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Abstract. We consider an incompressible fluid in a three-dimensional
pipe, following the Navier-Stokes system with classical boundary conditions.
We are interested in the following question: is there any optimal shape for
the criterion "energy dissipated by the fluid"? Moreover, is the cylinder the
optimal shape? We prove that there exists an optimal shape in a reasonable
class of admissible domains, but the cylinder is not optimal. For that pur-
pose, we explicit the first order optimality condition, thanks to adjoint state
and we prove that it is impossible that the adjoint state be a solution of this
over-determined system when the domain is the cylinder. At last, we show
some numerical simulations for that problem.
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1 Introduction

The shape optimization problems in fluid mechanics are very important and
gave rise to many works. Most often, these works have a numerical character
due to the intrinsic difficulty of the Navier-Stokes equations. For a first
bibliography on the topic, we refer e.g. to [7], [9], [11], [14] [16].

In this work, we are interested in one of the simplest problem: what
shape must have a pipe in order to minimize the energy dissipated by a
fluid? For us, a pipe (of "length" L) will be a three dimensional domain (2
contained in the strip {(x1,22,23) ,0 < 23 < L}. We will assume that the
inlet E := 002N {x3 = 0} (where 992 denotes the boundary of ) and the
outlet S := 92N {x3 = L} are two fixed identical discs and that the volume
of Q is imposed. The unknown (or free) part of the boundary of € will be
denoted by I" (so 02 = EUT U S).

In the pipe €2, we consider the flow of a viscous, incompressible fluid
with a velocity u and a pressure p satisfying the Navier-Stokes system. We
assume that the velocity profile ug at the inlet E is of parabolic type; on
the lateral boundary I', we assume no-slip condition u = 0 and we control
the outlet by imposing an "outlet-pressure” condition on S. We will assume
that the viscosity p is large enough in order that the solution of the system
is unique (see [19]). The criterion that we want to minimize, with respect
to the shape €, is the energy dissipated by the fluid (or viscosity energy)
defined by J(2) := 2 [, |e(u)|*dz where € is the stretching tensor.

We will first prove an existence Theorem. To obtain this result, we work
in the class of admissible domains which satisfy an e-cone property (see [4],
[9]). Then, we are interested in symmetry properties of the optimal domain.
For the Stokes model, we are only able to prove that the optimum has one
plane of symmetry. It is not completely clear to see whether the optimum
should be axially symmetric. In a series of papers [2], [15], G. Arumugam and
O. Pironneau proved for a similar, but much simpler problem that one has to
build riblets on the lateral boundary to reduce the drag. Nevertheless, it is a
natural question to ask whether the cylinder should be the optimum for our
problem. We will show that it is not the case. For that purpose, we explicit
the first order optimality condition. This condition can be easily expressed
in term of the adjoint state and gives an over-determined condition on the
lateral boundary I". Then, we prove that it is impossible that the adjoint
state be a solution of this over-determined system when the domain is the
cylinder.

This paper is organized as follows. At section 2, we state the shape
optimization problem, we prove existence and symmetry. Section 3 is devoted



to the proof of the main Theorem. We give in section 4 some numerical
results and concluding remarks.
These results have been announced in the Note [10].

2 The shape optimization problem

Let us give the notations used in this paper. We consider a generic three
dimensional domain €2 contained in a compact set

D := {(z1, 32, 23) 23 + 23 < R2,0 < x3 <L}

where Ry and L are two positive constants. We will denote by 9 the
boundary of 2. In the sequel, we will assume that the inlet E of ) defined
by E := 002N {zx3 = 0} and the outlet S defined by S := 9Q N {x3 = L}
are two fixed identical discs of radius R < Ry centered on the z3 axis.
We will also assume that the volume of all the domains €2 is imposed, say
| = V = 7R2L. We decompose the boundary of Q as the disjoint union
0Q) = EUT US and T, the lateral boundary is the main unknown or the
shape we want to design.

Let us now precise the state equation. We consider the flow of a viscous
incompressible fluid into 2. We denote by u = (u1,u2,us) (letters in bold
will correspond to vectors) its velocity and by p its pressure. As usual in
fluid mechanics, we introduce € the stretching tensor defined by:

o= (1 (2 2))
2 (%j 6332 1<i,5<3 ’

We will consider the Navier-Stokes system (except for Theorem 2.4 where
the Stokes system will be considered). As boundary conditions, we assume
that the velocity profile ug at the inlet £ = {3 = 0} is of parabolic type;
on the lateral boundary I', we assume adherence or no-slip condition u = 0
and we control the outlet by imposing an "outlet-pressure" condition on
S = {x3 = L}. Therefore, the p.d.e. system satisfied by the velocity and
the pressure is:

—pAMu+Vp+Vu-u=0 X € €,
divua =0 x € ()
(1) u=ug:= (0,0,c(z} + 23 — R?)) xeFE
u=20 xel

—pn + 2ue(u) - n = h := (2ucry, 2ucee, —p1) x € S.



where ¢ > 0 denotes the viscosity of the fluid, n the exterior unit normal
vector (on S we have n = (0,0,1)). At last, the constant ¢ which appears
in the boundary condition on £ and S is assumed to be negative. The sign
of ¢ can physically be explained. Indeed, in the case where 2 is a cylinder,
the flow is driven by a Poiseuille law (simplified physical law derived from
the Navier-Stokes system which describes a slow viscous incompressible flow
through a constant circular section). Then , this constant ¢ can be written
¢ = P1 —Po
4ul
outlet S while pg is the constant value of the pressure at the inlet E.

