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Abstract. A discrete regularization framework on graphs is proposed
and studied for color image filtering purposes when images are repre-
sented by grid graphs. Image filtering is considered as a variational prob-
lem which consists in minimizing an appropriate energy function. In this
paper, we propose a general discrete regularization framework defined
on weighted graphs which can be seen as a discrete analogue of classical
regularization theory. With this formulation, we propose a family of fast
and simple anisotropic linear and nonlinear filters. The parameters of the
proposed discrete regularization are estimated to have a parameterless
filtering.

1 Introduction

Processing color images has became a crucial problem in the field of image pro-
cessing . Numerous approaches can be found to process color images and among
those, variational models have been extremely successful in a wide variety of
computer vision problems such as image filtering and image segmentation. Vari-
ational formulations provide a framework that can handle such problems and
provide algorithms for their solutions. Solutions of variational models can be
obtained by minimizing appropriate energy functions, and this minimization is
usually performed by designing continuous partial differential equations (PDEs).
PDEs [1] are written in a continuous setting referring to images, and are dis-
cretized in order to have a numerical solution. One typical use of PDEs is image
filtering and a lot of authors have proposed color image filtering with PDEs
[2–5]. Discrete methods might be more suitable than PDEs in some cases since
an image can be represented in a discrete setting by a grid graph. Discrete
regularization on graphs has already been used for semi-supervised data clas-
sification [6]. Inspired by these works, we propose a regularization framework
on weighted graphs of arbitrary topologies which defines a family of simple and
fast anisotropic linear and nonlinear filters [7]. The discrete minimization prob-
lem is analogue to the continuous one and we propose to use such a discrete
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regularization for parameterless filtering of color images. When f0 denotes a de-
graded image of an image f (f0 = f + η, where η is additive noise of variance
σ2), the aim is to reconstruct f from f0 by regularization. The paper is orga-
nized as follows. In Section 2, after having recalled basic definitions on weighted
graphs, we present differential geometry on graphs which is similar to the one
proposed by Benssoussan [8] and Zhou [6]. In Section 3, we present a general
framework for discrete regularization on graphs [7]. In section 4, we present a
parameterless version of the proposed discrete regularization. In Section 5, we
show how discrete regularization can be applied to color image filtering. Section
6 concludes.

2 Differential geometry on graphs

2.1 Preliminaries on graphs

A graph is a structure used to describe a set of objects and the pairwise relations
between those objects (links between objects). The objects are called vertices (or
nodes) and a link between two objects is called an edge. We provide some basic
definitions on graph theory (further details can be found in [9]). A graph G is
a couple G = (V, E) where V is a finite set of vertices and E is a set of edges
included in a subset of V × V . Two vertices u and v are adjacent if the edge
(u, v) ∈ E. In the rest of this paper we only consider simple graphs which are
always assumed to be connected, undirected with no self loops (see in [9, 6] for
details on these notions). A graph as defined above is said to be weighted if
it is associated with a weight function w : E → R

+ satisfying w(u, v) > 0
for (u, v) ∈ E, w(u, v) = 0 for (u, v) /∈ E and w(u, v) = w(v, u) for all edges
in E since we consider undirected graphs. The degree function δ : V → R

+

of a vertex v ∈ V is defined to be δ(v) =
∑

u∼v

w(u, v) where u ∼ v denotes

all vertices u connected to v by an edge (u, v) ∈ E. Now we can define the
space of functions on graphs. Let H(V ) denote the Hilbert space of real-valued
functions on vertices, in which each f : V → R

+ assigns a real value f(v) to
each vertex v. The function space H(V ) is endowed with the usual inner product
〈f, g〉H(V ) =

∑

v∈V

f(v)g(v) where f and g are two functions in H(V ). A function

f in H(V ) can be thought as a column vector in R
|V |. The norm of a function f

induced from the inner product is ‖f‖ =
√

〈f, f〉H(V ). Similarly, one can define
H(E) as the space of real-valued functions on edges, in which each h : E → R

+

assigns a real value to each edge e ∈ E. This function space is endowed with
the usual inner product 〈h, l〉H(E) =

∑

(u,v)∈E

h(u, v)l(u, v) where h, l : E → R
+

denote two functions in H(E). In this paper, grid graphs are considered [10].
They correspond to the definition of digital images: vertices represent pixels and
edges represent pixel adjacency relationship. Therefore, processing color images
comes to processing grid graphs, the vertices models and edges weights of which
depend on colorimetric properties of the image.



