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DECAY OF MASS FOR NONLINEAR EQUATION WITH FRACTIONAL LAPLACIAN

The large time behavior of nonnegative solutions to the reaction-diffusion equation

posed on R N and supplemented with an integrable initial condition is studied. We show that the anomalous diffusion term determines the large time asymptotics for p > 1 + α/N, while nonlinear effects win if p ≤ 1 + α/N.

Introduction

We study the behavior, as t → ∞, of solutions to the following initial value problem for the reaction-diffusion equation with the anomalous diffusion

∂ t u = -Λ α u + λu p , x ∈ R N , t > 0, (1) 
u(x, 0) = u 0 (x), [START_REF] Biler | Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws[END_REF] where the pseudo-differential operator Λ α = (-∆) α/2 with 0 < α ≤ 2 is defined by the Fourier transformation: Λ α u(ξ) = |ξ| α u(ξ). Moreover, we assume that λ ∈ {-1, 1} and p > 1.

Nonlinear evolution problems involving fractional Laplacian describing the anomalous diffusion (or α-stable Lévy diffusion) have been extensively studied in the mathematical and physical literature (see [START_REF] Biler | Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws[END_REF][START_REF] Karch | Fractal Hamilton-Jacobi-KPZ equations[END_REF][START_REF] Droniou | Fractal first-order partial differential equations[END_REF] for references). One of possible ways to understand the interaction between the anomalous diffusion operator (given by Λ α or, more generally, by the Lévy diffusion operator) and the nonlinearity in the equation under consideration is the study of the large time asymptotics of solutions to such equations. Our goal is to contribute to this theory and our results can be summarized as follows. For λ = -1 in equation [START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF], nonnegative solutions to the Cauchy problem exist globally in time. Hence, we study the decay properties of the mass M (t) = R N u(x, t) dx of the solutions u = u(x, t) to problem (1)- [START_REF] Biler | Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws[END_REF]. We prove that lim t→∞ M (t) = M ∞ > 0 for p > 1 + α/N (cf. Theorem 1, below), while M (t) tends to zero as t → ∞ if 1 < p ≤ 1+α/N (cf. Theorem 2). As a by-product of our analysis, we show the blow-up of all nonnegative solutions to (1)-( 2) with λ = 1 in the case of the critical nonlinearity exponent p = 1 + α/N (see Theorem 3,below).

The idea which allows to express the competition between diffusive and nonlinear terms in an evolution equation by studying the large time behavior of the space integral of a solution was already introduced by Ben-Artzi & Koch [START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF] who considered the viscous Hamilton-Jacobi equation u t = ∆u-|∇u| p (see also Pinsky [16]). An analogous result for the equation u t = ∆u + |∇u| p (with the growing-in-time mass of solutions) was proved by Laurençot & Souplet [START_REF] Ph | On the growth of mass for a viscous Hamilton-Jacobi equation[END_REF]. Such questions concerning the asymptotic behavior of solutions to the Hamilton-Jacobi equation with the Lévy diffusion operator were answered in [START_REF] Karch | Fractal Hamilton-Jacobi-KPZ equations[END_REF].

In the case of the classical reaction-diffusion equation (i.e. equation ( 1) with α = 2), for p < 1 + 2/N , Fujita [START_REF] Fujita | On the blowing up of solutions of the problem for u t = ∆u + u 1+α[END_REF] proved the nonexistence of nonnegative global-in-time solution for any nontrivial initial condition. On other hand, if p > 1 + 2/N, global solutions do exist for any sufficiently small nonnegative initial data. The proof of a blow-up of all nonnegative solutions in the critical case p = 1 + 2/N was completed in [START_REF] Hayakawa | On nonexistence of global solutions of some semilinear parabolic differential equations[END_REF][START_REF] Sugitani | On nonexistence of global solutions for some nonlinear integral equations[END_REF][START_REF] Kobayashi | On the growing up problem for semilinear heat equations[END_REF]. Analogous blowup results for problem (1)-(2) with the fractional Laplacian (and with the critical exponent p = 1 + α/N for the existence/nonexistence of solutions) are contained e.g. in [START_REF] Sugitani | On nonexistence of global solutions for some nonlinear integral equations[END_REF][START_REF] Guedda | Criticality for some evolution equations[END_REF][START_REF] Guedda | A note on nonexistence of global solutions to a nonlinear integral equation[END_REF][START_REF] Birkner | Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach[END_REF].

