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Quasi-energy function for diffeomorphisms with wild separatrices
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According to Pixton [8] there are Morse-Smale diffeomorphisms of S 3 which have no energy function, that is a Lyapunov function whose critical points are all periodic points of the diffeomorphism. We introduce the concept of quasi-energy function for a Morse-Smale diffeomorphism as a Lyapunov function with the least number of critical points and construct a quasi-energy function for any diffeomorphism from some class of Morse-Smale diffeomorphisms on S 3 .

Definition 1.1 Given a Morse-Smale diffeomorphism f : M n → M n , a function ϕ : M n → R is a quasi-energy function for f if ϕ is a Morse-Lyapunov function for f and has the least possible number of critical points among all Morse-Lyapunov functions for f .

In this paper we consider the class G 4 of Morse-Smale diffeomorphisms f : S 3 → S 3 whose nonwandering set consists of exactly four fixed points: one source α, one saddle σ and two sinks ω 1 and ω 2 . It follows from [START_REF] Smale | Differentiable dynamical systems[END_REF] (theorem 2.3), that the closure of each connected component (separatrix) of the one-dimensional manifold W u (σ) \ σ is homeomorphic to a segment which consists of this separatrix and two points: σ and some sink. Denote by ℓ 1 , ℓ 2 the one-dimensional separatrices containing the respective sinks ω 1 , ω 2 in their closures. According to [START_REF] Smale | Differentiable dynamical systems[END_REF], li , i = 1, 2 is everywhere smooth except, maybe, at ω i . So the topological embedding of li may be complicated in a neighborhood of the sink.

According to [START_REF] Artin | Some wild cells and spheres in three-dimensional space[END_REF], ℓ i is called tame (or tamely embedded) if there is a homeomorphism ψ i : W s (ω i ) → R n such that ψ i (ω i ) = O, where O is the origin and ψ i ( li \ σ) is a ray starting from O. In the opposite case ℓ i is called wild. It follows from a criterion in [START_REF] Harrold | A characterization of tame curves in three-space[END_REF] that the tameness of ℓ i is equivalent to the existence of a smooth 3-ball B i around ω i in any neighborhood of ω i such that ℓ i ∩ ∂B i consists of exactly one point. Using lemma 4.1 from [START_REF] Grines | Self-indexing energy function for Morse-Smale diffeomorphisms on 3-manifolds[END_REF] it is possible to make this criterion more precise in our dynamical setting: ℓ i is tame if and only if there is 3-ball

B ω i such that ω i ∈ f (B ω i ) ⊂ int B ω i ⊂ W s (ω i ) and ℓ i ∩ ∂B ω i consists of exactly one point.
It was proved in [START_REF] Ch | Knots as topological invariant for gradient-like diffeomorphisms of the sphere S 3[END_REF] that, for every diffeomorphism f ∈ G 4 , at least one separatrix (ℓ 1 say) is tame. It was also shown that the topological classification of diffeomorphisms from G 4 is reduced to the embedding classifications of the separatrix ℓ 2 ; hence there are infinitely many diffeomorphisms from G 4 which are not topologically conjugate.

To characterize a type of embedding of ℓ 2 we introduce some special Heegaard splitting of S 3 . Let us recall that a three-dimensional orientable manifold is a handlebody of genus g ≥ 0 if it is obtained from a 3-ball by an orientation reversing identification of g pairs of pairwise disjoint 2-discs in its boundary. The boundary of such a handlebody is an orientable surface of genus g.

Let P + ⊂ S 3 be a handlebody of genus g such that P -= S 3 \ intP + is a handlebody (necessarily of the same genus as P + ). Then the pair (P + , P -) is a Heegaard splitting of genus g of S 3 with Heegaard surface S = ∂P + = ∂P -. Definition 1.2 A Heegaard splitting (P + , P -) of S 3 is said to be adapted to f ∈ G 4 , or f -adapted, if: a) W u (σ) ⊂ f (P + ) ⊂ int P + ; b) W s (σ) intersects ∂P + transversally and W s (σ) ∩ P + consists of a unique 2-disc. An f -adapted Heegaard splitting S 3 = P + ∪ P -is said to be minimal if its genus is minimal among all f -adapted splittings.

