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Abstract

We introduce the notion of twisted balanced metrics. These metrics

are induced from specific projective embeddings and can be understood

as zeros of a certain moment map. We prove that on a polarized manifold,

twisted constant scalar curvature metrics are limits of twisted balanced

metrics, extending a result of S.K. Donaldson and T. Mabuchi.

Let M be a smooth projective manifold of complex dimension n. Let L be an
ample line bundle on M , thus giving a polarization of the considered manifold.
In that paper, we consider an extra data T , a twisting, where T is a line bundle
on M . Let hT be a smooth hermitian metric on T and denote its curvature 1

2α.
Let hL be a smooth hermitian metric on L whose curvature ω is a Kähler form.
We are interested in the following twisted constant scalar curvature equation,

Scal(ω) − Λωα = Cα (1)

where Cα is a topological constant equal to 4nπ (c1(M)−2c1(T ))·c1(L)n−1([M ])
c1(L)n([M ]) . A

solution to Equation (1) is said to be an α-twisted constant scalar curvature
Kähler metric (α-twisted cscK metric in short).

This equation was introduced by J. Fine in [Fi1, Fi2] and studied recently by
J. Stoppa in order to understand the behavior of K-stability under deformations
of polarizations [St1, St2]. We believe that it has others applications, since it
appears naturally in various problems of complex geometry as we shall see later.

Let now introduce some notations. Let Aut(M) be the group of holomor-

phic automorphisms of M . Then, the group of Âut(M,L) of holomorphic
automorphisms of (M,L) is formed of couples (κ, κ̂) where κ is a biholomor-
phism of M and κ̂ is a biholomorphim of the bundle πL : L → M cover-
ing κ, i.e πL ◦ κ̂ = κ ◦ πL. The kernel of the projection on the first factor
Âut(M,L) ։ Aut(M) is composed of the trivial automorphisms C

∗ and we will

denote Aut(M,L) = Âut(M,L)/C∗. The following two conditions will appear
naturally in the sequel :

(C1) The Lie algebra Lie(Aut(M,L)) is trivial and T is semi-positive, α is a
pointwise semi-positive (1, 1)-form on M .

(C2) T is ample and α is a positive (1, 1)-form on M .
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Let us give now some explanations about our condition on the Lie algebra
Lie(Aut(M,L)). An element of Lie(Âut(M,L)) can be described as the real
part of a C

∗-invariant holomorphic vector field of L. Of course, there is a
canonical map

τ : Lie(Âut(M,L)) → Lie(Aut(M))

by pushing down via πL such a vector field seen as an element of Aut(L). Then
Lie(Aut(M,L)) is trivial if and only if τ has trivial image. This latter condition
appeared in the work of Donaldson who identified Lie(Aut(M,L)) with the
kernel of the Lichnérowicz operator.

Notation. In all the following, Met(Ξ) will denote the space of smooth her-
mitian metrics on the bundle or vector space Ξ. Moreover J will be the com-
plex structure on M and Diff(M) the space of diffeomorphisms of M in a
fixed homotopy class. For a smooth hermitian metric h on a line bundle,

c1(h) = −
√
−1
2π ∂∂̄ log(h) represents its curvature.

In a first part, using a technical result about Bergman kernels, we will de-
scribe the notion of twisted balanced metrics from a symplectic point of view.
Then, we study the convergence of a sequence of twisted balanced metrics when
there exists a solution to Equation (1). Our main result is Theorem 2.

1 Twisted balanced metrics

In this section, we introduce a notion of twisted balanced metrics adapted to
Equation (1). Our goal is to provide natural candidates for being quantizations
of the solutions to Equation (1).

First of all, we will need the following technical result about asymptotic
of Bergman functions. For k sufficiently large, the line bundle Lk ⊗ T−1 is
very ample. Since M is compact, the vector space H0(M,Lk ⊗ T−1) has finite
dimension and we denote

Nk = dimH0(M,Lk ⊗ T−1).

We can consider the Bergman kernel B over M ×M as the kernel of the L2

projection π from C∞(M,Lk ⊗ T−1) to H0(M,Lk ⊗ T−1) with respect to the
natural L2 metric induced by hkL ⊗ h−1

T and the volume form ωn

n! . Actually, one
has for any f ∈ C∞(M,Lk ⊗ T−1) and x ∈M ,

π(f)(x) =

∫

M

B(x, y)f(y)
ωn(y)

n!
.

