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tober 23, 2008Abstra
t. We 
onsider an in
ompressible �uid in a three-dimensionalpipe, following the Navier-Stokes system with 
lassi
al boundary 
onditions.We are interested in the following question: is there any optimal shape forthe 
riterion "energy dissipated by the �uid"? Moreover, is the 
ylinder theoptimal shape? We prove that there exists an optimal shape in a reasonable
lass of admissible domains, but the 
ylinder is not optimal. For that pur-pose, we expli
it the �rst order optimality 
ondition, thanks to adjoint stateand we prove that it is impossible that the adjoint state be a solution of thisover-determined system when the domain is the 
ylinder. At last, we showsome numeri
al simulations for that problem.Keywords: shape optimization, Navier-Stokes, symmetryAMS 
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1 Introdu
tionThe shape optimization problems in �uid me
hani
s are very important andgave rise to many works. Most often, these works have a numeri
al 
hara
terdue to the intrinsi
 di�
ulty of the Navier-Stokes equations. For a �rstbibliography on the topi
, we refer e.g. to [7℄, [9℄, [11℄, [14℄ [16℄.In this work, we are interested in one of the simplest problem: whatshape must have a pipe in order to minimize the energy dissipated by a�uid? For us, a pipe (of "length" L) will be a three dimensional domain Ω
ontained in the strip {(x1, x2, x3) , 0 < x3 < L}. We will assume that theinlet E := ∂Ω ∩ {x3 = 0} (where ∂Ω denotes the boundary of Ω) and theoutlet S := ∂Ω∩ {x3 = L} are two �xed identi
al dis
s and that the volumeof Ω is imposed. The unknown (or free) part of the boundary of Ω will bedenoted by Γ (so ∂Ω = E ∪ Γ ∪ S).In the pipe Ω, we 
onsider the �ow of a vis
ous, in
ompressible �uidwith a velo
ity u and a pressure p satisfying the Navier-Stokes system. Weassume that the velo
ity pro�le u0 at the inlet E is of paraboli
 type; onthe lateral boundary Γ, we assume no-slip 
ondition u = 0 and we 
ontrolthe outlet by imposing an "outlet-pressure" 
ondition on S. We will assumethat the vis
osity µ is large enough in order that the solution of the systemis unique (see [19℄). The 
riterion that we want to minimize, with respe
tto the shape Ω, is the energy dissipated by the �uid (or vis
osity energy)de�ned by J(Ω) := 2µ
∫
Ω |ε(u)|2dx where ε is the stret
hing tensor.We will �rst prove an existen
e Theorem. To obtain this result, we workin the 
lass of admissible domains whi
h satisfy an ε-
one property (see [4℄,[9℄). Then, we are interested in symmetry properties of the optimal domain.For the Stokes model, we are only able to prove that the optimum has oneplane of symmetry. It is not 
ompletely 
lear to see whether the optimumshould be axially symmetri
. In a series of papers [2℄, [15℄, G. Arumugam andO. Pironneau proved for a similar, but mu
h simpler problem that one has tobuild riblets on the lateral boundary to redu
e the drag. Nevertheless, it is anatural question to ask whether the 
ylinder should be the optimum for ourproblem. We will show that it is not the 
ase. For that purpose, we expli
itthe �rst order optimality 
ondition. This 
ondition 
an be easily expressedin term of the adjoint state and gives an over-determined 
ondition on thelateral boundary Γ. Then, we prove that it is impossible that the adjointstate be a solution of this over-determined system when the domain is the
ylinder.This paper is organized as follows. At se
tion 2, we state the shapeoptimization problem, we prove existen
e and symmetry. Se
tion 3 is devoted2



to the proof of the main Theorem. We give in se
tion 4 some numeri
alresults and 
on
luding remarks.These results have been announ
ed in the Note [10℄.2 The shape optimization problemLet us give the notations used in this paper. We 
onsider a generi
 threedimensional domain Ω 
ontained in a 
ompa
t set
D :=

{
(x1, x2, x3) , x

2
1 + x2

2 ≤ R2
0 , 0 ≤ x3 ≤ L

}where R0 and L are two positive 
onstants. We will denote by ∂Ω theboundary of Ω. In the sequel, we will assume that the inlet E of Ω de�nedby E := ∂Ω ∩ {x3 = 0} and the outlet S de�ned by S := ∂Ω ∩ {x3 = L}are two �xed identi
al dis
s of radius R < R0 
entered on the x3 axis.We will also assume that the volume of all the domains Ω is imposed, say
|Ω| = V = πR2L. We de
ompose the boundary of Ω as the disjoint union
∂Ω = E ∪ Γ ∪ S and Γ, the lateral boundary is the main unknown or theshape we want to design.Let us now pre
ise the state equation. We 
onsider the �ow of a vis
ousin
ompressible �uid into Ω. We denote by u = (u1, u2, u3) (letters in boldwill 
orrespond to ve
tors) its velo
ity and by p its pressure. As usual in�uid me
hani
s, we introdu
e ε the stret
hing tensor de�ned by:

ε(u) =

(
1

2

(
∂ui

∂xj
+
∂uj

∂xi

))

1≤i,j≤3

.We will 
onsider the Navier-Stokes system (ex
ept for Theorem 2.4 wherethe Stokes system will be 
onsidered). As boundary 
onditions, we assumethat the velo
ity pro�le u0 at the inlet E = {x3 = 0} is of paraboli
 type;on the lateral boundary Γ, we assume adheren
e or no-slip 
ondition u = 0and we 
ontrol the outlet by imposing an "outlet-pressure" 
ondition on
S = {x3 = L}. Therefore, the p.d.e. system satis�ed by the velo
ity andthe pressure is:(1) 





−µ△u + ∇p+ ∇u · u = 0 x ∈ Ω,divu = 0 x ∈ Ω
u = u0 :=

(
0, 0, c(x2

1 + x2
2 −R2)

