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PARTIAL DIFFERENCE EQUATIONS ON GRAPHS FOR MATHEMATICAL MORPHOLOGY

OPERATORS OVER IMAGES AND MANIFOLDS

Vinh-Thong Ta, Abderrahim Elmoataz and Olivier Lézoray

Université de Caen Basse-Normandie, GREYC CNRS UMR 6072, Image Team

6 Boulevard Maréchal Juin, F-14050 Caen Cedex, France

ABSTRACT

The main tools of Mathematical Morphology are a broad class

of nonlinear image operators. They can be defined in terms

of algebraic set operators or as Partial Differential Equations

(PDEs). We propose a framework of partial difference equa-

tions on arbitrary graphs for introducing and analyzing mor-

phological operators in local and non local configurations.

The proposed framework unifies the classical local PDEs-

based morphology for image processing, generalizes them for

non local configurations and extends them to the processing

of any discrete data living on graphs.

Index Terms— Mathematical Morphology, PDEs, Partial

difference, Graphs, Non local.

1. INTRODUCTION

Nonlinear scale-space approaches based on Mathematical

Morphology operators are one of the most important tools

in image processing. Dilation and erosion are the two fun-

damental operators. They form the basis of many other

morphological processes such as opening, closing, recon-

struction, levelings, etc [1]. Let f 0: R2→R be a function rep-

resenting a 2-D signal and let a structuring function g:B→R
2

representing some structuring element with a compact sup-

port B ⊆R
2. Dilation δ and erosion ε of f 0 by g are de-

fined as δg(f
0) = max

{

f 0(x−x′, y−y′)+g(x′, y′)
}

and

εg(f
0) = min

{

f 0(x+x′, y+y′)−g(x′, y′)
}

with x, y ∈ f 0

and x′, y′ ∈B. In this paper we consider the flat morphol-

ogy case that use structuring set, i.e. for all x′, y′ ∈B the

function g(x′, y′)=0. Such dilation and erosion operators

are frequently implemented by algebraic set operations. For

convex structuring elements, an alternative formulation in

terms of Partial Differential Equations (PDEs) has also been

proposed [2]. Given a disc B=
{

z ∈R
2 : |z|<1

}

one con-

siders the following evolution equation ∂tf =±|∇f | where

∇=
(

∂x, ∂y
)T

denotes the spatial nabla operator. Moreover,
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if one assumes that at time t=0 the evolution is initialized

with f(x, y, 0)=f 0(x, y), solution of f(x, y, t) at time t>0
provides dilation (with the plus sign) or erosion (with the

minus sign) within a disc of radius t. Such PDEs produce

continuous scale morphology and offer several advantages

[2]. First, they offer excellent results for non-digitally scal-

able structuring elements whose shapes cannot be represented

correctly on a discrete grid (e.g. discs or ellipses). Second,

they allow sub-pixel accuracy and can be adaptive by in-

troducing a local speed evolution term [3]. However, they

have several drawbacks. First, the numerical discretization

requires a careful choice of the time and spatial size. Second,

this discretization is difficult for high-dimensional data or

irregular domains. Finally, they only consider local interac-

tions on the data by using local derivatives while non local

schemes have recently received a lot of attention [4, 5].

We propose to extend such PDEs-based operators to a dis-

crete and non local scheme by considering partial difference

equations over weighted graphs of the arbitrary topologies.

To this aim, we explicitly introduce discrete non local deriva-

tives on graphs to transcribe such continuous operators to op-

erators based on graphs. Our proposal has the following ad-

vantages. No discretization step is needed and any data lying

on any domain (even irregular) can be processed. The same

formalism directly integrates local to non local information

from data. This paper is organized as follows. Section 2 in-

troduces partial difference equations over weighted graphs. In

Section 3, we propose a family of non local weighted dilation

and erosion (the p-dilation and the p-erosion). Section 4 pro-

vides several experiments for the case of image and manifold

processing. Finally, Section 5 concludes.

