
HAL Id: hal-00333483
https://hal.science/hal-00333483v1

Submitted on 10 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A UML based methodology to ease the modeling of a
set of related systems

Firas Alhalabi, Mathieu Maranzana, Jean-Louis Sourrouille

To cite this version:
Firas Alhalabi, Mathieu Maranzana, Jean-Louis Sourrouille. A UML based methodology to ease the
modeling of a set of related systems. The Third International Conference on Software Engineering
Advances (ICSEA) 2008, Oct 2008, Malta. pp.51-57. �hal-00333483�

https://hal.science/hal-00333483v1
https://hal.archives-ouvertes.fr

A UML based methodology to ease the modeling of a set of related systems

Firas Alhalabi, Mathieu Maranzana, Jean-Louis Sourrouille

 Université de Lyon
INSA-Lyon, LIESP, Bat. B. Pascal, F-69621, Villeurbanne Cedex, France

{Firas.Alhalabi, Mathieu.Maranzana, Jean-Louis.Sourrouille}@insa-lyon.fr

Abstract

Despite progress in model engineering, modeling

large distributed systems is still a long and complex
task. This paper outlines a methodology based on UML
to make the modeling of a set of related systems
simpler. A generic component-based framework
specifies the commonality and variability of these
systems at high-level of abstraction both from
structural and behavioral viewpoint. Then, models of
specific systems are derived from the coarse-grained
generic framework. A case study in the field of QoS
management systems illustrates this approach.

1. Introduction

Modeling large-scale distributed systems is complex
and requires a great knowledge of the application
domain. Modeling a second system in the same
application domain is much easier. Further, having
available knowledge about an application domain
(domain in short) helps software development, and
avoids starting from scratch. This paper proposes (i)
an approach to model a domain at a high abstraction
level based on UML 2.1 [5]; (ii) a methodology to aid
the development of specific systems in this domain.

The aim is close to works such as, Component-
Based Software Engineering (CBSE [4]), and Software
Product Lines (SPL [2]). In these approaches, the
consistency of component assembly should be checked
either manually or automatically, while in our approach
the framework itself enforces such constraints.

The basic concepts of the proposed solution are
framework, component and model centric
development. Component-based system design and
framework-based development are well-known
software engineering practices that reduce system
complexity by separating concerns, and facilitate
software reuse. The need of abstract models that do not
depend on specific applications is in line with current
trends in software development change from code-
centric to model-centric [8].

The rest of the paper is organized as follows: section
2 describes component models in standard UML, and
defines required UML extensions. Section 3 proposes
our methodology aiming to facilitate the development
of specific system models from a generic framework in
a given domain. To illustrate our approach, section 4
presents a case study in the domain of QoS
Management System (QMS), while section 5 discusses
related works. Finally, section 6 concludes these works.

2. UML Notations

2.1. Definitions

According to the UML superstructure document, “A
component represents a modular part of a system that
encapsulates its contents and whose manifestation is
replaceable within its environment”. A component is a
black-box container from an external point of view, but
its internal structure can be described, particularly
using subcomponents. The internal structure describes
roles and multiplicities of subcomponents as well as
their connectors. A multiplicity greater than one
specifies that a subcomponent, viewed as a type, plays
various roles in the context of the composite
component (C plays the roles c1 and c2 in Figure 1).

2.2. UML Extensions

As a general purpose language, UML does not
supply domain specific concepts. Fortunately, it
includes mechanisms to add new concepts and to
extend the language. UML profiles are interchangeable
models gathering together related language extensions.
To enforce the semantics of the concepts, UML
supplies a language (OCL [5]) to specify constraints
that apply to models, thus restricting the use of model
elements to keep only meaningful expressions. The
following sections define our stereotypes and
constraints to make UML more suitable for component-
based modeling.

2.2.1. Component. A UML component specifies a type
and can be realized in different manners. The
realization of a component is independent of the
realization of its underlying subcomponents. For
example in Figure 1, the realization of the component A
does not depend on the realization of its
subcomponents B and C. Finally, a component can be
implemented by a set of classes or even external non-
detailed components.

