N

N

A UML based methodology to ease the modeling of a
set of related systems

Firas Alhalabi, Mathieu Maranzana, Jean-Louis Sourrouille

» To cite this version:

Firas Alhalabi, Mathieu Maranzana, Jean-Louis Sourrouille. A UML based methodology to ease the
modeling of a set of related systems. The Third International Conference on Software Engineering
Advances (ICSEA) 2008, Oct 2008, Malta. pp.51-57. hal-00333483

HAL Id: hal-00333483
https://hal.science/hal-00333483
Submitted on 10 Nov 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00333483
https://hal.archives-ouvertes.fr

A UML based methodology to ease the modeling of a set of related systems

Firas Alhalabi, Mathieu Maranzana, Jean-Louis Smiille
Université de Lyon
INSA-Lyon, LIESP, Bat. B. Pascal, F-69621, Villambe Cedex, France
{Firas.Alhalabi, Mathieu.Maranzana, Jean-Louis.Sawitle}@insa-lyon.fr

Abstract The rest of the paper is organized as follows:isect
2 describes component models in standard UML, and

Despite progress in model engineering’ mode“ng defines required UML extensions. Section 3 proposes
large distributed systems is still a long and coempl our methodology aiming to facilitate the developtnen
task. This paper outlines a methodology based o UM Of specific system models from a generic framewnrk
to make the modeling of a set of related systems2 given domain. To illustrate our approach, section
simpler. A generic component-based framework Presents a case study in the domain @bS
specifies the commonality and variability of these Management Syste(@MS), while section 5 discusses
systems at high-level of abstraction both from related works. Finally, section 6 concludes theegks:
structural and behavioral viewpoint. Then, models o
specific systems are derived from the coarse-gthine 2. UML Notations
generic framework. A case study in the field of QoS
management systems illustrates this approach. 2.1. Definitions

1. Introduction According to the UML superstructure document, “A
component represents a modular part of a systetn tha

Modeling large-scale distributed systems is complex encapsulates its contents and whose manifestagion i
and requires a great knowledge of the application replaceable within its environment”. A componentis
domain. Modeling a second system in the same black-box container from an external point of vidat
application domain is much easier. Further, having its internal structure can be described, partidylar
available knowledge about aapplication domain using subcomponents. The internal structure dessrib
(domain in short) helps software development, and roles and multiplicities of subcomponents as wall a
avoids starting from scratch. This paper propdges their connectors. A multiplicity greater than one
an approach to model a domain at a high abstractionsPecifies that a subcomponent, viewed as a typg'spl
level based on UML 2.1 [5]; (i) a methodology tidl a various roles in the context of the composite
the development of specific systems in this domain. ~ component (C plays the rolesand ¢ in Figure 1).

The aim is close to works such a@Spmponent- i
Based Software Engineerif@BSE [4]), andSoftware ~ 2.2. UML Extensions
Product Lines (SPL [2]). In these approaches, the
consistency of component assembly should be checked AS @ general purpose language, UML does not
either manually or automatically, while in our appch ~ Supply domain specific concepts. Fortunately, it
the framework itself enforces such constraints. includes mechanisms to add new concepts and to

The basic concepts of the proposed solution are€xtend the language. UML profiles are interchangeab
framework, component and model centric models gathering together related language extesisio
development. Component-based system design and© enforce the semantics of the concepts, UML
framework-based ~ development are well-known Supplies a language (OCL [5]) to specify constsaint
software engineering practices that reduce systemthat apply to models, thus restricting the use otieh
complexity by separating concerns, and facilitate elements to keep only meaningful expressions. The
software reuse. The need of abstract models thabtlo following sections define our stereotypes and
depend on specific applications is in line withreat constraints to_ make UML more suitable for component
trends in software development change from code-bPased modeling.
centric to model-centric [8].

