
HAL Id: hal-00333483
https://hal.science/hal-00333483v1

Submitted on 10 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A UML based methodology to ease the modeling of a
set of related systems

Firas Alhalabi, Mathieu Maranzana, Jean-Louis Sourrouille

To cite this version:
Firas Alhalabi, Mathieu Maranzana, Jean-Louis Sourrouille. A UML based methodology to ease the
modeling of a set of related systems. The Third International Conference on Software Engineering
Advances (ICSEA) 2008, Oct 2008, Malta. pp.51-57. �hal-00333483�

https://hal.science/hal-00333483v1
https://hal.archives-ouvertes.fr


 

A UML based methodology to ease the modeling of a set of related systems 

Firas Alhalabi, Mathieu Maranzana, Jean-Louis Sourrouille 

 Université de Lyon 
INSA-Lyon, LIESP, Bat. B. Pascal, F-69621, Villeurbanne Cedex, France 

{Firas.Alhalabi, Mathieu.Maranzana, Jean-Louis.Sourrouille}@insa-lyon.fr 
 

 
Abstract 

 
Despite progress in model engineering, modeling 

large distributed systems is still a long and complex 
task. This paper outlines a methodology based on UML 
to make the modeling of a set of related systems 
simpler. A generic component-based framework 
specifies the commonality and variability of these 
systems at high-level of abstraction both from 
structural and behavioral viewpoint. Then, models of 
specific systems are derived from the coarse-grained 
generic framework. A case study in the field of QoS 
management systems illustrates this approach. 
 

1. Introduction 
 

Modeling large-scale distributed systems is complex 
and requires a great knowledge of the application 
domain. Modeling a second system in the same 
application domain is much easier. Further, having 
available knowledge about an application domain 
(domain in short) helps software development, and 
avoids starting from scratch.  This paper proposes (i) 
an approach to model a domain at a high abstraction 
level based on UML 2.1 [5]; (ii) a methodology to aid 
the development of specific systems in this domain. 

The aim is close to works such as, Component-
Based Software Engineering (CBSE [4]), and Software 
Product Lines  (SPL [2]). In these approaches, the 
consistency of component assembly should be checked 
either manually or automatically, while in our approach 
the framework itself enforces such constraints.  

The basic concepts of the proposed solution are 
framework, component and model centric 
development. Component-based system design and 
framework-based development are well-known 
software engineering practices that reduce system 
complexity by separating concerns, and facilitate 
software reuse. The need of abstract models that do not 
depend on specific applications is in line with current 
trends in software development change from code-
centric to model-centric [8]. 

The rest of the paper is organized as follows: section 
2 describes component models in standard UML, and 
defines required UML extensions. Section 3 proposes 
our methodology aiming to facilitate the development 
of specific system models from a generic framework in 
a given domain. To illustrate our approach, section 4 
presents a case study in the domain of QoS 
Management System (QMS), while section 5 discusses 
related works. Finally, section 6 concludes these works. 
 

2. UML Notations 

2.1. Definitions 

According to the UML superstructure document, “A 
component represents a modular part of a system that 
encapsulates its contents and whose manifestation is 
replaceable within its environment”. A component is a 
black-box container from an external point of view, but 
its internal structure can be described, particularly 
using subcomponents. The internal structure describes 
roles and multiplicities of subcomponents as well as 
their connectors. A multiplicity greater than one 
specifies that a subcomponent, viewed as a type, plays 
various roles in the context of the composite 
component (C plays the roles c1 and c2 in Figure 1). 

2.2. UML Extensions 

As a general purpose language, UML does not 
supply domain specific concepts. Fortunately, it 
includes mechanisms to add new concepts and to 
extend the language. UML profiles are interchangeable 
models gathering together related language extensions. 
To enforce the semantics of the concepts, UML 
supplies a language (OCL [5]) to specify constraints 
that apply to models, thus restricting the use of model 
elements to keep only meaningful expressions. The 
following sections define our stereotypes and 
constraints to make UML more suitable for component-
based modeling. 
 



 

2.2.1. Component. A UML component specifies a type 
and can be realized in different manners. The 
realization of a component is independent of the 
realization of its underlying subcomponents. For 
example in Figure 1, the realization of the component A 
does not depend on the realization of its 
subcomponents B and C. Finally, a component can be 
implemented by a set of classes or even external non-
detailed components. 

