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Abstract 
 

   The analytic expression of the momentum representation in terms of the associated   
Legendre function is determined by a direct integration of Fourier transform of the 
wave function of coordinates using the Levi-Civita transformation  and  22 RR →
the generating function method. A new generating function for the associated Legendre  
functions are obtained. 
 
 
 
 

1. Introduction 
 
   The problem of the hydrogen atom in momentum space has been reformulated by Fock 
[1] which led to an integral form of the Schrödinger equation. This equation is solved by 

projecting the three-dimensional momentum space onto the surface of a four-dimensional 
sphere and the eigenfunctions are then expanded in terms of spherical harmonics. The 
applications of Fock’s method to various problems of quantum mechanics are 
very extensive [2-4]. Recently, Fock’s stereographic projection method had been applied 
to the theory of anisotropic excites and the two dimensional hydrogen atom. It had 
physical realization [5-7] and many papers treated this case [5-8]. 
   In a previous paper [9] we presented a new and elementary method for the 
determination of the analytic expression for the wave function in momentum space  
in the third dimension space by a direct integration of the Fourier transform of the wave 
function of coordinates. We construct first, the generating function of the basis of 
coordinates assuming that the energy is a constant. Second, we perform the Fourier 
transform using Hurwitz transformations [10-11], or quadratic transformations to obtain 
the generating function for the momentum space. Finally, the wave function in the 
momentum space is derived from the development of the last function and the energy is 
replaced by its value.  
    The presented paper is part two of our previous work [9], we deal with the same 
method for the two dimensional hydrogen atom and we derive the wave function in the 
momentum representation. It is important to note that the calculation in the case of         
2-dimensions is particular and differs from the treatment of 3-dimensions and from 
Fock’s stereographic projection method. 
 



  This paper is organized as follows. In section two, we derive the wave function of the two 
dimensional hydrogen atom. In section three, we construct the generating function for the 
basis of the hydrogen atom and are also devoted to the presentation of the 
transformation . In sections four and five, we derive the wave functions of the 
hydrogen atom in momentum space. In section six, we derive the last wave functions in 
terms of spherical harmonics. Finally in section seven, we acquire the new generating 
function for the associated Legendre functions. 

22 RR →

 
2. The wave function of two dimensions hydrogen atom 

 
    The Schrödinger equation of the two dimensional hydrogen atom is: 
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To solve the equation (2.1) we apply the method of separation of variables  
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),( ϕρ are the polar coordinates.      
Introducing a separation constant, , we can obtain the angular equation 2m
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The solution is: 

                                           ϕ

π
ϕ ime

2
1)( =Φ                                                             (2.4) 

The corresponding radial equation is: 
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For simplicity, we choose the Gaussian units   2/2 2e== μh

and for negative energy we place                  ,2
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We make the substitution )()()( 2/ vFevR vm −=ρ and ρ02qv =  
This leads us to the equation: 
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 This is the confluent hypergeometric equation:  
                                        0')12('' =+−++ nyyvmvy  
This has two linearly independent solutions. If we choose the solution which is regular at 
the origin, then this becomes a polynomial of finite degree for  -1

 0 1/2) (n  q +=
 and n = 0, 1, 2, . . .  



The solutions of the equation (2.7) are the associated Laguerre polynomials )(2 vL m
mn−  

[14] .We can now write the real-space wave function in the form: 
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Using the orthogonal relations of Laguerre polynomials and the functional relation [14] 
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We obtain the normalized wave functions: 
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3. Generating function for the basis of two dimensions hydrogen atom 
and the quadratic transformation    22 RR →

 
We construct the generating function for the basis of the hydrogen atom and we define 
the transformation  22 RR →
 
3.1 The generating function of Laguerre polynomial )(2 vL m

mn−  

 The generating function of Laguerre polynomial is:     
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3.2 The generating function  
We assume that is a constant. We write 0q
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3.3 The quadratic transformation  22 RR →
 The well known Levi-Civita,  transformation is  22 RR →
                                                                                               (3.4) 21
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3.4 The volume element                                            
   We consider the transformation ),(),( 21 ϕρ→uu  
With                       .2,1,,0,20 =∝+≤∝≤−≤∝≤≤≤ iuiρπϕ  
The calculation of the Jacobian gives  24uJ =  and ϕrdrdrd =
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4. The generating function of the hydrogen atom in momentum space 
 

   We first write the Fourier transform in the representation (u) then we perform the 
integration thus, we obtain the generating function in the momentum representation.  
 
