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We propose in this work an original estimator of the conditional intensity of a marker-dependent counting process, that is, a counting process with covariates. We use model selection methods and provide a non asymptotic bound for the risk of our estimator on a compact set. We show that our estimator reaches automatically a convergence rate over a functional class with a given (unknown) anisotropic regularity. Then, we prove a lower bound which establishes that this rate is optimal. Lastly, we provide a short illustration of the way the estimator works in the context of conditional hazard estimation.

Introduction

As counting processes can model a great diversity of observations, especially in medicine, actuarial science or economics, their statistical inference has received a continuous attention since half a century -see [START_REF] Andersen | Statistical models based on counting processes[END_REF] for the most detailed presentation on the subject. In this paper, we propose a new strategy, based on model selection, for the inference for counting processes in presence of covariates. The model considered can be described as follows.

Let (Ω, F, P) be a probability space and (F t ) t≥0 a filtration satisfying the usual conditions. Let N be a marker-dependent counting process, with compensator Λ with respect to (F t ) t≥0 , such that N -Λ = M , where M is a (F t ) t≥0 -martingale. We assume that N is a marker-dependent counting process satisfying the Aalen multiplicative intensity model in the sense that :

Λ(t) = t 0 α(X, z)Y (z)dz, for all t ≥ 0 (1)
where X is a vector of covariates in R d which is F 0 -measurable, the process Y is nonnegative and predictable and α is an unknown deterministic function called intensity.

The purpose of this paper is to estimate the intensity function α on the basis of the observation of a n-sample (X i , N i (z), Y i (z), z ≤ τ ) for i = 1, . . . , n, where τ < +∞.
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1 There are many examples, crucial in practice, which fulfill this model. For the seek of conciseness, we restrict our presentation to the three following ones.

Example 1 (Regression model for right-censored data). Let T be a nonnegative random variable (r.v.) with cumulative distribution functions (c.d.f.) F T , and X a vector of covariates in R d . We consider in addition that T can be censored. We introduce the nonnegative r.v. C, with c.d.f. G, such that the observable r.v. are Z = T ∧ C, δ = 1(T ≤ C) and X. We assume that:

(C) : T and C are independent conditionally to X.

In this case, the processes to consider (see e.g. [START_REF] Andersen | Statistical models based on counting processes[END_REF]) are given, for i = 1, . . . , n and z ≥ 0, by:

N i (z) = 1(Z i ≤ z, δ i = 1) and Y i (z) = 1(Z i ≥ z).
The unknown intensity function α to be estimated is the conditional hazard rate of the r.v. T given X = x defined, for all z > 0 by:

α(x, z) = α T |X (x, z) = f T |X (x, z) 1 -F T |X (x, z)
,

where f T |X and F T |X are respectively the conditional probability density function (p.d.f.) and the conditional c.d.f. of T given X.

Nonparametric estimation of the hazard rate in presence of covariates was initiated by [START_REF] Beran | Nonparametric regression with randomly censored survival data[END_REF]. [START_REF] Stute | Conditional empirical processes[END_REF], [START_REF] Dabrowska | Nonparametric regression with censored survival time data[END_REF], McKeague and Utikal (1990) and [START_REF] Li | An approach to nonparametric regression for life history data using local linear fitting[END_REF] extended his results. Many authors have considered semiparametric estimation of the hazard rate, beginning with [START_REF] Cox | Regression models and life-tables (with discussion)[END_REF], see [START_REF] Andersen | Statistical models based on counting processes[END_REF] for a review of the enormous literature on semiparametric models. We refer to [START_REF] Huang | Efficient estimation of the partly linear additive Cox model[END_REF] and [START_REF] Linton | Estimating the multiplicative and additive hazard fonctions by kernel methods[END_REF] for some recent developments.

Adaptive nonparametric estimation for censored data in presence of covariates has been considered by [START_REF] Leblanc | Adaptive regression splines in the Cox model[END_REF] or [START_REF] Castellan | Estimation of the Cox regression function via model selection[END_REF] for particular functional Cox models: in these works, α(x, z) = exp(f (x))α 0 (z), only f is estimated. On the other hand, [START_REF] Brunel | Adaptive estimation of the conditional density in presence of censoring[END_REF] constructed an optimal adaptive estimator of the conditional density in a general model.

Example 2 (Cox processes). Let η i , for i = 1, . . . , n, be a Cox process (see Kaar (1986)) on R + with random mean-measure Λ i given by :

Λ i (t) = t 0 α(X i , z)dz,
where X i is a vector of covariates in R d . In this context the predictable process Y of Equation (1) constantly equals 1. As a consequence, these processes can be seen as generalizations of nonhomogeneous Poisson processes on R + with random intensities. This is a particular case of longitudinal data, see e.g. Example VII.2.15 in [START_REF] Andersen | Statistical models based on counting processes[END_REF]. The nonparametric estimation of the intensity of Poisson processes without covariates has been considered in several papers. We refer to [START_REF] Reynaud | Adaptive estimation of the intensity of nonhomogeneous Poisson processes via concentration inequalities[END_REF] and [START_REF] Baraud | Estimating the intensity of a random measure by histogram type estimators[END_REF] for the adaptive estimation of the intensity of nonhomogeneous Poisson processes in general spaces.

Example 3 (Regression model for transition intensities of Markov processes). Consider a n-sample of nonhomogeneous time-continuous Markov processes P 1 , . . . , P n with finite state space {1, . . . , k} and denote by α jl the transition intensity from state j to state l. For individual i with covariate X i , let N i jl (t) be the number of observed direct transitions from j to l before time t (we allow the possibility of right-censoring for example). Conditionally on the initial state, the counting process N i jl verifies the following Aalen multiplicative intensity model:

N i jl (t) = t 0 α jl (X i , z)Y i j (z)dz + M i (t) for all t ≥ 0,
where Y i j (t) = 1{P i (t-) = j} for all t ≥ 0, see [START_REF] Andersen | Statistical models based on counting processes[END_REF] or [START_REF] Jacobsen | Statistical analysis of counting processes[END_REF]. This setting is discussed in [START_REF] Andersen | Statistical models based on counting processes[END_REF], see Example VII.11 on mortality and nephropathy for insulin dependent diabetics.

We finally cite three papers, where different strategies for the estimation of the intensity of counting processes is considered, gathering as a consequence all the previous examples, but in none of them the presence of covariates was considered. [START_REF] Ramlau-Hansen | Smoothing counting process intensities by means of kernel functions[END_REF] proposed a kernel-type estimator, [START_REF] Grégoire | Least squares cross-validation for counting processes intensities[END_REF] studied cross-validation for these estimators. More recently, [START_REF] Reynaud | Penalized projection estimators of the Aalen multiplicative intensity[END_REF] considered adaptive estimation by model selection.

Our aim in this work is to provide an optimal adaptive nonparametric estimator of the conditional intensity. Our estimation procedure involves the minimization of a so-called contrast. To achieve that purpose, we proceed as follows. In Section 2, we describe the estimation procedure: we explain how the contrast is built, on which collections of spaces the estimators are defined and how the relevant space is selected via a data driven penalized criterion. In Section 3, we state oracle inequalities for our estimator (see Theorems 1 and 2), a resulting upper bound (see Corollary 1) and a lower bound (see Theorem 3), the latter asserts the optimality in the minimax sense. The examples of Section 4 are taken in the setting of Example 1, in order to provide a short illustration of the practical properties of our estimator. Lastly, proofs are gathered in Sections 5 and 6.

Remark 1. An inherent remark about this model is that there is no reason for the conditional intensity α(x, z) to have the same behavior with respect to the z (time) and x (covariates) variables. This is the reason why it is mandatory in our purely nonparametric setting to consider anisotropic regularity for α. Think for instance of the very popular case of proportional hazards Cox model, see [START_REF] Cox | Regression models and life-tables (with discussion)[END_REF], it is assumed that α(x, z) = α 0 (z) exp(β x) for some unknown function α 0 and unknown vector β ∈ R d . Of course, in this model, the smoothness in the x direction is higher than in the z direction.

For the sake of simplicity, we will assume in the following that the covariate X is onedimensional.

Description of the procedure

Our estimation procedure involves the minimization of a contrast. This contrast is tuned to the problem considered in this paper, as explained in the next section.

Definition of the contrast. Let

A = A 1 × [0, τ ] be a compact set of R × R + on
which the function α will be estimated. Without loss of generality, we set

A = [0, 1]×[0, τ ].
Let h be a function in (L 2 ∩ L ∞ )(A). Define the contrast function:

γ n (h) = 1 n n i=1 τ 0 h 2 (X i , z)Y i (z)dz - 2 n n i=1 τ 0 h(X i , z)dN i (z). (2)
This contrast is of least-squares type adapted to the problem considered here. Since each N i admits a Doob-Meyer decomposition (N i = Λ i + M i ), we have:

γ n (h) = 1 n n i=1 τ 0 h 2 (X i , z)Y i (z)dz - 2 n n i=1 τ 0 h(X i , z)dΛ i (z) - 2 n n i=1 τ 0 h(X i , z)dM i (z),
so that:

E γ n (h) = E τ 0 h 2 (X, z)Y (z)dz -E 2 τ 0 h(X, z)dΛ(z)).
Let F X denote the c.d.f. of the covariate X and • µ the norm defined by:

h 2 µ := E τ 0 h 2 (X, z)Y (z)dz = A h 2 (x, z)dµ(x, z),
where dµ(x, z)

:= E(Y (z)|X = x)F X (dx)dz.
By the Aalen multiplicative intensity model, see Equation ( 1), we get:

E γ n (h) = h 2 µ -2 h(x, z)α(x, z)E(Y (z)|X = x)F X (dx)dz = h -α 2 µ -α 2 µ .
This explains why minimizing γ n (•) over an appropriate set of functions described below, is a relevant strategy to estimate α.

Example 1 continued. In the particular case of regression for right-censored data, the conditional hazard function is estimated and the contrast function has the following form:

γ n (h) = 1 n n i=1 τ 0 h 2 (X i , z)1(Z i ≥ z)dz - 2 n n i=1 δ i h(X i , Z i ).
We have in addition an explicit formula for dµ(x, z):

(3) dµ(x, z) = (1 -L Z|X (z, x))F X (dx)dz,
where

1 -L Z|X (z, x) := P(Z ≥ z|X = x) = (1 -F T |X (x, z))(1 -G C|X (x, z))
and G C|X is the conditional c.d.f. of C given X.

Remark 2. In our setting, it is possible to let the censoring depend on the covariates, as in [START_REF] Dabrowska | Uniform consistency of the kernel conditional Kaplan-Meier estimate[END_REF] or, more recently Heuchenne and Van Keilegom (2006). Assumption (C) above is weaker than the assumption: T and C are independent and P(T ≤ C|X, T ) = P(T ≤ C|T ) in [START_REF] Stute | Distributional convergence under random censorship when covariables are present[END_REF]. See [START_REF] Delecroix | Nonlinear censored regression using synthetic data[END_REF], p.249, for further discussions on this matter.