This choice of the boundary condition ensures that the solution of (1)
will be given by a parabolic profile when €2 is a cylinder. More precisely, if
Q is the cylinder of radius R and height L, the solution of (1) is explicitly
given by:

2) { u(zy, o, 13) = (0,0, c(x? + 23 — RQ))
p(x1, 22, 23) = 4pc(rs — L) +p1 -

, where p; denotes the constant value of the pressure at the

More generally, if € is a regular domain, we have a classical existence and
uniqueness result for such systems, see e.g. [3], [19].

Theorem 2.1. Let us assume that ug belongs to the Sobolev space (H*/*(E))?
and h € (H'?(S))3. If the viscosity p is large enough, the problem (1) has
a unique solution (u,p) € H*(Q) x L*(Q).

The criterion we want to minimize is the energy dissipated by the fluid
(or viscosity energy) defined by:

@ 1) =20 [ Je(u) P,
Q
where ¢ is the stretching tensor :

o= (4 (2 20Y)
2 (%zj (%Z 1<i,j<3 ’

To make the statement precise, we also need to define the class of admissible
domains or shapes. We will consider a first general class:

(4) Oy & {Q bounded and simply connected domain in R3 :

Q =V, I[NQ=E, I;NnQ=25,}

where Iy and II;, denote respectively the planes {z3 = 0} and {z3 = L}.



To prove an existence result, we need to restrict the class of admissible
domains. It is a very classical feature in shape optimization, since these
problems are often ill-posed, see [1], [9]. We adopt here the choice made by
D. Chenais in [4] which consists in assuming some kind of uniform regular-
ity. More precisely, we will consider domains which satisfy an uniform cone
condition, we say that these domains have the e-cone property, we refer to
[4], [5] or [9] for the precise definition. So, we define the class

(5) v = {Q € Oy : Q has the e-cone property}
Lemma 2.2. The class O3 is closed for the Hausdorff distance.

Proof. We recall that the class of open sets with the e-cone property is closed
for the Hausdorff convergence (see Theorem 2.4.10 in [9]). Moreover, the
convergence also holds for characteristic functions, so the volume constraint
is preserved. So, it remains just to prove that the properties defining the inlet
E and the outlet S are preserved. Let (£2,)nen be a sequence of domains in
O, which converges, for the Hausdorff distance, to a domain 2. We want to
prove that Il N Q = E and II;; N Q = S. The first inclusion Il N Q C E is
just a consequence of the stability of inclusion for the Hausdorff convergence
of compact sets. Let us prove the reverse inclusion: let xg € F and n € N.
Since €2, has the e-cone property, there exists a unit vector &, such that the
cone C(e,xg,&,) be contained in €,. Up to a subsequence, one can assume
that (&,) converges to some unit vector £ and that the sequence of cones
C(e,x0,&,) converges (for the Hausdorff distance) to the cone C(e,xo,¢).
By stability with respect to inclusion, one has

Vn eN, C(e,x9,&,) C Qy
C(e, x0,&n) S SN C(e, x0,§)

n—-+oo == C(€7X07§) c Q.
Q, % Q

Therefore xg € €2, and since xg € E C Iy, the reverse inclusion is proved.
O

We are now in position to give our existence result.

Theorem 2.3. The problem

min J(2)
Q { oo

where J is defined in (3) with u the velocity, solution of the Navier-Stokes
problem (1), and O3, is defined in (5), has a solution.



Proof. Let (2,)nen, be a minimizing sequence in Of,. Since the open sets
), are contained in a fixed compact set D, there exists a subsequence, still
denoted by €2, which converges (for the Hausdorff distance, but also for the
other usual topologies) to some set . Moreover, according to Lemma 2.2,
(2 belongs to the class Of,.

To prove the existence result, it remains to prove continuity (or lower-
semi continuity) of the criterion J. For any n € N, we denote by uy, and p,
the solution of the Navier-Stokes system (1) on §2,,. Due to the homogeneous
Dirichlet boundary condition on the lateral boundary I', we can extend by
zero u, and p, outside €2,. So we can consider that the functions are all
defined on the box D and the integrals over €2,, and over D will be the same.
Let us first remark that (uy) is uniformly bounded in H'(D). Indeed, the
sequence [, le(un)|*dz = [}, |e(un)[*dz is bounded by definition and the
result follows using Korn’s inequality on the set D together with a Poincaré’s
inequality (see below proof of proposition 3.1).

Therefore, according to reflexivity of H' and the Rellich-Kondrachov’s
Theorem, there exists a vector u € [H'(D)]3 and a subsequence, still denoted

u, such that :
1
Un A, w and u, 1, u, Vq € [1,6].