The internal structure of a component shows how
the subcomponents carry out the exported services.
Component interfaces specify signatures of public
features such as operations and signals. In Figure 1,
components interact with each other using assembly
connectors through provided and required interfaces
associated with ports. A component can be substituted
for a component providing equivalent services based
on interface compatibility: in UML, substitutability is
characterized by a dependency relationship with the
stereotype «substitute».

2.2.2. Component Inheritance. Component is a
subtype of Class in the UML metamodel, but UML
does not redefine the Generalization relationship for
components, hence the relationship between classes
applies to components. However, classes and
components are different from several points of view.
To describe our framework, we decided to make
explicit some definitions and restrictions:
− Component Realization in the UML sense is always

described using an arrow with a dotted line, and
never using nested components to avoid confusing
with subcomponent containment;

− Within a component, subcomponents are of type
Property in the UML metamodel. In principle, when
the containing component is created, instances of
properties are created, but instance creation of a
Component has no precise semantics. To cope with
this problem, we assume that instance creation
occurs only for properties of type Class;

− Components intercommunicate only through ports

owning required and/or provided interfaces. This
constraint avoids direct connection via non-typed
connectors.
According to the Generalization relationship,

components inherit ports from their ancestors. Port
inheritance ensures that any component is substitutable
for its parent from the connections’ point of view.
When descendants redefine ports, interface
conformance between general and specific ports should
be enforced to ensure substitutability from the invoked
services' point of view. The internal structure of visible
subcomponents, i.e., not private, is inherited. In
essence, a component is a black box whose obvious
public elements are only ports and interfaces. To
consider these ideas, we define two stereotypes:

(i) The «BB_Inh» stereotype (Figure 2) extends the
Generalization metaclass and prevents a component to
inherit subcomponents from its ancestors. This
constraint restricts the inherited members for
Component elements. The internal structure of the
ancestor is ignored.

(ii) The «P2P_Inh» stereotype (Figure 3) extends the
Generalization metaclass by making port interfaces
precise. The redefinition of port p by p_Spec implies
rules that are similar to pre/postconditions. Regarding
an interface as a contract:
− p_Spec cannot require more than p, hence the

required interface of p_Spec is included into the
required interface of p, e.g., I_Base_Required
inherits from I_Specialized_ Required;

 A

b:B

ICB «Interface»
ICB

 Op1()
 Op2()

Assembly
connector

Delegation
connector

Required
interface

c1:C

c2:C

Provided
interface

d:D e:E
B

Port

Figure 1. Internal structure of components A and B.

«BB_Inh»

C_Base

p X Y

Z

C_Specialized

/p

C_Base

X Y

C_Specialized

Z /Y /X /p

p

Figure 2. Inheritance (left) and «BB_Inh» (right).

«P2P_Inh»
{redefines p}
p_Spec

C_Base
q

Port q is
inherited
implicit ly

C_Specialized

p
I_Base_Provided

I_Base_Required

I_Specialized_Required

I_Specialized_Provided

Figure 3. «P2P_Inh» stereotype.

− p_Spec should provide at least as much as p, hence
the provided interface of p_Spec inherits from the
provided interface of p, e.g., I_Specialized_
Provided inherits from I_Base_Provided.
Another way to enforce this constraint would be to

use the dependency relationship with the «substitute»
stereotype, but this requires describing matching ports,
i.e., the substitution of component C1 with ports p1 and
p2 for C2 with ports q1 and q2 requires mapping each qi
to a pj. In our proposal, port matching is clearly shown
by the redefinition.

3. Proposed Approach

Our approach takes into account both structural and
behavioral aspects. For the sake of place, we focus on
structure only.

3.1. Process description

The proposed approach is in line with Model Driven
Development (MDD) [5]. The main idea of MDD is to
separate conceptual concerns described in Platform
Independent Model (PIM), from implementation-
specific concerns described in Platform Specific Model
(PSM). PIMs can be successively refined, but when a
Platform Model (PM) is added to the refined PIM, it
becomes a PSM. Our approach first defines a generic
model describing a family of systems in a given
domain. Then, specific models are derived from the
generic model. Generic and specific models both are
platform independent models. Ideally, after
transforming the most detailed PIM into suitable PSMs,
the code of applications is automatically generated.
Figure 4 summarizes the proposed development
process distinguishing two main roles: the architect,
who is assumed to be an expert in the given domain,
and developers who derive the generic model to design
specific models. A UML expert may assist the architect
in defining profiles. The development process is
outlined as follows (numbers refer to Figure 4):
(1) The architect creates a UML profile called Generic

Profile (a) that defines all the concepts related to a
family of systems in a domain. These concepts are
described by stereotypes, which are user-defined
metaclasses, and constraints.