)
x ∈ E

u = 0 x ∈ Γ
−pn + 2µε(u) · n = h := (2µcx1, 2µcx2,−p1) x ∈ S.3



where µ > 0 denotes the vis
osity of the �uid, n the exterior unit normalve
tor (on S we have n = (0, 0, 1)). At last, the 
onstant c whi
h appearsin the boundary 
ondition on E and S is assumed to be negative. The signof c 
an physi
ally be explained. Indeed, in the 
ase where Ω is a 
ylinder,the �ow is driven by a Poiseuille law (simpli�ed physi
al law derived fromthe Navier-Stokes system whi
h des
ribes a slow vis
ous in
ompressible �owthrough a 
onstant 
ir
ular se
tion). Then , this 
onstant c 
an be written
c =

p1 − p0

4µL
, where p1 denotes the 
onstant value of the pressure at theoutlet S while p0 is the 
onstant value of the pressure at the inlet E.This 
hoi
e of the boundary 
ondition ensures that the solution of (1)will be given by a paraboli
 pro�le when Ω is a 
ylinder. More pre
isely, if

Ω is the 
ylinder of radius R and height L, the solution of (1) is expli
itlygiven by:(2) {
u(x1, x2, x3) =

(
0, 0, c(x2

1 + x2
2 −R2)

)

p(x1, x2, x3) = 4µc(x3 − L) + p1 .More generally, if Ω is a regular domain, we have a 
lassi
al existen
e anduniqueness result for su
h systems, see e.g. [3℄, [19℄.Theorem 2.1. Let us assume that u0 belongs to the Sobolev spa
e (H3/2(E))3and h ∈ (H1/2(S))3. If the vis
osity µ is large enough, the problem (1) hasa unique solution (u, p) ∈ H1(Ω) × L2(Ω).The 
riterion we want to minimize is the energy dissipated by the �uid(or vis
osity energy) de�ned by:(3) J(Ω) := 2µ

∫

Ω
|ε(u)|2dx,where ε is the stret
hing tensor :

ε(u) =

(
1

2

(
∂ui

∂xj
+
∂uj

∂xi

))

1≤i,j≤3

.To make the statement pre
ise, we also need to de�ne the 
lass of admissibledomains or shapes. We will 
onsider a �rst general 
lass:(4) OV
déf
=
{
Ω bounded and simply 
onne
ted domain in R

3 :

|Ω| = V, Π0 ∩ Ω = E, ΠL ∩ Ω = S,
}where Π0 and ΠL denote respe
tively the planes {x3 = 0} and {x3 = L}.4



To prove an existen
e result, we need to restri
t the 
lass of admissibledomains. It is a very 
lassi
al feature in shape optimization, sin
e theseproblems are often ill-posed, see [1℄, [9℄. We adopt here the 
hoi
e made byD. Chenais in [4℄ whi
h 
onsists in assuming some kind of uniform regular-ity. More pre
isely, we will 
onsider domains whi
h satisfy an uniform 
one
ondition, we say that these domains have the ε-
one property, we refer to[4℄, [5℄ or [9℄ for the pre
ise de�nition. So, we de�ne the 
lass(5) Oε
V := {Ω ∈ OV : Ω has the ε-
one property}Lemma 2.2. The 
lass Oε

V is 
losed for the Hausdor� distan
e.Proof. We re
all that the 
lass of open sets with the ε-
one property is 
losedfor the Hausdor� 
onvergen
e (see Theorem 2.4.10 in [9℄). Moreover, the
onvergen
e also holds for 
hara
teristi
 fun
tions, so the volume 
onstraintis preserved. So, it remains just to prove that the properties de�ning the inlet
E and the outlet S are preserved. Let (Ωn)n∈N be a sequen
e of domains in
Oε

V whi
h 
onverges, for the Hausdor� distan
e, to a domain Ω. We want toprove that Π0 ∩ Ω = E and ΠL ∩ Ω = S. The �rst in
lusion Π0 ∩ Ω ⊂ E isjust a 
onsequen
e of the stability of in
lusion for the Hausdor� 
onvergen
eof 
ompa
t sets. Let us prove the reverse in
lusion: let x0 ∈ E and n ∈ N.Sin
e Ωn has the ε-
one property, there exists a unit ve
tor ξn su
h that the
one C(ε,x0, ξn) be 
ontained in Ωn. Up to a subsequen
e, one 
an assumethat (ξn) 
onverges to some unit ve
tor ξ and that the sequen
e of 
ones
C(ε,x0, ξn) 
onverges (for the Hausdor� distan
e) to the 
one C(ε,x0, ξ).By stability with respe
t to in
lusion, one has

∀n ∈ N, C(ε,x0, ξn) ⊂ Ωn

C(ε,x0, ξn)
H

−−−−−→
n→+∞

C(ε,x0, ξ)

Ωn
H

−−−−−→
n→+∞

Ω





=⇒ C(ε,x0, ξ) ⊂ Ω.Therefore x0 ∈ Ω, and sin
e x0 ∈ E ⊂ Π0, the reverse in
lusion is proved.We are now in position to give our existen
e result.Theorem 2.3. The problem(6) {

minJ(Ω)
Ω ∈ Oε

V ,where J is de�ned in (3) with u the velo
ity, solution of the Navier-Stokesproblem (1), and Oε
V is de�ned in (5), has a solution.5



Proof. Let (Ωn)n∈N, be a minimizing sequen
e in Oε
V . Sin
e the open sets

Ωn are 
ontained in a �xed 
ompa
t set D, there exists a subsequen
e, stilldenoted by Ωn whi
h 
onverges (for the Hausdor� distan
e, but also for theother usual topologies) to some set Ω. Moreover, a

ording to Lemma 2.2,
Ω belongs to the 
lass Oε

V .To prove the existen
e result, it remains to prove 
ontinuity (or lower-semi 
ontinuity) of the 
riterion J . For any n ∈ N, we denote by un and pnthe solution of the Navier-Stokes system (1) on Ωn. Due to the homogeneousDiri
hlet boundary 
ondition on the lateral boundary Γ, we 
an extend byzero un and pn outside Ωn. So we 
an 
onsider that the fun
tions are allde�ned on the box D and the integrals over Ωn and over D will be the same.Let us �rst remark that (un) is uniformly bounded in H1(D). Indeed, thesequen
e ∫Ωn
|ε(un)|2dx =

∫
D |ε(un)|2dx is bounded by de�nition and theresult follows using Korn's inequality on the set D together with a Poin
aré'sinequality (see below proof of proposition 3.1).Therefore, a

ording to re�exivity of H1 and the Relli
h-Kondra
hov'sTheorem, there exists a ve
tor u ∈ [H1(D)]3 and a subsequen
e, still denoted

un su
h that :
un

H1

⇀ u and un

Lq

−→ u, ∀q ∈ [1, 6[.It remains to prove that u is the velo
ity solution of the Navier-Stokes systemon Ω. Let us write the variational formulation of (1). For any fun
tion wsatisfying
w ∈ [H1(D)]3 : w = 0 on E ∪ Γ and divw = 0 in D,and for all n ∈ N, the fun
tion un veri�es :(7) ∫

