduce the power series Z ≡ Z(t), satisfying

Z = t
1− 2Z + 6Z2 − 2Z3 + Z4

(1− Z)2
(13)
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and having no constant term. Replacing t by its expression in terms of Z in ∆(x) provides the
canonical factors of ∆(x) as

∆0 =
t2

Z2
, ∆+(x) = 1− 2Z

1 + Z2

(1− Z)2
x+ Z2x2, ∆−(x̄) = ∆+(x̄).

As in the previous case, extracting from (11) the coefficient of x0 gives and expression of Q(0, 0):

Q(0, 0) =
Z(1− 2Z − Z2)

t(1− Z)2
.

Extracting then the positive and negative parts of (11) in x gives expressions of Q(x, 0) and
Qd(x̄).

Proposition 15. Let Z ≡ Z(t) be the power series with no constant term satisfying (13), and
denote

∆+(x) = 1− 2Z
1 + Z2

(1− Z)2
x+ Z2x2.

Then the generating function of quarter plane walks formed of N, S, E, W, SE and NW steps,
and ending on the x-axis is

Q(x, 0; t) =

(

Z(1− Z) + 2xZ − (1− Z)x2
)√

∆+(x)

2txZ(1− Z)(1 + x)2

− Z(1− Z)2 + Z
(

Z3 + 4Z2 − 5Z + 2
)

x−
(

1− 2Z + 7Z2 − 4Z3
)

x2 + x3Z(1− Z)2

2txZ(1− Z)2(1 + x)2
.

The generating function of walks ending on the diagonal is

Qd(x; t) =
1− Z − 2xZ + x2Z(Z − 1)

tx(1 + x)(Z − 1)
√

∆+(x)
+

1

tx(1 + x)

Note that Q(0, 0) is algebraic of degree 4, Q(x, 0) is algebraic of degree 8, and Q(x, y) (which
can be expressed in terms of Q(x, 0), Q(0, y) = Q(y, 0) and Q(0, 0) using the functional equation
we started from) is algebraic of degree 16. However, Q ≡ Q(1, 1) has degree 4 only, and the
algebraic equation it satisfies has a remarkable form:

Q (1 + tQ)
(

1 + 2tQ+ 2 t2Q2
)

=
1

1− 6t
.

Also, Motzkin numbers seem to be lurking around, as in Proposition 10.

Corollary 16. Let N ≡ N(t) be the only power series in t satisfying

N = t(1 + 2N + 4N2).

Up to a factor t, this series is the generating function of the numbers 2nMn, where Mn is the

nth Motzkin number:

N =
∑

n≥0

tn+1

⌊n/2⌋
∑

k=0

2n

k + 1

(

n

2k

)(

2k

k

)

.

Then the generating function of all walks in the quadrant with steps N, S, E, W, SE and NW is

Q(1, 1; t) =
1

2t

(

√

1 + 2N

1− 2N
− 1

)

,

and the generating function of walks in the quadrant ending at the origin is

Q(0, 0; t) =
(1 + 4N)3/2

2Nt
− 1

2t2
− 2

t
.

The proof is elementary once the algebraic equations satisfied by Q(1, 1) and Q(0, 0) are
obtained.
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7. Final comments and questions

The above results raise, in our opinion, numerous natural questions. Here are some of them.
The first two families of questions are of a purely combinatorial, or even bijective, nature (“ex-
plain why some results are so simple”). Others are more closely related to the method used in
this paper. We also raise a question of an algorithmic nature.

7.1. Explain closed form expressions

We have obtained remarkable hypergeometric expressions for the number of walks in many
cases (Propositions 9 to 14). Are there direct combinatorial explanations? Let us underline a
few examples that we consider worth investigating.

— Kreweras’ walks and their reverse: The number of Kreweras’ walks ending at (i, 0)
is remarkably simple (Proposition 13). A combinatorial explanation has been found
when i = 0, in connection with the enumeration of planar triangulations [4]. To our
knowledge, the generic case remains open. If we consider instead the reverse collection
of steps (Proposition 14), then it is the number of walks ending at (i, i) that is remarkably
simple. This is a new result, which we would like to see explained in a more combinatorial
manner.