2.2. Assumptions and notations. Before defining the estimation procedure, we need to introduce some assumptions and notations. Define the norms

h 2 A := A h 2 (x, z)dxdz and h ∞,A := sup (x,z)∈A |h(x, z)|,
and assume that the following condition holds: ) implies that µ admits a density w.r.t. the Lebesgue measure. We denote by f this density:

• (A1) The covariates X i admit a p.d.f. f X such that sup A 1 |f X | ≤ f 1 < +∞. Assumption (A1
(4) dµ(x, z) = f (x, z)dxdz where f (x, z) = E(Y (z)|X = x)f X (x).
We also assume:

• (A2) There exists f 0 > 0, such that ∀(x, z) ∈ A 1 × [0, τ ], f (x, z) ≥ f 0 . • (A3) ∀(x, z) ∈ A 1 × [0, τ ], α(x, z) ≤ α ∞,A < +∞. • (A4) ∀i, ∀t, Y i (t) ≤ C Y where C Y is a known fixed constant. Remark 3. Assumption (A2) is fulfilled if Y is bounded from below in expectation and if f X is bounded from below.
The requirement that the density of the design is bounded away from zero is standard in a regression model, for instance. Assumption (A2) reduces to such a condition in Example 2 (Cox processes), where we have

f (z, x) = I(z ∈ [0, τ ])f X (x).
In the general setting of counting processes, a lower bound on the expectation of Y is classical, see [START_REF] Reynaud | Penalized projection estimators of the Aalen multiplicative intensity[END_REF] p.648. In the censored case (Example 1), we can write:

E(Y (z)|X = x) = E(1(T ∧ C ≥ z)|X = x) = (1 -F T |X (x, z))(1 -G C|X (x, z-)).
It is a well-known fact (see e.g. Andersen et al. (1993), p 193-194) that the Kaplan-Meier estimator is consistent, for each x (with no further assumption) only on intervals of the form [0, τ x ], where τ x < sup{s ≥ 0, (1 -F T |X (x, s))(1 -G C|X (x, s)) > 0}. We can take τ = inf x∈[0,1] τ x . In view of (3), this justifies our Assumption (A2) in this case.

Lastly, in the examples described in Section 1, Assumption (A4) is clearly fulfilled with C Y = 1. We will set C Y = 1 in the following for simplicity. This implies together with (A1) that ∀(x, z) ∈ A, |f (x, z)| ≤ f 1 .

2.3. Definition of the estimator. We use the usual model selection paradigm (see, for instance, [START_REF] Massart | Inference for a nonlinear counting process regression model[END_REF]): first minimize the contrast γ n (•) over a finite-dimensional function space S m , then select the appropriate space by penalization. We introduce a collection {S m : m ∈ M n } of projection spaces: S m is called a model and M n is a set of multi-indexes (see the examples in Section 2.4). For each m = (m 1 , m 2 ), the space S m of functions with support in A = [0, 1] × [0, τ ] is defined by:

S m = F m 1 ⊗ H m 2 = h : h(x, z) = j∈Jm k∈Km a m j,k ϕ m j (x)ψ m k (z), a m j,k ∈ R , where F m 1 and H m 2 are subspaces of (L 2 ∩ L ∞ )(A 1 ) and (L 2 ∩ L ∞ )([0, τ ]) respectively spanned by two orthonormal bases (ϕ m j ) j∈Jm with |J m | = D m 1 and (ψ m k ) k∈Km with |K m | = D m 2 .
For all j and all k, the supports of ϕ m j and ψ m k are respectively included in A 1 and [0, τ ]. Here j and k are not necessarily integers, they can be pairs of integers, as in the piecewise polynomial or the wavelet cases, see Section 2.4.

Remark 4. From a theoretical point of view, we could consider that the covariates X are in R d . For this end, we would have to consider models of the form

S m = F m 1 ⊗ • • • ⊗ F m d ⊗ H m d+1 .
However, this would make the proofs more intricate. Note also that the convergence rate would be slower because of the curse of dimensionality. For the sake of clarity, we restrict ourselves to X ∈ R.

The first step would be to define αm = argmin h∈Sm γ n (h). To that end, let h(x, y) = j∈Jm k∈Km a j,k ϕ m j (x)ψ m k (y) be a function in S m . To compute αm , we have to solve:

∀j 0 ∀k 0 , ∂γ n (h) ∂a j 0 ,k 0 = 0 ⇔ G m A m = Υ m ,
where A m denotes the matrix (a j,k ) j∈Jm,k∈Km ,

G m := 1 n n i=1 ϕ m j (X i )ϕ m l (X i ) τ 0 ψ m k (z)ψ m p (z)Y i (z)dz (j,k),(l,p)∈Jm×Km and Υ m := 1 n n i=1 ϕ m j (X i ) τ 0 ψ m k (z)dN i (z) j∈Jm,k∈Km
.

Unfortunately G m may not be invertible. To overcome this problem, we modify the definition of αm in the following way: where Sp(G m ) denotes the spectrum of G m i.e. the set of the eigenvalues of the matrix G m (it is easy to see that they are nonnegative). The estimator f0 of f 0 (the minimum of the density f , see (A2)) is required to fulfill the following assumption:

• (A5) For any integer k ≥ 1, there are positive constants C 0 and n 0 such that

P(| f0 -f 0 | > f 0 /2) ≤ C 0 /n k for any n ≥ n 0 .
An estimator satisfying (A5) is defined in Section 3.5, where the constants C 0 and n 0 depend on k, f 0 , f 1 , τ, φ 1 , φ 2 . In fact, k = 7 is enough for the proofs. We refer the reader to the proof of Lemma 1, see Section 6, for an explanation of the presence of n 1/2 in the definition of Γm . In practice, this constraint is generally not used (the matrix is invertible, otherwise another model is considered). The final step is to select the relevant space via the penalized criterion:

(6) m = argmin m∈Mn γ n (α m ) + pen(m) ,
where pen(m) is defined in Theorem 1 below, see Section 3. Our estimator of α on A is then α m.

2.4. Assumptions on the models and examples. Let us introduce the following set of assumptions on the models {S m : m ∈ M n }, which are usual in model selection techniques.

• (M1) For i = 1, 2, D (i) 
n := max m∈Mn D m i ≤ n 1/4 / √ log n. We shall denote by F n

(respectively H n ) the space with dimension D

(1) n (resp. D

(2) n ). • (M2) There exist φ 1 > 0, φ 2 > 0 such that, for all u in F m 1 and for all v in H m 2 , we have sup

x∈A 1 |u(x)| 2 ≤ φ 1 D m 1 A 1 u 2 and sup x∈[0,τ ] |v(x)| 2 ≤ φ 2 D m 2 [0,τ ] v 2 .
By letting

φ 0 = √ φ 1 φ 2 , that leads to (7) ∀h ∈ S m h ∞,A ≤ φ 0 D m 1 D m 2 h A .
• (M3) Nesting condition:

D m 1 ≤ D m 1 ⇒ F m 1 ⊂ F m 1 and D m 2 ≤ D m 2 ⇒ H m 2 ⊂ H m 2 .
Moreover, there exists a global nesting space S n = F n ⊗ H n in the collection, such that ∀m ∈ M n , S m ⊂ S n and dim(S n ) := N n ≤ n/ log n.

Remark 5. We emphasize that φ 2 depends on τ and is in most examples proportional to 1/τ .

Assumptions (M1)-(M3) are not too restrictive. Indeed, they are verified for the spaces F m 1 (and H m 2 ) on A 1 = [0, 1] spanned by the following bases (see [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]):

• [T ] Trigonometric basis: span(ϕ 0 , . . . , ϕ m 1 -1 ) with

ϕ 0 = 1([0, 1]), ϕ 2j (x) = √ 2 cos(2πjx) 1([0, 1])(x), ϕ 2j-1 (x) = √ 2 sin(2πjx)1([0, 1])(x) for j ≥ 1.
For this model D m 1 = m 1 and φ 1 = 2 hold.

• [DP ] Regular piecewise polynomial basis: polynomials of degree 0, . . . , r (where r is fixed) on each interval [(l -1)/2 D , l/2 D [ with l = 1, . . . , 2 D . In this case, we have

m 1 = (D, r), J m = {j = (l, d), 1 ≤ l ≤ 2 D , 0 ≤ d ≤ r}, D m 1 = (r + 1)2 D and φ 1 = √ r + 1. • [W ]
Wavelet basis on an interval: span(Ψ j,k : j = l -1, . . . , m 1 , k ∈ Λ(j)), where l and m 1 are integers (l corresponds to the number of vanishing moments of the basis). The Ψ j,k are, depending on the localization parameter k, either translations and dilatations of a pair {φ, ψ} of scaling function and wavelet with a compact support, or so-called edge scaling functions and wavelets. We give more details in Appendix A.1. By construction, the elements of this basis have their supports included in A 1 , and they have as many vanishing moments as ψ.

• [H] Histogram basis: for

A 1 = [0, 1], span(ϕ 1 , . . . , ϕ 2 m 1 ) with ϕ j = 2 m 1 /2 1([(j - 1)/2 m 1 , j/2 m 1 [) for j = 1, . . . , 2 m 1 . Here D m 1 = 2 m 1 , φ 1 = 1. Notice that [H] is a particular case of both [DP ] and [W ]. Clearly, if ϕ 1 , . . . , ϕ D is an orthonormal basis in L 2 ([0, 1]), then τ -1/2 ϕ 1 (•/τ ), . . . , τ -1/2 ϕ D (•/τ ) is an orthonormal basis in L 2 ([0, τ ]).
Remark 6. The first assumption (M1) prevents the dimension from being too large compared to the number of observations. We can relax considerably this constraint for localized basis: for histogram basis, piecewise polynomial basis and wavelets, (M1) can be relaxed to the weaker condition:

D (i) n ≤ n/ log n.
Analogously in (M3), we would get N n ≤ n/ log n. The condition (M2) implies a useful link between the L 2 norm and the infinite norm. The third assumption (M3) implies in particular that ∀m, m ∈ M n , S m + S m ⊂ S n . This condition is useful for the chaining argument used in the proofs, see Section 6.4.

Main results

3.1. Oracle inequality. We define α m as the orthogonal projection of α1(A) on S m . The estimator α m where αm is given by ( 5) and m is given by ( 6) satisfies the following oracle inequality.

Theorem 1. Let (A1) -(A5) and (M1) -(M3) hold. Define the following penalty:

(8) pen(m) := K 0 (1 + α ∞,A ) D m 1 D m 2 n ,
where K 0 is a numerical constant. We have

(9) E( α1(A) -α m 2 µ ) ≤ κ 0 inf m∈Mn { α1(A) -α m 2 µ + pen(m)} + C n
for any n ≥ n 0 , where n 0 is a constant coming from Assumption (A5) (see Section 2.3), where κ 0 is a numerical constant and C is a constant depending on φ 1 , φ 2 , α ∞,A , f 0 , f 1 and τ .

The proof of Theorem 1 involves a deviation inequality for the empirical process

ν n (h) := 1 n n i=1 τ 0 h(X i , z)dM i (z),
where

M i (t) = N i (t) - t 0 α(X i , z)Y i (z)
dz are martingales, see Section 1, and a L 2 -L ∞ chaining argument.

Adaptive upper bound.