2.2 Gradient and divergence operators

The difference operator d : H(V ) → H(E) on G = (V, E) of a function f ∈ H(V )
on an edge (u, v) linking two vertices u and v is defined for all (u, v) ∈ E as

(df)(u, v) = (df)uv =
√

w(u, v) (f(v) − f(u)) (1)

The directional edge derivative of a function f at vertex v along the edge e =
(u, v) is defined as ∂vf(u) = (df)(u, v). This definition is consistent with the
continuous definition of the derivative of a function, e.g., if f(v) = f(u) then
∂vf(u) = 0. Moreover, one has ∂vf(u) = −∂uf(v) and ∂uf(u) = 0. Given a
function f ∈ H(V ) and a vertex v, the gradient of f at vertex v is the vector

operator ∇ : V → R
N defined by ∇f(v) = ∇vf = (∂vf(u) : (u, v) ∈ E, u ∼ v)

T
.

Then, the norm ‖∇‖ : R
N → R

+ of the graph gradient ∇f at vertex v or the
local variation of f at vertex v is defined as:

‖∇vf‖ =

√

∑

u∼v

(∂vf(u))
2

=

√

∑

u∼v

w(u, v) (f(v) − f(u))
2

(2)

Let R denote a functional on H(V ), for any p ∈ [1, +∞) which is defined by
Rp(f) =

∑

v∈V

‖∇vf‖
p
. This functional Rp can be seen as the measure of the

smoothness of f since it is the sum of the local variations at each vertex. The
graph divergence operator is the operator div : H(E) → H(V ) which satisfies
〈df, h〉H(E) = 〈f,−div(h)〉H(V ) with f ∈ H(V ) and h ∈ H(E). The operator
−div is therefore the adjoint operator d∗ of the difference operator d. From the
definition of the inner products in H(V ) and H(E) and Equation (1), one can
prove that the graph divergence of a function h ∈ H(E) at a vertex v can be
expressed as

(d∗h)(v) = (−div(h))(v) =
∑

u∼v

√

w(v, u) (h(u, v) − h(v, u)) (3)

The divergence operator measures the net outflow of function h ∈ H(E) at
each vertex v of G.

2.3 p-Laplace operator

The graph p-Laplacian is the operator ∆p : H(V ) → H(V ), with p ∈ [1, +∞),
defined as

∆pf = −div
(

‖∇f‖
p−2

df
)

= d∗
(

‖∇f‖
p−2

df
)

(4)

Substituting (1) and (3) into the definition (4) of ∆pf , we obtain

(∆pf)(v) =
∑

u∼v

γ(u, v)(f(v) − f(u)) (5)

where γ(u, v) is the function defined by

γ(u, v) = w(u, v)
(

‖∇f(v)‖
p−2

+ ‖∇f(u)‖
p−2
)

(6)



which generalizes the classical graph Laplacian and curvature. Indeed, the clas-
sical graph Laplacian is linear the operator ∆ : H(V ) → H(V ) defined as
∆f = −div(df) = d∗(df) and the classical graph curvature is the nonlinear

operator κ : H(V ) → H(V ) defined as κf = −div
(

df
‖∇f‖

)

= d∗
(

df
‖∇f‖

)

.

Clearly, one has ∆1 = κ and ∆2 = ∆. In general ∆p is nonlinear (except in
the case of p = 2) and it is positive semi-definite. One can then prove that
〈f, ∆pf〉H(V ) = Rp(f) =

∑

v∈V

‖∇vf‖
p
≥ 0, which implies that

∆pf =
∂Rp(f)

∂f
(7)

Practically, to avoid having a zero denominator to compute the curvature (i.e.
p = 1), the graph gradient ‖∇vf‖ has to be replaced by its regularized version:

‖∇vf‖β =

√

β2 + ‖∇vf‖
2

where β > 0 is a small positive parameter called the

regularization parameter [10]. For the sake of clarity, when it is not necessary,
we keep the notation ‖∇vf‖ instead of ‖∇vf‖β in the rest of the paper.