For each integer k ≥ 0 we denote by G 4,k the set of diffeomorphisms f ∈ G 4 for which the minimal f -adapted Heegaard splitting has genus k. It is easily seen that, for each f ∈ G 4,0 , ℓ 2 is tame and, according to [START_REF] Grines | Self-indexing energy function for Morse-Smale diffeomorphisms on 3-manifolds[END_REF], f possesses an energy function. Conversely any diffeomorphism in G 4,k , k > 0, has no energy function (see [START_REF] Pixton | Wild unstable manifolds[END_REF]). Figure 1 shows the phase portrait of a diffeomorphism G 4,1 . The main result of this paper is the following.

Theorem 1 Every quasi-energy function for a diffeomorphism f ∈ G 4,1 has exactly six critical points. A compact (n + 1)-dimensional cobordism is a triad (W, L 0 , L 1 ) where L 0 and L 1 are closed manifolds of dimension n and W is a compact (n + 1)-dimensional manifold whose boundary consists of the disjoint union L 0 ∪ L 1 . It is an elementary cobordism when it possesses a Morse function ϕ : W → [0, 1] with only one critical point and such that ϕ -1 (i) = L i for i = 0, 1. When the index of the unique critical point is r, one speaks of an elementary cobordism of index r.

In this situation, L 1 is obtained from L 0 by a surgery of index r, that is: there is an embedding h : S r-1 × D n-r+1 → L 0 such that L 1 is diffeomorphic to the manifold obtained from L 0 by removing the interior of the image of h and gluing D r × S n-r , or

L 1 ∼ = D r × S n-r h| S r-1 ×S n-r L 0 \ int (h(S r-1 × D n-r+1 )) .
Conversely, the following statement holds (see [START_REF] Milnor | Lectures on the h-cobordism Theorem[END_REF], Theorem 3.12): Statement 2.1 If L 1 is obtained from L 0 by a surgery of index r, then there exists an elementary cobordism (W, L 0 , L 1 ) of index r.

On figure 2 it is seen a surgery of index 1 from the 2-sphere to the 2-torus with some level sets of a Morse function on the corresponding elementary cobordism.

Finally, we recall the weak Morse inequalities (see [START_REF] Milnor | Morse theory[END_REF], Theorem 5.2). 2 Let M n be a closed manifold, ϕ : M n → R be a Morse function, C q be the number of critical points of index q and β q (M n ) be the q-th Betti number of the manifold M n .

Then β q (M n ) ≤ C q and the Euler characteristic

χ(M n ) := n q=0 (-1) q β q (M n ) equals n q=0
(-1) q C q .

3 Proof of Theorem 1

Let f be a Morse-Smale diffeomorphism of the 3-sphere belonging to G 4,1 . As the number of critical points of any Morse function on a closed 3-manifold is even (it follows from statement 2.2) and greater than four (as P er(f ) ⊂ Cr(ϕ) and ℓ 2 is wild) then, for proving theorem 1, it is enough to construct a Lyapunov function with six critical points.

Auxiliary statements

For the proof of the following statements 3.1 and 3.2 we refer to [START_REF] Grines | Self-indexing energy function for Morse-Smale diffeomorphisms on 3-manifolds[END_REF], lemma 2.2 and lemma 4.2.

