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Abstract. We propose a discrete regularization framework on weighted
graphs of arbitrary topology, which unifies image and mesh filtering. The
approach considers the problem as a variational one, which consists in
minimizing a weighted sum of two energy terms: a regularization one that
uses the discrete p-Laplace operator, and an approximation one. This
formulation leads to a family of simple nonlinear filters, parameterized
by the degree p of smoothness and by the graph weight function. Some
of these filters provide a graph-based version of well-known filters used
in image and mesh processing, such as the bilateral filter, the TV digital
filter or the nonlocal mean filter.

1 Introduction

In many computer vision applications, it is necessary to filter and to simplify
images or meshes. In the context of image processing, smoothing and denoising
constitute important steps of filtering processes. Among the existing methods,
the variational ones, based on regularization, provide a general framework to
design efficient filters. Solutions of variational models can be obtained by mini-
mizing appropriate energy functions. The minimization is usually performed by
designing continuous partial differential equations (PDEs), whose solutions are
discretized in order to fit with the image domain. A complete overview of these
methods can be found in [1][2][3][4] and references therein.

Another important problem of computer vision is mesh smoothing or de-
noising. This process is dedicated to noise removal, causing minimal damage to
geometric features. Most of mesh smoothing methods are based on the discrete
Laplace-Beltrami regularization or on the discrete curvature regularization [5][6].
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Variational Beltrami flows have also been used to denoise and regularize data de-
fined on manifolds [7]. Other mesh smoothing methods, based on feature preser-
ving, were mostly inspired by anisotropic diffusion in image processing [8][9][10].

Inspired by continuous regularization of images, we propose a general frame-
work based on a discrete regularization on weighted graphs of arbitrary topology.
This framework unifies the regularization of images and meshes. Let G,, = (V, E)
be a weighted graph which consists of a set of vertices V', a set of edges E C VXV,
and a similarity weight function w defined on edges. Let H(V') be a Hilbert space
defined on the vertices of G,,. We formalize the discrete regularization of a func-
tion f° € H(V) by the following minimization problem:

min {Ep(f, N = Z | o FIP + A~ f0||§1(\/)} ) (1)

fer(v) eV

where p € [1,+00) is the smoothness degree, A is the fidelity parameter, and
v [ represents the weighted gradient of the function f over the graph. The
solution of problem (1) leads to a family of nonlinear filters, parameterized by
the weight function, the degree of smoothness and the fidelity parameter. There
exist two main advantages of using this framework, which can be considered
as a discrete analogue of continuous regularization on weighted graphs. Firstly,
the regularization is expressed directly in discrete settings. Secondly, filters are
computed by simple and efficient iterative algorithms, without solving any PDEs.
Second, the topology of graphs can be arbitrary. Since the proposed approach
is general, any discrete data set can be transformed into a weighted graph, by
using a similarity measure between data. Thus, we can consider any function
defined on these data as a function defined on the vertices of the graph.

The family of filters we propose includes graph-based versions of well-known
filters used in image and mesh processing. If w = 1, they correspond exactly
to the digitized PDE filters, introduced in the context of image restoration on
grid graphs [11] (L. digital filter for p = 2 and TV digital filter for p = 1).
If w # 1, our the filters behave like weighted TV regularization or weighted
Lo regularization. In particular, if p = 2 and A = 0, the choice of the weight
function w allows to find the bilateral filter [12] and the nonlocal mean filters [1].
In this particular case, we also show that the discrete regularization is linked to
spectral graph theory [13] and to Markov matrix filtering [14]. We can quote
other existing methods, developed in the context of image filtering, that can
be considered as discrete regularizations on unweighted graphs [15] [16]. These
regularizations yield to Markov random fields where only binary variables are
involved in the minimization.

The solution of problem (1) is obtained by defining local differential geometry
operators on weighted graphs. The idea of using differential geometry on graphs,
in a regularization process, has also been proposed in other context, such as semi-
supervised data learning [17] and image segmentation [18].

In this paper, we firstly define differential geometry operators on weighted
graphs in Section 2. Section 3 presents the regularization problem (1) and the
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associated family of filters. Section 4 analyzes the obtained filters and gives rela-
tions to existing methods. In Section 5, we show some regularization examples,
in the context of image denoising, image segmentation and mesh denoising.