We can express the restriction of the Bergman kernel over the diagonal, that we
shall call the Bergman function. In particular, one can write

B(x) = B(x, x) =

Nk∑

i=1

|si|2hk
L⊗h−1

T

(x)

where the sections (si)i=1,..,Nk
form an orthonormal basis of H0(M,Lk ⊗ T−1)

with respect to the L2 inner product defined previously:

〈., .〉 =

∫

M

hkL ⊗ h−1
T (., .)

ωn

n!
.
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Clearly, the Bergman kernel is independent of the choice of the orthonormal
basis. Now, one obtains the asymptotic behavior of B(x) when k tends to
infinity.

Theorem 1.1. With our previous notations, one has for k large enough,

1

kn

∥∥∥B(x) −
(
kn +

kn−1

2
(Scal(ω) − Λωα)

)∥∥∥
Cr(ω)

≤ γ

k2

where γ is a constant depending on r, hL, hT . In particular if hL varies in a
compact subset of Met(L) and has positive curvature, then γ depends only on r
and hT .

Proof. This is essentially a consequence of [Lu, Wa], and we refer to [M-M] as
a general survey on this topic. In particular a proof can be found with [M-M,
Theorem 4.1.2] but for the sake of clearness, we will sketch the computation of
the terms of the asymptotic. The key point is that the problem is purely local.
It is clear that

B(x) = sup
s∈H0(M,Lk⊗T−1)

|s(x)|2
hk

L⊗h−1
T

‖s‖2
(2)

and one can reduce the problem to construct the section that represents this
supremum at x ∈ M . Let us call this section sextr(x), the extremal section
at x, which is unique up to scaling. Now, one can choose a smooth section
s0 ∈ C∞(M,Lk ⊗ T−1) such that s0 is concentrated in L2 norm on a small

geodesic ball B of radius log(k)√
k

around x. Without loss of generality, one can fix

|s0(x)|2hk
L⊗h−1

T

= 1. Furthermore, using Hörmander’s ∂̄-estimates, one can mod-

ify s0 to make it holomorphic. Hörmander’s estimates can be applied because
of the positivity of Lk⊗T−1 for large k. This gives sextr(x) ∈ H0(M,Lk⊗T−1)
with |sextr(x)(x)|2hk

L⊗h−1
T

= 1. Hence, from (2), we are lead to compute the L2

norm of sextr. In order to do that, we specify some appropriate coordinates. On
one hand, using Böchner coordinates, one can write locally hL = e−φL,x where
φL,x is plurisubharmonic with

φL,x(z) = |z|2 − 1

4
Rij̄kl̄ziz̄jzkz̄l +O(|z|5).

Here Rij̄kl̄ denotes the Riemannian curvature tensor of the Riemannian metric
gij̄ induced by c1(hL) on M . On another hand, in the same coordinates and

thanks to some affine transformations, h−1
T = e−ψT,x where the potential ψT,x

satisfies
e−ψT,x = 1 −

∑

1≤k,l≤n
c1(h

−1
T )kl̄zkz̄l +O(|z|3).

Let’s denote dV0 =
(√

−1
2π

)n
dz1 ∧ dz̄1 ∧ ...∧ dzn ∧ dz̄n. Now, one finds explicitly
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when k tends to infinity,

‖sextr(x)‖2 ∼
∫

B

“
x,

log(k)√
k

” |sextr(x)|2hk
L⊗h−1

T

ωn

n!

∼
∫

B

“
x,

log(k)√
k

” e
−kφL,x−ψT,x det(gij̄)

∼
∫

B

“
x,

log(k)√
k

” e
−k|z|2

(
1 +

k

4
Rij̄kl̄ziz̄jzkz̄l +O(|z|5)

)

×


1 −

∑

1≤k,l≤n
c1(h

−1
T )kl̄zkz̄l +O(|z|3)


 e−Ricij̄ziz̄j+O(|z|3)dV0

Actually the last expression is equal to
∫

B

“
x,

log(k)√
k

” e
−k|z|2

(
1 +

k

4
Rij̄kl̄ziz̄jzkz̄l

−Ricij̄ziz̄j −
∑

1≤k,l≤n
c1(h

−1
T )kl̄zkz̄l +O(|z|5)


 dV0 +O

(
1

kn+2

)
.