It remains to prove that u is the velocity solution of the Navier-Stokes system
on . Let us write the variational formulation of (1). For any function w
satisfying

w € [H'(D)?:w=0on EUT and divw = 0 in D,
and for all n € N, the function uy, verifies :

(7) /D (2ue(up) 1 e(w) + Vuy - uy, - w)de = /Sh.un -wds

Since we have weak convergence of uy, it comes :
/ g(up) s e(w)de —— [ e(u) : e(w)dz.
D =+ Jp

L2(D
Let us now have alook to the trilinear term. We already know that Vuy, D)
Vu. Moreover, from Cauchy-Schwarz’s inequality and Sobolev’s embedding

Theorem, we have:

3
[(un —u) 'WH[2L2(D)]3 < Z \//Q(un,z - ui)4dx/9w?dx
1=1

< 3llun —ullfapyp Wl oy

6



Then (uy, - W)pen converges strongly in L2(D) to u - w. Therefore,

/Vun-un-wdx——% Vu-u-wdz.

D n—+oo Jp

Finally, weak convergence of u, in [H'(D)]? implies weak convergence of
the trace in L?(S) and the boundary term [¢h.uy, - wds in (7) converges
to [¢h.u-wds. Therefore, u satisfies the variational formulation (7) (and
also the boundary condition u = ug on E because every uy, satisfies it). To
conclude, it remains to prove that u is zero on the lateral boundary I'. It is
actually a consequence of the convergence in the sense of compacts of €2, to
Q, and the fact that €2 is Lipschitz and then stable in the sense of Keldys.
We refer to Theorem 2.4.10 and Theorem 3.4.7 in [9]. O

We are now concerned with symmetry properties of the minimizer. When
the state system is Stokes instead of Navier-Stokes the following result can
be proved:

Theorem 2.4. There exists a minimizer of the problem (6) (with the Stokes
system as state equation) which has a plane of symmetry containing the ver-
tical azis.

Moreover, any minimizer of class C? has such a plane symmetry.

Proof. Let € denotes (one of) the minimizer(s) of problem (6) and D the
vertical axis 1 = x2 = 0. Among every plane containing D, at least one, say
Py, cuts Q in two sub-domains € and 9 of same volume (volume equals to
V/2).

Let us now introduce the two quantities J; and Jy defined by:

Jy = 2u/ le(u)]?’dz and Jy:= 2u/ le(u|?dz,
Ql Q2
so J(Q2) = J; + Jo. Without loss Qf generality, one can assume J; < Jo. Let
us now consider the new domain Q = Q; Uc (), where o denotes the plane
symmetry with respect to Py. We also introduce the functions (u, p) defined
by

u(x) ifxe | px) ifxe
(x) = { u(o(x)) ifx e o(Q) MPX)= { p(o(x)) if x € o()

It is clear that 4 € [H(Q)]3, p € L2(Q) and divi = 0. Moreover

zﬂ/ﬁ le(@)2de = 4M/ le(u*) e = 2, < J(Q).

1971



Now, it is well known that the solution of our Stokes problem can also be
defined as the unique minimizer of the functional

Ya(v)) = 2;1/Q le(v)|2dx
on the space
V(Q):={veHYQ):divwv =0, V|, = ug and v, = 0}.
Therefore, we have:

(8) J(Q) = min g (20 fole(v)[2d)
< 2u [5le(@)Pdz < J(9),

this proves that ﬁ, which has the same volume as §2 and is symmetric with
respect to Py, is also a minimizer of J.

Now, let us prove that if € is regular enough (actually C? but one can
weaken as shown by the proof below), it must coincide with ﬁ, and there-
fore is symmetric. Necessarily, we must have the equality in the chain of
inequalities (8). It proves, in particular, that u is the solution of the Stokes
problem on €. But since U coincides with u on Q7 by definition, one can use
the analyticity of the solution of the Stokes problem (see e.g. [12]) to claim
that G = u on QN . Now, if Q would not coincide with Q, we would have a
part of the boundary of €2, say « included in Q. By assumption, 2 being C?,
the solution of the Stokes problem is continuous up to the boundary (see [8])
and therefore u should vanish on ~. By analyticity, it would imply that it
vanishes identically: a contradiction with the boundary condition on E. [

As explained in the introduction, one can wonder whether the minimizer
has more symmetry. In particular, could the cylinder be the minimizer? The
following Theorem proves that it is not the case. It is the main result of this
paper. The proof is absolutely not obvious and will be given at the next
section. Let us remark that the following result also holds for the Stokes
equation. The proof in the Stokes case follows the same lines and is a little
bit simpler, see [17] for details.

Theorem 2.5. The cylinder is not the solution of the shape optimization
problem

min J(€2)
(9) { Qe Ov,

where J is defined in (3) with u the velocity, solution of the Navier-Stokes
problem (1), and Oy is defined in (4).



3 Proof of the main theorem

In all this section, Q will now denote the cylinder {x2+23 < R%,0 < 23 < L}.