2.2.1. Component. A UML component specifies a type C_Base &] C_Base]

and can be realized in different manners. The U
realization of a component is independent of the p P

realization of its underlying subcomponents. For T

example in Figure 1, the realization of the commpe «BB_Inh»
does not depend on the realization of its __ -
subcomponent8 and C. Finally, a component can be C_Specialized &] C_Specialized]
implemented by a set of classes or even externral no 0] =] =] m] ﬂ

; IX Y z z
detailed components. Ip | | | | | | Ip -

The internal structure of a component shows how
the subcomponents carry out the exported services. FigureZ2. Inheritance (left) andB8_Inh» (right).
Component interfaces specify signatures of public
features such as operations and signals. In Figure
components interact with each other using assembly
connectors through provided and required interfaces
associated with ports. A component can be subesstitut
for a component providing equivalent services basedinheritance ensures that any component is sulziiait
on interface compatibility: in UML, substitutabilitis for its parent from the connections’ point of view.
characterized by a dependency relationship with theWhen descendants redefine ports, interface

stereotype substitute. conformance between general and specific portsidhou
be enforced to ensure substitutability from theoked
services' point of view. The internal structurevisible
subcomponents, i.e., not private, is inherited. In
essence, a component is a black box whose obvious
f&ublic elements are only ports and interfaces. To
consider these ideas, we define two stereotypes:

(i) The «BB_Inh» stereotype (Figure 2) extends the
Generalizationmetaclass and prevents a component to

— ComponenRealizationin the UML sense is always inherit _subcomponents frqm i_ts ancestors. This
described using an arrow with a dotted line, and constraint restricts the _mhented members for
never using nested components to avoid ConfusingCompone:nt.elements. The internal structure of the
with subcomponent containment; ancestor is ignored.

- Within a component, subcomponents are of type (i) The «P2P_Inh»stereotype (Figure 3) extends the
Propertyin the UML metamodel. In principle, when Generalization metaclass by making port interfaces
the containing component is created, instances ofPrecise. The redefinition of popt by p_Specimplies
properties are created, but instance creation of arules that are similar to pre/postconditions. Reay
Componenhas no precise semantics. To cope with an interface as a contract:
this problem, we assume that instance creation— P_Speccannot require more thap, hence the
occurs only for properties of tyfg@lass required interface op_Specis included into the

- Components intercommunicate only through ports required interface ofp, e.g., |_Base_Required
inherits froml_Specialized_ Required

owning required and/or provided interfaces. This
constraint avoids direct connection via non-typed
connectors.

According to the Generalization relationship,
components inherit ports from their ancestors. Port

2.2.2. Component Inheritance. Component is a
subtype ofClassin the UML metamodel, but UML
does not redefine th&eneralizationrelationship for
components, hence the relationship between classe
applies to components. However, classes and
components are different from several points ofwie
To describe our framework, we decided to make
explicit some definitions and restrictions:

. S
Assembly
connector|

A g] [Delegation
' b'BEI C-CEI ,’/ connector |_Base_Provided
' R O Port qis =]
~. > inherited =
> e . Required implicitly |
. 1

«Interface»

ICB

interface |_Base_Required
Op4() «P2P_Inh»
Op2() B =] {redefines p}
JooTh o focT, 5 .
- N C_Specialized | Specialized Provided
Provided Port
interface |_Specialized_Required

Figure 1. Internal structure of componerA andB. Figure 3. «P2P_Int» stereotyp.

p_Specshould provide at least as muchpaience
the provided interface gb_Specinherits from the
provided interface of p, e.g., |_Specialized_
Providedinherits froml_Base_Provided

to describe dynamic aspects, i.e., interactions and
communications between components.

(3) The architect describes derivation constraints in a

Derivation Profile (b).

Another way to enforce this constraint would be to (4) From the generic model, each developer builds

use the dependency relationship with tlseibstitute
stereotype, but this requires describing matchioidsp
i.e., the substitution of compone@t with portsp; and

p. for C, with portsqg; andq, requires mapping each

to ap;. In our proposal, port matching is clearly shown
by the redefinition.

3. Proposed Approach

Our approach takes into account both structural and
behavioral aspects. For the sake of place, we foous
structure only.