From Theorem 1, we can derive the rate of convergence of α m over anisotropic Besov spaces. We recall that anisotropy is almost mandatory in this context, see Remark 1. For that purpose, assume that α restricted to A belongs to the anisotropic Besov space

B β 2,∞ (A) on A with regularity β = (β 1 , β 2 ). Let us recall the definition of B β 2,∞ (A). Let {e 1 , e 2 } the canonical basis of R 2 and take A r h,i := {x ∈ R 2 ; x, x + he i , . . . , x + rhe i ∈ A}, for i = 1, 2. For x ∈ A r h,i , let ∆ r h,i g(x) = r k=0 (-1) r-k r k g(x + khe i )
be the rth difference operator with step h. For t > 0, the directional moduli of smoothness are given by

ω r i ,i (g, t) = sup |h|≤t A r i h,i |∆ r i h,i g(x)| 2 dx 1/2 . Consider the Besov norm (10) α B β 2,∞ (A) := α A + |α| B β 2,∞ (A) = α A + sup t>0 2 i=1 t -β i ω r i ,i (g, t),
and define the Besov space B β 2,∞ (A) as the set of functions g such that g B β 2,∞ (A) < +∞, and for L > 0, consider the ball

B β 2,∞ (A, L) = {α ∈ B β 2,∞ (A) : α B β 2,∞ (A) ≤ L}.
More details concerning Besov spaces can be found in [START_REF] Triebel | Theory of function spaces[END_REF]. The next corollary shows that α m adapts to the unknown anisotropic smoothness of α.

Corollary 1. Assume that α restricted to A belongs to B β 2,∞ (A, L), with smoothness β = (β 1 , β 2 ) such that β 1 > 1/2 and β 2 > 1/2.
We consider the piecewise polynomial or wavelet spaces described in Subsection 2.4 (with the regularity of the polynomials and the wavelets larger than β i -1). Then, under the assumptions of Theorem 1, we have

E α -α m 2 A ≤ Cn -2 β 2 β+2
where β is the harmonic mean of

β 1 and β 2 (i.e. 2/ β = 1/β 1 + 1/β 2 ) and C depends on L, τ , φ 0 , f 0 , f 1 and α ∞,A .
The rate of convergence achieved by α m in Corollary 1 is optimal in the minimax sense as proved in Theorem 3 below. For trigonometric spaces, the result also holds, but for β 1 > 3/2 and β 2 > 3/2 (because of (M1)). Moreover, assuming for example that β 2 > β 1 , one can see in the proof of Corollary 1 that the estimator chooses a space of dimension D m2 = D

β 1 /β 2 m1
< D m1 . This shows that the estimator is adaptive with respect to the approximation space for each directional regularity.

3.3. Random penalty. It is worth noting that the penalty defined in Equation ( 8) involves the unknown quantity α ∞,A . This problem occurs occasionally in penalization procedures, see for instance [START_REF] Comte | Adaptive estimation of the spectrum of a stationary Gaussian sequence[END_REF] or Lacour (2007a). The solution is to replace it by an estimator:

(11) pen(m) = K 1 (1 + αm * A,∞ ) D m 1 D m 2 n ,
where K 1 is a numerical constant and αm * is a rough estimator of α computed on an arbitrary space S m * with dimension

D m * = D m * 1 D m * 2 . Let us consider (12) m = arg min m∈Mn (γ n (α m ) + pen(m)) .
Then we can prove the following result:

Theorem 2. Let the assumptions of Theorem 1 be satisfied. Consider the estimator α m defined by ( 5)-( 12)-( 11), where the term αm * is computed with (5) on a space

S m * in collection [T] with dimension D m * such that D m * 1 = D m * 2 = n 1/4 . If α restricted to A belongs to the anisotropic Besov space B β 2,∞ (A) with regularity β = (β 1 , β 2 ) such that β 1 > 2 and β 2 > 2, then, for n large enough, (13) E( α1(A) -α m 2 µ ) ≤ κ 1 inf m∈Mn { α1(A) -α m 2 µ + (1 + α ∞,A ) D m 1 D m 2 n } + C n
where κ 1 is a numerical constant and C is a constant depending on φ 1 , φ 2 , α ∞,A , f 0 , f 1 and τ .

Obviously, we can deduce from Theorem 2 a Corollary similar to Corollary 1 concerning the asymptotic rate of the estimator on Besov balls.

3.4. Lower bound. In the next Theorem, we prove that the rate n -2 β/(2 β+2) is optimal over B β 2,∞ (A) where we recall that 2/ β = 1/β 1 + 1/β 2 . Recall that the Besov ball B β 2,∞ (A, L) is defined in Section 3.2. Let us denote by E α the integration w.r.t. the joint law P α , when the intensity is α, of the n-sample

(X i , N i (z), Y i (z); z ≤ τ, i = 1, . . . , n).
Theorem 3. Assume that Assumption (A1) holds. Then there is a constant C > 0 that depends on β, L, τ and f 1 such that

inf α sup α∈B β 2,∞ (A,L) E α α -α 2 A ≥ Cn -2 β/(2 β+2)
for n large enough, where the infimum is taken among all estimators.

Remark 7. There is a slight difference between the statements of Theorem 3 and Corollary 1: the upper bound in Corollary 1 needs Assumption (A2) [which requires that

f (x, z) = E(Y (z)|X = x)f X (x) ≥ f 0 ]
while Theorem 3 does not. However Corollary 1 and Theorem 3 are stated on the same functional sets. This kind of difference between the statements of upper and lower bounds is classical, and can be found in regression models as well, see the dicussion in [START_REF] Stone | Optimal rates of convergence for nonparametric estimators[END_REF] p.1351 for a regression model.

3.5. Estimation of f 0 . We recall that f is the density of µ, which is defined in Equation (4). We define

(14) fm = argmin h∈Sm υ n (h) where υ n (h) = h 2 - 2 n n i=1 τ 0 h(X i , z)Y i (z)dz.
This estimator admits a simple explicit formulation:

(15) fm (x, z) = (j,k)∈Jm×Km bj,k ϕ m j (x)ψ m k (y), with bj,k = 1 n n i=1 ϕ m j (X i ) τ 0 ψ m k (z)Y i (z)dz.
As before, we consider estimation of f over the compact set

A = [0, 1] × [0, τ ].
We choose the space H m 2 as the space with maximal dimension, as explained below. Let us denote it by H n , by D

(2)

n = dim(H n ) its dimension (see (M1)
) and by n its index so that H n = H n . Hence, we consider, instead of a general fm , the estimator fm 1 := argmin

h∈Fm 1 ×Hn υ n (h).
We are now in a position to define an estimator of f 0 by considering any inf (x,z)∈A fm 1 (x, z) with a given m 1 . Indeed, an arbitrary choice is sufficient for our estimation problem concerning f 0 . In our setting, only a rough estimation of the lower bound on f is useful. Therefore, the estimator f0 used in (5) for the construction of αm can be defined by: f0 := inf

(x,z)∈A fm * 1 (x, z) with D m * 1 = dim(F m * 1 ). (16)
Then, the following result holds:

Proposition 1. Consider f0 defined by (16) in the basis [T] with D m * 1 = D (2) n = n 1/4 / √ log n. Assume that f ∈ B ( β1 , β2 ) 2,∞ (A) with β1 > 2, β2 > 2.
Then, for any k ∈ N, there are positive constants n 0 and C 0 such that

P(| f0 -f 0 | > f 0 /2) ≤ C 0 /n k
for any n ≥ n 0 , where C 0 and n 0 are constant depending on k, τ , f 0 , f 1 , φ 1 and φ 2 . This proves that f0 fulfills Assumption (A5).

The proof of this result is given in Section 6. In this section, we give a numerical illustration of the adaptive estimator α m, defined in Section 2, computed with the dyadic histogram basis [H]. We sample i.i.d. data (X 1 , T 1 ), . . . , (X n , T n ) in three particular cases of the regression model of Example 1 from Section 1. For the sake of simplicity, we simulate the covariates X i with the uniform distribution on [0, 1]. The size of the data set is n = 1000.

• Case (NL). Non-Linear regression:

T i = b(X i ) + σε i .
We simulate ε i with a χ 2 (4) distribution, σ = 1/4 and b(x) = 2x + 5. Note that in this case, the hazard function to be estimated is =

α NL (x, t) = 1 σ α ε t -b(x) σ ,
where α ε denotes the hazard function of ε.

• Case (AFT). Accelerated Failure Time model:

log(T i ) = a + bX i + ε i ,
where the ε i are standard normal and a = 5 and b = 2. The hazard function to be estimated is then:

α AF T (x, t) = α ε (log(t) -(a + bx)) t .
• Case (PH). Proportional Hazards model (see [START_REF] Castellan | Estimation of the Cox regression function via model selection[END_REF], LeBlanc and Crowley (1999)): in this case, the hazard writes

α(x, t) = exp(b(x))α 0 (t).
We take b(x) = bx with b = 0.4 and α 0 (t) = aλt a-1 , which is a Weibull hazard function with a = 3 and λ = 1.

We choose to compute and plot our estimators with histogram bases for two reasons: first, it makes the estimator much easier to compute; secondly, it shows very well how the changes are captured, and when an anisotropic choice is performed by the estimation procedure. More sophisticated implementation is beyond the scope of the paper.

The penalty is taken as

pen(m 1 , m 2 ) = κ(1 + α ∞,A ) 2 m 1 +m 2 n ,
with κ = 4. Note that, for sake of simplicity, α ∞,A is estimated by max j,k âj,k (the largest histogram coefficients) instead of the trigonometric basis, which was used for technical reasons in Theorem 2: this is because it makes the procedure faster, since all âj,k are already computed for estimation. These coefficients are computed on the largest space which is considered (taken with dimension √ n).

We can see from Figures 1-3 that the algorithm exploits the opportunity (Figures 1 and3) of choosing different dimensions in the two directions, and that it gives a good account of the general form of the surfaces.