Statement of results

In all theorems below, we always assume that u = u(x, t) is the nonnegative (possibly weak) solution of problem ( 1)-( 2) corresponding to the nonnegative initial datum u 0 ∈ L 1 (R N ). Let u 0 ≡ 0, for simplicity of the exposition. We refer the reader to [START_REF] Droniou | Fractal first-order partial differential equations[END_REF] for several results on the existence, the uniqueness and the regularity of solutions to (1)-( 2) as well as for the proof of the maximum principle (which assures that the solution is nonnegative if the corresponding initial datum is so).

First, we deal with the equation (1) containing the absorbing nonlinearity (λ = -1) and we study the decay of the "mass"

(3)

M (t) ≡ R N u(x, t) dx = R N u 0 (x) dx - t 0 R N u p (x, s) dxds.
Remark. In order to obtain equality (3), it suffices to integrate equation ( 1) with respect to x and t. Another method which leads to (3) and which requires weaker regularity assumptions on a solution consists in integrating with respect to x the integral formulation of problem ( 1)-(2) (see [START_REF] Kobayashi | On the growing up problem for semilinear heat equations[END_REF], below) and using the Fubini theorem.

Since we limit ourselves to nonnegative solutions, the function M (t) defined in ( 3) is nonnegative and non-increasing. Hence, the limit M ∞ = lim t→∞ M (t) exists and we answer the question whether it is equal to zero or not.

In our first theorem, the diffusion phenomena determine the large time asymptotics of solutions to (1)-( 2).

Theorem 1. Assume that u = u(x, t) is a nonnegative nontrivial solution of (1)-(2) with λ = -1 and p > 1 + α/N. Then lim t→∞ M (t) = M ∞ > 0.
Moreover, for all q ∈ [1, ∞)

(4) t N α ( 1-1 q ) u(t) -M ∞ P α (t) q → 0 ast → ∞,
where the function P α (x, t) denotes the fundamental solution of the linear equation u t + Λ α u = 0 (cf. equation (7) below).

In the remaining range of p, the mass M (t) converges to zero and this phenomena can be interpreted as the domination of nonlinear effects in the large time asymptotic of solutions to (1)- [START_REF] Biler | Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws[END_REF]. Note here that the mass M (t) = R N u(x, t) dx of every solution to linear equation u t + Λ α u = 0 is constant in time.

Theorem 2. Assume that u = u(x, t) is a nonnegative solution of problem (1)-( 2) with λ = -1 and 1 < p ≤ 1 + α/N. Then lim t→∞ M (t) = 0.

Let us emphasize that the proof of Theorem 2 is based on the socalled the rescaled test function method which was used by Mitidieri & Pokhozhaev (cf. e.g. [START_REF] Mitidieri | Apriori estimates and the absence of solutions of nonlinear partial differential equations and inequalities[END_REF][START_REF] Mitidieri | Nonexistence of weak solutions for some degenrate elliptic and parabolic problems on R N[END_REF] and the references therein) to prove the nonexistence of solutions to nonlinear elliptic and parabolic equations.

As the by-product of our analysis, we can also contribute to the theory on the blow-up of solutions to (1)-( 2) with λ = +1. Recall that the method of the rescaled test function (which we also apply here) was use in [START_REF] Guedda | Criticality for some evolution equations[END_REF][START_REF] Guedda | A note on nonexistence of global solutions to a nonlinear integral equation[END_REF] to show the blow-up of all positive solutions to (1)-( 2) with λ = 1 and p < 1 + α/N. Here, we complete that result by the simple proof of the blow-up in the critical case p = 1 + α/N. Theorem 3. If λ = 1, α ∈ (0, 2] and p = 1 + α/N, then any nonnegative nonzero solution of (1)-( 2) blows up in a finite time.