(2) The architect designs a generic component-based
architecture that captures commonality and main
variability for a family of systems in a domain. The
architecture includes components and their roles,
connectors, ports, interfaces and constraints. The
architect also provides generic sequence diagrams

to describe dynamic aspects, i.e., interactions and
communications between components.

(3) The architect describes derivation constraints in a
Derivation Profile (b).

(4) From the generic model, each developer builds
his/her specific model through transformations.
Several transformations are common to all areas
and others are area-specific. The latter are done
manually because they are not reusable. The former
are defined apart from any area description into a
Common Profile through a set of stereotypes that
mark elements and specify transformations to be
executed. For instance, model elements marked
with stereotype «Remove» will be removed from
the model during transformation. Developers start
from the generic model, mark elements with
stereotypes of the common profile, and then execute
model mapping by using a model transformation
language. Finally, they manually transform the
specific model. The derived model should conform
to constraints (a), (b) and (d). During this step,
developers may define Specific Profiles, and check
constraints (c). Moreover, they will have to ensure
model consistency.

(5) As in usual development processes, specific models
may be refined.

(6) The components of specific models are still
specifications. At implementation time, they will be
instantiated to represent context-dependant
implementations (PSM).

(7) Finally, the code skeleton is automatically

Generic Model

Family of systems
 in a given domain

refinement

design

representation

(1)

(2) (3)

(8)

(7)

(5)

Derivation
Profile

Code

(4)

(6)

(a)

(b)

(c)

(6)

D
ev

el
op

er
s

A
rc

hi
te

ct

S
co

pe
 o

f
pr

of
ile

Specific
Model 1

PSM

Code

Specific
Model i

PSM

(6)
(7)

(6)

(4) Specific
Profile i

Generic
Profile

...

...

...

Common
Profile

U
M

L
E

xp
er

t

(d)

Figure 4. Outline of our process.

generated and developers fill in methods. At
detailed level, descriptions are specific, but should
meet higher-level constraints such as interfaces.

(8) According to the experience gained during
modeling, developers may ask the architect to
enhance the generic model.

3.2. Constraints

Within our development process, we distinguish
three types of constraints (letters refer to Figure 4).
These constraints are specified either in natural
language or preferably in OCL to allow automatic
checks:
(a) Generic Constraints are defined by the architect,

and apply to all the models (scope Figure 4). They
guide the use of the domain notions expressed as
components, ports and connectors. For instance, in
a Client/Server pattern, a generic constraint may
reduce the licit connections: “each Client must be
associated with at least one Server”.

(b) Derivation Constraints apply to any derived
specific model, ensuring it remains licit after
derivation. For instance, to complete the above
generic constraint, the architect may add “any
Server should have at least one Client”. This
derivation constraint forbids a cut off Server, while
the previous generic constraint did not.

(c) Specific Constraints are defined by the developer,
and apply to the derived and refined models,
including PSMs. For instance, to achieve the
chosen example, a specific constraint may be
written: “each Client is associated with exactly one
Server”. This last constraint defines the expected
peer-to-peer connection in the refined model.

3.3. Model Derivation and Refinement

The architect specifies the semantics of the area by
describing its concepts and their allowed interactions.
Most of these semantic constraints are implicitly
described within the generic model. In addition to
generic and derivation constraints, these constraints
specify rules that ensure the consistency of component
assembly. Moreover, automatic transformations
enforce component composition rules. Developers
should check constraints that are not expressed in OCL.
Anyway, we assume that the developer uses an
Integrated Development Environment handling profiles
and constraints, performing model transformations
from a high-level description, and providing an easy
way to describe and check constraints.

4. Case Study

Our team has a good experience in the development
of QMS, which explains the choice of the QMS field to
illustrate our approach. Beside our works, e.g., DCBL
[9] and PMQDA [10], other solutions have been
proposed, e.g., Quartz [7]. Each system has a specific
model depending on its particular requirements. This
section first defines a generic component-based
framework aiming to aid the designer in the domain of
QMS. Then, a specific model for the PMQDA
distributed QMS is derived from the generic
framework. In addition, we discuss the problems that
we encountered regarding the derivation process.