3.1. Process description

The proposed approach is in line wittodel Driven
Developmen{MDD) [5]. The main idea of MDD is to
separate conceptual concerns describedPlatform
Independent Model(PIM), from implementation-
specific concerns described Rtatform Specific Model
(PSM). PIMs can be successively refined, but when a
Platform Model(PM) is added to the refined PIM, it

becomes a PSM. Our approach first defines a generic

model describing a family of systems in a given

domain. Then, specific models are derived from the

generic model. Generic and specific models both are
platform independent models. Ideally, after
transforming the most detailed PIM into suitablevBBS

the code of applications is automatically generated

Figure 4 summarizes the proposed development

process distinguishing two main roles: taechitect

who is assumed to be an expert in the given domain,
anddevelopersvho derive the generic model to design
specific models. A UML expert may assist the aegttit

in defining profiles. The development process is

outlined as follows (numbers refer to Figure 4):

(1) The architect creates a UML profile call€&neric
Profile (a) that defines all the concepts related to a
family of systems in a domain. These concepts are
described by stereotypes, which are user-defined
metaclasses, and constraints.

(2) The architect designs a generic component-basec
architecture that captures commonality and main
variability for a family of systems in a domain.e'h
architecture includes components and their roles,
connectors, ports, interfaces and constraints. The
architect also provides generic sequence diagrams

his/her specific model through transformations.
Several transformations are common to all areas
and others are area-specific. The latter are done
manually because they are not reusable. The former
are defined apart from any area description into a
Common Profilethrough a set of stereotypes that
mark elements and specify transformations to be
executed. For instance, model elements marked
with stereotype«Removeswill be removed from
the model during transformation. Developers start
from the generic model, mark elements with
stereotypes of the common profile, and then execute
model mapping by using a model transformation
language. Finally, they manually transform the
specific model. The derived model should conform
to constraints (a), (b) and (d). During this step,
developers may define Specific Profiles, and check
constraints (c). Moreover, they will have to ensure
model consistency.

(5) As in usual development processes, specific models

may be refined.

(6) The components of specific models are still

specifications. At implementation time, they witt b
instantiated to represent context-dependant
implementations (PSM).

(7)Finally, the code skeleton is automatically
N5 —)
3[e Common

).u Profile
Family of systems | fepresentation @
- in a given domain e Generic
g Profile

= 2) | design (3) i

E (2) | desig ®) !
(8) - Derivation A
.............. >{ Generic Model Profile
—_———e— e —— — — — — — — — —— — — e — —_——

| ©) o

Q)) ' | Specific S

' | Profilei s

X \ G

| i_[Specific Specific ﬁ Q
qé- Model 1 6I ®) r Model i §

T (6) refinement (6)
<]
oli| psm |:| PSM !

() (6) |:,
™y, g

Figure 4. Outline of our process.

generated and developers fill in methods. At 4, Case Study

detailed level, descriptions are specific, but &hou

meet higher-level constraints such as interfaces. Our team has a good experience in the development
(8)According to the experience gained during of QMS, which explains the choice of the QMS fiedd

modeling, developers may ask the architect to jjustrate our approach. Beside our works, e.g.BDC

enhance the generic model. [9] and PMQDA [10], other solutions have been
_ proposed, e.g., Quartz [7]. Each system has afgpeci
3.2. Constraints model depending on its particular requirementssThi

section first defines a generic component-based
Within our development process, we distinguish framework aiming to aid the designer in the donefin
three types of constraints (letters refer to Figdje QMS. Then, a specific model for the PMQDA
These constraints are specified either in natural distributed QMS is derived from the generic
language or preferably in OCL to allow automatic framework. In addition, we discuss the problemg tha
checks: we encountered regarding the derivation process.
(a) Generic Constraintsare defined by the architect,
and apply to all the models (scope Figuje®hey 4.1, Generic Profile Specification
guide the use of the domain notions expressed as
components, ports and connectors. For instance, in - The Generic Profiledefines notions (vocabulary) as
a Client/Serverpattern, a generic constraint may stereotypes that mainly extend the UNIomponent
reduce the licit connectionsedch Client must be metaclass. The notions that we identified in theSQo
associated with at least one Server” management domain are for instance manager,
(b) Derivation Constraints apply to any derived admission, monitoring and mapping. In Figure 5,
specific model, ensuring it remains licit after stereotypes mark components to specify their meganin
derivation. For instance, to complete the above and to ensure traceability after derivation. The
generic constraint, the architect may adahy’ semantics of the domain induces constraints that ar
Server should have at least one Clienffhis attached to these stereotypes. For instance, ind=Bg
derivation constraint forbids a cut @&erver while “a LocalManager (LM) cannot be connected with
the previous generic constraint did not. anotherLM” or “the root of the managers hierarchy
(c) Specific Constraintare defined by the developer, ajong the supervise connector should be a
and apply to the derived and refined models, GlobalManager(GM)”.
inCIUding PSMs. For instance, to achieve the Our generic Stereotype£_|nh) and PZP_”]h)
chosen example, a specific constraint may beand their constraints are included into tBeneric

written: “each Client is associated with exactly one profile not to multiply profiles since they are common
Server”. This last constraint defines the expected tg 3]l models.