— Motzkin numbers: this famous sequence of numbers arises in the solution of the cases
S = {x̄, y, xȳ} and S = {x, x̄, y, ȳ, xȳ, x̄y} (Propositions 9 and 10). The first problem is
equivalent to the enumeration of involutions with no decreasing subsequence of length 4,
and the occurrence of Motzkin numbers follows from restricting a bijection of Françon
and Viennot [24]. The solution to the second problem is, to our knowledge, new, and
deserves a more combinatorial solution. Can one find a direct explanation for why the
respective counting sequences for the total number of walks of these two models differ
by a power of 2? Is there a connection with the 2n phenomenon of [19]?

— Gessel’s walks: although we have not solved this case (S = {x, x̄, xy, x̄ȳ}) in this
paper, we cannot resist advertising Gessel’s former conjecture, which has now become
Kauers–Koutschan–Zeilberger’s theorem:

q(0, 0; 2n) = 16n (5/6)n(1/2)n

(5/3)n(2)n
.

Certain other closed form expressions obtained in this paper are less mysterious. As discussed
at the beginning of Section 5.3, walks with E, W, NW and SE steps are in bijection with pairs
of non-intersecting walks. The Gessel-Viennot method (which, as our approach, is an inclusion-
exclusion argument) expresses the number of walks ending at (i, j) as a 2-by-2 determinant,
thus justifying the closed form expressions of Proposition 11. The extension of this theory by
Stembridge [53] allows one to let i, or j, or both i and j vary, and the number of walks is now
expressed as a pfaffian. Hence the closed forms of Corollary 12 are not unexpected. However,
one may try to find direct proofs not involving the inclusion-exclusion principle. Moreover, the
following question may be interesting per se:

— Walks with E, W, NW and SE steps: can one explain bijectively why as many 2m-step
walks end on the x- and y-axes? Recall that those ending on the x-axis were counted
bijectively in [29].

Another well-understood case is that of quarter plane walks with N, E, S and W steps. The
number of such walks ending at the origin is a product of Catalan numbers, and this has been
explained bijectively, first in a recursive manner [18], and more recently directly, using again
certain planar maps as intermediate objects [5]. Another argument, based on the reflection
principle and thus involving minus signs, appears in [31] and applies to more general endpoints.
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7.2. Explain algebraic series

A related problem is to explain combinatorially, via a direct construction, why the three
models of Section 6 have algebraic generating functions. Given the connection between Kreweras’
walks and planar triangulations [4], this could be of the same complexity as proving directly that
families of planar maps have an algebraic generating function. (Much progress has been made
recently on this problem by Schaeffer, Di Francesco and their co-authors.) And what about
Gessel’s walks (with steps E, W, NE and SW), which we have not solved in this paper, but have
very recently been proved to have an algebraic generating function as well [9]?

7.3. Models with a vertical symmetry

When S is invariant by a reflection across a vertical axis, the group G(S) has cardinality 4 and
Proposition 8 gives the generating function Q(x, y; t) as the positive part of a rational function.
We have not worked out the coefficient extraction in any of these 16 cases. This may be worth
doing, with the hope of finding closed form expressions in some cases. However, according to [8],
there is little hope to find an algebraic solution for Q(1, 1; t).

7.4. Models with an infinite group

Two of the 56 models that are associated with an infinite group (Table 4) have been proved
to have a non-D-finite generating function [41]. We conjecture that this holds for all models
with an infinite group. This conjecture is based on our experimental attempts to discover a
differential equation satisfied by the generating function, and much strengthened by the further
attempts of Bostan and Kauers [8], which are based on the calculation of 1000 terms of each
generating function. It also relies on the fact that all equations with two catalytic variables and
an infinite group that have been solved so far have a non-D-finite solution. How could one prove
this conjecture, for instance in the case S = {N,E,NE, SW}? And what is the importance, if any,
that can be attributed to the fact that the step sets with finite groups either exhibit a symmetry
across the y-axis or have a vector sum of zero?