3 Discrete regularization on graphs

In this section, we propose a general framework to regularize color images rep-
resented by grid graphs. For the sake of clarity we present this framework for
scalar images but the principle is the same for color images (see next section).
Given a graph G = (V, E) associated with a weighting function w : E → R

+, we
want to perform the discrete regularization of a function f0 ∈ H(V ) (i.e. the ini-
tial image) using the p-Laplacian. It consists in seeking for a function f∗ which
is smooth and simultaneously close to the function f0. This comes to consider
general variational problems on graphs. Given a function f0 ∈ H(V ), the goal
is to find a function f∗ ∈ H(V ) which is not only smooth enough on G but also
close enough to the given function f . This can be formalized by minimizing a
weighted sum of two energy terms:

f∗ = min
f∈H(V )

{

Ep = Rp(f) + λ
∥

∥f − f0
∥

∥

2
=
∑

v∈V

‖∇vf‖
p

+ λ
∑

v∈V

∥

∥f − f0
∥

∥

2

}

(8)
The first term is the smoothness term or regularizer, which requires f not

to change too much between closely related objects. The second term is the
fitting term, which says that f should not be far away from f0. The parameter
λ ≥ 0 is a fidelity parameter called the Lagrange multiplier which specifies
the trade-off between the two competing terms. Both terms of the energy Ep

are strictly convex functions of f [10, 11], therefore, by standard arguments in
convex analysis, this optimization problem has a unique solution for p = 1

or p = 2 which satisfies
∂Ep

∂f

∣

∣

∣

v
= 0, ∀v ∈ V . Using the property (7) of the p-

Laplacian to compute the derivative of the first term in Ep, the above mentioned



problem can be rewritten as follows:

(∆pf
∗)(v) + 2λ

(

f∗(v) − f0(v)
)

= 0, ∀v ∈ V (9)

The solution f∗ of (8) is also the solution of (9). Substituting the expression
of the p-Laplacian into (9), we obtain:

(

2λ +
∑

u∼v

γuv

)

f∗(v) −
∑

u∼v

γ(u, v)f∗(u) = 2λf0(v), ∀v ∈ V . (10)

Among the existing methods which can be used to solve (10), we use the
Gauss-Jacobi iterative algorithm. In this paper, we consider only the case of
p = 1 based on the nonlinear curvature operator κ. Let t be the iteration step,
and let f (t) be the solution of (10) at the step t. The initial function f (0) can be
initialized to f0. The corresponding linearized Gauss-Jacobi algorithm is given
by:































f (0) = f0

γ(t+1)(u, v) = w(u, v)

(

1

‖∇f(t+1)(v)‖
β

+ 1

‖∇f(t+1)(u)‖
β

)

, ∀(u, v) ∈ E,

f (t+1)(v) = 2λ
2λ+

P

u∼v

γt(u,v)f
0(v) +

P

u∼v

γt(u,v)ft(u)

2λ+
P

u∼v

γt(u,v) , ∀v ∈ V ,

(11)

where γ(t) is the function γ(u, v) at the step t. One can note that the value of f(v)
for a given iteration (t + 1) depends on two quantities: the original value of f at
v (i.e. f0(v)) and the values for iteration t in the neighborhood of v. Coefficients
are associated to those quantities which depend on the sum of weighted local
variations. The obtained filtering is a low pass filter where the coefficients are
adaptively updated for each iteration in addition of updating the function f . It
is worth to note the connection between the proposed filter and the TV digital
filter [10] (TV+L2 on grid graphs). Indeed, with p = 1, if ∀(u, v) ∈ E, w(u, v) = 1
i.e. the edges have all the same weights, one recovers exactly the same iterative
filtering performed on a regular grid represented by a graph.

4 Parameterless discrete regularization

In this Section, we show how the proposed discrete regularization can be pa-
rameterless for the purpose of filtering color images. Indeed, several parameters
act upon the proposed discrete regularization: the representation of color vec-
tors associated to the vertices (f(v), ∀v ∈ V ), the weights associated to the
edges (w(u, v), ∀(u, v) ∈ E), the regularization constants (λ, but also β), and
the number of iterations involved in algorithm (11).



4.1 The case of color images

For the case of color images, we define f ∈ H(V ), f : V → R
3 which asso-

ciates a red-green-blue color vector to each vertex. To perform the regularization
on a grid graph representing a color image, an iteration of (11) is considered.
Since a color image is composed of three channels, three independent regular-
ization processes are considered. To take the coupling between vector channels
into account, the component-wise regularizations do not have to use different
local geometries (the p-Laplacian being different for each channel with p = 1)
but a vector one. Therefore, the p-Laplace operator is considered as being the
same for the three channel regularizations (channel coupling) and is defined by

γ(u, v) = w(u, v)
(

‖∇f(v)‖p−2
3D + ‖∇f(u)‖p−2

3D

)

. The norm of a color vector is

defined as its multi-dimensional Euclidean norm and remains the same what-
ever the color channel under consideration is. This is required to have a global

vector geometry ‖∇f(v)‖3D =

√

3
∑

i=1

‖∇fi(v)‖
2
. Another model (Chromaticity-

Brightness denoted as CB) can be used to represent color images. It decom-
poses a RGB color vector f(v) into two components: the brightness component
b(v) = ‖f(v)‖ and the chromaticity component c(v) = f(v)/b(v). The discrete
regularization is then performed separately on the scalar brightness component
and on the vectorial chromaticity component (this involves a supplementary step
of normalization to ensure that the chromaticity remains on the unit sphere, see
[12] for further details).