D
(2µε(un) : ε(w) + ∇un · un ·w) dx =

∫

S
h.un ·wdsSin
e we have weak 
onvergen
e of un, it 
omes :

∫

D
ε(un) : ε(w)dx −−−−−→

n→+∞

∫

D
ε(u) : ε(w)dx.Let us now have a look to the trilinear term. We already know that∇un

L2(D)
⇀

∇u. Moreover, from Cau
hy-S
hwarz's inequality and Sobolev's embeddingTheorem, we have:
‖(un − u) · w‖2

[L2(D)]3 ≤

3∑

i=1

√∫

Ω
(un,i − ui)4dx∫

Ω
w4

i dx
≤ 3‖un − u‖2

[L4(D)]3‖w‖2
[L4(D)]3 .6



Then (un · w)n∈N 
onverges strongly in L2(D) to u ·w. Therefore,
∫

D
∇un · un ·wdx −−−−−→

n→+∞

∫

D
∇u · u ·wdx.Finally, weak 
onvergen
e of un in [H1(D)]3 implies weak 
onvergen
e ofthe tra
e in L2(S) and the boundary term ∫

S h.un · wds in (7) 
onvergesto ∫S h.u · wds. Therefore, u satis�es the variational formulation (7) (andalso the boundary 
ondition u = u0 on E be
ause every un satis�es it). To
on
lude, it remains to prove that u is zero on the lateral boundary Γ. It isa
tually a 
onsequen
e of the 
onvergen
e in the sense of 
ompa
ts of Ωn to
Ω, and the fa
t that Ω is Lips
hitz and then stable in the sense of Keldys.We refer to Theorem 2.4.10 and Theorem 3.4.7 in [9℄.We are now 
on
erned with symmetry properties of the minimizer. Whenthe state system is Stokes instead of Navier-Stokes the following result 
anbe proved:Theorem 2.4. There exists a minimizer of the problem (6) (with the Stokessystem as state equation) whi
h has a plane of symmetry 
ontaining the ver-ti
al axis.Moreover, any minimizer of 
lass C2 has su
h a plane symmetry.Proof. Let Ω denotes (one of) the minimizer(s) of problem (6) and D theverti
al axis x1 = x2 = 0. Among every plane 
ontaining D, at least one, say
P0, 
uts Ω in two sub-domains Ω1 and Ω2 of same volume (volume equals to
V/2).Let us now introdu
e the two quantities J1 and J2 de�ned by:

J1 := 2µ

∫

Ω1

|ε(u)|2dx and J2 := 2µ

∫

Ω2

|ε(u|2dx,so J(Ω) = J1 + J2. Without loss of generality, one 
an assume J1 ≤ J2. Letus now 
onsider the new domain Ω̂ = Ω1 ∪σ(Ω1), where σ denotes the planesymmetry with respe
t to P0. We also introdu
e the fun
tions (û, p̂) de�nedbŷ
u(x) =

{
u(x) if x ∈ Ω1

u(σ(x)) if x ∈ σ(Ω1)
and p̂(x) =

{
p(x) if x ∈ Ω1

p(σ(x)) if x ∈ σ(Ω1)It is 
lear that û ∈ [H1(Ω̂)]3, p̂ ∈ L2(Ω̂) and div û = 0. Moreover
2µ

∫

Ω̂
|ε(û)|2dx = 4µ

∫

Ω1

|ε(u⋆)|2dx = 2J1 ≤ J(Ω).7



Now, it is well known that the solution of our Stokes problem 
an also bede�ned as the unique minimizer of the fun
tional
ψΩ(v)) := 2µ

∫

Ω
|ε(v)|2dxon the spa
e

V (Ω) := {v ∈ H1(Ω) : divv = 0, v|E = u0 and v|Γ = 0}.Therefore, we have:(8) J(Ω̂) = min
v∈V (Ω̂)

(
2µ
∫
Ω̂ |ε(v)|2dx)

≤ 2µ
∫
Ω̂ |ε(û)|2dx ≤ J(Ω),this proves that Ω̂, whi
h has the same volume as Ω and is symmetri
 withrespe
t to P0, is also a minimizer of J .Now, let us prove that if Ω is regular enough (a
tually C2 but one 
anweaken as shown by the proof below), it must 
oin
ide with Ω̂, and there-fore is symmetri
. Ne
essarily, we must have the equality in the 
hain ofinequalities (8). It proves, in parti
ular, that û is the solution of the Stokesproblem on Ω̂. But sin
e û 
oin
ides with u on Ω1 by de�nition, one 
an usethe analyti
ity of the solution of the Stokes problem (see e.g. [12℄) to 
laimthat û = u on Ω∩ Ω̂. Now, if Ω̂ would not 
oin
ide with Ω, we would have apart of the boundary of Ω, say γ in
luded in Ω̂. By assumption, Ω being C2,the solution of the Stokes problem is 
ontinuous up to the boundary (see [8℄)and therefore û should vanish on γ. By analyti
ity, it would imply that itvanishes identi
ally: a 
ontradi
tion with the boundary 
ondition on E.As explained in the introdu
tion, one 
an wonder whether the minimizerhas more symmetry. In parti
ular, 
ould the 
ylinder be the minimizer? Thefollowing Theorem proves that it is not the 
ase. It is the main result of thispaper. The proof is absolutely not obvious and will be given at the nextse
tion. Let us remark that the following result also holds for the Stokesequation. The proof in the Stokes 
ase follows the same lines and is a littlebit simpler, see [17℄ for details.Theorem 2.5. The 
ylinder is not the solution of the shape optimizationproblem(9) {
minJ(Ω)
Ω ∈ OV ,where J is de�ned in (3) with u the velo
ity, solution of the Navier-Stokesproblem (1), and OV is de�ned in (4).8



3 Proof of the main theoremIn all this se
tion, Ω will now denote the 
ylinder {x2
1+x

2
2 < R2, 0 < x3 < L}.3.1 Computation of the shape derivativeLet us 
onsider a regular ve
tor �eld V : R