This can be evaluated using the fact that given f a function on {1, .., n}p ×
{1, .., n}p,

∑

I,J

∫

|z|<log(k)/
√
k

fI,J̄zi1 ..zip z̄j1 ..z̄jp |z|2qe−k|z|
2

dV0 =


 1

p!

∑

I

∑

σ∈Σp

fI, ¯σ(I)


 p!(n+ p+ q + 1)!

(p+ n− 1)!kn+p+q
+O(

1

kp′
),

for any p′ > 0. Hence, one gets after removing non symmetric terms (in holo-
morphic and anti-holomorphic variables)

‖sextr(x)‖2 =
1

kn
+

1

kn+1
(−Scal(gij̄)) + 2

1

kn+2

(
k

4
Scal(gij̄)

)

− 1

kn+1
Λω

(
−α

2

)
+O

(
1

kn+2

)

=
1

kn
− 1

2kn+1

(
Scal(gij̄) − Λωα

)
+O

(
1

kn+2

)
,

which gives the result.

We now consider the Bergman function as depending on the choice of the
metric hL. In that context and generalizing the notion of balanced metrics
studied by S. Zhang and H. Luo, it is natural to introduce the

Definition 1.1. A metric hL is said to be hT -twisted balanced of order k if the
k-th Bergman function associated to it satisfies for all x ∈M ,

BhL,hT
(x) =

Nk
V ol(L)

where V ol(L) = c1(L)n([M ]) is the volume of L.
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An obvious consequence of Theorem 1.1 is the following result.

Proposition 1.1. Assume that there exists for all k sufficiently large a met-
ric hk ∈ Met(Lk) which is hT -twisted balanced, and assume that the sequence
(hk)

1/k ∈ Met(L) is convergent in C∞ topology. Then its limit h∞ has curva-
ture ω∞ solution to Equation (1), i.e ω∞ is an α-twisted cscK metric.

Remark 1.1. The reason of our normalization of the form α by a factor 1
2 is

precisely due to the asymptotic expansion of Theorem 1.1 and Equation (1).

Furthermore, we can see twisted balanced metrics as Fubini-Study metrics,
i.e they can be understood as algebraic type metrics. Let us denote the complex
vector space

V = H0(M,Lk ⊗ T−1).

We define the Fubini-Study map

FS : Met(V ) →Met(Lk)

such that for H ∈ Met(V ), FS(H) is the hermitian metric satisfying for all
x ∈M ,

Nk∑

i=1

|si|2FS(H)⊗h−1
T

(x) =
Nk

V ol(L)

where (si)i=1,..,Nk
is an H-orthonormal basis of V . On another hand, one can

construct the Hilbertian inner product on V by considering the map

HilbhT
: Met(Lk) →Met(V )

such that

HilbhT
(h) =

∫

M

h⊗ h−1
T (., .)

c1(h
1/k)n

n!
.

Then obviously, hT -twisted balanced maps are fixed points of the map

FS ◦HilbhT
: Met(Lk) →Met(Lk).

This can be rephrased by saying that there exist metrics H ∈ Met(V ) – that
we shall call again twisted balanced metrics – satisfying that FS(H) is twisted
balanced in the sense of Definition 1.1 or

∫

M

〈si, sj〉FS(H)⊗h−1
T
µFS(H) = δij

where µFS(H) is the induced Fubini-Study volume form and (si)i=1,..,Nk
is H-

orthonormal. On other words, through the Kodaira embedding

ι : M →֒ P(V ∗)

induced by the sections of H0(M,Lk ⊗ T−1), the center of mass of M is trivial.

2 The moment map picture

In this section, following the ideas of Donaldson [Do1], we show that twisted
balanced metrics appear as zeros of a certain natural double symplectic quotient.
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2.1 The infinite dimensional picture

Given hermitian metrics hL, hT on the polarization and the twisting as before,
the space C∞(M,Lk ⊗ T−1) has a natural symplectic form

Ω(α, β) = Re

(∫

M

〈Jα, β〉hk
L⊗h−1

T

ωn

n!