The internal structure of a component shows how 
the subcomponents carry out the exported services. 
Component interfaces specify signatures of public 
features such as operations and signals. In Figure 1, 
components interact with each other using assembly 
connectors through provided and required interfaces 
associated with ports. A component can be substituted 
for a component providing equivalent services based 
on interface compatibility: in UML, substitutability is 
characterized by a dependency relationship with the 
stereotype «substitute». 
 
2.2.2. Component Inheritance. Component is a 
subtype of Class in the UML metamodel, but UML 
does not redefine the Generalization relationship for 
components, hence the relationship between classes 
applies to components. However, classes and 
components are different from several points of view. 
To describe our framework, we decided to make 
explicit some definitions and restrictions: 
− Component Realization in the UML sense is always 

described using an arrow with a dotted line, and 
never using nested components to avoid confusing 
with subcomponent containment; 

− Within a component, subcomponents are of type 
Property in the UML metamodel. In principle, when 
the containing component is created, instances of 
properties are created, but instance creation of a 
Component has no precise semantics. To cope with 
this problem, we assume that instance creation 
occurs only for properties of type Class; 

− Components intercommunicate only through ports 

owning required and/or provided interfaces. This 
constraint avoids direct connection via non-typed 
connectors. 
According to the Generalization relationship, 

components inherit ports from their ancestors. Port 
inheritance ensures that any component is substitutable 
for its parent from the connections’ point of view. 
When descendants redefine ports, interface 
conformance between general and specific ports should 
be enforced to ensure substitutability from the invoked 
services' point of view. The internal structure of visible 
subcomponents, i.e., not private, is inherited. In 
essence, a component is a black box whose obvious 
public elements are only ports and interfaces. To 
consider these ideas, we define two stereotypes:  

(i) The «BB_Inh» stereotype (Figure 2) extends the 
Generalization metaclass and prevents a component to 
inherit subcomponents from its ancestors. This 
constraint restricts the inherited members for 
Component elements. The internal structure of the 
ancestor is ignored. 

(ii) The «P2P_Inh» stereotype (Figure 3) extends the 
Generalization metaclass by making port interfaces 
precise. The redefinition of port p by p_Spec implies 
rules that are similar to pre/postconditions. Regarding 
an interface as a contract: 
− p_Spec cannot require more than p, hence the 

required interface of p_Spec is included into the 
required interface of p, e.g., I_Base_Required 
inherits from I_Specialized_ Required; 
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Figure 3. «P2P_Inh» stereotype. 



 

− p_Spec should provide at least as much as p, hence 
the provided interface of p_Spec inherits from the 
provided interface of p, e.g., I_Specialized_ 
Provided inherits from I_Base_Provided. 
Another way to enforce this constraint would be to 

use the dependency relationship with the «substitute» 
stereotype, but this requires describing matching ports, 
i.e., the substitution of component C1 with ports p1 and 
p2 for C2 with ports q1 and q2 requires mapping each qi 
to a pj. In our proposal, port matching is clearly shown 
by the redefinition. 
 

3. Proposed Approach 
 

Our approach takes into account both structural and 
behavioral aspects. For the sake of place, we focus on 
structure only. 
 
3.1. Process description 
 

The proposed approach is in line with Model Driven 
Development (MDD) [5]. The main idea of MDD is to 
separate conceptual concerns described in Platform 
Independent Model (PIM), from implementation-
specific concerns described in Platform Specific Model 
(PSM). PIMs can be successively refined, but when a 
Platform Model (PM) is added to the refined PIM, it 
becomes a PSM. Our approach first defines a generic 
model describing a family of systems in a given 
domain. Then, specific models are derived from the 
generic model. Generic and specific models both are 
platform independent models. Ideally, after 
transforming the most detailed PIM into suitable PSMs, 
the code of applications is automatically generated. 
Figure 4 summarizes the proposed development 
process distinguishing two main roles: the architect, 
who is assumed to be an expert in the given domain, 
and developers who derive the generic model to design 
specific models. A UML expert may assist the architect 
in defining profiles. The development process is 
outlined as follows (numbers refer to Figure 4): 
(1) The architect creates a UML profile called Generic 

Profile (a) that defines all the concepts related to a 
family of systems in a domain. These concepts are 
described by stereotypes, which are user-defined 
metaclasses, and constraints. 