3 → R
3 with 
ompa
t supportin the strip 0 < x3 < L. For small t, we de�ne Ωt = (I + tV)Ω, the imageof Ω by a perturbation of identity and f(t) := J(Ωt). We re
all that theshape derivative of J at Ω with respe
t to V is f ′(0). We will denote itby dJ(Ω;V). To 
ompute it, we �rst need to 
ompute the derivative of thestate equation. We use here the 
lassi
al results of shape derivative as in[9℄, [13℄, [18℄. The derivative of (u, p) is the solution of the following linearsystem:(10) 





−µ△u
′ + ∇u · u′ + ∇u

′ · u + ∇p′ = 0 x ∈ Ωdivu
′ = 0 x ∈ Ω

u
′ = 0 x ∈ E

u
′ = −

∂u

∂n
(V · n) x ∈ Γ

−p′n + 2µε(u′) · n = 0 x ∈ S.Now, we have (see [9℄, [18℄)(11) dJ(Ω,V) = 4µ

∫

Ω
ε(u) : ε(u′)dx+ 2µ

∫

Γ
|ε(u)|2(V · n)ds.It is more 
onvenient to work with another expression of the shape deriva-tive. For that purpose, we need to introdu
e an adjoint state.Proposition 3.1. Let us 
onsider (v, q), solution of the following adjointproblem :(12) 





−µ△v + ∇u · v −∇v · u + ∇q = −2µ△u x ∈ Ω
div v = 0 x ∈ Ω
v = 0 x ∈ E ∪ Γ
−qn + 2µε(v) · n + (u · n)v − 4µε(u) · n = 0 x ∈ S.If the vis
osity µ is large enough, then the problem (12) has a unique solution

(v, q). Moreover, this solution belongs to C1(Ω) × C0(Ω).Proof. The existen
e and uniqueness of the solution is a standard appli
ationof Lax-Milgram's lemma. We introdu
e the Hilbert spa
e
V (Ω) := {u ∈ H1(Ω) : divu = 0}.9



the bilinear form α and the linear form ℓ de�ned by
α(v,w) :=

∫

Ω
(2µε(v) : ε(w) + ∇w · u · v + ∇u · w · v) dx

〈ℓ,w〉 := 4µ

∫

Ω
ε(u) : ε(w)dx.To prove ellipti
ity of the bilinear form α we use Korn's inequality:

‖∇v‖[L2(Ω)]3 ≤ C1(‖v‖[L2(Ω)]3 + ‖ε(v)‖[L2(Ω)]3).and a Poin
aré inequality:(13) ‖v‖[L2(Ω)]3 ≤ C2

∫

Ω
|ε(v)|2dx.These two inequalities yield (we also use the expli
it expression of u givenin (2) to estimate the integrals 
ontaining u):

α(v,v) ≥

(
µ

min(1, C2)

C1 + 1
− |c|(R2 + 2R)

)
‖v‖2

[H1(Ω)]3 .and α is ellipti
 as soon as µ > |c|(R2+2R)(C1+1)
min(1,C2) . Now, existen
e and unique-ness of the solution follow from a standard appli
ation of Lax-Milgram'slemma together with De Rham's lemma to re
over the pressure.It remains to prove the regularity of the solution. The C∞ regularity in

Ω on the one-hand and on the smooth surfa
es E, S and the interior of thelateral boundary Γ on the other hand is standard (
f. [8℄). The only pointwhi
h is not 
lear is the C1 regularity on the 
ir
les E∩Γ and S∩Γ. To proveit, one 
an use the 
ylindri
al symmetry whi
h is proved later (without anyregularity assumptions) in Theorem 3.3. This symmetry allows us to 
onsidera two-dimensional problem in the re
tangle (0, R)× (0, L) into the variables
r = (x2

1 + x2
2)

1/2 and x3. For that problem, one need to prove regularity atthe 
orners (R, 0) and (R,L). For that purpose, one extends the solution byre�e
tion around the line r = R, this leads to a partial di�erential equationin the re
tangle (0, 2R) × (0, L) whose solution 
oin
ides with our solutionin the �rst half of the re
tangle. The C1 regularity, up to the boundary, ofthe solution of this ellipti
 p.d.e. is standard and the result follows.Let us 
ome ba
k to the 
omputation of the shape derivative. We prove10



Proposition 3.2. With the previous notations, the shape derivative of the
riterion J is given by(14) dJ(Ω,V) = 2µ

∫

Γ

(
ε(u) : ε(v) − |ε(u)|2

)
(V.n)ds.Proof. Using Green's formula in (11), one getsdJ(Ω,V) = 4µ

∫

Ω
ε(u) : ε(u′)dx+ 2µ

∫

Γ
|ε(u)|2(V.n)ds

= −2µ

∫

Ω
((△u + ∇divu) · u′)dx+ 4µ

∫

∂Ω
ε(u) · n · u′ds

+2µ

∫

∂Ω
|ε(u)|2(V · n)dsNow, let us multiply the �rst equation of the adjoint problem (12) by u

′ andintegrate over Ω, one obtains
−µ

∫

Ω
△v · u′dx+

∫

Ω
∇q · u′dx+

∫

Ω
(∇u)T · v · u′dx

−

∫

Ω
∇v · u · u′dx = −2µ

∫

Ω
△u · u′dx.Using one integration by parts and the boundary 
onditions satis�ed by u

′and v, we get
∫

Ω

(
2µε(u′) · ε(v) −∇v · u′ · u + ∇u

′ · u · v
) dx

−

∫

S
σ(v, q) · n · u′ds+

∫

S

(
(u · v)(u′ · n) − (u · n)(u′ · v)

) ds
−

∫

Γ
σ(v, q) · n) · u′ds = −2µ

∫

Ω
△u · u′dx.In the same way, if we multiply the �rst equation of the problem (10) by vand integrate over Ω, we obtain

−µ

∫

Ω
△u

′ · vdx+

∫

Ω
∇p′ · vdx+

∫

Ω
∇u

′ · u · vdx+

∫

Ω
∇u · u′ · vdx = 0and

∫

Ω

(
2µε(u′) · ε(v) + ∇u

′ · u · v −∇v · u′ · u
) dx

+

∫

S

(
−σ(u′, p′) · n · v + (u · v)(u′ · n)