7.5. Automatic derivation of differential equations

Our D-finite but transcendental solutions are expressed as the positive part (in x and y)
of a 3-variable rational series in t, x and y (Proposition 8). Can one derive automatically
from these expressions differential equations satisfied by Q(0, 0; t) and Q(1, 1; t)? This would
be a convenient way to fill in the gap between our work and the paper [8], where differential
equations are conjectured for the series Q(1, 1; t).

For the algebraic solutions of Section 6, it is easy to derive from our results first an algebraic
equation satisfied by Q(0, 0; t) (or Q(1, 1; t)), and then a differential equation satisfied by this
series, using the Maple package Gfun [50].

7.6. Variations and extensions

It is natural to ask to which similar problems the approach used in this paper could be
adapted. To make this question more precise, let us underline that such problems may involve,
for instance, putting weights on the walks, allowing more general steps, or considering higher
dimensions. However, the very first question is whether Gessel’s model can be dealt with using
the ideas of this paper!

Weighted paths. One may try to adapt our approach to solve refined enumeration problems.
For instance, some authors have studied the enumeration of walks in a wedge, keeping track
not only of the number of steps, but also of the number of contacts, or visits to the boundary
lines [32, 44, 43]. Of course, other statistics could be considered.

Another natural way to add weights, of a more probabilistic nature, consists in studying
Markov chains confined to the quarter plane. The weight of a walk is then its probability. An
entire book is devoted to the determination of the stationary distributions of such chains [21].
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These distributions are governed by functional equations similar to ours, but without the length
variable t (since only the stationary regime is considered). This difference makes the problem
rather different in nature, and indeed, the tools involved in [21] are much more analytic than
algebraic. A natural way to set the problem back in the algebraic playground (to which our
power series methods belong) is to keep track of the length of the trajectories, which boils down
to studying the law of the chain at time n. This was done in [13] for a probabilistic version of
Kreweras’ walks, using a variant of the method presented in this paper. An asymptotic analysis
of the solution should then yield the limiting/stationary distribution. This was however not done
in [13]. Instead, we enriched our algebraic approach with a few basic analytic arguments to solve
directly the equation that describes the stationary distribution. This solution is in our opinion
more elementary than the original ones [21, 23]. It is worth noting that the bivariate series that
describes the stationary distribution is algebraic, and that this Kreweras chain is actually the
main algebraic example of [21]. In view in the results presented in this paper, it is natural to ask
if one could design probabilistic versions of the other three algebraic models (Propositions 14
and 15, plus Gessel’s model) that would also yield algebraic stationary distributions.

Conversely, it is natural to ask whether certain tools from [21], other than the group of the
walk, could be adapted to our power series context. We are thinking in particular of the material
of Chapter 4, which is devoted to the case where the group of the walk is finite, and (under this
hypothesis) to the conditions under which the stationary distribution has an algebraic generating
function.

More general steps. The fact that we only allow “small” steps plays a crucial role in our ap-
proach, and more precisely in the definition of the group of the walk (Section 3). However, this
does not mean that models with larger steps are definitely beyond reach. First, it is always pos-
sible to write a functional equation for the series Q(x, y; t), based on a step-by-step construction
of the walk. If no step has a coordinate smaller than −1, the right-hand side of the equation only
involves Q(0, y; t) and Q(x, 0; t), but otherwise more unknown functions, depending exclusively
on x or y, appear. Another important difference with the present setting is that the kernel has
now degree larger than 2 (in x or y). One can still define a group, but acting on pairs (x, y) than
cancel the kernel. We refer to [15] for the solution of a simple example, with steps (2,−1) and
(−1, 2).

Higher dimension. Finally, a natural question is to address 3-dimensional problems as those
studied experimentally in [8]. Provided one focusses on walks with small steps, the key ingre-
dients of our approach — the functional equation and the group of the walk — can indeed be
adapted in a straighforward manner to this higher-dimensional context.