4.1. Generic Profile Specification

The Generic Profile defines notions (vocabulary) as
stereotypes that mainly extend the UML Component
metaclass. The notions that we identified in the QoS
management domain are for instance manager,
admission, monitoring and mapping. In Figure 5,
stereotypes mark components to specify their meaning
and to ensure traceability after derivation. The
semantics of the domain induces constraints that are
attached to these stereotypes. For instance, in Figure 5a
“a LocalManager (LM) cannot be connected with
another LM” or “the root of the managers hierarchy
along the supervise connector should be a
GlobalManager (GM)” .

Our generic stereotypes «BB_Inh» and «P2P_Inh»
and their constraints are included into the Generic
Profile not to multiply profiles since they are common
to all models.

4.2. Generic QMS Framework Design

4.2.1. Architecture. Figure 5a depicts the architecture
of a generic framework for QMS (some connectors are
omitted to simplify). The top-level composite
component G_Manager controls the QMS. A
G_GlobalManager (G_GM) controls one or more G_
LocalManagers (G_LM) through the supervise
connector.

G_Adaptation and G_Policy (Figure 5b) set
application behavior to improve the overall QoS of the
system. Thanks to the «P2P_Inh» stereotype,
G_MixedPolicy and G_SimplePolicy both inherit the
ports and interfaces of G_Policy. G_MixedPolicy may
include simple or mixed policies. Policies are for
instance G_Planning.

For each application, the component G_Local-
Application implements the business logic merged with

the execution template required for adaptation service.
According to the execution context, the G_Manager
sends orders to change application behavior, hence to
tune their resource consumption to fit the current
context. The G_Loader launches G_LocalApplication
using G_OS services, possibly after negotiation and
adaptation of running applications. The G_OS
component, included in all QMS, allows components to
use both standard operating system services and
specific layers. For further details from the QoS point
of view, the reader may refer to [1].

Components’ names in the generic framework do
not matter. Stereotype tagging is the only meaningful
information to identify components during model
transformation. Hence, in the sequel, component «X»
means a component marked with the stereotype «X» or
inheriting from a component marked with «X».

4.2.2. Comments. Since the general architecture aims
to apply to any QMS, the components are rather
abstract and limited to commonality. Thus, developers
will adapt the generic model to build the specific
system model that deals with their own requirements.

For instance, the generic model assumes that when an
application is rejected at admission time due to a lack
of resources, a negotiation process is initiated to find a
new operating point, which leads to several message
exchanges between applications and managers
(sequence diagrams are not shown). When the specific
system does not supply negotiation, the component
«Negotiation» has to be removed from the derived
model and consistency should be checked. On the other
hand, since admission is a basic service for QMS, the
component «Admission» appears in any QMS.

To derive the component G_Policy, we distinguish
simple from mixed policies. In the former case, the
derivation process is a substitution of the component
G_Policy for any single component inheriting from
G_SimplePolicy (Figure 5b). In the latter case,
G_Policy is replaced by the component G_MixedPolicy
that may encompass components inheriting from
G_Policy and supplying policies used in the specific
system, e.g., G_Learning and G_ExpertSystem in
DCBL [9]. In both cases, the substitution is performed
using «P2P_Inh».

1

*

:G_Manager

«Manager»

:G_OS

«OS»

:G_Loader

«Loader»

:G_LocalApplication

«LocalApplication»
supervise

1

1 *

*

1*

* 1

0..1

*

:G_Mapping

«Mapping»

G_Manager
«Manager»

«DecisionMaking»

:G_DecisionMaking

:G_Admission

«Admission» «Monitoring»

:G_Monitoring

«P2P_Inh»

G_Manager
«Manager»

G_LocalManager

«LocalManager»

G_GlobalManager

«GlobalManager»

Figure 5a. Component-based generic architecture for QMS.