) ds = 0.11



Coming ba
k to the shape derivative expressiondJ(Ω,V) = −2µ

∫

Ω
((△u + ∇divu) · u′)dx+ 4µ

∫

∂Ω
ε(u) · n · u′ds

+2µ

∫

∂Ω
|ε(u)|2(V · n)ds

= A+ 4µ

∫

∂Ω
ε(u) · n · u′ds+ 2µ

∫

∂Ω
|ε(u)|2(V · n)ds,where we set A := −2µ

∫

Ω
((△u + ∇divu) · u′)dx. Using the previous iden-tities, we get for A

A =

∫

Γ∪S
(qn− 2µε(v) · n) · u′ds− ∫

S
(u · n)(v · u′)ds.Therefore, a

ording to (12)dJ(Ω,V) =

∫

Γ∪S
(qn − 2µε(v) · n) · u′ds− ∫

S
(u · n)(v · u′)ds

+4µ

∫

S∪Γ
ε(u) · n · u′ds+ 2µ

∫

Γ
|ε(u)|2(V.n)ds

=

∫

Γ
(qn − 2µε(v) · n + 4µε(u) · n) · u′ds+ 2µ

∫

Γ
|ε(u)|2(V.n)ds

= −

∫

Γ

(
(qn− 2µε(v) · n + 4µε(u) · n) ·

∂u

∂n
− 2µ|ε(u)|2

)
(V · n)dsTo get the (more symmetri
) expression given in (14), one 
an use the follow-ing elementary properties. Sin
e u (and v) is divergen
e-free and vanisheson Γ, we have on this boundary:

• n · ∂u

∂n = 0.
• ε(u) · n · ∂u

∂n
= |ε(u)|2.

• (ε(v) · n) · ∂u

∂n = ε(u) : ε(v).Proposition 3.2 follows.3.2 Analysis of the PDE (12)We will prove the following symmetry result for the solution of the adjointsystem. It shows that the solution has the same symmetry as the 
ylinder.12



Lemma 3.3.With the same assumptions on µ as in Proposition 3.1, there exist (w,w3) ∈
[H1((0, R)×(0, L))]2 and q̃ ∈ L2((0, R)×(0, L)) su
h that, for any (x1, x2, x3) ∈
Ω(i) vi(x1, x2, x3) = xiw(r, x3), for i ∈ {1, 2} ;(ii) v3(x1, x2, x3) = w3(r, x3) ;(iii) q(x1, x2, x3) = q̃(r, x3).where r = (x2

1 + x2
2)

1/2.Proof. Let us introdu
e the di�erential operator Lθ de�ned by
Lθ = x1

∂

∂x2
− x2

∂

∂x1
.

Lθ 
orresponds a
tually to the di�erentiation with respe
t to the polar angle
θ. Let us set(15) v̂i = Lθ(vi), ∀i ∈ {1, 2, 3} and q̂ = Lθ(q).By applying the operator Lθ to the equation (12) we get the following system(where we have used the expli
it expression of the solution u given in (2))(16)




−µ△v̂1 + 2cx1v̂3 − 2cx2v3 − c(x2
1 + x2

2 −R2)
∂v̂1
∂x3

+
∂q̂

∂x1
−

∂q

∂x2
= 0 x ∈ Ω

−µ△v̂2 + 2cx2v̂3 + 2cx1v3 − c(x2
1 + x2

2 −R2)
∂v̂2
∂x3

+
∂q̂

∂x2
+

∂q

∂x1
= 0 x ∈ Ω

−µ△v̂3 − c(x2
1 + x2

2 −R2)
∂v̂3
∂x3

+
∂q̂

∂x3
= 0 x ∈ Ω

∂v̂1
∂x1

+
∂v̂2
∂x2

+
∂v̂3
∂x3

−
∂v1
∂x2

+
∂v2
∂x1

= 0 x ∈ Ω

v̂1 = v̂2 = v̂3 = 0 x ∈ E ∪ Γ

µ

(
∂v̂1
∂x3

+
∂v̂3
∂x1

)
− µ

∂v3
∂x2

+ c(x2
1 + x2

2 −R2)v̂1 = −4µcx2 x ∈ S,

µ

(
∂v̂2
∂x3

+
∂v̂3
∂x2

)
+ µ

∂v3
∂x1

+ c(x2
1 + x2

2 −R2)v̂2 = 4µcx1 x ∈ S,

2µ
∂v̂3
∂x3

+ c(x2
1 + x2

2 −R2)v̂3 = q̂ x ∈ S,Let us now introdu
e the following new fun
tions
• z1 = v̂1 + v2 ; 13



• z2 = v̂2 − v1 ;
• z3 = v̂3.A

ording to system (12), the system (16) rewrites in term of z1, z2, z3

(17)





−µ△z1 + 2cx1z3 − c(x2
1 + x2

2 −R2)
∂z1
∂x3

+
∂q̂

∂x1
= 0 x ∈ Ω

−µ△z2 + 2cx2z3 − c(x2
1 + x2

2 −R2)
∂z2
∂x3

+
∂q̂

∂x2
= 0 x ∈ Ω

−µ△z3 − c(x2
1 + x2

2 −R2)
∂z3
∂x3

+
∂q̂

∂x3
= 0 x ∈ Ω

∂z1
∂x1

+
∂z2
∂x2

+
∂z3
∂x3

= 0 x ∈ Ω

z1 = z2 = z3 = 0 x ∈ E ∪ Γ

µ

(
∂z1
∂x3

+
∂z3
∂x1

)
+ z1c(x

2
1 + x2

2 −R2) = 0 x ∈ S,

µ

(
∂z2
∂x3

+
∂z3
∂x2

)
+ z2c(x

2
1 + x2

2 −R2) = 0 x ∈ S,

2µ
∂z3
∂x3

+ c(x2
1 + x2

2 −R2)z3 = q̂ x ∈ S,This adjoint problem has a unique solution if µ is large enough (see propo-sition 3.1), therefore
z1 = z2 = v̂3 = q̂ ≡ 0.The fa
t that v̂3 = Lθ(v3) and q̂ = Lθ(q) vanish proves points ii and iii of theLemma. Now let us pre
ise the properties of fun
tions v1, v2. It has beenproved that Lθ(v1) = −v2 and Lθ(v2) = v1. Therefore, applying on
e morethe operator Lθ yields Lθ ◦ Lθ(v1) + v1 = 0. This implies that there existtwo fun
tions α and β in the spa
e H1((0, R) × (0, L)), su
h that

v1 = x1α(r, x3) + x2β(r, x3).Moreover, sin
e Lθ(v1) = −v2, we get
v2 = −x1β(r, x3) + x2α(r, x3).To �nish the proof, it remains to 
he
k that the fun
tion β is identi
allyzero. For that purpose, let us write down the partial di�erential equationsatis�ed by β. From the two �rst equations of system (12) and the boundary