peer-to-peer connection in the refined model.
o) 4.2. Generic QM S Framework Design
3.3. Model Derivation and Refinement
) -) 4.2.1. Architecture. Figure 5a depicts the architecture

The architect specifies the semantics of the ayea b of a generic framework for QMS (some connectors are
describing its concepts and their allowed intecarsi omitted to simplify). The top-level composite
Most of these semantic constraints are implicitly component G_Manager controls the QMS. A
described within the generic model. In addition to g G|oba|Mangger (G_GM)Xontrols one or mor&
generic and derivation constraints, these constrain | ocalManages (G_LM) through the supervise
specify rules that ensure the consistency of compbn connector. B
assembly. Moreover, automatic transformations G Adaptation and G_Policy (Figure 5b) set
enforce component composition rules. Developers gpplication behavior to improve the overall QoShuf
should check constraints that are not expressexCin system. Thanks to the PZP_Inh stereotype,
Anyway, we assume that the developer uses anG_MixedPolicyand G_SimplePolicyboth inherit the
Integrated Development Environmendling profiles ports and interfaces @_Policy. G_MixedPolicymay
and constraints, performing model transformations jnclude simple or mixed policies. Policies are for
from a high-level description, and providing anyeas instanceG_Planning

way to describe and check constraints. For each app"cation, the Componem_LocaL
Applicationimplements the business logic merged with

the execution template required for adaptationiserv ~ For instance, the generic model assumes that when a
According to the execution context, tii& Manager application is rejected at admission time due tack
sends orders to change application behavior, hemce of resources, a negotiation process is initiatefinth a
tune their resource consumption to fit the current new operating point, which leads to several message
context. TheG_LoaderlaunchesG_LocalApplication exchanges between applications and managers
using G_OS services, possibly after negotiation and (sequence diagrams are not shown). When the specifi
adaptation of running applications. Th&_OS system does not supply negotiation, the component
component, included in all QMS, allows componeantst «Negotiatiom has to be removed from the derived
use both standard operating system services andnodel and consistency should be checked. On ther oth
specific layers. For further details from the QaSnp hand, since admission is a basic service for QM§, t
of view, the reader may refer to [1]. componentAdmissiom appears in any QMS.
Components’ names in the generic framework do To derive the componer@_ Policy, we distinguish
not matter. Stereotype tagging is the only meaningf simple from mixed policies. In the former case, the
information to identify components during model derivation process is a substitution of the compone
transformation. Hence, in the sequel, componéét « G_Policy for any single component inheriting from
means a component marked with the stereotyfpeot G_SimplePolicy (Figure 5b). In the latter case,
inheriting from a component marked with>x G_Policyis replaced by the compondat MixedPolicy
that may encompass components inheriting from
4.2.2. Comments. Since the general architecture aims G_Policy and supplying policies used in the specific
to apply to any QMS, the components are rathersystem, e.g.,G_Learning and G_ExpertSystemin
abstract and limited to commonality. Thus, devetepe DCBL [9]. In both cases, the substitution is penfed
will adapt the generic model to build the specific using ®2P_Inh>
system model that deals with their own requirements

«DecisionMaking»]
G_DecisionMaking

£] supervise

1«Manager»

«Negotiation» «Adaptation» «Policy»
:G_Negotiation :G_Adaptation :G_Policy

«DecisionMaking»
«OS» - .
G_DecisionMaking
:G_0S

____________]l____________'_‘______________ «P2P_Inh»ér

«Managem - =] |
G_Manager «Admission»
=] =] G_Admission
«Mapping» «DecisionMaking» || _____________ Y———— o _____
5 :G_Mapping :G_DecisionMaking 4 ' =]
«Policy»
=) .
«Admission» «Monitoring» G_Policy
:G_Admission :G_Monitoring «P2P Inh$
o ePolicns -
G_Manager <<S|mp ePo |c¥» «Mlx'e Po |c¥»
0= G_SimplePolicy G_MixedPolicy
<P2P_Inh» «MixedPolicy» £]
G_MixedPolicy
_ €]
€] £] «Planning» «ExpertSystem»
«LocalManager» «GlobalManage :G_Planning :G_ExpertSystem
G LocalManager G _GlobalManager

Figure5a. Componer-based generic architecture for QI Figure 5b. Compone-based generic architecturcont’d).