3.1 Computation of the shape derivative

Let us consider a regular vector field V : R? — R? with compact support
in the strip 0 < x3 < L. For small ¢, we define ; = (I +tV)Q, the image
of Q by a perturbation of identity and f(t) := J(€;). We recall that the
shape derivative of J at Q with respect to V is f/(0). We will denote it
by dJ(£2; V). To compute it, we first need to compute the derivative of the
state equation. We use here the classical results of shape derivative as in
[9], [13], [18]. The derivative of (u,p) is the solution of the following linear
system:

—pAu' +Vu-u' +Vu - u+Vp =0 xe

diva’ =0 x €
(10) u’:Oa x€eEFE
u’:—a—z(V-n) xel
—p'n+2ue(u’) -n=0 x e S.

Now, we have (see [9], [18])

(11) dJ(Q,V) = 4/1/95(u) ce(u)dz + 2,u/F le(u)[>(V - n)ds.

It is more convenient to work with another expression of the shape deriva-
tive. For that purpose, we need to introduce an adjoint state.

Proposition 3.1. Let us consider (v,q), solution of the following adjoint
problem :

—puAv+Vu-v—-—Vv-u+Vg=-2ulu x €0
divv =0 x €0
v=0 xe FUT
—qn+2pe(v) -n+ (u-n)v—4us(u) - n=0 xeS.

(12)

If the viscosity p is large enough, then the problem (12)_has a unique solution
(v,q). Moreover, this solution belongs to C1(Q) x CY(Q).

Proof. The existence and uniqueness of the solution is a standard application
of Lax-Milgram’s lemma. We introduce the Hilbert space

V() :={ue Hl(Q) : divu = 0}.



the bilinear form « and the linear form ¢ defined by
alv,w) = / Que(v):e(w)+Vw-u-v+Vu-w-v)de
Q

(l,w) = 4,u/ e(u) : e(w)dzx.
Q
To prove ellipticity of the bilinear form « we use Korn’s inequality:

HVV”[L2(Q)]3 < Cl(HV”[L2(Q)]3 + HE(V)”[L2(Q)}3)-

and a Poincaré inequality:

(13) Vllizas < Co /Q e(v)|2de.

These two inequalities yield (we also use the explicit expression of u given
in (2) to estimate the integrals containing u):

min(1, Cs)

o (s

(R + 2R>) -

. L e[(R%242R)(C141) . .
and « is elliptic as soon as p > min(1.C5) Now, existence and unique-

ness of the solution follow from a standard application of Lax-Milgram’s
lemma together with De Rham’s lemma to recover the pressure.

It remains to prove the regularity of the solution. The C°° regularity in
Q) on the one-hand and on the smooth surfaces E, S and the interior of the
lateral boundary I' on the other hand is standard (cf. [8]). The only point
which is not clear is the C! regularity on the circles ENI" and SNT. To prove
it, one can use the cylindrical symmetry which is proved later (without any
regularity assumptions) in Theorem 3.3. This symmetry allows us to consider
a two-dimensional problem in the rectangle (0, R) x (0, L) into the variables
r= (x% + x%)l/Q and x3. For that problem, one need to prove regularity at
the corners (R,0) and (R, L). For that purpose, one extends the solution by
reflection around the line » = R, this leads to a partial differential equation
in the rectangle (0,2R) x (0, L) whose solution coincides with our solution
in the first half of the rectangle. The C! regularity, up to the boundary, of
the solution of this elliptic p.d.e. is standard and the result follows. O

Let us come back to the computation of the shape derivative. We prove

10



Proposition 3.2. With the previous notations, the shape derivative of the
criterion J is given by

(14) dJ(, V) = 2/;/11 (e(u) : e(v) — [e(u)[?) (V.n)ds.

Proof. Using Green’s formula in (11), one gets
dJ(Q,V) = 4,u/ g(u) : a(u')dx+2u/ le(u)[*(V.n)ds
Q r

= —2u / ((Au + Vdivu) - u')dz + 4,u/ g(u) -n-u'ds
Q o0N

o /a eV - m)ds

Now, let us multiply the first equation of the adjoint problem (12) by u’ and
integrate over {2, one obtains

—,u/Av-u’dx+/Vq-u’dx+/(Vu)T-v-u’dx
Q Q Q

—/Vv-u-u/dx:—Q,u/Au-u’dx.
Q Q

Using one integration by parts and the boundary conditions satisfied by u’
and v, we get

/ (2ue(a’) -e(v) = Vv-u'-u+Vu' -u-v)dz
)

—/Sa(v,q)-n-u’ds+/s((u-v)(u'-n)—(u-n)(u’-v)) ds
_/FU(V7q).n)-u’ds:—zu/QAu-u’dx.