G_Policy

«Policy»

G_SimplePolicy

«SimplePolicy»

G_MixedPolicy

«MixedPolicy»

«P2P_Inh»

«P2P_Inh»

:G_Negotiation

«Negotiation»

G_DecisionMaking
«DecisionMaking»

:G_Adaptation

«Adaptation»

:G_Policy

«Policy»

«DecisionMaking»

G_DecisionMaking

G_Admission

«Admission»

:G_Planning

«Planning»

 G_MixedPolicy
«MixedPolicy»

:G_ExpertSystem

«ExpertSystem»

Figure 5b. Component-based generic architecture (cont’d).

4.2.3. Discussion. The nature of the derivation process
depends on the modeling approach used to describe the
domain, which explains why the choice of this
approach was a central issue. A first way could be to
define base components with the required properties,
and then to derive specific components to inherit
properties. This appealing solution is suitable for
classes, but inheritance proves to be too strong a
relationship for components.

In our approach, we start from a transformation of
the generic model to keep only the needed components
and relationships. This chosen approach, easy to
understand by UML readers, seems the best
compromise between derivation flexibility and effort to
write the generic model and constraints.

4.3. Derivation Constraints Specification

The derivation constraints must be satisfied for the
first specific model derived from the generic model.
Examples of such constraints are:
− One manager must remain in any derived model,

either LM or GM in case of single node;
− At least one manager must include a component

«Policy»;
− Since admission is a basic service in QMS, at least

one component «Admission» must remain in any
QMS. «Mapping» may be removed.

4.4. Derivation and Refinement of the PMQDA
Models

4.4.1. Specific Constraints. The developer defines and
adds specific constraints to the PMQDA’s specific
profile, which applies to PMQDA models only.
Examples of specific constraints (Figure 6):
− Components LM and GM do not include any

component «Negotiation» because PMQDA does
not consider negotiation mechanism;

− A model of the PMQDA distributed system
includes a unique GM, and one LM on each node;

− A LM does not include any «Policy» component
because resource management is fully centralized in
the GM;

− Developers may refine generic stereotypes to add
particular notions and constraints related to their
specific requirements, for instance in Figure 6
«SpecificLM» refines LM to add a constraint
ensuring that local managers are leaves regarding
the supervise relationship.

4.4.2. PMQDA Architecture. The specific model of
PMQDA in Figure 6 is derived from the generic model

shown in Figure 5. Then generic and specific
constraints are checked. For instance, when the
multiplicity of a connector becomes 0 (from PM_GM
to PM_Loader in the PMQDA model), the connected
port is removed since it is useless. On the other hand,
the port p that connects PM_LM to PM_Loader is kept.
After derivation, the model encompasses elements as
follows:
− PM_GM: this supervisor controls the execution of

PM_LocalApplications and applies the
PM_Planning policy that schedules the use of the
resources for all the concurrent applications. Thanks
to PM_Adaptation, the PM_GM tunes the

:PM_LocalApplication
«LocalApplication»

:PM_LocalManager
«SpecificLM»

supervise

«GlobalManager»
PM_GlobalManager

:PM_Admission
«Admission»

:PM_DecisionMaking
«DecisionMaking»

p

*

*

*

*

:PM_OS
«OS»

:PM_Loader
«Loader»

:PM_GlobalManager
«GlobalManager» Port p to PM_Loader

is removed because
the multiplicity is 0

*

G_GlobalManager
«GlobalManager»

«BB_Inh»

Explicit inheritance is required
to propagate ancestor ports

«P2P_Inh»

PM_GlobalManager
«GlobalManager»

G_LocalManager
«LocalManager»

«BB_Inh»
«P2P_Inh»

PM_LocalManager
«SpecificLM»

«DecisionMaking»
PM_DecisionMaking

:PM_Adaptation
«Adaptation»

:PM_Planning
«Planning»

PM_DecisionMaking
«DecisionMaking»

«P2P_Inh»

 PM_Admission
«Admission»

«SpecificLM»
PM_LocalManager

«Monitoring»
 :PM_Monitoring

Figure 6. The specific PMQDA model.

application behavior according to the choices
carried out during the scheduling step. Since precise
port inheritance is required, the PM_Global-
Manager inherits ports from G_GM using P2P_Inh.

− PM_LM: on each node of the distributed system, it
acts as an intermediary between PM_Local-
Applications running on its node and the PM_GM.