)

and thus it is natural to consider the moment map associated to the group Gk
of hermitian bundle maps from Lk ⊗ T−1 to Lk ⊗ T−1 that preserve the Chern
connection induced by hL and hT .
Via the classical hamiltonian construction, its Lie algebra can be identified with
C∞

0 (M,R) the space of smooth functions on M with vanishing integral. Note
that Gk acts as automorphims of Lk ⊗ T−1 covering the action of elements
of Symp(M,ω), the group of hamiltonian symplectomorphisms preserving the
Kähler form ω.
The moment map associated to this action and the symplectic form Ω is de-
scribed in [Do1, Section 2.1]. This is explicitly given by µ : C∞(M,Lk⊗T−1) →
Lie(Gk)∗, where

µ(s) =
−1

2n
J∇Lk⊗T (s) ∧∇L−k⊗T−1(s∗) ∧ ωn−1

(n− 1)!
+ k|s|2

hk
L⊗h−1

T

ωn

n!
.

Of course, if s is holomorphic with respect to the fixed holomorphic structure
on Lk ⊗ T−1, then the former expression simplifies as

µ(s) =

(
1

2
∆|s|2

hk
L⊗h−1

T

+ k|s|2
hk

L⊗h−1
T

− ŝ

)
ωn

n!
.

Here ∆ is the Laplace operators acting on functions and one has fixed the

constant ŝ to be ŝ = 1
V ol(L)

∫
M

(
1
2∆|s|2

hk
L⊗h−1

T

+ k|s|2
hk

L⊗h−1
T

)
ωn

n! .

On another hand, when acting by Gk, one needs to move the complex struc-
ture in order to preserve the holomorphicity property of a section. Thus, it
is natural to consider the induced action of Gk over the space Jint of all ω-
compatible complex structure over M (i.e the set of all almost-complex struc-
tures such that its Nijenhuis tensor is zero). One can see Jint as the space
of sections of a Sp(2n)/U(n)-bundle over M . With the complex structure of
Sp(2n,R)/U(n) and its natural metric, one obtains using the volume form ωn,
a Kähler structure over the infinite dimensional manifold Jint. Note that the
group Symp(M) preserves this Kähler structure. It acts on the structure J by

ψ(J) = ψ∗J
−1ψ−1

∗ .

In particular, it is now easy to check that the space

Υ = {(s1, ..., sNk
, J) ∈ C∞(M,Lk ⊗ T−1)Nk ×Jint, s.t. ∂̄Jsi = 0,∀1 ≤ i ≤ Nk}

is preserved by the diagonal action of Gk.
Let us denote π : Υ → C∞(M,Lk⊗T−1)Nk the equivariant projection. Then

similarly to what is happening in [Do1, Lemma 12’], π1 is injective and one can
pull-back Ω to the space Υ. The moment map associated to the action of Gk
over Υ is now given by

µGk
(s1, ..., sNk

, J) =

((
1

2
∆ + k

)(Nk∑

i=1

|si|2hk
L⊗h−1

T

)
− ŝk

)
ωn

n!
.
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with ŝk = 1
V ol(L)

∫
M

(
1
2∆ + k

) (∑Nk

i=1 |si|2hk
L⊗h−1

T

)
ωn

n! . Moreover, we notice that

µGk
(s1, ..., sNk

, J) = 0 (3)

is equivalent to the condition

Nk∑

i=1

|si|2hk
L⊗h−1

T

=
ŝk
k
. (4)

This comes by taking the L2 inner product with eigenfunctions of the Laplacian
in (3).

2.2 The double symplectic quotient

We remark now that there is a another natural action on Υ. The special unitary
group SU(Nk) is acting over Υ and the associated moment map is just

µSU (s1, ..., sNk
, J) =

√
−1

2

(∫

M

〈si, sj〉hk
L⊗h−1

T

ωn

n!
− 1

Nk

Nk∑

i=1

‖si‖2
L2(ω)δij

)
,

whose image lies in the space of trace free matrices. Hence, finding a zero of
the moment map µSU corresponds formally to choosing a basis of orthonormal
sections with respect to the inner product induced by hL, hT .

The moment map for the action of the product Gk × U(Nk) is given by the
sum µGk

⊕ µSU and of course we can consider the double symplectic quotient

Υ//(Gk × SU(Nk) =
µ−1
Gk

(0) ∪ µ−1
SU (0)

Gk × SU(Nk)
. (5)

This quotient inherits from Marsden-Weinstein theorem a canonical symplectic
structure. Given a metric h ∈ Met(Lk), a zero of the moment map µGk

⊕
µSU corresponds to a point (s1, ..., sNk

, J) such that the (si)i=1,..,Nk
form an

orthonormal basis of holomorphic sections with respect to HilbhT
(h) and such

that that the function
∑Nk

i=1 |si|2h⊗h−1
T

∈ C∞(M,R) is constant. This is precisely

to say that the metric h is hT -twisted balanced of order k.