In the same way, if we multiply the first equation of the problem (10) by v
and integrate over {2, we obtain

—,u/Au’-vdx+/Vp’-vdx+/Vu’-u-vdx+/Vu-u’-vdx:0
Q Q Q Q
and

/Q(Q,ua(u/)-E(V)—i—Vu’-u-v—Vv-u'-u) dx
# [ (o) mev o+ v ) ds =0

11



Coming back to the shape derivative expression

dJ(Q,V) = —2/;/9((Au + Vdivu) - u’)dz + 4 /89 g(u) -n-u'ds

ey /8 (V- m)ds

= A+4,u/ e(u)-n-u’ds+2,u/ le(u)[*(V - n)ds,
o0 o0

where we set A := —2u / ((Au + Vdivu) - u’)dz. Using the previous iden-
Q
tities, we get for A

A = / (qgn — 2ue(v) -n) - u'ds — /(u -n)(v-u')ds.
rus S
Therefore, according to (12)

dJ(Q,V) = /

Tus
+4,u/ e(u) -n-u'ds+ 2u/ le(u)]?(V.n)ds
sur r

(qn — 2ue(v) -n) - u'ds — /S(u -n)(v-u')ds

= / (qn — 2ue(v) -n + 4pe(u) - n) - u'ds + 2,u/ le(u)[*(V.n)ds
r r

gu

—— [ ((an = 2uetv) - et ) 52 = 2yt (V- ms

To get the (more symmetric) expression given in (14), one can use the follow-
ing elementary properties. Since u (and v) is divergence-free and vanishes
on I', we have on this boundary:

o n-g—z:&
. 5(u)-n-g—ﬁ = le(u)|?.

o (¢(v)-n)- g—g =¢e(u) : g(v).

Proposition 3.2 follows. O

3.2 Analysis of the PDE (12)

We will prove the following symmetry result for the solution of the adjoint
system. It shows that the solution has the same symmetry as the cylinder.

12



Lemma 3.3.

With the same assumptions on p as in Proposition 3.1, there exist (w,ws) €
[H((0,R)x(0,L))]? and G € L*((0, R)x(0, L)) such that, for any (x1,z2,73) €
Q

(1) vi(x1, 22, 23) = 25w (r,x3), fori e {1,2} ;

(i) vs(z1,z2,23) = ws(r,x3) ;

(iii) g(x1,72,23) = q(r, 73).

where r = (22 + x3)'/2.

Proof. Let us introduce the differential operator £y defined by

R 0 0

== —To—.

0 ! 8.%'2 2 31‘1

£y corresponds actually to the differentiation with respect to the polar angle
0. Let us set

(15) fD\Z = 29(’01'), Vi e {1’253} and (/1\: 29((1)

By applying the operator £4 to the equation (12) we get the following system
(where we have used the explicit expression of the solution u given in (2))
(16)

. . onn 0 0
— ATy + 2cx103 — 2cx9v3 — c(x? + 25 — R?)ﬂ + Ty xeq
B W
— Ty + 2cx903 + 2cx1v3 — o(x? + 13 —RZ)ﬂ + 4L ) xeq
8/\ 8/\ 31‘3 31‘2 31‘1
AT — o(a? + 2} - RY) o2+ T €Q
a/i vgaAc(xla—l—AxQ ; )(9x + R x
05 0% 05 0w Ovy _ xe
31‘1 8.%'2 8.%'3 8.%'2 8-%'1
01 =0y =03=0 xe EUul
0vy  0v3 Ovs .
ol 8—$3 8—$1 — Ma—@ + C(m‘% + 1‘% — R2)U1 = —4ucxs X €S,
00y  0U3 Ovs .
,u 925 T 92, +Ma—x1+c(x%+x§—R2)v2:4,ucx1 xe®b,
003 PO
2“6—31;3 +c(z?+ 22— R?)i3 = xes,
3

Let us now introduce the following new functions

® 21 =11 + vy ;

13



© 2 ="03— 1 ;

® 23 = V3.

According to system (12), the system (16) rewrites in term of z1, 29, 23

0 oq
—MAZl—FQC{ElZg—C(.%'%—F%%—Rz)ﬁ+—q =0 xe0
N
—MA22+2C$223—C($%+$%—R2)ﬁ+—q =0 xe0
P 8Q$3 8272
—MAZg—C((L’%—i—.%’%—RQ)a—ZS—Fa—q:O x e}
x x
821 + (922 + 823 0 ’ ’ c 0
—_— —_— _— = X
(17) 8$1 8$2 8$3
21=2=2=0 xe EUT
0 0
8—2,+8—z + zie(z2 + 22 —RH) =0 x€eSs,
0 0
1 a—ii, a_f; +zoc(af + 23 — R?) =0 x €8,
0 ~
2”8—2 +c(zt+ 2k — Rz =4 xes,

This adjoint problem has a unique solution if y is large enough (see propo-
sition 3.1), therefore

1=z =03=q=0.