− PM_Loader: during admission of a local
application, the PM_Loader establishes a dialog
with its PM_LM in order to obtain clearance to
launch the PM_LocalApplication.

− PM_LocalApplication: it merges usual application
business code with behavior adaptation services.

− PM_Admission has the same structure as
PM_DecisionMaking because PMQDA executes the
same operations for both admission and adaptation.

5. Related Works

Numerous works aim to aid the development of
systems in a given domain. They tackle the problem at
different abstraction levels, and their building blocks
range from general to very specific. A coarse-grained
classification could distinguish CBSE [4], and in a way
SPL [2]. All these approaches aim to provide domain
elements and composition operators to build systems in
a given domain. Unlike these approaches, our
framework enforces composition rules by limiting the
licit expressions.

SPLs concerns are close to our works, but the aim is
to represent products of market segments with possibly
low coupling, maybe extending UML with a profile for
variations, while our approach deals with concepts and
semantics of a user domain with high cohesion. In our
approach, the derivation of specific models is partially
done manually because the variability is unknown a
priori. In SPLs, variability is precisely described, which
allows automating derivation from the choices of
elements to be kept [2].

Component based development requires checking
component assembly. Component models such as EJB
[3] consider components as building blocks without
defining a precise composition language. To overcome
this weakness, some works propose to insert “glue”
between components. For instance, [6] uses design by
contract to connect components. Our approach applies
at a high level of abstraction only: "glue" is no required
since connections are implicitly predefined in the
generic model.

6. Conclusion

This paper proposes a methodology to ease the

development of a family of specific systems in a given
domain. Our approach, based on standard UML, does
not require specific training or tools besides UML. A
generic coarse-grained model captures the relevant
knowledge and commonality of the domain. The
architect aided by an expert of the domain, maybe
expert himself/herself, builds this model once. Then
application developers derive specific models from the
generic one while the framework ensures architecture
consistency and soundness. Their burden is reduced
since they share the architect’s domain knowledge and
the resulting general architecture.

Our approach is illustrated through a case study in
the domain of QoS Management System (PMQDA).
This case study shows that our approach is suitable in a
complex domain. The abstraction level of the
description remains reasonably high to focus on
commonality. However, to start from a framework is a
great advantage compared with a development from
scratch.

References

[1] F. Alhalabi, P. Vienne, M. Maranzana, and J-L.
Sourrouille, Code Generation from the Description of
QoS-Aware Applications. IEEE ICTTA’06, Vol 2: p.
3216-3221, 2006.

[2] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O.
Laitenberger, R. Laqua, and D. Muthig, Component-
based Product Line Engineering with UML. ISBN 0-201-
73791-4 506 pages, 2001.

[3] H-G. Min, J-Y. Lee, S-A. Kim, and S-D. Kim, An
Effective Method to Design CBD Components in EJB.
SERA'06, p. 49-56, 2006.

[4] I. Gorton, G. T. Heinemann, I. Crnkovic, and H-W.
Schmidt, Component-Based Software Engineering, ISBN
978-3-540-35628-8 pages, 2006.

[5] OMG: Object Management Group, UML 2.1.1
Superstructure. document forma/07-02-03., 2007.

[6] H-W. Schmidt, I-D. Peake, J. Xie, I. Thomas, J-B.
Kramer, A. Fay, and P. Bort, Modelling Predictable
Component-Based Distributed Control Architectures.
WORDS'03, p. 339-347, 2003.

[7] F. Siqueira, and V. Cahill, A QoS Architecture for Open
Systems. IEEE ICDCS'00, p. 197-204, 2000.

[8] A. Solberg, J. Oldevik, and J-Ø Aagedal, A Framework
for QoS-Aware Model Transformation, Using a Pattern-
Based Approach. CoopIS, DOA, and ODBASE: p. 1190-
1207, 2004.

[9] P. Vienne, and J-L Sourrouille, A framework for
Dynamic Control of Behavior based on Learning. ACM
ESEC/FSE WITSE'03, V 1, p. 44-47, 2003.

[10]P. Vienne, J-L. Sourrouille, and M. Maranzana,
Modeling Distributed Applications for QoS
Management. Software Engineering and Middleware,
LNCS 3437, Springer Verlag: p. 170-184, 2005.