14




ondition, we 
an prove that β satis�es the following system(18)




−µ

(
∂2β

∂r2
+

3

r

∂β

∂r
+
∂2β

∂x2
3

)
− c(r2 −R2)

∂β

∂x3
= 0 (r, x3) ∈ (0, R) × (0, L)

β(r, 0) = β(R,x3) =
∂β

∂r
(0, x3) = 0 (r, x3) ∈ (0, R) × (0, L)

µ
∂β

∂n
+ c(r2 −R2)β = 0 (r, x3) ∈ (0, R) × {L}It remains to prove that the zero fun
tion is the unique solution of theprevious system. Multiplying the equation by β and integrating on there
tangle in polar 
oordinates gives, using the boundary 
onditions

0 = µ

∫

Ω

((
∂β

∂r

)2

+

(
∂β

∂x3

)2
)

rdrdx3+

+µ

∫ L

0
β2(0, x3)dx3 +

c

2

∫ R

0
(r2 −R2)β2(r, L)rdr.Sin
e c < 0 and r < R, we get ∂β

∂r ≡ 0 in (0, R) × (0, L) and β2(0, x3) = 0for any x3 ∈ (0, L). Then β ≡ 0 whi
h gives the desired result.3.3 The optimality 
onditionWe argue by 
ontradi
tion. Let us assume that the 
ylinder Ω is optimalfor the 
riterion J . We �rst write down the �rst order optimality 
ondition.From the expli
it expression (2) of u, we have
ε(u) =




0 0 cx1

0 0 cx2

cx1 cx2 0



 .Therefore
|ε(u)|2 = 2c2(x2

1 + x2
2),and |ε(u)|2 = 2c2R2 is 
onstant on Γ.Now the �rst order optimality 
ondition ensures the existen
e of a La-grange multiplier λ ∈ R, su
h that dJ(Ω,V) = λ dVol (Ω,V) for any ve
tor�eld V. Due to the expression of the shape derivatives of J and the volume,it writes

2µ

∫

Γ

(
ε(u) : ε(v) − |ε(u)|2

)
(V.n)ds = λ

∫

Γ
(V · n)ds.15



This implies that ε(u) : ε(v) is 
onstant on Γ. Now, from the expression of
ε(u) on Γ, we dedu
e

ε(u) : ε(v)|Γ =
c

2

(
x1
∂v3
∂x1

+ x2
∂v3
∂x2

+ x1
∂v1
∂x3

+ x2
∂v2
∂x3

)

=
c

2

(
x1
∂v3
∂x1

+ x2
∂v3
∂x2

)
=
cR

2

∂v3
∂n |Γ

,be
ause v1|Γ = v2|Γ = 0. Therefore the optimality 
ondition writes(19) ∃ξ ∈ R :
∂v3
∂n

= ξ on Γ.Now, we give another useful LemmaLemma 3.4. If the 
ylinder Ω is optimal and using the notations of Lemma3.3, we have
∂q

∂n |Γ
=
∂q̃

∂r |{r=R}

= 0.Proof. Let us write the adjoint problem (12) in term of the fun
tions w, w3et q̃. We get(20)




−µ

(
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂x2
3

)
+

1

r

∂q̃

∂r
+ 2cw3 − c(r2 −R2)

∂w

∂x3
= 0 in Ω

−µ

(
∂2w3

∂r2
+

1

r

∂w3

∂r
+
∂2w3

∂x2
3

)
+

1

r

∂q̃

∂x3
− c(r2 −R2)

∂w3

∂x3
= −8µc in Ω

2w + r
∂w

∂r
+
∂w3

∂x3
= 0 in Ω

w(r, 0) = w3(r, 0) = w(R,x3) = w3(R,x3) = 0

µ

(
∂w

∂x3
+

1

r

∂w3

∂r

)
+ c(r2 −R2)w = 4µc on S

2µ
∂w3

∂x3
+ c(r2 −R2)w3 = q̃ on S.Sin
e w|{r=R}

= w3|{r=R}
= 0, we have ∂w

∂x3 |{r=R}
= ∂w3

∂x3 |{r=R}
= 0 and

∂2w
∂x2

3 |{r=R}

= 0. In parti
ular, from the divergen
e-free 
ondition, we obtain
∂w
∂r |{r=R}

= 0.Now, let us di�erentiate the divergen
e-free 
ondition with respe
t to r,we get
∀(r, x3) ∈ (0, R) × (0, L), 3

∂w

∂r
+ r

∂2w

∂r2
+

∂2w3

∂r∂x3
= 0.16



Now, ∂w3

∂r |{r=R}
= ξ (it is the optimality 
ondition (19)) ; therefore, we have

∂2w3

∂x3∂r |{r=R}
= 0. Combining this last result with ∂w

∂r |{r=R}
= 0, it 
omes

∂2w

∂r2 |{r=R}

= 0.We let r going to R in the �rst equation of problem (20) and we use theprevious identities to get
∂q̃

∂r |{r=R}

= 0.3.4 An auxiliary fun
tionUsing notation of Lemma 3.3, we introdu
e now two new fun
tions
• w0 : [0, R] × [0, L] −→ R

(r, x3) 7−→

∫ x3

0
w(r, z)dz .

• ψ : [0, R] × [0, L] −→ R

x3 7−→

∫ R

0

∫ 2π

0

(
q̃(r, x3) − 2cr2w0(r, x3)

) dθrdr .We will also denote by Tz the horizontal se
tion of the 
ylinder {x ∈ Ω : x3 = z}.The following lemma is the key point of the proof.Lemma 3.5. The fun
tion ψ is a�ne.Proof. The 
ouple (v, q) satis�es the following p.d.e.
−µ△v + ∇q + ∇u · v −∇v · u = −2µ△u.Let us 
ompute the divergen
e of both sides of the previous equality. Usingthe expression of u in the 
ylinder Ω, we obtain that (v, q) veri�es(21) △q + 4cv3 + 2c