Of course, our construction is parallel to the one described to [St1, Section
2]. In that case, if one fixes a complex structure J , compatible with ω, it can
be considered the space

Υ̂ = {(f, f∗(J)) s.t. f ∈ Diff(M) and f∗(J) is ω−compatible} ⊂ Diff(M)×Jint.

Then, by choosing the right symplectic form (depending on α) on Υ̂, one can

see that the action of Symp(M,ω) induces the moment map µ̂ : Υ̂ → C∞
0 (M),

where
µ̂(f, f∗(J)) = Scal(ω, f∗(J)) − Λωf

∗(α) − c

where one has fixed the constant c = 1
V ol(L)

∫
M
Scal(ω, f∗(J)) − Λωf

∗(α)ω
n

n! .

With Theorem 1.1 in hand, one can consider our previous construction as a
quantization of the one described by Stoppa. We shall see in the following
section that this quantization holds at the metric level as expected.
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3 Approximation of twisted cscK metrics

In this section we use the double symplectic quotient constructed before to show
the convergence of the twisted balanced metrics when there exists a twisted cscK
metric a priori.

3.1 Gradient flow for finding zeros of the moment map

We briefly present some general results about moment maps. Let G be a com-
pact Lie group acting on a Kähler manifold N and ν : N → Lie(G)∗ a moment
map for the action of G. Assume that G has discrete stabilizers for all points
of N . At the point p ∈ N , the infinitesimal action σp : ζ → σζ(p) of G induces
an injective map θp : Lie(G) → TpN and the operator

Qp = θ∗pθp : Lie(G) → Lie(G)

is invertible. Here the adjoint is computed by considering an (invariant) metric
on Lie(G) and the metric on N . One can define the operator norm over Lie(G),

ΛLie(G)
p = |||Q−1

p |||Lie(G),

i.e Λ
Lie(G)
p is the largest eigenvalue of Q−1

p . This quantity controls the conver-
gence of the gradient flow of the norm square of the momentum map,

∂ν(pt)

∂t
= −ν(pt).

It also gives the distance of the initial point to the zero of the moment map.

Proposition 3.1. Let p0 ∈ N . Assume that there exist positive constants r0, r1
such that,

|ν(p0)| <
r1
r0
, Λ

Lie(G)

eiζp0
≤ r0 ∀|ζ| ≤ r1,

then there exists η ∈ Lie(G) such that |η| ≤ r1 and

ν(eiηp0) = 0,

i.e eiηp0 is a zero of the moment map ν.

In order to find a zero of the moment map µGk
⊕ µSU , we proceed in two

steps. First, we look for the first symplectic quotient

Υ//Gk.

This corresponds to finding a (non necessarily orthonormal) basis (si)i=1,..,Nk
∈

V and a metric hk such that

Nk∑

i=1

|si|2hk⊗h−1
T

= Ck

where Ck is a constant depending only on k. Such a metric will be called an
approximate twisted balanced metric. For the second step, thanks to Proposition
3.1, one deforms an approximate twisted balanced metric using the gradient flow
of |µSU |2 to obtain a zero of the moment map µSU , and thus an orthonormal
basis of holomorphic sections.
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3.2 Construction of a formal solution

In that section, we show how one can build an approximate twisted balanced
metric h̃k ∈Met(Lk) when one assumes the existence of a twisted cscK metric,
that we shall denote ω∞ ∈ c1(L). We use a deformation type argument.

Let us write ω∞ = −
√
−1
2π ∂∂̄ log(h∞). Now, we are seeking to modify h∞ in

order to force the twisted Bergman function to be as close to a constant as we
want. We write

h̃k = h∞
(
1 +

̟1

k
+
̟2

k2
+
̟3

k3
+ ...