Statement 3.1 Let p be a fixed point of a Morse-Smale diffeomorphism f :

M n → M n such that dim W u (p) = q.
Then, in some neighborhood U p of p, there exist local coordinates x 1 , . . . , x n vanishing at p and an energy function ϕ p : U p → R such that

ϕ p (x 1 , . . . , x n ) = q -x 2 1 -. . . -x 2 q + x 2 q+1 + . . . + x 2 n and (T W u (p) ∩ U p ) ⊂ Ox 1 . . . x q , (T W s (p) ∩ U p ) ⊂ Ox q+1 . . . x n .
Statement 3.2 Let ω be a fixed sink of a Morse-Smale diffeomorphism f : M 3 → M 3 and B ω be a 3-ball with boundary S ω such that ω ∈ f (B ω ) ⊂ int B ω ⊂ W s (ω). Then there exists an energy function ϕ Bω : B ω → R for f having S ω as a level set.

Lemma 3.3 Let ω be a fixed sink of a Morse-Smale diffeomorphism f :

M 3 → M 3 and Q ω be a solid torus such that ω ∈ f (Q ω ) ⊂ int Q ω ⊂ W s (ω).
Then there exists a 3-ball Let us show that there is a meridian disk 

B ω such that f (Q ω ) ⊂ B ω ⊂ int Q ω . Proof: Let D 0 be a meridian disk in Q ω such that ω / ∈ D 0 . As Q ω ⊂ W s (ω) there is an integer N such that f n (Q ω ) ∩ D 0 = ∅ for every n > N. We may also assume that D 0 is transversal to G = n∈Z f n (∂Q ω ),
D 1 in Q ω such that D 1 is transversal to G and G ∩ int D 1 consists of family C D 1 = C 2 D 0 of intersection curves. If C 1 D 0 = ∅ then D 1 = D 0 .
(Q ω ) and (b) int e c ∩ f k (Q ω ) = ∅.
In case (a) e c is a meridian disk of

f k (Q ω ) and D = f -k (e c ) is a meridian disks in Q ω such that f (Q ω ) ∩ D = ∅. Indeed, by construction int e c ∩ G = ∅, hence int D ∩ G = ∅. Thus we can find the required 3-ball B ω inside int Q ω \ D 1 .
In case (b) there is a tubular neighborhood

V (e c ) ⊂ int Q ω of the disk e c such that G ∩ int V (e c ) = ∅ and B k = f k (Q ω ) ∪ V (e c ) is 3-ball. Then f k (Q ω ) ⊂ B k ⊂ int f k-1 (Q ω ). Thus B ω = f 1-k (B k ) is the required 3-ball. ⋄ 3.2 Construction of a quasi-energy function for a diffeomorphism f ∈ G 4,1
As a similar construction was done in section 4. As S 3 \ W s (σ) is the disjoint union W s (ω 1 ) ∪ W s (ω 2 ), then by property b), the disk P + ∩ W s (σ) is separating in P + . Moreover there exists a neighborhood of P + ∩ W s (σ), such that after removing it from P + we get a 3-ball P ω 1 and solid torus P ω 2 with the following properties for each i = 1, 2:

i) ω i ∈ f (P ω i ) ⊂ int P ω i ⊂ W s (ω i );
ii) ∂P ω i is a Heegaard surface and ℓ i ∩ ∂P ω i consists of exactly one point.

Due to the λ-lemma1 (see, for example, [START_REF] Palis | On Morse-Smale dynamical systems[END_REF]), replacing P ω i by f -n (P ω i ) for some n > 0 if necessary, we may assume that ∂P ω i is transversal to the regular part of the critical level set C := ϕ -1 σ (1) of the function ϕ σ and the intersections C ∩ ∂P ω i consist of exactly one circle. For ε ∈ (0, 1 2 ) define