The fact that 03 = £¢(v3) and § = £4(q) vanish proves points ii and iii of the
Lemma. Now let us precise the properties of functions vq,vo. It has been
proved that £y(v1) = —vy and £4(ve) = v1. Therefore, applying once more
the operator £y yields £9 o £y(v1) + v1 = 0. This implies that there exist
two functions a and £ in the space H'((0,R) x (0, L)), such that

U1 = xlOé(’l", 233) + $2ﬁ(’r, ,173)-
Moreover, since £g(v1) = —v2, we get
Vg = _xlﬁ(r, $3) + ,IQO[(T‘, $3)-

To finish the proof, it remains to check that the function 3 is identically
zero. For that purpose, let us write down the partial differential equation
satisfied by . From the two first equations of system (12) and the boundary
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condition, we can prove that (3 satisfies the following system
(18)

(P23 PN ey o (e 0.8y x 0.1

o o T an s
5(7,0) = A(R,25) = o (0,25) =0 (r,25) € (0.R) x (0, L)
,u% +c(r* = RHB =0 (r,z3) € (0,R) x {L}

It remains to prove that the zero function is the unique solution of the
previous system. Multiplying the equation by [ and integrating on the
rectangle in polar coordinates gives, using the boundary conditions

B\ ? B \?
OZ,M/Q <<E> + (8—33;:,) >’I“d’l“d$3—}—

L R
s [ B 0@+ [0 - B)F

Since ¢ < 0 and r < R, we get % =0in (0,R) x (0,L) and 5%(0,23) = 0
for any z3 € (0,L). Then 8 = 0 which gives the desired result. g

3.3 The optimality condition

We argue by contradiction. Let us assume that the cylinder 2 is optimal
for the criterion J. We first write down the first order optimality condition.
From the explicit expression (2) of u, we have

cry cry O
Therefore
le(w)]? = 2¢*(aF + z3),

and |e(u)|? = 2¢2 R? is constant on T.

Now the first order optimality condition ensures the existence of a La-
grange multiplier A € R, such that dJ(2, V) = AdVol (2, V) for any vector
field V. Due to the expression of the shape derivatives of J and the volume,
it writes

2,u/F (e(u) s e(v) — |e(u)|2) (V.n)ds = )\/F(V -n)ds.

15



This implies that e(u) : £(v) is constant on I'. Now, from the expression of
g(u) on I', we deduce

e(m):e(v)), =

c 31)3 31)3 @ %
2 On

because V| = U2 = 0. Therefore the optimality condition writes
8?}3

19 deR: —= T.

(19) RS2 —¢on

Now, we give another useful Lemma

Lemma 3.4. If the cylinder € is optimal and using the notations of Lemma
3.3, we have
d¢ _ 0q

— = =0.
on|r  Ori,_p

Proof. Let us write the adjoint problem (12) in term of the functions w, ws
et g. We get

(20)
Pw 10w 0w 10q ow
|l = +-——+ = - 2 — — R? =0 inQ
o * r or * 8x%) * ror + 2ews — c{r? )8303 o
82w3 1 awg 8 w3 1 8q 2 awg
_ - S - R =-8 in ()
M(@ﬂ +r or +(9x§>+r(9x3 er’ )8x3 pe
ow Ows
2 23 in
w+r or + 923 n
w(r,0) = ws(r,0) = w(R,x3) = w3(R,z3) =0
0 10
u(@a—;l;—l—;%) + ¢(r? — R®)w = 4puc on S
2 +c(r? = RHws =G on S.
\ 8 zs3
. _ _ o) _ 0 _
Since W, gy = W3, _np = 0, we have 8_;;:)3|{1":R} = %‘{T:R} = 0 and
227%}' = 0. In particular, from the divergence-free condition, we obtain
3 | fpe
ow { R}_
or I{r:R}

Now, let us differentiate the divergence-free condition with respect to r,
we get
ow Pw  0*ws
v € (0,R) x(0,L), 3— — =0
(rws) € 0.8) > (0. L), 35 %55 & 5raes

16



Now, %‘{T:R} = ¢ (it is the optimality condition (19)) ; therefore, we have

0%ws _ .. . . ow _ .
230" |, 0. Combining this last result with &= P 0, it comes
{r=R} {r=R}
0*w _0
87"2 ‘{T:R}

We let r going to R in the first equation of problem (20) and we use the

previous identities to get
96
! = 0.
ar I{r:R}

3.4 An auxiliary function

Using notation of Lemma 3.3, we introduce now two new functions
e wy: [0,R] x[0,L] — R .
3
(ryxg) +—— / w(r, z)dz
0
e Y: [0,R]x[0,L] — R
R 27
r3 — // (d(r,xg)—20r2wo(r,x3)) dfrdr
0Jo

We will also denote by T, the horizontal section of the cylinder {x € Q : 23 = z}.
The following lemma is the key point of the proof.

Lemma 3.5. The function v is affine.
Proof. The couple (v, q) satisfies the following p.d.e.
—puAv+Vqg+Vu-v—-—Vv-.-u=-2ulu.

Let us compute the divergence of both sides of the previous equality. Using
the expression of u in the cylinder Q, we obtain that (v,q) verifies

Ovs Ovs ovy Ova
21 A 4 2 — — | —2 — — | =0.
(21) q + 4cvs + c<x18x1 —i—mgaxz) c<x18x3 +m28x3> 0

Let us integrate this equation on a slide

w = {($1,$2,$3) € Q;zi < T3 < Z+}

17



(we will denote by e the inlet of w and s its outlet). We get

ov ov vy ov
/Aq+4cv3dx+2c/w (ﬂ:la e R 8x2> 2c <x18—3+ gaxz>dx:0.