2 Differential Geometry on Weighted Graphs

In this section, we recall some basic definitions on graphs, and we define local
differential geometry operators which can be considered as discrete versions of
continuous differential operators. Analogue definitions and properties have also
been used in the context of semi-supervised learning [17], and differential calculus
on graphs [19][20].

2.1 Preliminary Definitions

A graph G, = (V, E) consists of a finite set V' of N vertices and a finite set
E CV xV of edges. We assume G, to be undirected, with no self-loops and
no multiple edges. Let uv be the edge that connects the vertices u and v. An
undirected graph is weighted if it is associated with a weight function w : £ —
R, satisfying wy, = Wyy, for all uv € E, and wy, = 0 if wv € E. The weight
function represents a similarity measure between two vertices of the graph.

Let H(V) denotes the Hilbert space of real-valued functions on vertices.
A function f : V — R in H(V) assigns a vector f, to each vertex v € V.
Clearly, f can be represented by a column vector of RN, f = [f1,..., fv]T.
The function space H(V') is endowed with the usual inner product (f, h)x vy :=
> wev fuhw, where f,h € H(V). Similarly, one can define H(FE), the space of
real-valued functions on edges, endowed with the inner product (f,h)y gy =
Y vev Doumw fuvhuy, where f and h are two functions in H(E).

2.2 Weighted Gradient and Divergence Operators

Let G, = (V, E) denotes a weighted graph. The difference operator d: H(V) —
H(E) of a function f € H(V) on an edge uv € E, is defined by:

(df)uv = \/w—m;(fv_fu), Yuv € E. (2)

The directional derivative (or edge derivative) of a function f € H(V') at a vertex
v along an edge e = uw, is defined as 9, f,, := (df )uy. This definition is consistent
with the continuous definition of the derivative of a function, e.g., if f, = fu
then 0, f, = 0. Moreover, note that 9, f, = —0, f», and 9, f, = 0.

The weighted gradient operator 57 of a function f € H(V) at a vertex v is
the vector operator defined by </, f = (0, fu : u ~ v)T. The local variation of f
at v, is defined to be:

”va” = Z(avfu)2 = \/Z Wy (fo — fu)2 (3)

u~v u~v
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It can be viewed as a measure of the regularity of a function around a vertex.
The amplitude of the graph gradient is defined by || 7 f]| := (V' f, Vf)1/2

The adjoint operator of the difference operator, denoted by d* : H(E) —
H(V), is defined by (df, h)x () := (f, d*R)n(v), with f € H(V) and h € H(E).
Using the definitions of the inner products in H(V) and H(E) (see Section 2.1),
and definition (2), we obtain the expression of d* at a vertex v:

(d*h)o = /Wi (huw — hou)- (4)

u~v

The divergence operator, defined by —d*, measures the net outflow of a function
in H(E) at each vertex of V.

2.3 A Family of Weighted p-Laplace Operators

The weighted p-Laplace operator, A, : H(V) — H(V) with 1 < p < 400, is
defined by A, f := d*(|| 7 f||P~2df). Substituting (2) and (4) into the definition
of A, f, we obtain the expression of A, at a vertex v:

Z /Y’LL’U ’U u b (5)

u~v

where v is the function defined by Yuy := wuy (|| Vo fIP72 + || Vu fP72).
The operator 4, is nonlinear, with the exception of p = 2. Furthermore, A,
is positive semi-definite:

(f, ApPorevy = (a7 FIP2d)) ey = (df |7 FIP72df ) 3y

=S v P2 S @02, = Sl v fIP > 0. (6)

veV u~v veV

The definition of A, can be considered as the discrete analogue of the p-Laplacian
in the continuous case. When p = 2, A, represents the weighted Laplace operator
on Gy, and (5) reduces to:

(Af)v = (D2f)o =2 Zwuv(fv = fu)- (7)

When p = 1, Ay represents the weighted curvature operator on G,,, and expres-
sion (5) reduces to:

1 1
(5f)o = (A1fs Z“’“”<|W‘| Ivufl)( “h- @

u~v

In practice, to avoid zero denominator in (8), the local variation (3) is replaced

by its regularized version: || 7y flle := /|| Vo fI? + €2, with € — 0 fixed.
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3 p-Laplace Regularization on Weighted Graphs