4.1 The generating function in {u} representation 
  The wave function of the hydrogen atom in momentum space is:  
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We denote the generating function by ),,( ptzG r
in the representation {u}. 
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  To calculate this expression (4.1) we must use the (u) representation and the formula 
(3.5):  
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in the above expression )( pnlm
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We assume that 0≥β as to eliminate the  problem of convergence. 
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We chose m ≥0 for the following procedures because the calculations are not affected by 
this choice. 
 



 
4.2 The generating function of momentum-space   
    We can do the integration of (4.3) by a direct calculation with the variables (u) using 
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  We obtain then  
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5. The wave functions in momentum-space 

 
The development of the function (4.6) gives us the wave functions of the hydrogen atom 
in momentum space. We derive the basis of momentum-space using the formula 
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In this level we must take  )2/1/(10 += nq  as to execute the calculations proceed by the 
following steps: 



1 - Derivation with respect to t
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2- Derivation with respect to z
  
Using the familiar formula for the generating function of Gegenbauer polynomials 

                                                                                    )()21(
0

2 qCzzqz m
m

m αα ∑
∝

=

− =+−

We write                      ( )qCzzz
zzq

zz m
k

k

km
m

m
2/3

0

2
2/32

2

)1(
]21[

)1( +
∝

=
+ ∑ −=

+−

−
              (5.3) 

                                                 ( ) ( )[ ]qCqCz m
mn

m
mn

n

n 2/3
2

2/3 +
−−

+
−

∝

−= ∑                              (5.4)                                

With  nmk =+  , nmk =++ 2 and )2/1/(10 += nq  therefore,    

                           ×
+

−
=

∂

∂
∂
∂

+

+

2/3
0

2

1
0

0 )(

)2/3()()4(
2)],,(

!
1[

m

m
mm

m

m

n

n

qp

qi
ptzG

tzn r
r

 

                                        ( ) ( ) m
yx

m
mn

m
mn ippqCqC )][(][ 2/3

2
2/3 +− +

−−
+

−                             (5.5) 

 
3- The wave function in momentum space 
 
With the help of the recurrences formula [13]   
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 Comparing (5.4) and (5.1) gives us the wave function in momentum space: 
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It is important to note that )(2/1 qC m
mn
+

−  is a particular function of Gegenbauer 

polynomials. This function has a connexion with the associated Legendre polynomials. 
 
 
 

6. The wave functions in momentum space in 
terms of spherical harmonics 

 
The connection of Gegenbauer polynomials with the associated Legendre polynomials is 
given by the formula [14] 
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We derive finally the wave functions in momentum space: 
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Replacing (6.3) and (6.4) in (6.2) we find the wave functions in momentum space in 
terms of spherical harmonics: 
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    It is clear that we obtain by an elementary method not only the wave function in 
momentum representation [5] but also the phase factor and the calculation in the case of   
2-dimensions. It is particular and differs from the treatment of 3-dimensions. 
 
 

7. The new generating function for the associated Legendre functions 
 

 We start from the expressions (5.3) and (5.4). We write that: 
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By using expression (5.6) we find     
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By connecting Gegenbauer polynomials with the associated Legendre polynomials we 
find a new generating function of these last polynomials 
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      Finally, we note that the Fourier transformation for the hydrogen atom transforms 
 the radial part into angular which explains the Fock transformation. 
We also observe that our method for the 2-dimensional case is important not only for  
the physical applications [5-7] but also for educational applications because our result can 
also be an introduction to Octonion algebra and of course to Fock’s transformations. 
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