2. PARTIAL DIFFERENCE EQUATIONS ON

WEIGHTED GRAPHS

2.1. Definitions and Notations

We consider any general discrete domain as a weighted

graph G=(V,E, w) composed of a finite set of vertices

V =
{

u1, . . . , un

}

and a finite subset of edges E ⊆V ×V .

An edge of E which connects the vertices u to v is denoted

uv. G is weighted if it is associated with a weight function



w:E→R
+ satisfying wuv=0 if uv /∈E, and wuv=wvu other-

wise. We assume that G is connected, simple, undirected and

weighted. We consider that a function f :V →R is provided

that assigns a real value f(u) to each vertex u∈V .

2.2. A Family of Discrete Gradient

We consider the directional derivative of f at vertex u along

the edge uv ∈E to be defined as in [5]:

∂f

∂uv

∣

∣

∣

∣

u

= ∂vf(u) =w1/2

uv

(

f(v)−f(u)
)

.

It satisfies ∂vf(u)=−∂uf(v), ∂vf(v)=0, and if f(u)=f(v)
then ∂vf(u)=0. Using these definitions, we can define two

other directional derivatives:

∂+

v f(u)=max
(

0, ∂vf(u)
)

=w1/2

uv max
(

0, f(v)−f(u)
)

∂−

v f(u)=min
(

0, ∂vf(u)
)

=w1/2

uv min
(

0, f(v)−f(u)
) (1)

The weighted gradient operator of f , at vertex u∈V , is the

following column vector. For all edges (uvi)∈E:

∇wf(u)=
(

∂vf(u): v∼u
)T

=
(

∂v1f(u), . . . , ∂vif(u)
)T

∇±

wf(u)=
(

∂±

v f(u): v∼u
)T

=
(

∂±

v1
f(u), . . . , ∂±

vi
f(u)

)T
(2)

where notation v∼u means that the vertex v is adjacent to the

vertex u, and ∇+
w (resp. ∇−

w) is defined by using the corre-

sponding edge derivative definition in Eq. (1). The norm of

these vectors represent the local variation of f at a vertex of

the graph. Several norms can be used but we focus on the Lp-

norm. Hence, the following discrete norm of the gradients in

Eq. (2) can be considered. For any function f defined on V
and for u∈V , when 0<p<+∞

∣

∣∇±

wf(u)
∣

∣

p
=

[

∑

v∼u

∣

∣∂±

v f(u)
∣

∣

p
]1/p

then,

∣

∣∇+

wf(u)
∣

∣

p
=

[

∑

v∼u

wp/2

uv

∣

∣max
(

0, f(v)−f(u)
)∣

∣

p
]1/p

and

∣

∣∇−

wf(u)
∣

∣

p
=

[

∑

v∼u

wp/2

uv

∣

∣min
(

0, f(v)−f(u)
)∣

∣

p
]1/p

.

(3)

When p=∞, one obtains:
∣

∣∇±

wf(u)
∣

∣

∞
=max

v∼u

(

∂±

v f(u)
)

then,

∣

∣∇+

wf(u)
∣

∣

∞
=max

v∼u

(

w1/2

uv

∣

∣max
(

0, f(v)−f(u)
)∣

∣

)

and

∣

∣∇−

wf(u)
∣

∣

∞
=max

v∼u

(

w1/2

uv

∣

∣min
(

0, f(v)−f(u)
)∣

∣

)

.

(4)

Same definitions can be provided for the gradient ∇wf .

3. A FAMILY OF DILATIONS AND EROSIONS ON

WEIGHTED GRAPHS

Let A be a subset of V . We denote by A+ and A− respec-

tively the outer and the inner boundary sets of A where

A+=
{

u∈Ac:∃ v∈A, v∼u
}

and A−=
{

u∈A:∃ v∈Ac, v∼u
}

where Ac is the complement of A. Dilation over A is a growth

process that adds vertices from A+ to A. Erosion over A is a

contraction process that removes vertices from A− to A.