In this section, we present the discrete regularization problem (1) and associated
filters. Let G, = (V, E) be a weighted graph. The regularization of a given
function f° € H(V), using the weighted p-Laplace operator, consists in seeking
for a function f* € H(V') which is not only smooth enough on G,,, but also close
enough to f. This optimization problem can be formalized by the minimization
of a weighted sum of two energy terms:

/5= min {Ep(f, o0 = Z | 7o FIP + A= f0|72Lt(V)} . (9)

fer(V) eV

The first energy in (9) is the smoothness term or regularizer, meanwhile the
second is the fitting term. The parameter A > 0 is a fidelity parameter, called
the Lagrange multiplier, which specifies the trade-off between the two competing
terms. Both energy functions in F, are strictly convex functions of f. In partic-
ular, by standard arguments in convex analysis, the problem (9) has a unique
solution, for p = 1 and p = 2, which satisfies:

OE,(f, fO,\ 0

DL — 2 I+ 20— [ =0, eV, (10
Using equation (6) to compute the derivative of the first term in E,, the system
of equations (10) is rewritten as:

(Apf)o +2XMfo — fH)=0,Yv e V. (11)

The solution of problem (9) is also the solution of the system of equations (11).
This is a nonlinear system, with the exception of p = 2 (see Section 2.3). Sub-
stituting the expression of the p-Laplace operator into (11), we obtain:

(2)\ + Z ’7uv> fv - Z 'Yu'ufu = 2)\f1?, YveV. (12)

u~v u~v

Among the exiting methods to solve the system of equations (12), we use the
Gauss-Jacobi iterative algorithm. Let ¢ be an iteration step, and let f() be the
solution of equation (12) at the step ¢. The corresponding linearized Gauss-Jacobi
algorithm is given by:

FO =0
Y = Wy (| 7o SO 4[| 70 fOIP2) , Vuv € B (13)
f = (224 L) (M + LAY WV

where v(*) is the function 7 at the step ¢t. The weights w,, are computed from
fO, or can be given a priori. We define the function ¢ at an iteration ¢ of algo-
rithm (13) by:

(t)
uv 2\
@5}2—7—(”1&1#1) and QD(t)_—)
2\ + Zurv'u Yuv 2\ + Z’U.N'U ’7u’u
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Then, an iteration of the regularization algorithm (13) is rewritten as:

FUHD = o) £0 4 Z oW e, (14)

u~v

At each iteration, the new value f(*+1) at a vertex v, depends on two quantities,
the original value f0, and a weighted average of the existing values in a neigh-
borhood of v. This shows that the proposed filter, obtained by iterating (14),
is a low-pass filter which can be adapted to many graph structures and weight
functions.

4 Filter Analysis and Examples

The case of an arbitrary p is not considered in this paper. In the sequel, we discuss
the cases of p = 2 and p = 1, and we give some existing results related to our
filter. When p = 2, it follows from equation (11) that the solution of problem (9)
is based on the weighted Laplace operator defined by equation (7). Equation (11)
reduces to Af* 4+ 2\(f* — f°) = 0. In this case, the iterative filter (13) is linear
on the graph structure, and the coefficients given by the function « do not have
to be updated at each iteration because they depend on the function w. When
p =1, it follows from equation (11) that the solution of problem (9) is based on
the weighted curvature operator defined by equation (8). Equation (11) reduces
to kf* + 2A(f* — fY) = 0. In this case, the iterative filter (13) is nonlinear, and
the coefficients given by the function ~ are adaptively updated at each iteration
in addition of updating the function f.

4.1 Regularization of Functions on Discrete Data

The family of filters presented in Section 3 can be used to regularize any function
defined on discrete data by constructing a weighted graph, and by considering
the function to be regularized as a function defined on graph vertices.

Let V = {v1,...,vn} be a finite data set such that v; is a vector of R™. There
exist several popular methods that transform the set V' with a given pairwise
similarity measure w into a graph G,, = (V, E). Constructing similarity graphs
consists in modelizing local neighborhood relationships between data points.
Among the existing methods, we can quote the e-neighborhood graph where two
points u, v € V are connected by an edge if ||v—ul| < €, € > 0. Another important
graph is the k-nearest neighbors graph where two points u,v € V' are connected
by an edge if u is among the k nearest neihgbors of v. This definition leads to a
directed graph because the neighborhood relationship is not symmetric. In order
to make this graph symmetric, let nng(u) be the set of k-nearest neighbors of
the point u. Then, a point v is connected to u if u € nng(v) or v € nng(u).