4.2.3. Discussion. The nature of the derivation process shown
depends on the modeling approach used to destibe t constraints are checked. For

in Figure 5. Then generic and specific
instance, when the

domain, which explains why the choice of this multiplicity of a connector becomes 0 (frofM_GM

approach was a central issue. A first way couldde
define base components with thequired properties,

to PM_Loaderin the PMQDA model), the connected
port is removed since it is useless. On the otlaedh

and then to derive specific components to inherit the portp that connect®M_LMto PM_Loaderis kept.
properties. This appealing solution is suitable for After derivation, the model encompasses elements as
classes, but inheritance proves to be too strong afollows:

relationship for components.

In our approach, we start from a transformation of
the generic model to keep only the needed compsnent
and relationships. This chosen approach, easy to
understand by UML readers, seems the best
compromise between derivation flexibility and efft
write the generic model and constraints.

4.3. Derivation Constraints Specification

The derivation constraints must be satisfied fa th
first specific model derived from the generic model
Examples of such constraints are:

One manager must remain in any derived model,
eitherLM or GM in case of single node;

At least one manager must include a component
«Policy»;

Since admission is a basic service in QMS, at least
one component Admissiom must remain in any
QMS. «Mapping> may be removed.

4.4. Derivation and Refinement of the PM QDA
Models

4.4.1. Specific Constraints. The developer defines and
adds specific constraints to the PMQDA's specific
profile, which applies to PMQDA models only.
Examples of specific constraints (Figure 6):
ComponentsLM and GM do not include any
component Negotiation» because PMQDA does
not consider negotiation mechanism;

A model of the PMQDA distributed system
includes a uniqu&M, and ond_M on each node;

- A LM does not include anyPelicy» component
because resource management is fully centralized in
theGM,;

Developers may refine generic stereotypes to add
particular notions and constraints related to their
specific requirements, for instance in Figure 6
«SpecificLM> refines LM to add a constraint
ensuring that local managers are leaves regarding
thesupervisaelationship.

4.4.2. PMQDA Architecture. The specific model of
PMQDA in Figure 6 is derived from the generic model

PM_GM this supervisor controls the execution of
PM_LocalApplicatios and applies the
PM_Planning policy that schedules the use of the
resources for all the concurrent applications. Ksan
to PM_Adaptation the PM_GM tunes the

«LocalApplication»
:PM_LocalApplication

«OS»
‘PM_OS

«Loader»
:PM_Loader

!‘

supervise

)

«GlobalManager»
:PM_GlobalManager

Explicit inheritance is requ@‘

_V«GlobaIManager»EI
G_GlobalManager

«P2P_Inh»
«BB_Inh»

«GIobaIManager»EI
PM_GlobalManager

to propagate ancestor ports |

«LocalManager» gl
G_LocalManager

«BB_Inh»
«P2P_Inh»

«SpecificLM» £l
PM_LocalManager

GlobalManager: —
« ger» &l «SpecificLM» Z]
PM_GlobalManager
=] PM_LocalManager
«Admission» — =]
:PM_Admission «Monitoring»
— :PM_Monitoring
«DecisionMaking» gl
:PM_DecisionMaking
«DecisionMaking» &1

«DecisionMaking>€|
PM_DecisionMaking

«P2P_Inhff

«Admission»
PM_Admission

PM_DecisionMaking

«Adaptation» g]
:PM_Adaptation

£]

£]

«Planning»
:PM_Planning

Figure6. The specific PMQDA model.