(2) The architect designs a generic component-based 
architecture that captures commonality and main 
variability for a family of systems in a domain. The 
architecture includes components and their roles, 
connectors, ports, interfaces and constraints. The 
architect also provides generic sequence diagrams 

to describe dynamic aspects, i.e., interactions and 
communications between components. 

(3) The architect describes derivation constraints in a 
Derivation Profile (b). 

(4) From the generic model, each developer builds 
his/her specific model through transformations. 
Several transformations are common to all areas 
and others are area-specific. The latter are done 
manually because they are not reusable. The former 
are defined apart from any area description into a 
Common Profile through a set of stereotypes that 
mark elements and specify transformations to be 
executed. For instance, model elements marked 
with stereotype «Remove» will be removed from 
the model during transformation. Developers start 
from the generic model, mark elements with 
stereotypes of the common profile, and then execute 
model mapping by using a model transformation 
language. Finally, they manually transform the 
specific model. The derived model should conform 
to constraints (a), (b) and (d). During this step, 
developers may define Specific Profiles, and check 
constraints (c). Moreover, they will have to ensure 
model consistency. 

(5) As in usual development processes, specific models 
may be refined. 

(6) The components of specific models are still 
specifications. At implementation time, they will be 
instantiated to represent context-dependant 
implementations (PSM). 

(7) Finally, the code skeleton is automatically 

 

Generic Model 

Family of systems 
 in a given domain 

refinement 

design 

representation 

(1) 

(2) (3) 

(8) 

(7) 

(5) 

Derivation 
Profile 

Code 

(4) 

(6) 

(a) 

(b) 

(c) 

(6) 

D
ev

el
op

er
s 

A
rc

hi
te

ct
 

S
co

pe
 o

f 
pr

of
ile

 

Specific 
Model 1 

PSM 

Code 

Specific 
Model i 

PSM 

(6) 
(7) 

(6) 

(4) Specific 
Profile i 

Generic 
Profile 

... 

... 

... 

Common 
Profile 

U
M

L 
E

xp
er

t 

(d) 

 

Figure 4. Outline of our process. 



 

generated and developers fill in methods. At 
detailed level, descriptions are specific, but should 
meet higher-level constraints such as interfaces.  

(8) According to the experience gained during 
modeling, developers may ask the architect to 
enhance the generic model. 

 
3.2. Constraints 
 

Within our development process, we distinguish 
three types of constraints (letters refer to Figure 4). 
These constraints are specified either in natural 
language or preferably in OCL to allow automatic 
checks: 
(a) Generic Constraints are defined by the architect, 

and apply to all the models (scope Figure 4). They 
guide the use of the domain notions expressed as 
components, ports and connectors. For instance, in 
a Client/Server pattern, a generic constraint may 
reduce the licit connections: “each Client must be 
associated with at least one Server”. 

(b) Derivation Constraints apply to any derived 
specific model, ensuring it remains licit after 
derivation. For instance, to complete the above 
generic constraint, the architect may add “any 
Server should have at least one Client”. This 
derivation constraint forbids a cut off Server, while 
the previous generic constraint did not. 

(c) Specific Constraints are defined by the developer, 
and apply to the derived and refined models, 
including PSMs. For instance, to achieve the 
chosen example, a specific constraint may be 
written: “each Client is associated with exactly one 
Server”. This last constraint defines the expected 
peer-to-peer connection in the refined model. 

 
3.3. Model Derivation and Refinement 
 

The architect specifies the semantics of the area by 
describing its concepts and their allowed interactions. 
Most of these semantic constraints are implicitly 
described within the generic model. In addition to 
generic and derivation constraints, these constraints 
specify rules that ensure the consistency of component 
assembly. Moreover, automatic transformations 
enforce component composition rules. Developers 
should check constraints that are not expressed in OCL.  
Anyway, we assume that the developer uses an 
Integrated Development Environment handling profiles 
and constraints, performing model transformations 
from a high-level description, and providing an easy 
way to describe and check constraints.  
 

4. Case Study 
 

Our team has a good experience in the development 
of QMS, which explains the choice of the QMS field to 
illustrate our approach. Beside our works, e.g., DCBL 
[9] and PMQDA [10], other solutions have been 
proposed, e.g., Quartz [7]. Each system has a specific 
model depending on its particular requirements. This 
section first defines a generic component-based 
framework aiming to aid the designer in the domain of 
QMS. Then, a specific model for the PMQDA 
distributed QMS is derived from the generic 
framework. In addition, we discuss the problems that 
we encountered regarding the derivation process. 
 