4.2 Edge weights

We can associate a weight function defined for each edge of a graph. This weight
function determines the type of regularization induced by the functional Rp(f).
Weights are positive and symmetric and enable to quantify the proximity be-
tween two vertices based on some features. Therefore, similarities between ver-
tices are obtained by comparing their features which generally depend on the
function f and the set V . A feature vector Ff (v) ∈ R

q is assigned to every
vertex v ∈ V , with q ∈ N

+. This feature vector can incorporate several im-
age features such as color and texture. The general formulation of a weight
function can be defined as w(u, v) = g(Ff (u), Ff (v)), ∀(u, v) ∈ E. We con-
sider three different weight functions. g1(Ff (u), Ff (v)) = 1

ε+‖Ff (u)−Ff (v)‖ with

Ff (u) = f(u). g2(Ff (u), Ff (v)) = exp
(

−
‖Ff (u)−Ff (v)‖2

σ2

)

with Ff (u) = f(u).

g3(Ff (u), Ff (v)) = exp
(

−
‖Ff (u)−Ff (v)‖2

σ2

)

exp
(

− ‖u−v‖2

2σ2
d

)

with Ff (u) = [f(v) :

v ∈ W r
u ]T . σd controls the spatial decay and W r

u denotes the set of vertices
which can be reached from u in r walks (for grid graphs, W r

u is a window of
size 2 × r + 1 centered on u). This last weight function g3 was proposed by
Buades for a nonlocal means filter[13]. We use it to define a nonlocal dis-
crete regularization on graphs. All these weight functions involve parameters.
For g1, the parameter ε is needed to avoid a zero denominator and it can be



fixed with a very small value (10−4 in our experimentations). For g2 and g3,
the parameter σ is usually fixed a priori in literature. To have parameterless
weight functions, a measure of dispersion around vertices can be used to esti-
mate this parameter. We propose to estimate σ for two nodes u and v as the
product σuσv of the standard deviation estimated around each vertex. Therefore,

σu =

√

√

√

√

q
P

i=1

 

P

v∈W r
u

F i
f
(v)2

|Wr
u|

−
P

v∈Wr
u

„

F i
f
(v)

|Wr
u |

«2
!

q
where F i

f (v) denotes the ith component

of the vector Ff (v) and |W r
u | is the size of the window W r

u . For g2, r = 1. For
computational reasons, σu is estimated only once for each vertex on the original
image f0. The proposed weight functions are now parameterless but their choice
depends on the application (see next Section).

4.3 Regularization constants

The regularization constant λ determines the trade-off between the smoothness
of the regularized image and the closeness of the regularized image to the original
image. It plays an important role in the regularization and should be estimated
along the iterations rather than fixed a priori since it depends on the noise
level. A way to estimate λ, it to consider the equivalent constrained minimization

problem[14] of (8) formulated as: min
f

∑

v∈V

‖∇vf‖
p

subject to 1
|V |

∑

v∈V

∥

∥f − f0
∥

∥

2
=

σ2. Then, using (7) and (5), one obtains, at a given iteration t, an estimation

of λ[10]: λt = 1
σ̄2

t

1
|V |

∑

v∈V

(

(f t(v) − f0(v))
∑

u∼v

γuv(f t(v) − f t(u))

)

.For t = 0, we

fix λ0 = 1
σ̄2

t
where σ̄2

t denotes the variance of the noise estimated on the whole

image f t. With p = 1, the regularization parameter β (see Section 2.3) is needed
for numerical stabilities but this leads to an approximation of the solution of
(8). As stated in [10], the performance of the regularization is insensitive to β
as long as it is kept small. The use of β is needed to reduce degeneracies in flat
regions where ‖∇vf‖ ≈ 0 and is a commonly used technique [2]. Therefore, we
fix β2 = 1

σ̄2
0
.

4.4 Termination criterion

To have a complete parameterless algorithm, the ideal number of iterations of
(11) should by dynamically determined. To that aim, we use a termination cri-

terion defined as ‖ft(v)−f0(v)‖
‖ft(v)‖ < ε (ε value is the same as in subsection 4.2).

This enables to automatically determine the stopping time of (11) when few
modifications occur on f t.