Proofs of Theorems 1, 2, and 3

Note first that any (sufficiently regular) nonnegative solution to (1)-( 2) satisfies [START_REF] Droniou | Fractal first-order partial differential equations[END_REF] 0

≤ R N u(x, t) dx = R N u 0 (x) dx + λ t 0 R N u p (x, s) dx ds.
Hence, for λ = -1 and u 0 ∈ L 1 (R N ), we immediately obtain

(6) u ∈ L ∞ ([0, ∞), L 1 (R N )) ∩ L p (R N × (0, ∞)).
Proof of Theorem 1. First, we recall that the fundamental solution P α = P α (x, t) of the linear equation ∂ t u + Λ α u = 0 can be written via the Fourier transform as follows ( 7)

P α (x, t) = t -N/α P α (xt -1/α , 1) = 1 (2π) N/2 R N e ix.ξ-t|ξ| α dξ.
It is well-known that for each α ∈ (0, 2], this function satisfies

(8) P α (1) ∈ L ∞ (R N ) ∩ L 1 (R N ), P α (x, t) ≥ 0, R N P α (x, t) dx = 1,
for all x ∈ R N and t > 0. Hence, using the Young inequality for the convolution and the self-similar form of P α , we have

P α (t) * u 0 p ≤ Ct -N (1-1/p)/α u 0 1 , ( 9 
)
∇P α (t) p = Ct -N (1-1/p)/α-1/α , (10) P α (t) * u 0 p ≤ u 0 p , [START_REF] Karch | Fractal Hamilton-Jacobi-KPZ equations[END_REF] for all p ∈ [1, ∞] and t > 0.

In the next step, using the following well-known integral representation of solutions to (1)-(2) ( 12)

u(t) = P α (t) * u 0 - t 0 P α (t -s) * u p (s) ds,
we immediately obtain the estimate 0 ≤ u(x, t) ≤ P α (x, t) * u 0 (x). Hence, by ( 9) and ( 11) we get

u(t) p p ≤ P α (t) * u 0 p p ≤ min Ct -N (p-1)/α u 0 p 1 ; u 0 p p ≡ H(t, p, α, u 0 ). ( 13 
)
Now, for fixed ε ∈ (0, 1], we consider the solution u ε = u ε (x, t) of ( 1)-( 2) with the initial condition εu 0 (x). The comparison principle implies that 0 ≤ u ε (x, t) ≤ u(x, t) for every x ∈ R N and t > 0. Hence, it suffices to show that for small ε > 0, which will be determined later, we have

M ε ∞ ≡ lim t→∞ R N u ε (x, t) dx > 0.
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Note first the using equality [START_REF] Droniou | Fractal first-order partial differential equations[END_REF] in the case of the solution u ε , we obtain ( 14)

M ε ∞ = ε R N u 0 (x) dx - 1 ε ∞ 0 R N (u ε (x, t)) p dx dt .
Now, we apply [START_REF] Ph | On the growth of mass for a viscous Hamilton-Jacobi equation[END_REF] with u replaced by u ε . Observe that the function H defined in [START_REF] Ph | On the growth of mass for a viscous Hamilton-Jacobi equation[END_REF] satisfies H(t, p, α, εu 0 ) = ε p H(t, p, α, u 0 ). Hence

1 ε ∞ 0 R N (u ε (x, t)) p dxdt ≤ 1 ε ∞ 0 H(t, p, α, εu 0 ) dt = ε 1-p ∞ 0 H(t, p, α, u 0 ) dt.
It is follows immediately from the definition of the function H that the integral on the right-hand side is convergent for p > 1 + α/N. Consequently,