Proofs of the main results

Proof of Theorem 1. We define, for h

1 , h 2 in L 2 ∩ L ∞ (A), the empirical scalar product h 1 , h 2 n = 1 n n i=1 τ 0 h 1 (X i , z)h 2 (X i , z)Y i (z)dz1(X i ∈ [0, 1]) (17)
and the associated empirical norm h where we recall that f denotes the density of µ w.r.t. the Lebesgue measure on A. We shall use the following sets:

1 2 n = h 1 , h 1 n which is such that E( h 1 2 n ) = A h 2 1 (x, y)dµ(x, y) = A h 2 1 (x, y)f (x,
Γm = {min Sp(G m ) ≥ max( f0 /3, n -1/2 )}, Γ := m∈Mn Γm , ∆ := ∀h ∈ S n : h 2 n h 2 µ -1 ≤ 1 2
, and Ω := f0

f 0 -1 ≤ 1 2 . ( 18 
)
For m ∈ M n , we denote by α m the orthogonal projection on S m of α restricted to A. The following decomposition holds:

E( α m -α1(A) 2 µ ) ≤ 2 α1(A) -α m 2 µ + 2E( α m -α m 2 µ 1(∆ ∩ Ω)) + 2E( α m -α m 2 µ 1((∆ ∩ Ω) )). ( 19 
)
The last term is bounded via the following Proposition:

Proposition 2. Under the Assumptions of Theorem 1,

(20) E( α m -α m 2 µ 1((∆ ∩ Ω) )) ≤ C 1 /n, where C 1 is a constant depending on τ , φ 1 , φ 2 , α ∞,A , f 0 , f 1 .
To study the term E( α mα m 2 µ 1(∆ ∩ Ω)), two preliminary remarks have to be made. The first one is the following Lemma: Lemma 1. Under the Assumptions of Theorem 1, the following embedding holds: for n ≥ 4/f 2 0 , we have

∆ ∩ Ω ⊂ Γ ∩ Ω.
As a consequence, for all m ∈ M n , the matrices G m are invertible on ∆ ∩ Ω. The second remark is the following useful decomposition. Let us define

ν n (h) = 1 n n i=1 τ 0 h(X i , z)dN i (z) - τ 0 h(X i , z)α(X i , z)Y i (z)dz = 1 n n i=1 τ 0 h(X i , z)dM i (z), ( 21 
)
where we use the Doob-Meyer decomposition. For any h 1 , h 2 ∈ (L 2 ∩ L ∞ )(A), we have

γ n (h 1 ) -γ n (h 2 ) = h 1 -h 2 2 n + 2 h 1 -h 2 , h 2 n - 2 n n i=1 τ 0 (h 1 -h 2 )(X i , z)dN i (z) = h 1 -h 2 2 n + 2 h 1 -h 2 , h 2 -α n -2ν n (h 1 -h 2 ) = h 1 -h 2 2 n + 2 h 1 -h 2 , h 2 -α1(A) n -2ν n (h 1 -h 2 ), ( 22 
)
where the indicator 1(A) is inserted because all other functions in the product are Asupported. Let us assume that n ≥ 4/f 2 0 . Now, on ∆ ∩ Ω, we have thanks to Lemma 1, by the definition of m, that

γ n (α m) + pen( m) ≤ γ n (α m ) + pen(m) ∀m ∈ M n .
It follows from ( 22) and from the fact that 2xy ≤ x 2 /θ + θy 2 for any x, y, θ > 0 that, on

∆ ∩ Ω, α m -α m 2 n ≤ 2 α m -α m , α1(A) -α m n + pen(m) + 2ν n (α m -α m ) -pen( m) ≤ 1 4 α m -α m 2 n + 4 α1(A) -α m 2 n + pen(m) + 1 4 α m -α m 2 µ + 4 sup h∈B µ m, m (0,1) ν 2 n (h) -pen( m),
where B µ m,m (0, 1) := {h ∈ S m + S m : h µ ≤ 1}. Now, we need to introduce a centering factor denoted by p(m, m ), related to the supremum of the empirical process ν n (h): Proposition 3. Grant the assumptions of Theorem 1. There exists a numerical constant κ > 0 such that the following holds. If

p(m, m ) = κ(1 + α ∞,A ) D m + D m n , then m ∈Mn E sup h∈B µ m,m (0,1) (ν 2 n (h) -p(m, m )) + 1(∆) ≤ C 2 n ,
for n large enough, where C 2 is a constant depending on f 0 , α ∞,A and the chosen basis (see Section 2.4).

The proof of Proposition 3 is given in Section 6.4 below. It yields

3 4 α m -α m 2 n ≤ 4 α1(A) -α m 2 n + pen(m) + 1 4 α m -α m 2 µ + 4 sup h∈B µ m, m(0,1) ν 2 n (h) -p(m, m) + + 4p(m, m) -pen( m). Now, let fix K 0 ≥ 4κ, so that 4p(m, m ) ≤ pen(m) + pen(m ) ∀m, m ,
and use the definition of ∆. We obtain on ∆ ∩ Ω:

3 8 α m -α m 2 µ ≤ 4 α1(A) -α m 2 n + 2pen(m) + 1 4 α m -α m 2 µ + 4 m ∈Mn sup h∈B µ m,m (0,1) ν 2 n (h) -p(m, m ) + ( 23 
)
and thus on ∆ ∩ Ω:

1 8 α m -α m 2 µ ≤ 4 α1(A) -α m 2 n + 2pen(m) + 4 m ∈Mn sup h∈B µ m,m (0,1) ν 2 n (h) -p(m, m ) + .
Now, Proposition 3 entails:

(24) 1 8 E( α m -α m 2 µ 1(∆ ∩ Ω)) ≤ 4 α1(A) -α m 2 µ + 2pen(m) + C 2 n .
Gathering ( 19), ( 20) and ( 24), we obtain that, for n ≥ 4/f 2 0 ,

E( α m -α1(A) 2 µ ) ≤ 2 α m -α1(A) 2 µ + 16 4 α1(A) -α m 2 µ + 2pen(m) + C 2 n + 2C 1 n
for any m ∈ M n . On the other hand, if n ≤ 4/f 2 0 , then 1/n ≥ f 2 0 /4 and it is easy to see that Lemma 3 (see below) entails E( α m -α1(A) 2 µ ) ≤ C/n where C is a constant depending on C B from Lemma 3, f 0 and α1(A) 2 µ . This concludes the proof of Theorem 1.

Proof of Corollary 1.

To control the bias term, we use Lemma 6, see Appendix A.2, that gives the approximation result allowing to derive the rate of convergence. If we choose S m as one of the finite linear span considered in Section A.2, we can apply Lemma 6 to the function α A , the restriction of α to A. Since α m has been defined as the orthogonal projection of α A on S m , we get using (A1) and (A4) :

α1(A) -α m µ ≤ f 1 α -α m A ≤ C 3 [D -β 1 m 1 + D -β 2 m 2 ]
where C 3 depends on the Besov norm of α and on f 1 . Now, according to Theorem 1 and (A2), we obtain:

E α m -α 2 A ≤ f -1 0 E α m -α 2 µ ≤ C 4 inf m∈Mn D -2β 1 m 1 + D -2β 2 m 2 + D m 1 D m 2 n
where C 4 depends on the Besov norm of α, and on f 0 , f 1 , φ 1 , φ 2 and τ . In particular, if

m * = (m * 1 , m * 2 ) is such that D m * 1 = n β 2 β 1 +β 2 +2β 1 β 2 and D m * 2 = (D m * 1 ) β 1 β 2 then E α m -α 2 A ≤ 2C 4 D -2β 1 m * 1 + D 1+β 1 /β 2 m * 1 n ≤ 4n - 2β 1 β 2 β 1 +β 2 +2β 1 β 2 = 4C 4 n -2 β 2 β+2 ,
where we recall that the harmonic mean of β 1 and

β 2 is β = 2β 1 β 2 /(β 1 + β 2 ). The condition D m 1 ≤ √ n/ log n allows this choice of m * only if β 2 /(β 1 + β 2 + 2β 1 β 2 ) < 1/2 i.e. if β 1 -β 2 + 2β 1 β 2 > 0.
In the same manner, the condition β 2β 1 + 2β 1 β 2 > 0 must be satisfied. Both conditions hold if β 1 > 1/2 and β 2 > 1/2.

5.3.

Proof of Theorem 2. The proof follows the line of the proof of Theorem 2.2 p. 67 in [START_REF] Lacour | Estimation non paramétrique adaptative pour les chaînes de Markov et les chaînes de Markov cachées[END_REF], so we only give a sketch of proof. Let us define

Λ = αm * ∞ α ∞,A -1 < 1 2 ,
and recall that ∆ and Ω are given by ( 18). Then we decompose the risk of α m as follows:

E( α m -α1(A) 2 µ ) = E( α m -α1(A) 2 µ 1(Λ ∩ ∆ ∩ Ω)) + E( α m -α1(A) 2 µ 1((Λ ∩ ∆ ∩ Ω) )). The study of the term E( α m -α1(A) 2 µ 1(Λ ∩ ∆ ∩ Ω)
) is very similar to the study of its analogous in the proof of Theorem 1, by using that, on Λ,

(25) 1 2 pen(m) ≤ K 0 K 1 pen(m) ≤ 3 2 pen(m).
Thus, the algebra starts with pen(m) instead of pen(m), and on Λ, it is proportional to pen(m) thanks to (25). At the end, only constant multiplicative factors are changed. In other words, taking K 1 = 2K 0 , ( 24) is simply replaced by

(26) 1 8 E( α m -α m 2 µ 1(∆ ∩ Ω ∩ Λ)) ≤ 4 α1(A) -α m 2 µ + 4pen(m) + C 2 n .
The conclusion follows from the following Lemma, which is proven in Section 6.5:

Lemma 2. Under the assumptions of Theorem 2,

E( α m -α1(A) 2 µ 1((Λ ∩ ∆ ∩ Ω) )) ≤ C R /n, where C R depends on φ 1 , φ 2 , τ, f 0 , f 1 and α ∞,A .
This ends the proof of Theorem 2. 5.4. Proof of Theorem 3. In order to prove Theorem 3, we use the following theorem from [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF], which is a standard tool for the proof of such a lower bound. We say that ∂ is a semi-distance on some set Θ if it is symmetric and if it satisfies the triangle inequality and ∂(θ, θ) = 0 for any θ ∈ Θ. We consider K(P, Q) := log(dP/dQ)dP the Kullback-Leibler divergence between probability measures P and Q such that P Q.

Theorem [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF]). Let (Θ, ∂) be a set endowed with a semi-distance ∂. We suppose that {P θ : θ ∈ Θ} is a family of probability measures on a measurable space (X , A) and that v > 0. If there exist {θ 0 , . . . , θ M } ⊂ Θ, with M ≥ 2, such that

(1) ∂(θ j , θ k ) ≥ 2v ∀ 0 ≤ j < k ≤ M (2) P θ j P θ 0 ∀ 1 ≤ j ≤ M , (3) 1 M M j=1 K(P θ j , P θ 0 ) ≤ a log(M ) for some a ∈ (0, 1/8), then inf θ sup θ∈Θ E θ [(v -1 ∂( θ, θ)) 2 ] ≥ √ M 1 + √ M 1 -2a -2 a log(M )
,

where the infimum is taken among all estimators.

In this proof, we denote by P α the distribution of (X, N (z), Y (z); z ≤ τ ) when the intensity of N is α and by P n α the distribution of the n-sample (X i , N i (z), Y i (z); z ≤ τ, i = 1, . . . , n).

We construct a family of functions {α 0 , . . . , α M } that satisfies points (1)-(3). We use the notation |A| for the area of the rectangle A (or the length of an interval) and #(R) denotes the cardinality of a set R.