)

and apply Lu-Catlin-Wang asymptotic expansion (Theorem 1.1). Then, at x ∈
M , for any integer r ≥ 1 and k large enough, our Bergman function satisfies

1

kn
Behk,hT

(x) =

r∑

i=0

ai(ω∞)

ki
+

r∑

i,l=1

ãi,l
ki+l

+O

(
1

kr+1

)
(6)

= a0 +
a1

k
+
a2 + ã1,1

k2
+
a3 + ã2,1 + ã1,2

k3
+ ... (7)

where the coefficients ai are polynomial of the curvature tensor of h∞ and its
covariant derivatives and the ãi,l are certain multilinear expressions in the ̟l

and their covariant derivatives. Moreover, from Theorem 1.1, one has a0 = 1
and

a1 =
1

2
(Scal(ω∞) − Λω∞α) =

Cα
2

(8)

are both constants. Writing

Nk = χ(M,Lk ⊗ T−1) = knχ0 + kn−1χ1 + kn−2χ2 + ...

we see that we are lead to find ̟1 such that

ã1,1(̟1) = χ2 − a2

and more generally for r > 1,

ã1,r(̟r) = χr+1 − ar+1 −
r−1∑

l=1

ãr+1−l,l. (9)

One key point here is that the terms ãr+1−l,l depend only on ̟1, ..., ̟r−1.
Moreover, because of (8), each term ã1,r is obtained as the differential Lω of the
map

ω 7→ 1

2
(Scal(ω) − Λωα) .

Consequently, starting with ̟1, one can find the ̟r using the implicit function
theorem recursively if the RHS of (9) does not lie in the kernel of the operator
Lω for any r ≥ 1. If one considers a small deformation ω + i∂∂̄φ = ωφ, then

∫

M

φ · Lω(φ)ωnφ = ‖∂̄∇1,0φ‖2
L2(ωφ) + 〈∂φ ∧ ∂̄φ, α〉L2(ωφ),

which shows that the kernel of Lω is trivial if either Lie(Aut(M,L)) is trivial
(Cf. [Bi, Lemme 1.1]) and α is semi-positive, or if α is positive. We have proved
the following
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Theorem 1. Assume that condition (C1) or (C2) holds. Assume the existence
of a twisted cscK metric

ω∞ = −
√
−1

2π
∂∂̄ log(h∞) ∈ c1(L)

solution to Equation (1). Then for any q > 0 and k sufficiently large, there exist
smooth functions ̟1, ..., ̟q and a constant cq,k such that the metric

h̃k(., .) =

(
1 +

q∑

i=1

̟i

ki

)
h∞(., .)

satisfies for all x ∈M ,

1

kn
Behk,hT

(x) = cq,k +Rr(x)

where Rr = O
(

1
kr+1

)
.

If one divides h̃k by the positive function
cq,k+Rr(x)

Nk
(for k large enough),

one gets the

Corollary 3.1. Assume that condition (C1) or (C2) holds, and the existence
of a twisted cscK metric. Then, there exists an approximate twisted balanced
metric, i.e a zero of the moment map µGk

.

3.3 Construction of a twisted balanced point

We are now using the formalism described in section 3.1 to obtain a twisted
balanced metric from an approximate twisted balanced one.

We explain how the estimates of [Do1, Section 3.1],[P-S2, Section 5] can be
adapted to our problem.

Estimates for the linearised problem

In order to get some uniform estimates, we shall fix for each k sufficiently large,
the metric

ω̃∞ = kω∞.

We shall now define a class of metrics by saying that a metric ω̃ ∈ c1(L) has
R-bounded geometry if

ω̃ >
1

R
ω̃∞, ‖ω̃ − ω̃∞‖C4(eω∞) < R.

Moreover, we will say that a basis (si)i=1,..,Nk
of V has R-bounded geometry

if the curvature of the induced Fubini-Study metric has R-bounded geometry.
Firstly, with no substantial modification of the proof of [P-S2, Theorem 2], one
obtains the

Proposition 3.2. Assume condition (C1) holds. Then for any R > 1, there
exist two constants C > 0 and ǫ < 1/10 such that if S = (si)i=1,..,Nk

is a basis
of V with R-bounded geometry and |||µSU (S)||| < ǫ, one has

Λ
Lie(SU(V ))
S

< Ck2.

Here |||.||| stands for the operator norm on Lie(SU(V )).

10



Let us now assume that condition (C1) is not satisfied. Let H be the maximal
connected algebraic subgroup of Aut0(M), the connected identity component
of the group of holomorphic automorphisms of M . Let Z be the maximal
(algebraic) torus in the center of H and denote its Lie algebra by Lie(Z). We
set Kk = SU(V ) and K ′

k to be the identity component of the subgroup of
stabilizers of Kk at the point ι(M). We shall consider the following condition
introduced in [Ma2].