Any function f can be decomposed into its levels sets

fk=H(f−k) where H is the Heaviside function. Then, one

can find a set Ak⊂V such that fk =χAk where χ:V →{0, 1}
is the indicator function. As for the continuous case, a sim-

ple variational definition of a dilation applied to fk can be

interpreted as maximizing a surface gain proportional to

+
∣

∣∇wfk(u)
∣

∣

p
, the gradient of fk. On can demonstrate1 from

Eq. (3) that for 0<p< + ∞,

∣

∣∇+

wfk(u)
∣

∣

p
=

[

∑

v∼u
v∈A

wp/2

uv

]1/p

χ(A+)k(u) and

∣

∣∇−

wfk(u)
∣

∣

p
=

[

∑

v∼u
v∈A

wp/2

uv

]1/p

χ(A−)k(u) .

In a same way, we also have

∣

∣∇wfk(u)
∣

∣

p
=

∣

∣∇+

wfk(u)
∣

∣

p
+

∣

∣∇−

wfk(u)
∣

∣

p
.

Therefore,
∣

∣∇wfk
∣

∣

p
can be reduced to

∣

∣∇+
wfk

∣

∣

p
for u∈(A+)

k

which corresponds to a dilation on Ak and can be expressed

by ∂tf
k(u) =

∣

∣∇+
wfk

∣

∣

p
. By extending this to all the levels

of f , one obtains a p-dilation process over a graph. Finally,

with these properties, we can naturally consider the following

family (parameterized by p and w) of p-dilation and p-erosion

over a weighted graph,

δp,t(f) := ∂tf =+
∣

∣∇+

wf
∣

∣

p
and εp,t(f) := ∂tf =−

∣

∣∇+

wf
∣

∣

p

where t≥ 0 corresponds to a scale parameter. By using dis-

cretization in time, and with the usual notation fn(u) ≈
f(u, n∆t), we obtain the following iterative algorithms for

the p-dilation. For all u∈V , when 0<p< + ∞

fn+1(u)=fn(u)+∆t
∑

v∼u

wp/2

uv

∣

∣max
(

0, fn(v)−fn(u)
)∣

∣

p

and when p=∞

fn+1(u)=fn(u)+∆t max
v∼u

(

wp/2

uv

∣

∣max
(

0, fn(v)−fn(u)
)∣

∣

)

.

Where n corresponds to the iteration step, f 0:V →R is

the initial function defined on V , and the initial condition

is f (0)(u)=f 0(u). A similar scheme is obtained for the

p-erosion. At each iteration step, the time complexity is

O(|V |2), where |.| stands for the cardinality of a set.

Remarks. In the particular case of a grayscale image, with

a 4-adjacency grid graph associated to the image (one ver-

tex per pixel) and a constant weight function (w=1), our ap-

proach corresponds exactly to the conventional Osher-Sethian

1Proof can be obtained by studying cases where u∈Ak or u/∈Ak and

similarly for v∼u.



upwind discretization scheme [2] when p=2. Moreover, for

the case where p=∞ and ∆t=1, one recovers the classical

algebraic morphological formulation overs graphs.

4. EXPERIMENTS

The proposed family of p-dilation and p-erosion can be ap-

plied on any function defined on a discrete data set which can

be represented by a weighted graph. The application of di-

lation or erosion on a vector valued function f 0:V ⊂R
q→R

r

where for u∈V , f 0(u)=
[

f 0
1(u), . . . , f 0

r (u)
]T

and f 0
i :V →R

is the ith component of f 0(u) consists in r-independent iter-

ative dilation or erosion schemes described in Section 3. In

this case, the weight function of the graph acts as a coupling

term between each vector components.

4.1. Image Processing

Let f 0:V ⊂R
2→R be a scalar image which defines a mapping

from the vertices to gray levels. Fig. 1 presents an initial im-

age, a fine partition of this image and a reconstructed image

from the partition where the pixel values of each region of the

partition are replaced by the mean pixel value of its region.

To obtain the fine partition, many well known methods can

be used. in this work an approach based on the generalized

Voronoı̈ diagram [6] is used. The amortized time complexity

to obtain such partition is O(E+V logV ) with Dikjstra algo-

rithm and Fibonacci heap structure. Then, the partition can

be associated with a Region Adjacency Graph (RAG), where

vertices represent regions and where edges link adjacent re-

gions. One can note the significant data reduction of the re-

constructed version as compared to the original one (88% of

reduction in terms of vertices).