Let α 0 (x, t) = |B| -1 1(t ∈ B) where B is a compact set such that A = [0, 1] × [0, τ ] ⊂ B × B and |B| ≥ 2|A| 1/2 /L. As a consequence, we have α 0 (x, t) > 0 for (x, t) ∈ A and α 0 B β 2,∞ (A) = α 0 A + |α 0 | B β 2,∞ (A) ≤ L/2 since |α 0 | B β 2,∞ (A) = 0, see (10) 
. We shall denote for short a 0 = |B| -1 in the following. Let ψ be a very regular wavelet with compact support (the Daubechies's wavelet for instance), and

for j = (j 1 , j 2 ) ∈ Z 2 and k = (k 1 , k 2 ) ∈ Z 2 , let us consider ψ j,k (x, t) = τ -1/2 2 (j 1 +j 2 )/2 ψ(2 j 1 t/τ -k 1 )ψ(2 j 2 x -k 2 ),
so that ψ j,k A = 1. Let S j,k stands for the support of ψ j,k . We consider the maximal set

R j ⊂ Z 2 such that (27) S j,k ⊂ A, ∀k ∈ R j and S j,k ∩ S j,k = ∅, ∀k, k ∈ R j , k = k .
The cardinality of R j satisfies #(R j ) = c2 j 1 +j 2 , where c is a positive constant that depends on τ and on the support of ψ only. Consider the set Ω j = {0, 1} #(R j ) and define for any

ω = (ω k ) ∈ Ω j α(•; ω) := α 0 + b n k∈R j ω k ψ j,k ,
where b > 0 is some constant to be chosen below. In view of ( 27) we have

α(•; ω) -α(•; ω ) 2 A = bρ(ω, ω ) n where ρ(ω, ω ) := k∈R j 1(ω k = ω k )
is the Hamming distance on Ω j . Using a result of Varshamov-Gilbert -see [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF] -we can find a subset {ω (0) , . . . , ω (M j ) } of Ω j such that

ω (0) = (0, . . . , 0), ρ(ω (p) , ω (q) ) ≥ #(R j )/8
for any 0 ≤ p < q ≤ M j , where M j ≥ 2 #(R j )/8 . We consider the family A j = {α 0 , . . . , α M j } where α p = α(•, ω (p) ). This family satisfies for any 0

≤ p < q ≤ M j α p -α q A ≥ b#(R j ) 8n 1/2 = 2v j for v j := b#(R j )/(32n)
. This proves point (1). Now, let us gather here some properties for this family of functions. We have

α(•; ω) -α 0 ∞,A ≤ b2 (j 1 +j 2 ) τ n ψ 2 ∞ ≤ a 0 /3
and consequently α(x, t; ω) ≥ 2a 0 /3 > 0 for any (x, t) ∈ A and ω ∈ Ω j whenever

(28) b2 j 1 +j 2 τ n 1/2 ≤ a 0 3 ψ 2 ∞ .
Using the Bernstein's estimate from [START_REF] Hochmuth | Wavelet characterizations for anisotropic Besov spaces[END_REF] (see Theorem 3.5 p.194), we have for ψ smooth enough that

k∈R j ω k ψ j,k B β 2,∞ (A) ≤ c τ (2 j 1 β 1 + 2 j 2 β 2 ) k∈R j ω k ψ j,k A ≤ c τ,ψ (2 j 1 β 1 + 2 j 2 β 2 )(2 j 1 +j 2 ) 1/2 ,
where c τ,ψ is a constant that depends on τ and ψ. Note that the Bernstein's estimate from [START_REF] Hochmuth | Wavelet characterizations for anisotropic Besov spaces[END_REF] is stated on the space L 2 ([0, 1] 2 ) while we consider here L 2 ([0, 1]× [0, τ ]). An obvious (but tedious) modification of the proof of Hochmuth (it suffices to change the scaling of the moduli of continuity ω r i ,i herein) allows to show that the Bernstein's estimate is the same as for L 2 ([0, 1] 2 ), up to a multiplicative constant that depends on τ . Hence, if 2) and (3) are derived using Jacod's formula (see [START_REF] Andersen | Statistical models based on counting processes[END_REF]). Indeed, we can prove that the log-likelihood (α, α 0 ) := log(dP α /dP α 0 ) of N writes

(29) c τ,ψ (2 j 1 β 1 + 2 j 2 β 2 )(2 j 1 +j 2 ) 1/2 √ n ≤ L 2 √ b , we have α(•; ω) B β 2,∞ (A) ≤ L, so α(•; ω) ∈ B β 2,∞ (A, L) for any ω ∈ Ω j . This proves that A j ⊂ B β 2,∞ (A, L). Points (
(α, α 0 ) = τ 0 (log α(X, t) -log α 0 (X, t))dN (t) - τ 0 (α(X, t) -α 0 (X, t))Y (t)dt.
For any α ∈ A j , we have αα 0 ∞,A ≤ a 0 /3 ≤ α(x, t)/2 for any (x, t) ∈ A. The Doob-Meyer decomposition allows to write that, under P α 0 :

(α, α 0 ) = τ 0 Φ 1/α(X,t) (α(X, t) -α 0 (X, t)) -(α(X, t) -α 0 (X, t)) Y (t)dt + τ 0 (log α(X, t) -log α 0 (X, t))dM (t)
where Φ a (x) :=log(1ax)/a for a > 0 and x < 1/a. But since Φ a (x) ≤ x + ax 2 for any x ≤ 1/(2a), we obtain

(α, α 0 ) ≤ 3 2a 0 τ 0 (α(t, X) -α 0 (t, X)) 2 Y (t)dt + τ 0 (log α 0 (t, X) -log α(t, X))dM (t)
which gives by integration with respect to P α

K(P α , P α 0 ) ≤ 3 α -α 0 2 µ 2a 0 ≤ 3f 1 α -α 0 2 A 2a 0 ≤ 3bf 1 #(R j ) 2na 0 ,
for any α ∈ A j . Since the counting processes (N 1 , . . . , N n ) are independent, we have K(P n α , P n α 0 ) = nK(P α , P α 0 ) and

1 M M p=0 K(P n αp , P n α 0 ) ≤ 3bf 1 #(R j ) 2a 0 ≤ a log M j
with a := 12bf 1 /(a 0 log 2). So, we take b small enough, so that a < 1/8 (this is the only constraint on b) and point (3) is met in Tsybakov ( 2003)'s theorem. It only remains to choose the levels j 1 and j 2 so that ( 28) and ( 29) holds, and to compute the corresponding v j . We take j = (j 1 , j 2 ) such that

c 1 /2 ≤ 2 j 1 n -β 2 /(β 1 +β 2 +2β 1 β 2 ) ≤ c 1 and c 2 /2 ≤ 2 j 2 n -β 1 /(β 1 +β 2 +2β 1 β 2 ) ≤ c 2
where c 1 and c 2 are positive constants satisfying c τ,ψ (c

β 1 1 + c β 2 2 ) √ c 1 c 2 ≤ L/(2 √ b).
For this choice, 2 j 1 +j 2 /n ≤ c 1 c 2 n -2 β/(2 β+2) so (28) holds for n large enough and (29) holds and v j ≥ c 3 n -β/(2 β+2) where c 3 = c τ,ψ bc 1 c 2 /128.

Proof of the auxiliary results

Proof of Proposition 1. Let fm *

1 and f0 be defined by ( 16), with

m * 1 = (D m 1 , D (2) n ) and D m 1 = D (2) n = n 1/4 / √ log n. We remark that, for all (x, z) ∈ R 2 , fm * 1 (x, z) = f (x, z) + fm * 1 (x, z) -f (x, z) ≥ f 0 -fm * 1 -f ∞,A . We deduce that fm * 1 -f ∞,A ≥ f 0 -f0 . In the same manner, fm * 1 -f ∞,A ≥ f0 -f 0 . Thus P(Ω ) = P(|f 0 -f0 | > f 0 /2) ≤ P( fm * 1 -f ∞,A > f 0 /2). Therefore, we just have to prove that P( fm * 1 -f ∞,A > f 0 /2) ≤ C 0 /n k . First, remark that fm * 1 -f ∞,A ≤ fm * 1 -f m * 1 ∞,A + f m * 1 -f ∞,A . As f ∈ B ( β1 , β2 ) 2,∞
(A) with β > 1, the embedding theorem proved in [START_REF] Nikol'skii | Approximation of functions of several variables and imbedding theorems[END_REF] p.236 implies that f belongs to Moreover, Nikol'skii (1975) proves that there exists a function F m * in the space S m * of trigonometric polynomials such that

B (β * 1 ,β * 2 ) ∞,∞ (A) with β * 1 = β1 (1 -1/ β) and β * 2 = β2 (1 -1/ β).
F m * -f 1(A) ≤ C(D -β1 m * 1 + D -β2 n ) and F m * -f 1(A) ∞ ≤ C(D -β * 1 m * 1 + D -β * 2 n ),
where C depends on the Besov norm of f on A. Then

f m 1 * -f 1(A) ∞ ≤ f m 1 * -F m * ∞ + F m * -f 1(A) ∞ ≤ φ 0 D m 1 * D (2) n f m 1 * -F m * + F m * -f 1(A) ∞ ≤ φ 0 D m 1 * D (2) n ( f m 1 * -f 1(A) + f 1(A) -F m * ) + F m * -f 1(A) ∞ ≤ C [ D m 1 * D (2) n (D -β1 m * 1 + D -β2 n ) + D -β * 1 m 1 * + (D (2) n ) -β * 2 ],
where C depends on φ 0 and the Besov norm of f . But since D m * 1 = D

(2) n = n 1/4 / log(n), this proves that f m 1 *f 1(A) ∞ → 0 when n → +∞ as soon as β1 > 2 and β2 > 2. So, there is n 0 such that for any n ≥ n 0 , we have

f m 1 * -f ∞,A ≤ f 0 /4 and P( fm * 1 -f ∞,A > f 0 /2) ≤ P( fm * 1 -f m * 1 ∞,A > f 0 /4). Using (M2), we get fm * 1 -f m * 1 ∞,A ≤ φ 1 φ 2 D m * 1 D (2) n fm * 1 -f m * 1 . Now we define (30) ϑ n (h) = 1 n n i=1 τ 0 h(X i , y)Y i (y) -E h(X i , y)Y i (y) dy = √ h 2 n - √ h 2 µ .
With this notation, and recalling the definition of fm (see Equation ( 15)), we have

E( bj,k ) = b j,k and fm * 1 -f m * 1 2 = j,k ( bj,k -b j,k ) 2 = j,k ϑ 2 n (ϕ m * 1 j ⊗ ψ m * 1 k ),
thus:

P( fm * 1 -f ∞,A > f 0 /2) ≤ P j,k ϑ 2 n (ϕ m * 1 j ⊗ ψ m * 1 k ) ≥ f 2 0 16φ 1 φ 2 D m * 1 D (2) n ≤ j,k P |ϑ n (ϕ m * 1 j ⊗ ψ m * 1 k )| ≥ f 0 4 √ φ 1 φ 2 D m * 1 D (2) n . Note that ϑ n (ϕ m * 1 j ⊗ ψ m * 1 k ) = 1 n n 1 (U j,k i -E(U j,k i )), where U j,k i = ϕ j (X i ) τ 0 ψ k (y)Y i ( 
y)dy are i.i.d. random variables. We apply the Bernstein inequality to to the sum of the random variables U j,k i . We have

|U j,k i | ≤ ϕ j ∞ τ 0 |ψ k (y)|dy ≤ ϕ j ∞ τ τ 0 ψ 2 k (y)dy 1/2 ≤ τ φ 1 D m * 1 := c and E[(U j,k i ) 2 ] ≤ τ f 1 =: v 2 ,
so the Bernstein inequality gives

P |ϑ n (ϕ m * 1 j ⊗ ψ m * 1 k )| ≥ x ≤ 2 exp - nx 2 2(v 2 + cx/3) with x = f 0 /(4 √ φ 1 φ 2 D m * 1 D (2) 
n ) and v and c defined above. This entails:

P |ϑ n (ϕ m * 1 j ⊗ ψ m * 1 k )| ≥ f 0 4 √ φ 1 φ 2 D m * 1 D (2) n ≤ 2 exp - Cn (D m * 1 D (2) n ) 2
, where C is a constant depending on f 0 , f 1 , τ, φ 1 , φ 2 , and since D m * 1 = D

(2) n = n 1/4 / log(n) we obtain:

P(Ω ) ≤ 2 √ n exp -C(log n) 2 ≤ C 0 n k ,
where C 0 is a constant depending on k, f 0 , φ 1 , φ 2 , τ and f 1 . This concludes the proof of Proposition 1.