Now, from Green’s formula, we have

0
/xlﬂdx:/ xl’[)gnlds—/ Ugdx:/ xlvgnlds—/ Ugd.%':—/vgdx
w Oz Ow w OwNI’ w w

Ovs
in the same way xgaidx = — / vsdx .
w

0 0
4c/vgdx+20/ xlﬂ—i—m s dz =0,
w ox I 31‘2
SO

. 8’01 (92}2
(22) /Aqu 20/< axB)dx

Let us consider the left-hand side of (22). From Lemma 3.4 it comes

Therefore

(23) / Agdx = 8qd
sUe a

Now, let us consider the right-hand side of (22). Integrating by parts yields

ov
° /xla—ldx = rivingds = r1v1nsds.
€T3 Ow eUs

8’02
° /xg—dx = Tovgngds = Tovonszds.
w 82?3 ow eUs

Combining this result with (23) gives

0 0
(24) / <8—$qg — 2C($1’Ul + $2’02)> ds = / <a—xq3 — 2C($1’Ul + 272’02)> ds,

what can also be rewritten for any (z_,24) € (0, L)?
(25)

R ~ R ~
/ ( 94 (r,z_) — 2cr?w(r, z)> rdr = / ( 94 (r, z4) — 2cr?w(r, z+)> rdr.

18



R
Now, since 9(z) = 277/ (G(r, z) — 2cr®wy(r, z)) rdr, we have by differenti-
0
ating, for all z in [0, L],

R0 ow R/ 0
"(z) =2 e =2 / — 2cr? ,
V' (z) 71/0 <8x3 er (3x3> rdr =27 . \9xs erfw | rdr

Now, identity (25) proves that ¢’ is a constant function which gives the
desired result. O

We are now in position to precise the value of the constant ¢ appearing
in the first order optimality condition (19). For that purpose, we use the
symmetry result given in Lemma 3.3 together with equation (20). In this
equation, let us integrate between z3 = 0 and z3 = z € (0,L). Since
ws(r,0) = 0, we get for any (r,z) € [0,R] x [0, L] :

2wo(r, 2) + r%(r, z) +ws(r,z) = 0.

Let us differentiate this last relation with respect to r. This yields

6w0 8211)0 8w3 _
(26) s or * or? * or =0

Now, in (20), we differentiate the divergence equation with respect to r, and
we make r — R. We obtain

ow 0w

S )
or|lr  0r?

Letting 7 going to R in (26) and interverting limit and integral gives, using
the previous equality

vg
on i

So we conclude that £ = 0 and the optimality condition rewrites
81)3

27 — =

(27) an Ie
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3.5 End of the proof

Let us use the function 1 defined above. We can rewrite it as

R
P(z) = / (cj - 20r2w0) dOrdr = 277/ ((j(r, z) — 2er?wo(r, z)) rdr,
» 0
where T, denotes the horizontal section of the cylinder of cote z. We proved
in Lemma 3.5 that ¢ is affine, therefore its derivative 1/ is constant, say
Y'(z) = a. The contradiction will come from the computation of this con-
stant on the inlet £/ and the outlet S. We will see that we obtain two different
values. Let us denote by Ag the two-dimensional Laplacian (with respect to
the variables 1 and x9).

Computation of the constant on the outlet S of the cylinder. First of all, let
us remark that if we differentiate with respect to 1 the boundary condition
on S satisfied by the function vy, we get

0%y 9%v vy

i + 2emyvy + c(x? + 3 — R*)—— = 4puc, on S.

(28) Maxlﬁxg (9x% ox1

In the same way, if we differentiate with respect to x5 the boundary condition
on S satisfied by the function vo, we get

321)2 821)3

+ 8@2
M@xg(?xg H (%%

Ox2

(29) + 2cxovy + c(x? + 23 — R*) = = 4pc, on S.

Summing the two relations (28) and (29) and using the divergence-free con-
dition yields

0%v3 9, OV

—p—= 922 + uov3 + 2¢(z1v1 + Tov2) — c(zF + 25 — R )7 =8ucon S.

Now, according to (12), v3 satisfies

0%vs Ovs 0q
30 Novs = 8ic — p—— — c(z] + 75 — R :
B0) vy =S~y —elad ad - )G+ S
Combining together the two previous equations, it comes
0%v3
Ox 2

0 0
—2¢(a? + 23 — RH == L A 2¢(z1v1 + xov2) =0 on S.

1) —2
(31) —2p—— 92 | D23

Now, we integrate on S the equation (30), we have

vz vz, 5 o dq
Y NI i R Re+ 2L ) ds = —8uc [ ds.
/S< 1w \ovs3 'uﬁx?,, o (] + 25 — R*)c+ a@) s MC/S s
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In the Proposition 3.1, we have seen that v3 is C* up to the boundary. Taking
into account the boundary condition on S, we have

/AQ'U?,CIS:/ %d
s sar on

So, the integration gives

0%vs 9 9 57)3 q 2
—p Sa_w%ds_c/s(xl+g;2— 8—acg,d +/8 ds = —8ucrR*.