(a) (b) (c)

Fig. 1. (a) Original image of size 256×256=65 536 pixels.

(b) fine partition of (a) having 8 114 regions (i.e. 88% of re-

duction). (c) reconstructed image from (b).

Fig. 2 illustrates the application of the proposed family

of p-dilation and p-erosion on gray level image with differ-

ent values of p, weight functions and graph topologies. In

Fig. 2. For each morphological processing (p-dilation or

p-erosion) a table view of the results is provided (with the

same number of iterations). Each first and second rows show

a local processing performed on a 4-adjacency grid graph

(N4) associated to the initial image with constant weights

w=1 (the first row corresponds to classical approaches) and

non constant weights w=we=wuv=exp
(∣

∣f(u)−f(v)
∣

∣

2

2
/σ2

)

(second row) where
∣

∣f(u)−f(v)
∣

∣

2
is the L2-norm between

feature vectors. Third row presents results with non local

processing on a 48-adjacency graph (7×7 neighborhood win-

dow) with a 3×3-patch as a feature vector (denoted N48,9)

and non constant weights (w=we). Fourth and last rows

present results on the Region Adjacency Graph of the image

partition with constant weights (fourth row) and non constant

weights w=we (last row).

These results show that by using non constant weights,

the proposed p-dilation and p-erosion preserve better preserve

edges as compared to classical approaches. Once one uses a

non local configuration, one also better preserve fine struc-

tures and repetitive elements. In addition, our formulation

works with equal ease on graphs of the arbitrary topology

and, therefore, we can apply the same schemes on any graph

representing the image. For instance, we can use the above

mentioned RAG (Figs. 1(b) and 1(c)) and associate to each

vertex the mean gray level of its corresponding region. This

exhibits similar behaviors (the two last rows in Fig. 2) while

reducing complexity due to the reduced number of vertices to

consider.

4.2. Manifold Processing

To illustrate the generality of our formulation, we apply our

family of p-dilation and p-erosion on an unorganized data set

(the Iris data set2). Fig. 3 presents results of a p-dilation

and a p-erosion for p=1 with a non constant weight func-

tion wuv=1/
(
∣

∣f(u)−f(v)
∣

∣

2

2

)

. The graph used to represent

data corresponds to a k-nearest neighbors graph (k=30). Iris

data set contains 3 classes of samples in 4-dimensions, with

50 samples in each class. Fig. 3 shows projection of the two

features (for better visualization) but it is important to note

that weight function takes into account all the data features.

Therefore, the proposed morphological processing of Iris data

set consists in 4 independent p-erosion or p-dilation schemes.

Fig. 3 shows the evolution of the processing on the data for

different number n of iterations. One can note that the dila-

tion and the erosion tend to naturally group the data in differ-

ent parts of the feature space and to move data to respectively

the maximum and the minimum of the feature space.

5. CONCLUSION

In this paper, we presented a new formalism that extends

PDEs-based Mathematical Morphology operators to a dis-

crete and non local scheme by considering partial difference

equations over weighted graphs of the arbitrary topologies.

We introduced basic operators: dilation and erosion that can

2UCI Machine Learning Repository, http://www.ics.uci.edu/
∼mlearn/MLRepository.html
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Fig. 2. p-dilation and p-erosion on the image of Fig. 1(a) with

different values of p, weight functions and graph topologies.

See text for more details.

be derived to many other morphological methods such as

opening, closing, leveling, etc. Experimental results show

the potential of the proposed formalism for the non local

processing of images (represented as grid or region adja-

cency graphs) that better preserves edges and fine structures.

Moreover, our formalism can be applied on manifolds and

high dimensional discrete data sets that can be represented

by a graph. This opens opens new application fields for

morphological processing such as machine learning.
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Fig. 3. p-dilation and p-erosion evolution for p=1 and differ-

ent number n of iterations on Iris data set. See text for more

details.