(
x1
∂v3
∂x1

+ x2
∂v3
∂x2

)
− 2c

(
x1
∂v1
∂x3

+ x2
∂v2
∂x3

)
= 0.Let us integrate this equation on a slide

ω := {(x1, x2, x3) ∈ Ω; z− ≤ x3 ≤ z+}17



(we will denote by e the inlet of ω and s its outlet). We get
∫

ω
△q + 4cv3dx+ 2c

∫

ω

(
x1
∂v3
∂x1

+ x2
∂v3
∂x2

)
− 2c

(
x1
∂v1
∂x3

+ x2
∂v2
∂x3

) dx = 0.Now, from Green's formula, we have
∫

ω
x1
∂v3
∂x1

dx =

∫

∂ω
x1v3n1ds−∫

ω
v3dx =

∫

∂ω∩Γ
x1v3n1ds−∫

ω
v3dx = −

∫

ω
v3dxin the same way ∫

ω
x2
∂v3
∂x2

dx = −

∫

ω
v3dx .Therefore

4c

∫

ω
v3dx+ 2c

∫

ω

(
x1
∂v3
∂x1

+ x2
∂v3
∂x2

) dx = 0,so(22) ∫

ω
△qdx = 2c

∫

ω

(
x1
∂v1
∂x3

+ x2
∂v2
∂x3

) dx.Let us 
onsider the left-hand side of (22). From Lemma 3.4 it 
omes(23) ∫

ω
△qdx =

∫

s∪e

∂q

∂n
ds.Now, let us 
onsider the right-hand side of (22). Integrating by parts yields

•

∫

ω
x1
∂v1
∂x3

dx =

∫

∂ω
x1v1n3ds =

∫

e∪s
x1v1n3ds.

•

∫

ω
x2
∂v2
∂x3

dx =

∫

∂ω
x2v2n3ds =

∫

e∪s
x2v2n3ds.Combining this result with (23) gives(24) ∫

s

(
∂q

∂x3
− 2c(x1v1 + x2v2)

) ds =

∫

e

(
∂q

∂x3
− 2c(x1v1 + x2v2)

) ds,what 
an also be rewritten for any (z−, z+) ∈ (0, L)2 :(25)∫ R

0

(
∂q̃

∂x3
(r, z−) − 2cr2w(r, z−)

)
rdr =

∫ R

0

(
∂q̃

∂x3
(r, z+) − 2cr2w(r, z+)

)
rdr.

18



Now, sin
e ψ(z) = 2π

∫ R

0

(
q̃(r, z) − 2cr2w0(r, z)

)
rdr, we have by di�erenti-ating, for all z in [0, L],

ψ′(z) = 2π

∫ R

0

(
∂q̃

∂x3
− 2cr2

∂w0

∂x3

)
rdr = 2π

∫ R

0

(
∂q̃

∂x3
− 2cr2w

)
rdr.Now, identity (25) proves that ψ′ is a 
onstant fun
tion whi
h gives thedesired result.We are now in position to pre
ise the value of the 
onstant ξ appearingin the �rst order optimality 
ondition (19). For that purpose, we use thesymmetry result given in Lemma 3.3 together with equation (20). In thisequation, let us integrate between x3 = 0 and x3 = z ∈ (0, L). Sin
e

w3(r, 0) = 0, we get for any (r, z) ∈ [0, R] × [0, L] :
2w0(r, z) + r

∂w0

∂r
(r, z) + w3(r, z) = 0.Let us di�erentiate this last relation with respe
t to r. This yields(26) 3

∂w0

∂r
+
∂2w0

∂r2
+
∂w3

∂r
= 0.Now, in (20), we di�erentiate the divergen
e equation with respe
t to r, andwe make r → R. We obtain

∂w

∂r |Γ
=
∂2w

∂r2 |Γ
= 0.Letting r going to R in (26) and interverting limit and integral gives, usingthe previous equality

∂v3
∂n |Γ

= 0.So we 
on
lude that ξ = 0 and the optimality 
ondition rewrites(27) ∂v3
∂n |Γ

= 0.

19



3.5 End of the proofLet us use the fun
tion ψ de�ned above. We 
an rewrite it as
ψ(z) =

∫

Tz

(
q̃ − 2cr2w0

) dθrdr = 2π

∫ R

0

(
q̃(r, z) − 2cr2w0(r, z)

)
rdr,where Tz denotes the horizontal se
tion of the 
ylinder of 
ote z. We provedin Lemma 3.5 that ψ is a�ne, therefore its derivative ψ′ is 
onstant, say

ψ′(z) = a. The 
ontradi
tion will 
ome from the 
omputation of this 
on-stant on the inlet E and the outlet S. We will see that we obtain two di�erentvalues. Let us denote by △2 the two-dimensional Lapla
ian (with respe
t tothe variables x1 and x2).Computation of the 
onstant on the outlet S of the 
ylinder. First of all, letus remark that if we di�erentiate with respe
t to x1 the boundary 
onditionon S satis�ed by the fun
tion v1, we get(28) µ
∂2v1
∂x1∂x3

+ µ
∂2v3
∂x2

1

+ 2cx1v1 + c(x2
1 + x2

2 −R2)
∂v1
∂x1

= 4µc, on S.In the same way, if we di�erentiate with respe
t to x2 the boundary 
onditionon S satis�ed by the fun
tion v2, we get(29) µ
∂2v2
∂x2∂x3

+ µ
∂2v3
∂x2

2

+ 2cx2v2 + c(x2
1 + x2

2 −R2)
∂v2
∂x2

= 4µc, on S.Summing the two relations (28) and (29) and using the divergen
e-free 
on-dition yields
−µ

∂2v3
∂x2

3

+ µ△2v3 + 2c(x1v1 + x2v2) − c(x2
1 + x2

2 −R2)
∂v3
∂x3

= 8µc on S.Now, a

ording to (12), v3 satis�es(30) µ△2v3 = 8µc− µ
∂2v3
∂x2

3

− c(x2
1 + x2

2 −R2)
∂v3
∂x3

+
∂q

∂x3
.Combining together the two previous equations, it 
omes(31) −2µ

∂2v3
∂x2

3

− 2c(x2
1 + x2

2 −R2)
∂v3
∂x3

+
∂q

∂x3
+ 2c(x1v1 + x2v2) = 0 on S.Now, we integrate on S the equation (30), we have

∫

S

(
−µ△2v3 − µ

∂2v3
∂x2

3

−
∂v3
∂x3

(x2
1 + x2

2 −R2)c+
∂q

∂x3

) ds = −8µc

∫

S
ds.20



In the Proposition 3.1, we have seen that v3 is C1 up to the boundary. Takinginto a

ount the boundary 
ondition on S, we have
∫

S
△2v3ds =

∫

S∩Γ

∂v3
∂n

dσ = 0 .So, the integration gives
−µ

∫

S

∂2v3
∂x2

3

ds− c

∫

S
(x2

1 + x2
2 −R2)