5 Applications

In this section, we show how the proposed parameterless discrete regularization
can be used to perform color image filtering. For a more complete evaluation of



the discrete regularization without automatic estimation of the parameters as
defined in Section 4, one can refer to [7]. Images are represented by grid graphs
(one vertex per pixel) with 8-neighborhood connectivity (filter window of size
3 × 3). First, we consider an image (Figure 1(a)) corrupted by impulse noie
(corruption of 15%, Figure 1(b)) or Gaussian noise (σ = 15, Figure 1(c)). For
impulse noise cancelation, the weight function g1 is considered. One can see on
Figure 1(d) the behavior of the proposed parameterless discrete regularization.
For Gaussian noise cancelation, the weight function g2 is considered. Figure 1(e)
and Figure 1(f) present filtering results respectively operating on the RGB im-
age or its representation in Chromaticity-Brigthness. The noise is suppressed
and the use of Chromaticity-Brigthness features enables a better restoration of
the image (see the background in Figure 1(f)). This illustrates that the parame-
terless discrete regularization performs well for color image filtering and it can be
adapted to different types of noise by chosing an approriate weight function and
color vector representation. We illustrate this last remark on a real noisy image
(Figure 2(a)) captured by a digital camera at very high shutter speed using a
high film ISO degree. Parameterless discrete regularization is performed with the
following configurations; Figure 2(b) with g1, Figure 2(c) with g2, Figure 2(d)
with g3 (r = 1) and Figure 2(d) with g3 (r = 1) on Chromaticity-Brigthness
features. When g3 is used, a 24-neighborhood connectivity is considered (filter
window of size 5 × 5). Indeed, the feature vector associated to each vertex is
defined over a 8-neighborhood (r = 1) and the filter window has to be larger
than the size of the feature vector (see in [15] for more details). The weight
function g2 provides in general better results than g1 (except for impulse noise).
Moreover, the use of weight function g3, which is nonlocal[13], provides better
results than the same norm in a fully local version i.e. with weight function g2

(compare Figures 2(c) and 2(d)). The differences between the nonlocal discrete
regularization on RGB color vectors (Figure 2(d)) or Chromaticity-Brightness
features (Figure 2(e)) is now less evident (notice that the face of the goal-keeper
is better restored with CB features). Even is it is visually evident that the nonlo-
cal version of the proposed parameterless discrete regularization provides better
results, its has another interesting property. This is shown in Figure 3. Figure
3(a) is the classical Barbara image corrupted with Gaussian noise (σ = 15).
Figures 3(b) and 3(c) present the filtering results respectively with the weight
functions g2 and g3 (i.e. local versus nonlocal). The differences are not so marked,
but if we more precisely study their differences, the filtering with the g3 weight
function performs much more better. Indeed, it better preserves texture. This
effect can be seen in Figures 3(e) and 3(f) where cropped and zoomed portions
of Figures 3(b) and 3(c) are shown. Figure 3(d) provides the same cropped and
zoomed part for the original corrupted image depicted in Figure 3(a). This tex-
ture preservation effect is due to the nature of the nonlocal weights as it was
proposed in the original nonlocal means filter (see in [13, 15]).



6 Conclusion

In this paper, we have considered a discrete regularization framework based
on graph differential geometry. The discrete regularization is based on the p-
Laplacian and leads to a family of linear and nonlinear iterative filters. Moreover,
a parameterless version of the considered discrete regularization is also proposed.
This enables to automatically estimate all the required parameters. Then, the
obtained parameterless discrete regularization can be applied to a wide range
of color image filtering applications with a proper choice of the weight function.
The abilities of the proposed parameterless discrete regularization have been
illustrated on sample examples. Future works will concern the adaptation of the
proposed framework for image inpainting purposes.
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(a) Original image. (b) Image distorted by 15% impulse noise.

(c) Image distorted by Gaussian noise (σ = 15). (d) Restoration of impulse noise with g1.

(e) Restoration of Gaussian noise with g2. (f) Restoration of Gaussian noise with g2 on CB
features

Fig. 1. Illustrative examples of the filtering efficiency for two types of noise corruption
and different edge weights functions.



(a) Original noisy image. (b) Restored image with g1. (c) Restored image with g2.

(d) Restored image with g3. (e) Restored image with g3 on
CB features.

Fig. 2. Illustrative examples of the filtering efficiency on a real image corrupted by
noise.



(a) Image with Gaussian noise (σ =
15).

(b) Restored image with g2.

(c) Restored image with g3. (d) Part of Figure 3(a).

(e) Part of Figure 3(b). (f) Part of Figure 3(c).

Fig. 3. Illustrative examples of the differences between local and nonlocal weight func-
tions.