4.1. Generic Profile Specification 
 

The Generic Profile defines notions (vocabulary) as 
stereotypes that mainly extend the UML Component 
metaclass. The notions that we identified in the QoS 
management domain are for instance manager, 
admission, monitoring and mapping. In Figure 5, 
stereotypes mark components to specify their meaning 
and to ensure traceability after derivation. The 
semantics of the domain induces constraints that are 
attached to these stereotypes. For instance, in Figure 5a 
“a LocalManager (LM) cannot be connected with 
another LM”  or “the root of the managers hierarchy 
along the supervise connector should be a 
GlobalManager (GM)” . 

Our generic stereotypes «BB_Inh» and «P2P_Inh» 
and their constraints are included into the Generic 
Profile not to multiply profiles since they are common 
to all models. 
 
4.2. Generic QMS Framework Design 
 
4.2.1. Architecture. Figure 5a depicts the architecture 
of a generic framework for QMS (some connectors are 
omitted to simplify). The top-level composite 
component G_Manager controls the QMS. A 
G_GlobalManager (G_GM) controls one or more G_ 
LocalManagers (G_LM) through the supervise 
connector. 

G_Adaptation and G_Policy (Figure 5b) set 
application behavior to improve the overall QoS of the 
system. Thanks to the «P2P_Inh» stereotype, 
G_MixedPolicy and G_SimplePolicy both inherit the 
ports and interfaces of G_Policy. G_MixedPolicy may 
include simple or mixed policies. Policies are for 
instance G_Planning. 

For each application, the component G_Local-
Application implements the business logic merged with 



 

the execution template required for adaptation service. 
According to the execution context, the G_Manager 
sends orders to change application behavior, hence to 
tune their resource consumption to fit the current 
context. The G_Loader launches G_LocalApplication 
using G_OS services, possibly after negotiation and 
adaptation of running applications. The G_OS 
component, included in all QMS, allows components to 
use both standard operating system services and 
specific layers. For further details from the QoS point 
of view, the reader may refer to [1]. 

Components’ names in the generic framework do 
not matter. Stereotype tagging is the only meaningful 
information to identify components during model 
transformation. Hence, in the sequel, component «X» 
means a component marked with the stereotype «X» or 
inheriting from a component marked with «X». 
 
4.2.2. Comments. Since the general architecture aims 
to apply to any QMS, the components are rather 
abstract and limited to commonality. Thus, developers 
will adapt the generic model to build the specific 
system model that deals with their own requirements. 

For instance, the generic model assumes that when an 
application is rejected at admission time due to a lack 
of resources, a negotiation process is initiated to find a 
new operating point, which leads to several message 
exchanges between applications and managers 
(sequence diagrams are not shown). When the specific 
system does not supply negotiation, the component 
«Negotiation» has to be removed from the derived 
model and consistency should be checked. On the other 
hand, since admission is a basic service for QMS, the 
component «Admission» appears in any QMS. 

To derive the component G_Policy, we distinguish 
simple from mixed policies. In the former case, the 
derivation process is a substitution of the component 
G_Policy for any single component inheriting from 
G_SimplePolicy (Figure 5b). In the latter case, 
G_Policy is replaced by the component G_MixedPolicy 
that may encompass components inheriting from 
G_Policy and supplying policies used in the specific 
system, e.g., G_Learning and G_ExpertSystem in 
DCBL [9]. In both cases, the substitution is performed 
using «P2P_Inh». 
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4.2.3. Discussion. The nature of the derivation process 
depends on the modeling approach used to describe the 
domain, which explains why the choice of this 
approach was a central issue. A first way could be to 
define base components with the required properties, 
and then to derive specific components to inherit 
properties. This appealing solution is suitable for 
classes, but inheritance proves to be too strong a 
relationship for components.  

In our approach, we start from a transformation of 
the generic model to keep only the needed components 
and relationships. This chosen approach, easy to 
understand by UML readers, seems the best 
compromise between derivation flexibility and effort to 
write the generic model and constraints. 
 
4.3. Derivation Constraints Specification 
 

The derivation constraints must be satisfied for the 
first specific model derived from the generic model. 
Examples of such constraints are: 
− One manager must remain in any derived model, 

either LM or GM in case of single node; 
− At least one manager must include a component 

«Policy»; 
− Since admission is a basic service in QMS, at least 

one component «Admission» must remain in any 
QMS. «Mapping» may be removed. 