∂v3
∂x3

ds+

∫

S

∂q

∂x3
ds = −8µcπR2.Using (31), we 
an dedu
e that

1

2

∫

S

∂q

∂x3
ds− c

∫

S
(x1v1 + x2v2)ds = −8µcπR2.A

ording to Lemma 3.3, one 
an write

x1v1 + x2v2 = (x2
1 + x2

2)w
((
x2

1 + x2
2

)1/2
, x3

)
.Therefore(32) a = ψ′(L) = −16µcπR2Computation of the 
onstant on the inlet E of the 
ylinder. Let us �rstremark that ∂v3

∂x3 |E

= 0 (just use the divergen
e-free 
ondition extended to
E and the fa
t that v1|E = v2|E = 0). Let us now integrate the p.d.e. (12)satis�ed by v3. We have, using ∂v3

∂x3 |E
= 0,

−µ

∫

E
△v3ds+

∫

E

∂q

∂x3
ds = −8µc

∫

E
ds.Taking into a

ount the 
ondition (27) we get

−µ

∫

E
△v3ds = −µ

∫

E
△2v3ds− µ

∫

E

∂2v3
∂x2

3

ds
= −µ

∫

E∩Γ

∂v3
∂n

dσ + µ

∫

E

(
∂2v1
∂x3∂x1

+
∂2v2
∂x3∂x2

) ds
= µ

∫

E∩Γ

(
∂v1
∂x3

n1 +
∂v2
∂x3

n2

) dσ = 0.Then, it follows(33) ∫

E

∂q

∂x3
ds = −8µcπR2.21



At last, sin
e v1|E = v2|E = 0, we have
ψ′(0) = 2π

∫ R

0

(
∂q̃

∂z
(r, 0) − 2cr2w(r, 0)

)
rdr =

∫

E

∂q

∂x3
ds.A

ording to (33) we have(34) a = ψ′(0) = −8µcπR2.whi
h is 
learly a 
ontradi
tion with (32) sin
e c < 0. This �nishes the proofof Theorem 2.5.4 Some numeri
al resultsIn this se
tion are presented some numeri
al 
omputations. It gives a 
on-�rmation that the 
ylinder is not an optimal shape for the problem of min-imizing the dissipated energy. In parti
ular, we are able to exhibit bettershapes for this 
riterion. All these 
omputations have been realized with thesoftware Comsol.For any bounded, simply 
onne
ted domain Ω in R

2 or R
3 and any realnumbers µ, b (b will be �xed in all the algorithm), let us de�ne the augmentedLagrangian of our problem (9) by

L(Ω, µ) = J(Ω) + µ(|Ω| − V ) +
b

2
(|Ω| − V )2.Sin
e Theorem 2.5 ensures that the 
ylinder is not optimal for the 
ri-terion J , the question of �nding a better shape in the 
lass of admissibledomains Oε

V is natural. The numeri
al di�
ulties in su
h a work, are thenon linear 
hara
ter of the state equation and the need to take into a

ountthe volume 
onstraint.For that reason, we de
ompose the work in two steps. First, is 
onsidereda gradient type algorithm in two dimensions whi
h allows us to redu
e the
riterion J . Then, we work in a three dimensional 
lass of domains with
onstant volume V and 
ylindri
al symmetry. In this 
lass, we are able to�nd a shape (probably not optimal) whi
h is better than the 
ylinder, seese
tion 4.2.4.1 A numeri
al algorithm in 2DWe denote by Ω0 the 
ylinder with inlet E, outlet S, and measure V . Ω0 isour initial guess for the gradient type algorithm we 
onsider. We deform Ω0by using the following method: 22



1. We �x µ0 ∈ R, τ > 0 and ε > 0.2. Iteration m. At the previous iteration, µm and Ωm have been 
om-puted. We de�ne Ωm+1 := (I + εmdm)(Ωm), where I denotes theidentity operator, εm is a real number (step of the gradient method)whi
h is determined through a 
lassi
al 1D optimization method and
dm is a ve
tor �eld of R

2, solution of the p.d.e.





−△dm + dm = 0 x ∈ Ωm

dm = 0 x ∈ E ∪ S
∂dm

∂n = −∂L
∂nn x ∈ Γm,where Γm denotes the lateral boundary of Ωm, i.e. Γm := ∂Ωm\(E∪S).The solution of this p.d.e. gives a des
ent dire
tion for the 
riterion J(see for instan
e [1℄, [6℄).Then, the Lagrange multiplier µm is a
tualized by setting

µm+1 := µm + τ(|Ωm+1| − V ).3. We stop the algorithm when (µm)m≥0 has 
onverged and the derivativeof the Lagrangian is small enough.The Figure 1 shows the geometry we obtain. The 
riterion has de
reasedabout 1.1 % from the initial 
on�guration (a re
tangle here).

Figure 1: Final 2-D shape obtained by the gradient algorithm23



4.2 Some 3D 
omputationsIn this se
tion, we 
reate a family of 2D shapes, 
onstru
ted with 
ubi
 spline
urves whi
h look like the presumed optimum obtained in �gure 1. Then,we obtain a family of 3D domains of volume V , by revolving the previous2D shapes around the (Ox3) axis. We introdu
e a small parameter e in the
ontrol points of the 
ubi
 splines and we evaluate for ea
h value of e the
riterion J . The value e = 0 
orresponds to the 
ylinder. Let us respe
tivelydenote by J(e) and J(Ω0) the values of the 
riterion J evaluated at thedomain 
orresponding to value e of the parameter and at the 
ylinder. Figure2 is the plot of fun
tion e 7→ 100.J(e)−J(Ω0)
J(Ω0) above, and Figure 3 represents abetter shape than the 
ylinder for the 
riterion J whi
h is obtained with avalue of the parameter e ≃ 0.001. It shows that this simple method providesa 3D (axially symmetri
) shape whi
h is slightly better than the 
ylinder.

Figure 2: The 
ost fun
tion (whi
h slightly de
reases before in
reasing)Referen
es[1℄ G. Allaire Shape optimization by the homogenization method, AppliedMathemati
al S
ien
es, 146, Springer-Verlag, New York, 2002.24



Figure 3: A 3D (axially symmetri
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