Let f € H(V) be a function defined on each point of the data set V. Simi-
larities between data points are estimated by comparing their features. Features
generally depend on the function f and the set V. Every point v € V' is assigned
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with a feature vector denoted by Fy(v) € RY. We propose to use one of the two
general weight functions:

F - F 2
Wyp = €XP (— 1Fs (v) = @ ) , Yuv € F, (15)
and,
lu—v]? 1y (v) — Fy(u)]?
Wyy = €XP (—T exp | — = , Yuv € E. (16)

where o and h are two parameters depending on the variations of ||u — v|| and
| Ff(v) — Ff(u)|| over the graph.

The graph structure, associated with one of the above weight functions, de-
scribe a general family of filters. This family is linked to several filters defined
in the context of image and mesh processing. When p = 2, filter (13), associated
with the weight function (16), is equivalent to the bilateral filter, introduced in
the context of image denoising [12] [21]. It is a nonlinear filter that combines ge-
ometric and range filtering. Bilateral filtering is also used to denoise meshes [22].
It is obtained by using the scalar feature Fy(v) = f, for all v € V. Using the
same parameters, filter (13) can also be considered as a discrete nonlocal mean
filter, introduced in the context of images [1]. Indeed, it is obtained by using the
weight function (15) with the feature vector Fy(v) = [fu : u € By s]T and By s
a bounding box of size s centered at v.

When X # 0 and w is constant, filter (13) corresponds exactly to the digitized
PDE filters proposed in the context of image restoration [11]. If p = 1, it is the
TV regularization. If p = 2, it is the Lo regularization. In general, if the weight
function is not constant, filter (13) corresponds to the weighted Lo regularization
and the weighted TV regularization on arbitrary graphs.

4.2 Relationships with Spectral Graph Filtering

We consider the regularization problem (9) for p = 2 and A = 0, and we show that
it can be expressed in terms of spectral graph theory [13]. From expression (14),
the filter reduces to:

B =3 ewf), Yev, (17)

u~v

where Quy = Wyn/ D yep Wuvs Yuv € E. As we have @, > 0and >, @y = 1,
Yuy can be interpreted as the probability of a random walker to jump from
v to u in a single step [14]. Let P be the N x N Markov matrix defined by:
P(v,u) = @y if the edge uv € E, and P(v,u) = 0 otherwise. Let F' be the
matrix form of the function f. With these notations, expression (17) is rewritten
as:

FD — pp®) — ptp©), (18)

An element P!(v,u), vu € E, describes the probability of transition in ¢ steps.
The matrix P! encodes local similarities between vertices of the graph and it
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Fig. 1. Application to image denoising. Regularizations performed with ¢ = 5. (¢) Un-
weighted Lo regularization (13) on an 8-adjacency graph. (d) Unweighted T'V regular-
ization (13) on an 8-adjacency graph (p = 1). (d) Regularization (13) with p = 2 and
weight function (16) and scalar feature Fy = f on an 8-adjacency graph. (e) Regular-
ization (13) with weight function (15) and feature vector Ff(v) = [fu : u € By,7]” on
an e-neighborhood graph with e = 4.

diffuses or integrates this local information for ¢ steps to larger and larger neigh-
borhoods of each vertex.

The spectral decomposition of the matrix P is given by P¢; = \;¢;, with
1>XM>...2 X\ >...> Ay > 0 the eigenvalues of P, and ¢; its eigenvectors.
The eigenvectors associated with the k first eigenvalues contain the principal
information. Thus, an equivalent way to look at the power of P in filter (18)
is to decompose each value of F' on the first eigenvectors of P. Moreover, the
eigenvectors of the matrix P can be seen as an extension of the Fourier transform
basis functions with eigenvalues representing frequencies [23]. It defines a basis
of any function f in H(V), and the function f can be decomposed on the k
first eigenvectors of P as: f = Eilf (f, ®i)#(vyPi- This can be interpreted as a
filtering process in the spectral domain.
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5 Applications

The family of filters proposed in Section 3 can be used to regularize any function
defined on the vertices of a graph, or on any discrete data set. Through exam-
ples, we show its efficiency in the case of image denoising, image simplification,
polygonal curve denoising and surface mesh denoising. We also compare several
results obtained for different weight functions and regularization parameters.