 
4.4. Derivation and Refinement of the PMQDA 
Models 
 
4.4.1. Specific Constraints. The developer defines and 
adds specific constraints to the PMQDA’s specific 
profile, which applies to PMQDA models only. 
Examples of specific constraints (Figure 6): 
−  Components LM and GM do not include any 

component «Negotiation» because PMQDA does 
not consider negotiation mechanism; 

−  A model of the PMQDA distributed system 
includes a unique GM, and one LM on each node; 

− A LM does not include any «Policy» component 
because resource management is fully centralized in 
the GM; 

− Developers may refine generic stereotypes to add 
particular notions and constraints related to their 
specific requirements, for instance in Figure 6 
«SpecificLM» refines LM to add a constraint 
ensuring that local managers are leaves regarding 
the supervise relationship.  

 
4.4.2. PMQDA Architecture. The specific model of 
PMQDA in Figure 6 is derived from the generic model 

shown in Figure 5. Then generic and specific 
constraints are checked. For instance, when the 
multiplicity of a connector becomes 0 (from PM_GM 
to PM_Loader in the PMQDA model), the connected 
port is removed since it is useless. On the other hand, 
the port p that connects PM_LM to PM_Loader is kept. 
After derivation, the model encompasses elements as 
follows: 
− PM_GM: this supervisor controls the execution of 

PM_LocalApplications and applies the 
PM_Planning policy that schedules the use of the 
resources for all the concurrent applications. Thanks 
to PM_Adaptation, the PM_GM tunes the 
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Figure 6. The specific PMQDA model. 



 

application behavior according to the choices 
carried out during the scheduling step. Since precise 
port inheritance is required, the PM_Global-
Manager inherits ports from G_GM using P2P_Inh. 

− PM_LM: on each node of the distributed system, it 
acts as an intermediary between PM_Local-
Applications running on its node and the PM_GM. 

− PM_Loader: during admission of a local 
application, the PM_Loader establishes a dialog 
with its PM_LM in order to obtain clearance to 
launch the PM_LocalApplication. 

− PM_LocalApplication: it merges usual application 
business code with behavior adaptation services. 

− PM_Admission has the same structure as 
PM_DecisionMaking because PMQDA executes the 
same operations for both admission and adaptation. 

 

5. Related Works 
 

Numerous works aim to aid the development of 
systems in a given domain. They tackle the problem at 
different abstraction levels, and their building blocks 
range from general to very specific. A coarse-grained 
classification could distinguish CBSE [4], and in a way 
SPL [2]. All these approaches aim to provide domain 
elements and composition operators to build systems in 
a given domain. Unlike these approaches, our 
framework enforces composition rules by limiting the 
licit expressions.  

SPLs concerns are close to our works, but the aim is 
to represent products of market segments with possibly 
low coupling, maybe extending UML with a profile for 
variations, while our approach deals with concepts and 
semantics of a user domain with high cohesion. In our 
approach, the derivation of specific models is partially 
done manually because the variability is unknown a 
priori. In SPLs, variability is precisely described, which 
allows automating derivation from the choices of 
elements to be kept [2].  

Component based development requires checking 
component assembly. Component models such as EJB 
[3] consider components as building blocks without 
defining a precise composition language. To overcome 
this weakness, some works propose to insert “glue” 
between components. For instance, [6] uses design by 
contract to connect components. Our approach applies 
at a high level of abstraction only: "glue" is no required 
since connections are implicitly predefined in the 
generic model.  
 

6. Conclusion 
 

This paper proposes a methodology to ease the 

development of a family of specific systems in a given 
domain. Our approach, based on standard UML, does 
not require specific training or tools besides UML. A 
generic coarse-grained model captures the relevant 
knowledge and commonality of the domain. The 
architect aided by an expert of the domain, maybe 
expert himself/herself, builds this model once. Then 
application developers derive specific models from the 
generic one while the framework ensures architecture 
consistency and soundness. Their burden is reduced 
since they share the architect’s domain knowledge and 
the resulting general architecture.  

Our approach is illustrated through a case study in 
the domain of QoS Management System (PMQDA). 
This case study shows that our approach is suitable in a 
complex domain. The abstraction level of the 
description remains reasonably high to focus on 
commonality. However, to start from a framework is a 
great advantage compared with a development from 
scratch. 
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