application behavior according to the choices development of a family of specific systems in 2egi
carried out during the scheduling step. Since peeci domain. Our approach, based on standard UML, does

port inheritance is required, théM_Global- not require specific training or tools besides UM\L.
Managerinherits ports fronG_GMusingP2P_Inh. generic coarse-grained model captures the relevant
- PM_LM: on each node of the distributed system, it knowledge and commonality of the domain. The
acts as an intermediary betweeRM_Local- architect aided by an expert of the domain, maybe
Applicatiors running on its node and tR&_GM expert himself/herself, builds this model once. The
- PM_Loader during admission of a local application developers derive specific models fribm

application, thePM_Loader establishes a dialog generic one while the framework ensures architectur
with its PM_LM in order to obtain clearance to consistency and soundness. Their burden is reduced

launch the®M_LocalApplication since they share the architect's domain knowledgke a
- PM_LocalApplication it merges usual application the resulting general architecture. .
business code with behavior adaptation services. Our approach is illustrated through a case study in

- PM_Admission has the same structure as the domain of QoS Management System (PMQDA).
PM_DecisionMakingbecause PMQDA executes the This case study shows that our approach is suitalze

same operations for both admission and adaptation. complex domain. The abstraction level of the
description remains reasonably high to focus on

5. Related Works commonality. However, to start from a frameworkais
- great advantage compared with a development from
Numerous works aim to aid the development of scratch.

systems in a given domain. They tackle the prokdém
different abstraction levels, and their buildingpdks
range from general to very specific. A coarse-grdin [1] F. Alhalabi, P. Vienne, M. Maranzana, and J-L.
classification could distinguish CBSE [4], and imay Sourrouille, Code Generation from the Descriptidn o
SPL [2]. All these approaches aim to provide domain Qos-Aware Applications. IEEE ICTTA06, Vol 2: p.

References

elements and composition operators to build systams 3216-3221, 2006.

a given domain. Unlike these approaches, our[2] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O

framework enforces composition rules by limitinge th Laitenberger, R. Laqua, and D. Muthig, Component-

licit expressions. based Product Line Engineering with UML. ISBN 0-201
SPLs concerns are close to our works, but thesim i __ 73791-4 506 pages, 2001.

[3] H-G. Min, J-Y. Lee, S-A. Kim, and S-D. Kim, An
Effective Method to Design CBD Components in EJB.
SERA'06, p. 49-56, 2006.

[4] 1. Gorton, G. T. Heinemann, |. Crnkovic, and VM-

to represent products of market segments with plyssi
low coupling, maybe extending UML with a profilerfo
variations, while our approach deals with conceypis

semantics of a user domain with high cohesion.un o Schmidt, Component-Based Software Engineering, ISBN
approach, the derivation of specific models isipkyt 978-3-540-35628-8 pages, 2006.

done manually because the variability is unknown a[5] OMG: Object Management Group, UML 2.1.1
priori. In SPLs, variability is precisely describaehich Superstructure. document forma/07-02-03., 2007.
allows automating derivation from the choices of [6] H-W. Schmidt, I-D. Peake, J. Xie, I. Thomasp.J
elements to be kept [2]. Kramer, A. Fay, and P. Bort, Modelling Predictable

Component based development requires checking \?v%mr\fjgg%rg'iazzg_ﬁ'?tg%lggd Control - Architectures.

component assembly. Component models such as EJ%] F. Siqueira, and V. Cahill, A QoS Architectufe Open

[3] consider components as building blocks without Systems. IEEE ICDCS'00, p. 197-204, 2000.

defining a precise composition language. To overom [g] A. Solberg, J. Oldevik, and J-@ Aagedal, A Feavork
this weakness, some works propose to insert “glue” for QoS-Aware Model Transformation, Using a Pattern
between components. For instance, [6] uses design b Based Approach. CooplS, DOA, and ODBASE: p. 1190-
contract to connect components. Our approach applie 1207, 2004.

at a high level of abstraction only: "glue" is rmuired [9] P. Vienne, and J-L Sourrouille, A framework for

since connections are implicitly predefined in the gé’é%“;li:csgmﬁ?égoge\'}afior 22323 ggoéeaming- ACM
generic model. V1, p. 44-47, .

[10]P. Vienne, J-L. Sourrouille, and M. Maranzana,
. Modeling Distributed Applications for QoS

6. Conclusion Management. Software Engineering and Middleware,
LNCS 3437, Springer Verlag: p. 170-184, 2005.

This paper proposes a methodology to ease the