H + ε as the closure of {x ∈ U σ | x / ∈ (P ω 1 ∪ P ω 2 ), ϕ σ (x) ≤ 1 + ε} and set P + ε = P ω 1 ∪ P ω 2 ∪ H + ε .
In the same way as in [START_REF] Grines | Self-indexing energy function for Morse-Smale diffeomorphisms on 3-manifolds[END_REF] it is possible to choose ε > 0 such that ∂P ω i intersects transversally each level set with value in [1ε, 1 + ε]; this intersection consists of one circle. Taking a smoothing Q + of P + ε we have f (Q + ) ⊂ int Q + and Σ := ∂Q + is a Heegaard surface of genus 1. Let Q -be the closure of S 3 \ int Q + (see figure 3). It is easy to check that Q + is isotopic to P + . Therefore, the pair (Q + , Q -) is an f -adapted Heegaard splitting with the property that the disk Q + ∩ W s (σ) lies in U σ .

3. For each i = 1, 2, let Pω i be a handlebody of genus i -1 such that f (P ω i ) ⊂ Pω i ⊂ int P ω i , ∂ Pω i intersects transversally each level set with value in [1ε, 1 + ε] along one circle and

P ω i \ int Pω i is diffeomorphic to ∂P ω i × [0, 1]. Define d i as the closure of {x ∈ U σ | x ∈ (W s (ω i )\ Pω i ), ϕ σ (x) = 1-ε}.
By construction d i is a disk whose boundary curve bounds a disk D i in ∂ Pω i . We form S i by removing the interior of D i from ∂ Pω i and gluing the d i . Denote P (S i ) the handlebody of genus i -1 bounded by S i and containing ω i . As in [START_REF] Grines | Self-indexing energy function for Morse-Smale diffeomorphisms on 3-manifolds[END_REF] it is possible to choose ε such that f (P (S i )) ⊂ int P (S i ).

Let K be the domain between ∂Q + and S 1 ∪ S 2 . We introduce T + , the closure of {x ∈

S 3 | x / ∈ (P ω 1 ∪ P ω 2 ), 1 -ε ≤ ϕ σ (x) ≤ 1 + ε}; observe T + ⊂ U σ .
We define a function ϕ K : K → R whose value is 1 + ε on ∂Q + , 1ε on S 1 ∪ S 2 , coinciding with ϕ σ on K ∩ T + and without critical points outside T + . This last condition is easy to satisfy as the domain in question is a product cobordism. In a similar way to [START_REF] Grines | Self-indexing energy function for Morse-Smale diffeomorphisms on 3-manifolds[END_REF], section 4.3, one can check that ϕ K is a Morse-Lyapunov function.

4. As P (S 1 ) is a 3-ball such that ω 1 ∈ f (P (S 1 )) ⊂ int P (S 1 ) ⊂ W s (ω 1 ), then by statement 3.2 there is an energy function ϕ P (S 1 ) : P (S 1 ) → R for f with S 1 as a level set with value 1ε.

As P (S 2

) is a solid torus such that ω 2 ∈ f (P (S 2 )) ⊂ int P (S 2 ) ⊂ W s (ω 2 ), then according to lemma 3.3 there is a 3-ball B ω 2 such that f (P (S 2 )) ⊂ B ω 2 ⊂ int P (S 2 ). As in the previous item, there is an energy function ϕ Bω 2 : B ω 2 → R for f with ∂B ω 2 as a level set with value 1 2 . 6. As P (S 2 ) is a solid torus, it is obtained from a 3-ball by an orientation reversing identification of a pair of disjoint 2-discs in its boundary; hence the solid torus is the union of a 3-ball and an elementary cobordism of index 1. Since, up to isotopy, there is only one 3-ball in the interior of a solid torus, then (W 

(∂B ω 2 ) = 1 2 , ϕ Wω 2 (S 2 ) = 1 -ε.
7. Define the smooth function ϕ + : Q + → R by the formula

ϕ + (x) =       
ϕ K (x), x ∈ K; ϕ P (S 1 ) (x), x ∈ P (S 1 ); ϕ Bω 2 (x), x ∈ B ω 2 ; ϕ Wω 2 (x), x ∈ W ω 2 .