(C3) The Lie algebras Lie(Z) and Lie(K ′
k) can be identified.

At that stage, we remark that if Lie(Aut(X,L)) is not trivial, then the approx-
imate twisted balanced metrics obtained in Corollary 3.1 are all Z-invariant,
since Z is also the identity component of the group of isometries of (M,ω∞).
Using the map HilbhT

, the approximate twisted balanced metrics induce a K ′
k-

invariant inner product on Lie(Kk). Hence, the vector space Lie(Kk) can be
decomposed as

Lie(Kk) = Lie(K ′
k) ⊕ Lie(K ′

k)
⊥.

The following estimates are essentially contained in [Ma2].

Proposition 3.3. Assume conditions (C2) and (C3) hold for an integer k large
enough. Then for any R > 1, there exist two constants C > 0 and ǫ < 1/10
such that if S = (si)i=1,..,Nk

is a basis of V with R-bounded geometry and
|||µSU (S)||| < ǫ, one has

Λ
Lie(K′

k)⊥

S
< Ck2.

Proof. Firstly, let us consider the sequence of holomorphic vector bundles

0 → TM → ι∗TP(V ∗)|M → TM⊥ → 0 (10)

where TM⊥ is the orthogonal complement of TM in TP(V ∗)|M , which can be
seen as the normal bundle of M in P(V ∗). From the orthogonal decomposition
TP(V ∗)|M = TM ⊕ TM⊥, one can write for a vector field X on P(V ∗),

X|M = X|TM ⊕X|TM⊥ .

Then, for any ζ ∈ Lie(Kk), the infinitesimal action σζ induces a vector field Xζ

on P(V ∗) such that its restriction to M will be denoted Xζ,|M . Now, from [Bi,
Lemme 2.3] the inequality to prove is just equivalent to

|ζ|2 ≤ Ck2

∫

M

|Xζ,|TM⊥ |2hF S
µ̃FS

for all ζ ∈ Lie(K ′
k)

⊥. Here µ̃FS is the volume form of the Kähler metric
c1(hFS) ∈ kc1(L) induced by S using the Fubini-Study map. Obviously, this
inequality can be deduced from the following three inequalities:

|ζ|2 ≤ γ1k‖Xζ,|M‖2
L2(eµF S) (11)

‖Xζ,|M‖2
L2(eµF S) ≤ ‖Xζ,|TM‖2

L2(eµF S) + ‖Xζ,|TM⊥‖2
L2(eµF S) (12)

‖Xζ,|TM‖2
L2(eµF S) ≤ γ2k‖Xζ,|TM⊥‖2

L2(eµF S) (13)

where γ1, γ2 are constants independent of k. The arguments of [P-S2, Theorem
2] can be applied with no change in order to get (11) and (12). Moreover,

11



from the exact sequence (10), one can derive the following estimate (see [P-S2,
(5.16)])

‖Xζ,|TM⊥‖2
L2(eµF S) ≥ γ3‖∂̄Xζ,|TM⊥‖2

L2(eµF S). (14)

For ∂̄ seen as acting on smooth (0, 1)-form on M with values in TM , one con-

siders the operator �
h
1/k
F S

= ∂̄
∗

h
1/k
F S ∂̄. As it is pointed out in [Ma2], the first

eigenvalue λ1 of �
h
1/k
F S

is bounded from below independently of k since S has

R-bounded geometry. Moreover, since ζ ∈ Lie(K ′
k)

⊥, Xζ,TM is orthogonal to
the projection on TM of any holomorphic vector field on ι(M) by condition
(C3). Thus, one has

∫

M

|∂̄Xζ,TM |2
h
1/k
F S

c1(h
1/k
FS )n

n!
≥ λ1

∫

M

|Xζ,TM |2
h
1/k
F S

c1(h
1/k
FS )n

n!
.

But now, ∂̄(Xζ,TM +Xζ,TM⊥) = 0 and thus

‖∂̄Xζ,TM⊥‖2
L2(eµF S) ≥

λ1

k
‖Xζ,TM‖2

L2(eµF S). (15)

Finally both (15) and (14) imply Inequality (13).

This is our main result.