6.2. Proof of Proposition 2.

6.2.1. Proof of Proposition 2. One can write

E( α m -α m 2 µ 1((∆ ∩ Ω) )) ≤ E( α m -α m 2 µ 1(∆ )) + E( α m -α m 2 µ 1(Ω )) ≤ f 1 [E( α m -α m 2 1(∆ )) + E( α m -α m 2 1(Ω ))]
using (A1) and (A4). This yields

E( α m -α m 2 µ 1((∆ ∩ Ω) )) ≤ 2f 1 E 1/2 ( α m 4 )(P 1/2 (∆ ) + P 1/2 (Ω )) + α 2 A (P(Ω ) + P(∆ )) .
Now, (A5) with k = 7 ensures that P(Ω ) ≤ C 0 /n 7 for any n ≥ n 0 . We need the following Lemmas:

Lemma 3. Under the assumptions of Theorem 1, E( α m 4 ) ≤ C B n 5 , where C B is a constant depending on φ 1 , φ 2 , τ and α ∞,A .
Lemma 4. Under the assumptions of Theorem 1, we have

P(∆ ) ≤ C (∆) k /n k for any k ≥ 1, where C (∆) k
is a constant depending on k, on the basis, and on f 0 , f 1 .

Using Lemmas 3 and 4 and Assumption (A5), we get

(31) E( α m -α m 2 µ 1((∆ ∩ Ω) )) ≤ C 1 /n,
where C 1 is a constant depending on τ , φ 1 , φ 2 , α ∞,A , f 0 , f 1 . This concludes the proof of Proposition 2.

6.2.2. Proof of Lemma 3. Note that α m is either 0 or argmin t∈S m γ n (t). Let us denote for short ϕ j := ϕ m j and ψ k := ψ m k . In the second case, min Sp(G m) ≥ max( f0 /3, n -1/2 ), so

α m 2 = j,k (â m j,k ) 2 = A m 2 = G -1 m Υ m 2 ≤ (min Sp(G m)) -2 Υ m 2 ≤ min(9/ f 2 0 , n) j,k 1 n n i=1 ϕ j (X i ) τ 0 ψ k (z)dN i (z) 2 ≤ min(9/ f 2 0 , n) 1 n n i=1 j ϕ 2 j (X i ) k τ 0 ψ k (z)dN i (z) 2 ≤ min(9/ f 2 0 , n)φ 1 D (1) n 1 n n i=1 k 1 A 1 (X i ) τ 0 ψ k (z)dN i (z) 2 ,
and

α m 4 ≤ n 2 φ 2 1 (D (1) n ) 2 1 n n i=1 k 1 A 1 (X i ) τ 0 ψ k (z)dN i (z) 2 2 ≤ n 2 φ 2 1 (D (1) n ) 2 D (2) n 1 n n i=1 k 1 A 1 (X i ) τ 0 ψ k (z)dN i (z) 4 . (32) 
Now, we have:

E 1 n n i=1 k 1 A 1 (X i ) τ 0 ψ k (z)dN i (z) 4 ≤ 2 3 n n i=1 k E 1 A 1 (X i ) τ 0 ψ k (z)α(X i , z)Y i (z)dz 4 (33) + 2 3 n n i=1 k E τ 0 ψ k (z)dM i (z) 4 .
Using the Bürkholder Inequality as recalled in [START_REF] Liptser | Theory of martingales[END_REF] p.75, and the fact that the quadratic variation process of each M i is N i (i = 1, . . . , n), we know that there exists a universal constant κ b such that:

E 1 n n i=1 k τ 0 ψ k (z)dM i (z) 4 ≤ κ b 1 n n i=1 k E τ 0 ψ 2 k (z)dN i (z) 2 ≤ κ b 1 n n i=1 k E N i (τ ) s:∆N i (s) =0 ψ 4 k (s) ≤ κ b 1 n n i=1 E N i (τ ) s:∆N i (s) =0 k ψ 4 k (s) ≤ κ b φ 2 2 (D (2) n ) 2 1 n n i=1 E N i (τ ) s:∆N i (s) =0 1 ≤ κ b φ 2 2 (D (2) n ) 2 1 n n i=1 E[(N i (τ )) 2 ], (34) 
where we used Assumption (M1). Using Assumptions (A3) and (A4) we have

[N 1 (τ )] 2 = M 1 (τ ) + τ 0 α(X 1 , z)Y 1 (z)dz 2 ≤ 2(M 1 (τ )) 2 + 2 τ 0 α(X 1 , z)Y 1 (z)dz Therefore, as E[(M 1 (τ )) 2 ] = E τ 0 α(X 1 , z)Y 1 (z)dz ≤ τ α ∞,A , we find (35) E[(N 1 (τ )) 2 ] ≤ 2τ α ∞,A + 2(τ α ∞,A ) 2 .
Combining ( 33), ( 34) and ( 35) gives

E 1 n n i=1 k τ 0 ψ k (z)dN i (z) 4 ≤ 8κ b φ 2 2 (D (2) n ) 2 E[(N 1 (τ )) 2 ] + 8 k E 1 A 1 (X) τ 0 ψ k (z)α(X, z)Y (z)dz 4 ≤ 8κ b φ 2 2 (D (2) n ) 2 E[(N 1 (τ )) 2 ] + 8 α 4 ∞,A τ 2 k τ 0 ψ 2 k (z)dz 2 ≤ 8κ b φ 2 2 (D (2) n ) 2 E[(N 1 (τ )) 2 ] + 8 α 4 ∞,A τ 2 D (2) n . (36) 
Then we have, by inserting (36) in ( 32),

E( α m 4 ) ≤ (φ 1 nD (1) n ) 2 D (2) n E 1 n n i=1 k τ 0 ψ k (z)dN i (z) 4 ≤ C B n 2 (D (1) n ) 2 (D (2) n ) 3 ≤ C B n 4.5 ≤ C B n 5 ,
where C B is a constant depending on φ 1 , φ 2 , τ and α ∞,A . We use here that [H]. Note that for basis [T], under (M1), the final order is smaller (namely n 3.25 instead of n 4.5 ). This concludes the proof of Lemma 3. 6.2.3. Proof of Lemma 4. Define, for ρ > 1, the set

D (i) n ≤ √ n/ log(n) in the case of localized bases [DP], [W],
(37) ∆ ρ = {∀h ∈ S n , h 2 n / h 2 µ -1 ≤ 1 -1/ρ}
, where S n is the set of maximal dimension of the collection. Remark that ∆ = ∆ 2 , see (18). First we observe that:

P(∆ ρ ) ≤ P sup h∈B µ Sn (0,1) |ϑ n (h 2 )| > 1 -1/ρ
where ϑ n (•) is defined by (30) and B µ Sn (0, 1) = {t ∈ S n , t µ ≤ 1}. We denote by (

ϕ j ⊗ ψ k ) the L 2 -orthonormal basis of S n . If h(x, y) = j,k a j,k ϕ j (x)ψ k (y), then (38) ϑ n (h 2 ) = j,k,j ,k a j,k a j ,k ϑ n ((ϕ j ⊗ ψ k )(ϕ j ⊗ ψ k )).
We obtain (39) sup h∈B µ Sn (0,1)

|ϑ n (h 2 )| ≤ f -1 0 sup a 2 j,k ≤1 j,k,j ,k a j,k a j ,k ϑ n ((ϕ j ⊗ ψ k )(ϕ j ⊗ ψ k )) .
Lemma (Baraud et al. (2001a)). Let B j,j = ϕ j ϕ j ∞,A and V j,j = ϕ j ϕ j 2 . Let, for any symmetric matrix (A j,j )

ρ(A) := sup b 2 j ≤1 j,j |b j b j |A j,j and L(ϕ) := max{ρ 2 (V ), ρ(B)}. Then, if (M2) is satisfied, we have L(ϕ) ≤ φ 1 (D (1) n ) 2 , and L(ϕ) ≤ 5φ 4 1 D (1) 
n , if the basis is localized (cases [P] or [W]).

Let us define

x := f 2 0 (1 -1/ρ) 2 4f 1 (D (2) n ) 2 L(ϕ) and Θ := ∀(j, k)∀(j , k ) |ϑ n ((ϕ j ⊗ ψ k )(ϕ j ⊗ ψ k ))| ≤ 4 B j,j x + V j,j 2f 1 x .
Starting from (39), we have, on Θ:

sup h∈B µ Sn (0,1) |ϑ n (h 2 )| ≤ 4f -1 0 sup a 2 j,k ≤1 j,j ( k,k |a j,k a j ,k |) B j,j x + V j,j 2f 1 x .
Thus setting b j = k |a j,k |, we have j b 2 j ≤ D

(2)

n and it follows that, on Θ, sup h∈B µ Sn (0,1)

|ϑ n (h 2 )| ≤ f -1 0 D (2) n sup b 2 j =1 j,j |b j b j | B j,j x + V j,j 2f 1 x ≤ f -1 0 D (2) n ρ(B)x + ρ(V ) 2f 1 x ≤ (1 -1/ρ) f 0 (1 -1/ρ) 4D (2) n f 1 ρ(B) L(ϕ) + 1 √ 2 ρ2 (V ) L(ϕ) 1/2 ≤ (1 -1/ρ) 1 4 + 1 √ 2 ≤ (1 -1/ρ).
Therefore, P sup t∈B µ Sn (0,1)

|ϑ n (t 2 )| > 1 - 1 ρ ≤ P(Θ ).
Let φ λ = ϕ j ⊗ ψ k for λ = (j, k). To bound P(ϑ n (φ λ φ λ ) ≥ B j,j x + V j,j √ 2f 1 x), we will apply the Bernstein inequality given in [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF] to the i.i.d. r.v.

U λ,λ i = U (j,k),(j ,k ) i = ϕ j (X i )ϕ j (X i ) τ 0 ψ k (y)ψ k (y)Y i (y)dy. (40)
Under (A4), the r.v. are bounded

|U λ,λ i | ≤ ϕ j ϕ j ∞,A τ 0 |ψ k (y)ψ k (y)|dy ≤ ϕ j ϕ j ∞,A = B j,j .
Moreover, using (A4) again, we obtain:

(U λ,λ i ) 2 ≤ (ϕ j (X i )ϕ j (X i )) 2 τ 0 ψ 2 k (y)dy τ 0 ψ 2 k (y)dy = (ϕ j (X i )ϕ j (X i )) 2
and thus

E[(U λ,λ i ) 2 ] ≤ E[(ϕ j (X i )ϕ j (X i )) 2 ] ≤ f 1 V 2 j,j . We get P(|ϑ n (φ λ φ λ )| ≥ B j,j x + V j,j 2f 1 x) ≤ 2e -nx .
Given that P(∆ ρ ) ≤ P(Θ ) = λ,λ P |ϑ n (φ λ φ λ )| > B j,j x + V j,j √ 2f 1 x , we can write:

P(∆ ρ ) ≤ 2(D (1) n D (2) n ) 2 exp - nf 2 0 (1 -1/ρ) 2 4f 1 (D (2) n ) 2 L(ϕ) ≤ 2n 2 exp - f 2 0 (1 -1/ρ) 2 4f 1 n (D (2) n ) 2 L(ϕ)
.