1 ε ∞ 0 R N (u ε (x, t)) p dx dt → 0 as ε 0,
and the constant M ε ∞ given by ( 14) is positive for sufficiently small ε > 0. From now on, the proof of the asymptotic relation ( 4) is standard, hence, we shall be brief in details. First we recall that for every u 0 ∈ L 1 (R N ) we have [START_REF] Mitidieri | Nonexistence of weak solutions for some degenrate elliptic and parabolic problems on R N[END_REF] lim

t→∞ P α (t) * u 0 -M P α (t) 1 = 0,
where M = R N u 0 (x) dx. This is the immediate consequence of the Taylor argument combined with an approximation argument. Details of this reasoning can be found in [2, Lemma 3.3]. Now, to complete the proof of Theorem 1, we adopt the reasoning from [START_REF] Ph | On the growth of mass for a viscous Hamilton-Jacobi equation[END_REF]. It follows from the integral equation [START_REF] Kobayashi | On the growing up problem for semilinear heat equations[END_REF] and inequality (3.7) with p = 1 that

u(t) -P α (t -t 0 ) * u(t 0 ) 1 ≤ t t 0 u(s) p
p ds for all t ≥ t 0 ≥ 0.

Hence, using the triangle inequality we infer

u(t) -M ∞ P α (t) 1 ≤ t t 0 u(s) p p ds + P α (t -t 0 ) * u(t 0 ) -M (t 0 )P α (t -t 0 ) 1 + M (t 0 )(P α (t -t 0 ) -P α (t)) 1 + P α (t) 1 |M (t 0 ) -M ∞ | . ( 16 
)
Applying first ( 8) and ( 15) with u 0 = u(t 0 ), and next passing to the limit as t → ∞ on the right-hand side of ( 16), we obtain

lim sup t→∞ u(t) -M ∞ P α (t) 1 ≤ ∞ t 0 u(s) p p ds + |M (t 0 ) -M ∞ | .
By letting t 0 go to +∞ and using [START_REF] Fujita | On the blowing up of solutions of the problem for u t = ∆u + u 1+α[END_REF] we conclude that ( 17)

u(t) -M ∞ P α (t) 1 → 0 as t → ∞.
In order to obtain the asymptotic term for p > 1, observe that by the integral equation [START_REF] Kobayashi | On the growing up problem for semilinear heat equations[END_REF] and estimate [START_REF] Hayakawa | On nonexistence of global solutions of some semilinear parabolic differential equations[END_REF], for each m ∈ [1, ∞], we have ( 18)

u(t) m ≤ P α (t) * u 0 m ≤ Ct -N (1-1/m)/α u 0 1 .
Hence, for every q ∈ [1, m), using the Hölder inequality, we obtain

u(t) -M ∞ P α (t) q ≤ u(t) -M ∞ P α (t) 1-δ 1 u(t) δ m + M ∞ P α (t) δ m ≤ Ct -N (1-1/q)/α u(t) -M ∞ P α (t) 1-δ 1 , with δ = (1 -1/q)/(1 -1/m).
Finally, applying [START_REF] Sugitani | On nonexistence of global solutions for some nonlinear integral equations[END_REF] we complete the proof of Theorem 1.

Proof of Theorem 2. Let us define the function

ϕ(x, t) = (ϕ 1 (x)) (ϕ 2 (t)) where = 2p -1 p -1 , ϕ 1 (x) = ψ |x| BR , ϕ 2 (t) = ψ t R α , R > 0,
and ψ is a smooth non-increasing function on [0, ∞) such that

ψ(r) = 1 if 0 ≤ r ≤ 1, 0 if r ≥ 2.
The constant B > 0 in the definition of ϕ 1 is fixed and will be chosen later.

In fact, it plays some role in the critical case p = 1 + α/N only while in the subcritical case p < 1 + α/N we simply put B = 1. In the following, we denote by Ω 1 and Ω 2 the supports of ϕ 1 and ϕ 2 , respectively:

Ω 1 = x ∈ R N : |x| ≤ 2BR , Ω 2 = {t ∈ [0, ∞) : t ≤ 2R α } .
Now, we multiply equation (1) by ϕ(x, t) and integrate with respect to x and t to obtain