Theorem 2. Assume that either condition (C1) holds or both conditions (C2)
and (C3) hold for a sequence of strictly increasing integers kj > k0. Assume that
there exists a twisted cscK metric solution to Equation (1) in the class c1(L).
Then,

• For k0 large enough, there exists a hT -twisted balanced metric ωkj
∈

kjc1(L),

• The sequence 1
kj
ωkj is convergent when j → +∞ towards the twisted cscK

metric in C∞-topology.

Proof. Under condition (C1), the proof of the Theorem is a consequence of
Corollary 3.1, Proposition 3.2 and Proposition 3.1 together with the double
symplectic quotient picture. The convergence is Cr topology (for any r) is ob-
tained by the fact that one can choose, up to any order, an approximate twisted
balanced metric in Theorem 1 (see [Do1, Proof of Theorem 3]). Finally, the
uniqueness of the twisted cscK metric is a consequence of [St1], and one could
recover this result in the projective setting by studying the uniqueness of twisted
balanced metric up to SU(V ) action. The convergence of the twisted balanced
metric is clear by construction.
Let us now assume conditions (C2) and (C3). The main difference with previous
case is that one has to check that the gradient flow of |µSU |2 is still converg-
ing with the estimate obtained from Proposition 3.3. From [Ma2, Lemma 3.4]
and [Ma3, Theorem 3.2], it is sufficient to obtain a zero of the moment map
by considering the one parameter subgroups perpendicular to the subgroup of
stabilizers (one could also invoke [Si, Proposition 9]). Now, Proposition 3.3
shows the convergence of the gradient flow when one restricts the moment map
to Lie(K ′

k)
⊥ and by condition (C3), we can conclude.
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4 Further directions

Let us discuss some examples of twisted cscK metrics in the literature (see also
[Fi1, Fi2]).

• Let M → CP
1 be an elliptically fibred K3 surface with 24 singular fibres

of type I1. Then, there is a Weil-Petersson metric ωWP induced from the
fibres on CP

1. In [S-T1], it is proved that the Kähler-Ricci flow converges
to the McLean’s metric satisfying the twisted csck equation

Ric(ω) = ωWP .

• Let us consider an almost Kähler-Einstein Fano manifold M [Ba]. By
definition, it carries for any 0 ≤ t < 1 a Kähler metric ωt ∈ c1(M) such
that

Ric(ωt) = tωt + (1 − t)ω0

If condition (C3) holds, one can modify our arguments to construct a
convergent sequence of twisted balanced metrics for any 0 ≤ t < 1. We
don’t know if in general such a manifold is balanced in the sense of Zhang-
Luo.

• Let us consider M an algebraic manifold with semi-ample canonical line
bundle. From the minimal model program, we know that M admits an
algebraic fibration τ : M → Mcan over its canonical model Mcan. We
assume that 0 < dimMcan < dimM , Mcan is non singular and the fibre
τ−1(p) is non singular for any p ∈ Mcan. Thus, each fibre τ−1(p) is
a smooth Calabi-Yau manifold. The L2 metric on the moduli space of
Calabi-Yau manifolds induces a semi-positive Weil-Petersson (1, 1)-form
ωWP on Mcan. Then, the main result of [S-T2] proves the convergence of
the Kähler-Ricci flow in that context and identifies its limit. In that case,
it satisfies the following twisted cscK equation on Mcan,

Ric(ω) = −ω + ωWP . (16)

In a forthcoming paper, we shall study the dynamical system HilbhT
◦FS

in order to construct numerical approximations of the solution to Equation
(16) for a minimal elliptic surface, by finding twisted balanced metrics.

Finally, one could consider a slightly more general framework. Assume that
T = (Tj) is a finite family of twistings such that 1

2αTj are the curvature of
the hermitian metrics hTj ∈ Met(Tj). Then, one can consider the T -twisted
balanced metrics ω solution to

Scal(ω) −
∑

j

ΛωαTj = C

where C is a constant. Then, in view of a generalization of Theorems 1 and 2,
conditions (C1) and (C2) can be replaced respectively by

(C′
1) The Lie algebra Lie(Aut(M,L)) is trivial and the Tj are semi-positive i.e

for all j, αTj is a pointwise semi-positive (1, 1)-form on M .
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(C′
2) There exists j0 such that Tj0 is a ample and αTj0

is a positive (1, 1)-form
on M . For all j 6= j0, Tj is semi-positive, αTj

is pointwisely semi-positive.
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