Following the Lemma of Baraud et al. (2001a) above, and using Assumption (M 1 ), we have

(D (2) n ) 2 L(ϕ) ≤ φ 1 (D (2) n D (1) n ) 2 ≤ φ 1 n/ log 2 (n).
And then, for any k, there exists a constant C

(∆ρ) k depending on k, f 0 , f ∞,A , φ 1 and ρ such that ( 41)

P(∆ ρ ) ≤ 2n 2 exp - f 2 0 (1 -1/ρ) 2 40f 1 φ 1 log 2 (n) ≤ C (∆ρ) k n k .
Now, if the basis is localized, the result is better. In this case, L(ϕ) ≤ 5φ 4 1 D

(1)

n . Moreover, take histogram basis in ( 38), then all terms with k = k vanish and then we can take b j = ( k a 2 j,k ) 1/2 directly. Then, as then j b 2 j ≤ 1, we obtain

P(∆ ρ ) ≤ 2(D (1) n ) 2 D (2) n exp - nf 2 0 (1 -1/ρ) 2 40f 1 L(ϕ) ≤ 2n 2 exp - f 2 0 (1 -1/ρ) 2 40f 1 n L(ϕ)
.

Thus L(ϕ) ≤ 5φ 4 1 D

(1)

n ≤ φ 1 n/ log 2 (n) is enough to get (41) again. The proof is easy to extend to any localized basis as [P ] or [W ] (with D

(2) n in the bound of j b 2 j replaced by r + 1 in case [P ] for instance). This concludes the proof of Lemma 4. 6.3. Proof of Lemma 1. Let m ∈ M n be fixed and let be an eigenvalue of G m . There exists A m = 0 with coefficients (a λ ) λ such that

G m A m = A m and thus A m G m A m = A m A m . Now, take h := λ a λ ϕ λ ∈ S m . We have h 2 n = A m G m A m and h 2 A = A m A m . Thus, on ∆ (see (18)): A m G m A m = h 2 n ≥ 1 2 h 2 µ ≥ 1 2 f 0 h 2 A = 1 2 f 0 A m A m .
Therefore, on ∆, for all m ∈ M n , we have min Sp(G m ) ≥ f 0 /2. Moreover, on Ω, we have f 0 ≥ 2 f0 /3 and max( f0 /3, n -1/2 ) = f0 /3, for n ≥ 4/f 2 0 .

6.4. Proof of Proposition 3. Usually, in model selection (see for instance [START_REF] Massart | Inference for a nonlinear counting process regression model[END_REF]), the penalty is obtained by using the so-called Talagrand's deviation inequality for the maximum of empirical processes. Since the empirical process ν n (•) (see Equation ( 21)) considered here is not bounded, we cannot use directly Talagrand's inequality.

Using tools from van de Geer (1995), we prove Bennett and Bernstein type inequalities for ν n (•), and using a L 2 (µ) -L ∞ generic chaining type of technique (see [START_REF] Talagrand | The generic chaining[END_REF] and Baraud ( 2010)), we derive an uniform deviation.

Lemma 5. For any positive δ, and for any function h ∈ (L 2 ∩ L ∞ )(A), we have the following Bennett-type deviation inequality:

P ν n (h) ≥ , h n ≤ δ ≤ exp - nδ 2 α ∞,A h 2 ∞,A g h ∞,A α ∞,A δ 2
where g(x) = (1 + x) log(1 + x)x for any x ≥ 0. As a consequence, we obtain the following Bernstein-type inequalities:

(42) P ν n (h) ≥ , h n ≤ δ ≤ exp - n 2 /2 α A,∞ δ 2 + h A,∞ /3 , and 
(43) P ν n (h) ≥ δ 2 α ∞,A x + h ∞,A x, h 2 n ≤ δ 2 ≤ exp(-nx).
Proof. Notice that the process

nν(h, t) := n i=1 t 0 h(X i , z)dM i (z) := n i=1 ν(h, t) i
is a locally square integrable martingale with jumps of size less than n h ∞,A . As a consequence, Corollary 2.3. of van de Geer (1995) applies almost directly. However to introduce the empirical norm h n in the deviation inequality, we re-derive the majoration of the term

S τ := n i=1 k≥2 a k k! τ 0 |h(X i , z)| k dV i k (z),
where, for all i = 1, . . . , n, V i 2 (t) := M i (t) and, for k ≥ 3, we define V i k (t) as the compensator of the k-variation process s≤t |∆M i (t)| k of M i (t) (see Equation (A3) on page 1795 in van de Geer (1995)).

In our case, we have,

n -1 n i=1 τ 0 h(X i , z) 2 dV i 2 (z) ≤ h 2 n α ∞,A , so that S τ ≤ nδ 2 α ∞,A h 2 ∞,A exp a h ∞,A -1 -a h ∞,A ,
see the proof of Corollary 2.3. of [START_REF] Van De Geer | Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes[END_REF]. This majoration together with the proof of Lemma 2.2. in van de Geer (1995) yields the Bennett-type deviation inequality in our lemma. To obtain ( 42) and ( 43), we use the fact that g(x) ≥ 3x 2 /(2(x + 3)) for any x ≥ 0 and g(x) ≥ g 2 (x) for any x ≥ 0 where g 2 (x) := x+1-√ 1 + 2x and g -1 2 (y) = √ 2y+y, see [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF] p.366-367.

The next Proposition is obtained from (43) by using a recent L 2 (µ)-L ∞ generic chaining type of technique (see [START_REF] Talagrand | The generic chaining[END_REF] and [START_REF] Baraud | A Bernstein-type inequality for suprema of random processes with an application to statistics[END_REF]). This method is close to other L 2 (µ)-L ∞ chaining methods, see among others Proposition 4 p. 282-287 in [START_REF] Comte | Adaptive estimation of the spectrum of a stationary Gaussian sequence[END_REF], Theorem 5 in [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF] and Proposition 7, Theorem 8 and Theorem 9 in [START_REF] Barron | Risk bounds for model selection via penalization[END_REF].

Proposition 4. Let S be a D-dimensional linear subspace of L 2 ∩ L ∞ (µ), and define B δ as the L 2 (µ) closed ball of S with radius δ. The L ∞ -index of S is defined in the following way:

(44) r = 1 √ D inf (ψ λ ) sup β =0 λ∈Λ β λ ψ λ ∞,A |β| ∞ ,
where the infimum is taken over every orthonormal basis (ψ λ ) λ∈Λ of S, and where |β| ∞ is the ∞ -norm of β ∈ R Λ . For any x > 0 and δ > 0, we have

P ∆ρ sup h∈B δ ν n (h) ≥ κ 0 δ ρ α ∞,A (D + x) n + δ ρ r D + x n ≤ e -x ,
where κ 0 = 11.8, and where we recall that δ ρ = δ(2 -1/ρ), where ρ > 1 and where ∆ ρ is defined in (37).

Proof. Let us construct a sequence of partitions (A k ) k≥0 of B δ with the following properties:

(1) It is increasing, in the sense that any element of A k+1 is included in an element of A k [note that this is the key property of the generic chaining argument, see [START_REF] Talagrand | The generic chaining[END_REF]

]. (2) It is such that A 0 = {B δ } and for each k ≥ 1, one has |A k | ≤ (2πe) D/2 (1 + 2 k ) D .
(3) The diameters of the elements of A k are controlled in the following way:

diam(A, L 2 (µ)) ≤ 2 -k δ and diam(A, L ∞ ) ≤ r2 -k δ ∀A ∈ A k ∀k ≥ 1,
where we recall that diam(A, d) = sup a,b∈A d(a, b).

The construction of such a partition follows the construction given in Proposition 1 in [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF], or in Lemma 7.14 from [START_REF] Massart | Inference for a nonlinear counting process regression model[END_REF]. Below, we denote by |x| 2 and |x| ∞ the 2 and ∞ norms of x ∈ R D . Without loss of generality we can assume that r = r(ψ) for some orthonormal basis ψ = (ψ λ ) λ∈Λ . Using the natural isometry between R D and S, we first construct a sequence (A k ) k≥0 of partitions of B δ = {β ∈ R D : |β| 2 ≤ δ} with suitable properties. First, put A 0 = {B δ }. Then, construct A 1 in the following way. Consider disjoint cubes {C 1 , . . . , C N } with vertices δ/ √ D that cover B δ , one of them being centered at 0. The partition A 1 is then simply given by the C j ∩ B δ . Then, in order to construct A k+1 from A k , simply partition each cube in A k using cubes with vertices half as small (and then equal to 2 -(k+1) δ/ √ D), and only keep the ones that have a nonempty intersection with B δ . By doing so, one has

diam(C, ∞ ) ≤ 2 -k δ/ √ D and diam(C, 2 ) ≤ 2 -k δ ∀C ∈ A k ,
and this construction entails that the sequence of partition (A k ) k≥0 is increasing. Moreover, the volumetric argument from the proof of Lemma 7.14 in [START_REF] Massart | Inference for a nonlinear counting process regression model[END_REF], gives

|A k | ≤ (2πe) D/2 (1 + 2 k ) D ∀k ≥ 0. It is now easy to construct (A k ) k≥0 . For each k ≥ 1, if A k := {C 1 , . . . , C N }, consider C j := λ∈Λ β λ ψ λ : (β λ ) ∈ C j ,
and simply put

A k := C j - 1≤i<j C i ∩ B δ : 1 ≤ j ≤ N ,
with the convention that ∪ ∅ = ∅. This provides a sequence of partitions with the properties (1)-( 3), thanks to the definition of r1 . Now, we want to use the generic chaining type of argument (see [START_REF] Talagrand | The generic chaining[END_REF]), that was proposed in [START_REF] Baraud | A Bernstein-type inequality for suprema of random processes with an application to statistics[END_REF], see the proofs of Theorems 2.1 and 5.1 therein. The difference between what we do here and the proof of [START_REF] Baraud | A Bernstein-type inequality for suprema of random processes with an application to statistics[END_REF] is minor: here the L 2 and L ∞ norms are explicit, so we are able to take advantage of the covering by cubes (see above) while Theorems 2.1 and 5.1 in [START_REF] Baraud | A Bernstein-type inequality for suprema of random processes with an application to statistics[END_REF] are move general, since they hold for any distances (so two partitions and two volumetric arguments are used, while this can be avoided here).