8. Tables

The tables below list the 79 step sets S we consider, classified according to the cardinality of
the group G(S). The first three tables contain sets for which G(S) has cardinality 4, 6 and 8
respectively. The orbit of (x, y) under the action of this group is listed in the second column. The
third column lists the steps of S. The fourth one displays the numbers q(1, 1;n) and q(0, 0;n)
that respectively count all quarter plane walks and quarter plane walks ending at the origin.
We have given the reference of these sequences when they appear in the Encyclopedia of Integer
Sequences [51]. In the rightmost column, we give references on this model, both in this paper
and in other papers.
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# G(S) S
q(1, 1;n)
q(0, 0;n) References

1
(x, y),(x̄, y),
(x̄, ȳ),(x, ȳ)

1, 2, 6, 18, 60, 200, 700, 2450, 8820, 31752 (A005566)

1, 0, 2, 0, 10, 0, 70, 0, 588, 0, 5544, 0, 56628
(A005568)

Prop. 8, [11, 18, 5, 28, 31]

2
1, 1, 4, 9, 36, 100, 400, 1225, 4900, 15876 (A018224)

1, 0, 1, 0, 4, 0, 25, 0, 196, 0, 1764, 0, 17424 (A001246)
Prop. 8, [11, 28, 47]

3
1, 2, 10, 39, 210, 960, 5340, 26250, 148610, 761796

1, 0, 2, 0, 18, 0, 255, 0, 4522, 0, 91896, 0, 2047452
Prop. 8, [11, 28]

4
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080

1, 0, 3, 6, 38, 160, 905, 4830, 28308, 166992
Prop. 8, [11, 28]

5 (x, y), (x̄, y),
(x̄, ȳ 1

x+x̄),

(x, ȳ 1
x+x̄)

1, 1, 3, 7, 19, 49, 139, 379, 1079, 3011

1, 0, 0, 0, 2, 0, 0, 0, 28, 0, 0, 0, 660, 0, 0, 0, 20020
Prop. 8, [11, 40]

6

1, 2, 9, 34, 151, 659, 2999, 13714, 63799, 298397,
1408415, 6678827

1, 0, 1, 3, 4, 20, 65, 175, 742, 2604, 9072, 36960,139392

Prop. 8, [11]

7 (x, y), (x̄, y),
(x̄, ȳ 1

x+1+x̄),

(x, ȳ 1
x+1+x̄)

1, 2, 7, 23, 84, 301, 1127, 4186, 15891, 60128, 230334

1, 0, 1, 0, 4, 0, 20, 0, 126, 0, 882, 0, 6732
Prop. 8, [11]

8

1, 3, 15, 74, 392, 2116, 11652, 64967, 365759, 2074574

1, 0, 2, 3, 12, 40, 145, 560, 2240, 9156, 38724, 166320,
728508

Prop. 8, [11]

9 (x, y), (x̄, y),
(x̄, ȳ x+x̄

x+1+x̄),

(x, ȳ x+x̄
x+1+x̄)

1, 2, 8, 29, 129, 535, 2467, 10844, 50982, 231404

1, 0, 1, 0, 6, 0, 55, 0, 644, 0, 8694, 0, 128964
Prop. 8, [11]

10
1, 3, 16, 86, 509, 3065, 19088, 120401, 771758

1, 0, 2, 3, 20, 60, 345, 1400, 7770, 36876, 204876
Prop. 8, [11]

11 (x, y), (x̄, y),
(x̄, ȳ (x+1+ x̄)),
(x, ȳ (x+1+ x̄))

1, 1, 3, 5, 17, 34, 121, 265, 969, 2246, 8351, 20118

1, 0, 1, 0, 4, 0, 20, 0, 126, 0, 882, 0, 6732
Prop. 8, [11]

12

1, 2, 7, 26, 105, 444, 1944, 8728, 39999, 186266

1, 0, 2, 3, 12, 40, 145, 560, 2240, 9156, 38724, 166320,
728508

Prop. 8, [11]
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13 (x, y), (x̄, y),
(x̄, ȳ x+1+x̄

x+x̄ ),

(x, ȳ x+1+x̄
x+x̄ )

1, 1, 5, 13, 61, 199, 939, 3389, 16129, 61601, 295373

1, 0, 1, 0, 6, 0, 55, 0, 644, 0, 8694, 0, 128964
Prop. 8, [11]

14
1, 2, 11, 49, 277, 1479, 8679, 49974, 301169, 1805861

1, 0, 2, 3, 20, 60, 345, 1400, 7770, 36876, 204876
Prop. 8, [11]