(a) original image I (b) region map (c) RAG

Fig. 2. Image simplification. (a) Original image I. (b) The region map R obtained by
an energy partition of I. (c) The RAG G, associated with R, weighted with weight
function (15), h = 8 and Fy(v) = f. The function considered on the vertices corre-
sponds to the mean value of a region. (d) The mean region map associated with R.
(e,f) Regularization of G, with filter (13).

Image Smoothing and Denoising : Let f° be a gray level image of N pixels,

O=1[f9 ..., f%)F with f°:V C Z? — R. Figure 1 illustrates the regularization
of a noisy image f° (Fig. 1(b)) on a grid graph of 8-adjacency (Fig. 1(c), (d) and
(e)), and on a e-neighborhood graph (Fig. 1(f)). The weight function is chosen
such that Fig. 1(c) corresponds to the unweighted Lo regularization, Fig. 1(d) to
the unweighted TV regularization, Fig. 1(e) to the bilateral filter, and Fig. 1(f)
to the nonlocal mean filter. The use of a non-constant weight function implies
an anisotropic diffusion which better preserves image features.
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In the case of color images, the function f° : V C Z? — R3 is a mapping
from the vertices of the graph to a vector of color channels. The regularization
can be applied on each channel leading to an iteration of filter (13) rewritten as:

PR 1 a1 )
fe = (p/\ + 7&5}) pA | fea | + ) Y fc2 , (19)
fc3 v u~v c3 |y U~y 3]y,

where 71(“,) depends on the norm of the p-Laplace operator defined by || <7, f|| =

VI Vo fal? + 1 Vo feall? + || Vo fesl|?. This norm takes into account the inner
correlation aspect of color vector data (in the case of p # 2). The above iteration
can be extended to any vector-valued function R™ — R¥.

Image Simplification : One can simplify an image by first considering a fine
partition of this image (or over-segmentation), where the pixel values of each
region of the partition is replaced by the mean or the median pixel value of this
region. The partition can be structured by a region adjacency graph (RAG),
where each vertex represents a region and where edges are linking adjacent re-
gions. Figure 2(b) and (c) illustrate a fine partition of an image and its associated
RAG. Let Gy = (V, E) be a RAG. Let f°:V C Z? — R™ be a mapping from
the vertices of G4, to the mean or median value of their regions. Then, the sim-
plification is achieved by regularizing the function f° on the subgraph of G,
composed of the edges of E for which w,, > p > 0. Figure 2(e) shows the graph
G, used to regularize the partition of Fig. 2(d). The filtered partition is depicted
in Fig. 2(f).

V|=193 A=0,p=2 A= A=0p=1

Fig. 3. Polygonal curve denoising. Edges of polygons are weighted with equation (15).
The regularization of vertices position is performed in 10 steps. When A = 0, the
regularization introduces shrinkage effects. They are reduced using a value of A # 0.

Mesh Smoothing and Denoising : By nature, polygonal curves and surface
meshes have a graph structure. Let V' be the set of mesh vertices, and let F
be the set of mesh edges. If the input mesh is noisy, we can regularize vertex
coordinates or any other function fC : V C R?® — R™ defined on the graph
G = (V, E). Results of filter (19) are given in Fig. 3 for polygonal curves, and
in Fig. 5 and Fig. 4 for surface meshes.
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6 Conclusion

We propose a general discrete framework for regularizing real-valued or vector-
valued functions on weighted graphs of arbitrary topology. The regularization,
based on the p-Laplace operator, leads to a family of nonlinear iterative filters.
This family includes the TV digital filter, the nonlocal mean filter and the bi-
lateral filter, both widely used in image processing. Also, the family is linked to
spectral graph filtering.

The choice of the graph topology and the choice of the weight function allow
to regularize any discrete data set or any function on a discrete data set. Indeed,
the data can be structured by neighborhood graphs weighted by functions de-
pending on data features. This can be applied in the context of image smoothing,
denoising or simplification. We also show that mesh smoothing and denoising can
be performed by the same filtering process. The main ongoing work is to use the
proposed framework in the context of hierarchical mesh segmentation and point
cloud clustering.
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