Using (31), we can deduce that

0
/ N 45— c/ (x1v1 + wov9)ds = —8ucrR?.
According to Lemma 3.3, one can write

101 4 Tovy = (23 + 23w <(x% + x%)lp ,x3> .

Therefore

(32) a=1'(L) = —16pucr R

Computation of the constant on the inlet E of the cylinder. Let us first

remark that 8—;2 = 0 (just use the divergence-free condition extended to
E

E and the fact that vy, = vz, = 0). Let us now integrate the p.d.e. (12)

satisfied by v3. We have, using ggz‘ =0,

—,u/ Avgds—}—/ % —ds = —8,uc/ ds.
du3 E

Taking into account the condition (27) we get

321)3
—p [ Avgds = —p [ Agvgds —p | ——ds
E E g Ox3

8 821)1 821)2
- H /E'OF %d o+ / <6x38x1 + (%36332) dS

8’01 8’0 )
= + 22 0,) do = 0.
H /Emr (3963 Ox3 7=

99 ..o _ 2
(33) /8x3d8 8ucem R*.

Then, it follows
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At last, since vy), = v2), = 0, we have

R ~
P'(0) = 277/0 (%(T, 0) — 20r2w(r,0)> rdr = /E 38—;3(15'
According to (33) we have

(34) a=1'(0) = —8ucrR%.

which is clearly a contradiction with (32) since ¢ < 0. This finishes the proof
of Theorem 2.5.

4 Some numerical results

In this section are presented some numerical computations. It gives a con-
firmation that the cylinder is not an optimal shape for the problem of min-
imizing the dissipated energy. In particular, we are able to exhibit better
shapes for this criterion. All these computations have been realized with the
software Comsol.

For any bounded, simply connected domain € in R? or R? and any real
numbers p, b (b will be fixed in all the algorithm), let us define the augmented
Lagrangian of our problem (9) by

£(.1) = J(Q) + (12~ V) + 5 (9] V)2

Since Theorem 2.5 ensures that the cylinder is not optimal for the cri-
terion J, the question of finding a better shape in the class of admissible
domains Of, is natural. The numerical difficulties in such a work, are the
non linear character of the state equation and the need to take into account
the volume constraint.

For that reason, we decompose the work in two steps. First, is considered
a gradient type algorithm in two dimensions which allows us to reduce the
criterion J. Then, we work in a three dimensional class of domains with
constant volume V' and cylindrical symmetry. In this class, we are able to
find a shape (probably not optimal) which is better than the cylinder, see
section 4.2.

4.1 A numerical algorithm in 2D

We denote by €2y the cylinder with inlet E, outlet S, and measure V. ) is
our initial guess for the gradient type algorithm we consider. We deform 2
by using the following method:
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1. We fix uyp € R, 7 >0 and € > 0.

2. Iteration m. At the previous iteration, u,, and §2,, have been com-
puted. We define Q41 := (I + £,,dm) (), where I denotes the
identity operator, &,, is a real number (step of the gradient method)
which is determined through a classical 1D optimization method and
dm is a vector field of R?, solution of the p.d.e.

—Adpy +dim =0 x€Q

dy, =0 xeFUS
—85;;‘ :—%n x €y,

where I';,, denotes the lateral boundary of §2,,,, i.e. 'y, := 9Q, \(EUS).
The solution of this p.d.e. gives a descent direction for the criterion J
(see for instance [1], [6]).

Then, the Lagrange multiplier pu,, is actualized by setting
Pt = fin + T(| Q1| = V).

3. We stop the algorithm when (g, )m>0 has converged and the derivative
of the Lagrangian is small enough.

The Figure 1 shows the geometry we obtain. The criterion has decreased
about 1.1 % from the initial configuration (a rectangle here).

Figure 1: Final 2-D shape obtained by the gradient algorithm
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4.2 Some 3D computations

In this section, we create a family of 2D shapes, constructed with cubic spline
curves which look like the presumed optimum obtained in figure 1. Then,
we obtain a family of 3D domains of volume V', by revolving the previous
2D shapes around the (Oz3) axis. We introduce a small parameter e in the
control points of the cubic splines and we evaluate for each value of e the
criterion J. The value e = 0 corresponds to the cylinder. Let us respectively
denote by J(e) and J(€p) the values of the criterion J evaluated at the
domain corresponding to value e of the parameter and at the cylinder. Figure
2 is the plot of function e +— 100.%&590) above, and Figure 3 represents a
better shape than the cylinder for the criterion J which is obtained with a
value of the parameter e ~ 0.001. It shows that this simple method provides
a 3D (axially symmetric) shape which is slightly better than the cylinder.

0.8

0.6

0.4

0.2

[}
[+] 0001 0002 0003 0004 0005 0006 0007 0008 0003 0.01

Figure 2: The cost function (which slightly decreases before increasing)
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