15 (x, y), (x̄, y),
(x̄, ȳ(x+ x̄)),
(x, ȳ(x+ x̄))

1, 1, 2, 3, 8, 15, 39, 77, 216, 459, 1265, 2739, 7842

1, 0, 0, 0, 2, 0, 0, 0, 28, 0, 0, 0, 660
Prop. 8, [11, 40]

16
1, 2, 6, 21, 76, 290, 1148, 4627, 19038, 79554, 336112

1, 0, 1, 3, 4, 20, 65, 175, 742, 2604, 9072, 36960
Prop. 8, [11]

Table 1: The group G(S) is isomorphic to D2. These 16 models
have a D-finite generating function.

# G(S) S
q(1, 1;n)
q(0, 0;n) References

1 (x, y), (x̄y, y),
(x̄y, x̄), (ȳ, x̄),
(ȳ, ȳx), (x, ȳx)

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798
(A001006)

1, 0, 0, 1, 0, 0, 5, 0, 0, 42, 0, 0, 462 (A005789)

Prop. 9, [28]

2
1, 2, 8, 32, 144, 672, 3264, 16256, 82688 (A129400)

1, 0, 2, 2, 12, 30, 130, 462, 1946, 7980, 34776, 153120
Prop. 10, [28]

3 (x, y), (x̄ȳ, y),
(x̄ȳ, x), (y, x),
(y, x̄ȳ), (x, x̄ȳ)

1, 1, 3, 7, 17, 47, 125, 333, 939, 2597, 7183

1, 0, 0, 2, 0, 0, 16, 0, 0, 192, 0, 0, 2816 (A006335)
Prop. 13, [37, 13]

4
1, 2, 4, 10, 26, 66, 178, 488, 1320, 3674, 10318

1, 0, 0, 2, 0, 0, 16, 0, 0, 192, 0, 0, 2816 (A006335)
Prop. 14, [40]

5
1, 3, 14, 67, 342, 1790, 9580, 52035, 285990

1, 0, 3, 4, 26, 80, 387, 1596, 7518, 34656, 167310
Prop. 15

Table 2: The group G(S) is isomorphic to D3. These five models
have a D-finite generating function, and the last three even have
an algebraic generating function.
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# G(S) S
q(1, 1;n)
q(0, 0;n) References

1

(x, y), (yx̄, y),
(yx̄, yx̄2), (x̄, yx̄2),
(x̄, ȳ), (xȳ, ȳ),
(xȳ, x2ȳ), (x, ȳx2)

1, 1, 3, 6, 20, 50, 175, 490, 1764, 5292 (A005558)

1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, 0, 4719 (A005700)
Prop. 11, [28, 29, 44]

2

(x, y), (x̄ȳ, y),
(x̄ȳ, x2y), (x̄, x2y),
(x̄, ȳ), (xy, ȳ),
(xy, x̄2ȳ), (x, ȳx̄2)

1, 2, 7, 21, 78, 260, 988, 3458, 13300, 47880 (A060900)

1, 0, 2, 0, 11, 0, 85, 0, 782, 0, 8004, 0, 88044
(A135404)

[35, 9, 45]

Table 3: The group G(S) is isomorphic to D4. Both models have
a D-finite generating function, and the second one even has an
algebraic generating function.

[41]

Table 4. These 56 step sets are associated with an infinite group.
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Fixed point Condition χ̄(X)

Four steps
(

a, a−2
)

a
4
+ a

3
− 1 X

8 + 9X
7 + 31X

6 + 62X
5 + 77X

4 + 62X
3 + 31X

2 + 9X + 1

(

a, 1−a2

a2

)

a
5
−a

4
+a

3
+2 a

2
−1

X
10 +18 X

9 +125 X
8+439 X

7 +897 X
6 +1131 X

5 +897 X
4+

439 X
3 + 125 X

2 + 18 X + 1

(a, a) a
4
+ a

3
− 1 X

8
− 19X

7
− X

6
− 124X

5 + 3X
4
− 124X

3
− X

2
− 19X + 1

(

b2/2, b
)