Then ϕ + is a Morse-Lyapunov function for f | Q + with one additional critical point.

8. By the construction Q -is a solid torus such that α ∈ f -1 (Q -) ⊂ int Q -⊂ W u (α). Since α is a sink for f -1 then, as in item 4, there is a 3-ball B α such that f -1 (Q -) ⊂ B α ⊂ int Q - and an energy function ϕ Bα : B α → R for f -1 with ∂B α as a level set of value 1 2 .

9. Similarly to item 5, ∂Q -is obtained from ∂B α by a surgery of index 1. Therefore (W α , ∂Q -, ∂B α ) is an elementary cobordism of index 1, where W α = Q -\ int B α . Hence, W α possesses a Morse function ϕ Wα with only one critical point of index 1. We may choose ϕ Wα (∂B α ) = 1 2 , ϕ Wα (∂Q -) = 2ε. 10. Define the smooth function ϕ -: Q -→ R by the formula ϕ -(x) = 3ϕ Bα (x), x ∈ ϕ Bα ; 3ϕ Wα (x), x ∈ ϕ Wα .

Then ϕ -is a Morse-Lyapunov function for f | Q -with one additional critical point.

11. The function ϕ : S 3 → R defined by ϕ| Q + = ϕ + and ϕ| Q -= ϕ -is the required Morse-Lyapunov function for the diffeomorphism f with exactly six critical points.

Figure 1 : 1 2

 11 Figure 1: A diffeomorphism from the class G 4,1
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 12 Figure 2: An elementary cobordism

  and hence G ∩ int D 0 consists of a finite family C D 0 of intersection curves. Each intersection curve c ∈ C D 0 belongs to f k (∂Q ω ) for some integer k ∈ {1, . . . , N}. There are two cases: (1) c bounds a disk on f k (∂Q ω ); (2) c does not bound a disk on f k (∂Q ω ). Let us decompose C D 0 as union of two pairwise disjoint parts C 1 D 0 and C 2 D 0 consisting of curves with property (1) or (2), accordingly.

  In the opposite case for any curve c ∈ C 1 D 0 denote by d c the disk on f k (∂Q ω ) such that ∂d c = c. Notice that d c does not contain a curve from the family C 2 D 0 . Then there is c ∈ C D 1 which is innermost on f k (∂Q ω ) in the sense that the interior of d c contains no intersection curves from C D 0 . For such a curve c denote e c the disk on D 0 such that ∂e c = c. As int Q ω \ D 0 is an open 3-ball then e c ∪ d c bounds a unique 3-ball b c ⊂ int Q ω . Set D ′ c = (D 0 \ e c ) ∪ d c . There is a smooth approximation D c of D ′ c such that D c is a meridian disk on Q ω , D c is transversal to G. Moreover G ∩ int D c consists of a family C Dc of intersection curves having less elements than C D 0 ; indeed, c disappeared and also all curves from C D 0 lying in int e c . We will repeat this process until getting a meridian disk D 1 with the required property. Now let c ∈ C D 1 , c ∈ f k (∂Q ω ). Denote e c the disk that c bounds in D 1 . Let us choose c innermost in D 1 in the sense that the interior of e c contains no intersection curves from C D 1 . There are two cases: (a) e c ⊂ f k

  3 of [3], we only give a sketch of it below. 1. Construct an energy function ϕ p : U p → R near each fixed point p of f as in statement 3.1.
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 32 Figure 3: Heegaard decomposition (Q + , Q -)

  ω 2 , ∂B ω 2 , S 2 ) is an elementary cobordism of index 1, where W ω 2 = P (S 2 ) \ int B ω 2 . Hence W ω 2 possesses a Morse function ϕ Wω 2 with only one critical point of index 1 and such that ϕ Wω 2

The λ-lemma claims that f -n (S ωi ) ∩ U σ tends to {x 1 = 0} ∩ U σ in the C 1 topology when n goes to +∞.
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