Ω 1 u 0 (x)ϕ(x, 0) dx - Ω 2 Ω 1 u p (x, t)ϕ(x, t) dxdt = Ω 2 R N u(x, t)ϕ 2 (t) Λ α (ϕ 1 (x)) dxdt - Ω 2 Ω 1 u(x, t)ϕ 1 (x) ∂ t ϕ 2 (t) dxdt (19) ≤ Ω 2 Ω 1 u(x, t)ϕ 2 (t) ϕ 1 (x) -1 Λ α ϕ 1 (x) dxdt - Ω 2 Ω 1 u(x, t)ϕ 1 (x) ϕ 2 (t) -1 ∂ t ϕ 2 (t) dxdt.
In (19), we have used the inequality Λ α ϕ 1 ≤ ϕ -1 1 Λ α ϕ 1 , (see [4, Prop. 2.3] and [START_REF] Ju | The maximum principle and the global attractor for the dissipative 2D quasigeostrophic equations[END_REF]Prop. 3.3] for its proof) which is valid for all α ∈ (0, 2], ≥ 1, and any sufficiently regular, nonnegative, decaying at infinity function ϕ 1 .

Hence, by the ε-Young inequality ab ≤ εa p + C(ε)b -1 (note that 1/p + 1/( -1) = 1) with ε > 0, we deduce from ( 19)

Ω 1 u 0 (x)ϕ(x, 0) dx -(1 + 2 ε) Ω 2 Ω 1 u p (x, t)ϕ(x, t) dx dt ≤ C(ε) Ω 2 Ω 1 ϕ 1 ϕ 2 |Λ α ϕ 1 | -1 dxdt + Ω 2 Ω 1 ϕ 1 ϕ 2 |∂ t ϕ 2 | -1 dxdt . ( 20 
)
Recall now that the functions ϕ 1 and ϕ 2 depend on R > 0. Hence changing the variables ξ = R -1 x and τ = R -α t, we easily obtain from (20) the following estimate ( 21) 1) , where the constant C on the right hand side of (21) is independent of R. Note that N + α -α( -1) ≤ 0 if and only if p ≤ 1 + α/N. Now, we consider two cases.

Ω 1 u 0 (x)ϕ(x, 0) dx -(1 + 2 ε) Ω 2 Ω 1 u p (x, t)ϕ(x, t) dxdt ≤ CR N +α-α( -
For p < 1 + α/N, we have N + α -α( -1) < 0. Hence, computing the limit R → ∞ in (21) and using the Lebesgue dominated convergence theorem, we obtain

M ∞ = R N u 0 (x) dx - ∞ 0 R N u p (x, t) dxdt ≤ 2 ε ∞ 0 R N u p dxdt.
Since u ∈ L p (R N × (0, ∞)) (cf. ( 6)) and since ε > 0 can be chosen arbitrary small, we immediately obtain that M ∞ = 0. In the critical case p = 1 + α/N , we estimate first term on the right hand side of inequality (19) using again by the ε-Young inequality and the second term by the Hölder inequality (with p = p/(p -1) = -1) as follows 

Ω 1 u 0 (x)ϕ(x, 0) dx - Ω 2 Ω 1 u p ϕ(x, t) dxdt ≤ ε Ω 2 Ω 1 u p (x,
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Here, Ω 3 = {t ∈ [0, ∞) : R α ≤ t ≤ 2R α } is the support of ∂ t ϕ 2 . Note that

Now, introducing the new variables ξ = (BR) -1 x, τ = R -α t and recalling that p = 1 + α/N , we rewrite (22) as follows

where the constants C 1 , C2 are independent of R, B, and of ε. Passing in (23) to the limit as R → +∞ and using the Lebesgue dominated convergence theorem we get

(24)

Finally, computing the limit B → ∞ in (24) we infer that M ∞ = 0 beacuse ε > 0 can be arbitrarily small. This complete the proof of Theorem 2.

Proof of Theorem 3. The proof proceeds by contradiction. Let u be a non-negative non-trivial solution of ( 1)-( 2) with λ = 1. Take the test function ϕ the same as in the proof of Theorem 2. Repeating the estimations which lead to (23), we obtain

Now, we chose ε = 1/(2 ) in (25) and we pass to the following limits: first R → ∞, next B → ∞. Using the Lebesgue dominated convergence theorem, we obtain

Hence, u(x, t) = 0 which contradicts our assumption imposed on u.