b
6
+ b

4
− 4 X

6 + 9 X
5 + 59 X

4 + 70 X
3 + 59 X

2 + 9 X + 1

Five steps

(−1, 1) 2 X
2 + 3X + 2

(

a, a2

1−a2

)

a
5
+ a

3
+ 2a

2
− 1

X
10 +16 X

9 +106 X
8 +371 X

7 +764 X
6 +967 X

5 +764 X
4 +

371 X
3 + 106 X

2 + 16 X + 1

(a, a) a
3
− a − 1 X

6 + 8 X
5 + 28 X

4 + 41 X
3 + 28 X

2 + 8 X + 1

(

a, a−2
)

a
3
− a − 1 X

6 + 2 X
5 + 6 X

4 + 5 X
3 + 6 X

2 + 2 X + 1

(

2b2

1−b2 , b
)

3b
6

+ b
4
+ b

2
− 1 X

6 + 14 X
5 + 87 X

4 + 100 X
3 + 87 X

2 + 14 X + 1

(a, 1/a) a
2
+ a + 1 X

4 + 17 X
3 + 81 X

2 + 17 X + 1

Six steps
(

a, 2 + a− 3a2 − 3a3
) 3a

6
+6a

5
+2a

4
−5a

3
−

4a
2
+ 1

X
12 + 23 X

11 + 283 X
10 + 1861 X

9 + 7461 X
8 + 14225 X

7 +

18249 X
6 +14225 X

5 +7461 X
4 +1861 X

3 +283 X
2 +23 X +1

(

2+2b−b3

b2(1+b+b2) , b
)

b
7

+ b
6

+ 2b
5

+ 5b
4

+

4b
3
− 4b

2
− 8b − 4

X
14 +37 X

13 +567 X
12 +4853 X

11 +26197 X
10 +89695 X

9 +

194611 X
8 +250446 X

7 +194611 X
6 +89695 X

5 +26197 X
4 +

4853 X
3 + 567 X

2 + 37 X + 1

(a, a) a
4
+ a

3
− 1

X
8 + 117X

7 + 3671X
6 + 13396X

5 + 19683X
4 + 13396X

3 +

3671X
2 + 117X + 1

Seven steps

(a, 1/a) a
3
− a − 1 X

6 + 28 X
5 + 224 X

4 + 345 X
3 + 224 X

2 + 28 X + 1

Table 5: Proving that G(S) is infinite.
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[1] D. André. Solution directe du problème résolu par M. Bertrand. C. R. Acad. Sci. Paris, 105:436–437, 1887.
[2] C. Banderier and P. Flajolet. Basic analytic combinatorics of directed lattice paths. Theoret. Comput. Sci.,

281(1-2):37–80, 2002.
[3] L. Bayle and A. Beauville. Birational involutions of P

2. Asian J. Math., 4(1):11–17, 2000.
[4] O. Bernardi. Bijective counting of Kreweras walks and loopless triangulations. J. Combin. Theory Ser. A,

114(5):931–956, 2007.
[5] O. Bernardi. Bijective counting of tree-rooted maps and shuffles of parenthesis systems. Electron. J. Combin.,

14(1):Research Paper 9, 36 pp. (electronic), 2007.
[6] J. Bertrand. Solution d’un problème. C. R. Math. Acad. Sci. Paris, 105:369, 1887.
[7] J. Blanc. Finite abelian subgroups of the Cremona group of the plane. C. R. Math. Acad. Sci. Paris,

344(1):21–26, 2007.
[8] A. Bostan and M. Kauers. Automatic classification of restricted lattice walks. In FPSAC’09, Discrete Math.

and Theoret. Comput. Sci. Proceedings, pages 203–217, 2009. ArXiv:0811.2899v1.
[9] A. Bostan and M. Kauers. The complete generating function for Gessel walks is algebraic. ArXiv:0909.1965,

2009.
[10] M. Bousquet-Mélou. Walks on the slit plane: other approaches. Adv. in Appl. Math., 27(2-3):243–288, 2001.
[11] M. Bousquet-Mélou. Counting walks in the quarter plane. In Mathematics and computer science 2, (Ver-

sailles, 2002), Trends Math., pages 49–67. Birkhäuser, Basel, 2002.
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