For any k ≥ 1 and A ∈ A k , fix an arbitrary element h k (A). Then, for any h ∈ B δ , define π k (h) in the following way: take the unique A ∈ A k such that h ∈ A, and define π k (h) = h k (A). Define also π 0 (h) = 0 (since 0 ∈ B δ ). Now, for any h ∈ B δ , the following decomposition holds:

ν n (h) = k≥0 ν n (π k+1 (h)) -ν n (π k (h)) ,
so, if z = k≥0 z k where z k are positive numbers, we have

P ∆ sup h∈B δ ν n (h) ≥ z ≤ k≥0 (s,u)∈E k P ∆ ν n (s) -ν n (u) ≥ z k , where E k := {(π k (h), π k+1 (h)) : h ∈ B δ }.
It must be noted that, since the partitions (A k ) k≥0 are increasing, both π k (h) and π k+1 (h) belong to the same element of A k for any h ∈ B δ , so s-u ∞ ≤ rδ ρ 2 -k and s-u µ ≤ δ ρ 2 -k for any (s, u) ∈ E k . Moreover, π k+1 (h) uniquely determines π k (h), so that

|E k | ≤ |A k+1 | = N k where N k := (2πe) D/2 (1 + 2 k+1 ) D . Consider z k := 2 -k δ ρ 2 α ∞ x k n + 2 -k rδ ρ x k n where x k = x + log(2 k+1 N k ).
Using (43), one has for any (s, u) ∈ E k :

P ∆ ν n (s) -ν n (u) ≥ z k ≤ (2 k+1 N k ) -1 e -x , so P ∆ sup h∈B δ ν n (h) ≥ z ≤ e -x ,
and an easy computation shows that

z = k≥0 z k ≤ κ 0 δ ρ α ∞ (D + x) n + δ ρ r D + x n ,
where κ 0 = 11.8. This concludes the proof of Proposition 4.

1 The only minor difference between this construction and the constructions of [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF] and [START_REF] Massart | Inference for a nonlinear counting process regression model[END_REF] is that here the center of the cubes are such that the embedding A k+1 ⊂ A k holds.

Now, we can turn to the proof of Proposition 3. We denote by D(m, m ) the dimension of the linear space S m + S m .

Proof of Proposition 3. In Proposition 4, take x = D m + u, δ = 1, B δ = B µ m,m (0, 1) = {t ∈ S m + S m : t µ ≤ 1} and ρ = 2 in order to get: This concludes the proof of Proposition 3 when n is large enough. The statement of Proposition 3 is obvious for small n, up to an increased constant C 2 . 6.5. Proof of Lemma 2. First, we write

P ∆ sup h∈B µ m,m (0,1) ν 2 n (h) ≥ η 2 ≤ 2P ∆ sup h∈B µ m,m ( 
E[ α m -α 2 A 1(Λ ∩ ∆ ∩ Ω) )] ≤ E[ α m -α 2 A 1(∆ ∩ Ω) )] + E[ α m -α 2 A 1(Λ ∩ (∆ ∩ Ω))]
. The first term is bounded by C 1 /n as in the proof of Theorem 1 by using Lemma 3, Lemma 4 and Assumption (A5). For the second term, we get

E[ α m -α 2 A 1(Λ ∩ (∆ ∩ Ω))] ≤ 8(E 1/2 ( α m 4 ) + α 2 A ) P(Λ ∩ (∆ ∩ Ω)) 1/2 .
Lemma 3 can be applied again: this gives E( α m 4 ) ≤ C B n 5 , so we have to prove that Recall that this collection is precisely defined in Appendix A. It suffices to use the fact that for j 1 ≥ l 1 and j 2 ≥ l 2 fixed, the tensor products Ψ

(1)

j 1 ,k 1 ⊗ Ψ (2) j 2 ,k 2
have disjoint supports, expected for a finite number of indexes k 1 , k 2 , that depends only on the support of the scaling and mother wavelet functions used in the construction of the basis [W ], for both dimensions. Then, using as for the case [DP] the embedding S m + S m ⊂ S n , and if {Ψ λ : λ ∈ Λ n } is the collection that spans S n (the one with the largest dimension in each direction), we obtain for n large enough.
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 1 Figure 1. Case (NL) Estimated (top left) and true (top right) conditional hazard rates and example of sections (bottom) for a fixed value of x (left) or y (right).
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 23 Figure 2. Case (AFT) Estimated (top left) and true (top right) conditional hazard rates and example of sections (bottom) for a fixed value of x (left) or y (right).

  0,1)ν n (h) ≥ η ≤ 2e -D m -u , enough (see Appendix B) and D(m, m ) ≤ D m + D m . This gives , we set p(m, m ) = κ(1 + α ∞,A )(D m + D m )/n with κ = 18κ 2 ) ≥ p(m, m ) + z ≤    2e -D m -nz/(κ α ∞,A ) if z ≤ κ α 2 ∞,A /r 2 ≤ 2e -D m κ n ( α ∞,A + 2r 2 m,m n ) ≤ κ α e -D m n ,where we used the upper bounds of rm,m given in Appendix B and where κ α is a constant depending on α ∞,A , f 0 and the basis. It remains to bound from above m ∈Mn e -D m . This term is at most e -1 ) 2 .

  ∩ (∆ ∩ Ω)) ≤ C k n -k ,for k ≥ 7/2. Let us do the decompositionP(Λ ∩ (∆ ∩ Ω)) = P [(| αm * ∞α ∞,A | > α ∞,A |) ∩ (∆ ∩ Ω)] ≤ P [( αm *α ∞,A > α ∞,A /2) ∩ (∆ ∩ Ω)] ≤ P [( αm *α m * ∞,A > α ∞,A /4) ∩ (∆ ∩ Ω)] + P [( α m *α ∞,A > α ∞,A /4) ∩ (∆ ∩ Ω)] . Assumption (M2) implies that αm * -α m * ∞,A ≤ φ 0 D m * 1 D m * 2 αm * -α m * A . Moreover, it follows from (23) in the proof of Theorem 1, that we have, on ∆ ∩ Ω: αm *α m * 2 A ≤ 32 α1(A)α m * 2for any h supported by A, we getP(Λ ∩ (∆ ∩ Ω)) ≤ P (/32) ∩ (∆ ∩ Ω) + P φ 0 D m * 1 D m * 2 α m *α ∞,A > α ∞,A /(32 √ τ ) + P α m *α ∞,A > α ∞,A /4 .The last two probabilites are studied with the same Nikol'skii (1975)'s argument as in the proof of Proposition 1, for n large enough and using the assumption thatβ 1 > 2, β 2 > 2. Since D m * 1 D m * 2 ≤√ n, we can bound the first probability from above byβ λ ψ λ ∞,A |β| ∞ ≤ λ∈Λn |ψ λ | ∞,A ≤ (r 1 + 1)(r 2 + 1) sup λ∈Λn ψ λ ∞,A ≤ φ 0 (r 1 + 1)(r 2 + 1) N n sup λ∈Λn ψ λ ≤ φ 0 (r 1 + 1)(r 2 + 1) N n sup λ∈Λn ψ λ µ / f 0 ≤ φ 0 (r 1 + 1)(r 2 + 1) N n /f 0 , thus rm,m ≤ φ 0 (r 1 + 1)(r 2 + 1) √ N n f 0 D(m, m ) .Moreover, since N n ≤ n/ log n and D m ≤ D(m, m ), we haver2 1 + 1) 2 (r 2 + 1) 2 N n f 0 D(m, m ) Collection [T].For trigonometric polynomials, we write for β = 0:λ∈Λn β λ ψ λ ∞,A|β| ∞ ,m ≤ φ 0 N n /f 0 . Moroever, since N n ≤ √ n/ log n, we obtain r2

  λ∈Λn β λ Ψ λ ∞,A ≤ C(Ψ (1) , Ψ (2) ) N n |β| ∞ ,where C(Ψ (1) , Ψ (2) ) is a constant that depends only the scaling and mother wavelet functions used in the construction of the basis, and not on the resolution level. Hence, rm,m ≤ C(Ψ (1) , Ψ (2) ) N n /D(m, m ). Moreover, since N n ≤ n/ log n we obtain:

Using (45) with the upper bound of rm,m for the collection [T] which is given in Appendix B, we obtain that for κ α := κ(1 + α ∞,A ):

So, taking u = α ∞,A √ n/(2 10 φ 2 0 ) and since D m * ≤ √ n, we obtain that (47) is smaller than 2e -α ∞,A

√ n/(2 10 φ 2 0 ) . This ensures (46) for any integer k and concludes the proof of Lemma 2.

Appendix A. Some useful tools from wavelet and approximation theory A.1. The basis [W ]. Consider a pair {φ, ψ} of scaling function and wavelet, where ψ has K vanishing moments. Then φ and ψ have a support width of at least 2K -1, and there is a pair with minimal support, see [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF]. This is the starting point of the construction of an orthonormal wavelet basis of L 2 [0, 1], as proposed in [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF]. Roughly, the idea is to retain the interior scaling functions (those "far" from the edges 0 and 1), and to add adapted edge scaling functions. This is done in [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF], see Section 4 and Theorem 4.4, where the construction allows to keep the orthonormality of the system and the number of vanishing moment unchanged, as well as the number 2 j of scaling function at each resolution j (which improves a previous construction by [START_REF] Meyer | Ondelettes sur l'intervalle[END_REF]). Indeed, if l is such that 2 l ≥ 2K, consider for j ≥ l -1:

where φ j,k = 2 j/2 φ(2 j • -x) and ψ j,k = 2 j/2 ψ(2 j • -x) are the "interior" dilatations and translations of {φ, ψ}, and φ 0 j,k , ψ 0 j,k , φ 1 j,k , ψ 1 j,k are, at each resolution j, dilatations of 2K edge scaling functions and wavelets (K for each edge). We know from [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] that the collection

is an orthonormal basis of L 2 [0, 1], and the interior and edge wavelets have K vanishing moments, which ensures that the elements of this collection have the same smoothness as φ and ψ.

A.2. Some approximation results. An orthonormal basis of L 2 [0, 1] 2 is simply obtained by taking tensor products of two bases [W ] for instance. If W (1) and W (2) are two basis [W ] (we can use two different pairs {φ (1) , ψ (1) } and {φ (2) , ψ (2) } with possibly different number of vanishing moments), we can simply consider

where Ψ

(1)

(2) j 2 ,k 2 (x 2 ). We can also obtain an orthonormal basis of L 2 [0, 1] 2 by taking tensor products of two collections among the ones considered in Section 2.4. Let us consider S m as one of the following:

• A space of piecewise polynomials (see Section 2.4, basis [DP ]) of degrees smaller than s i > β i -1 (i = 1, 2) based on a partition with rectangles of sidelengthes 1/D m 1 and 1/D m 2 ; • A space spanned by tensors products of [W ], namely the span of the Ψ

(1)

• The space of trigonometric polynomials with degree smaller than D m 1 in the first direction and smaller than D m 2 in the second direction.

Note that the dimension of each space is D m 1 D m 2 . The following result is an easy consequence of results by [START_REF] Hochmuth | Wavelet characterizations for anisotropic Besov spaces[END_REF][START_REF] Nikol'skii | Approximation of functions of several variables and imbedding theorems[END_REF] (see Lacour (2007a)).

Lemma 6. Let s belong to B β 2,∞ (A) where β = (β 1 , β 2 ). We consider that S m is one of the spaces above, with dimension D m 1 D m 2 . If s m is the orthogonal projection of s on S m , then there is a positive constant C such that

where C depends on the Besov norm of s and on the basis.

Appendix B. Upper bounds for the L ∞ -index

In this section we provide controls on the L ∞ -index r = rm,m of S = S m +S m (which is defined in Proposition 4, see Section 6.4). Recall that each S m is a tensor product model, which can be spanned by any of the basis As S m +S m is a linear space, an orthonormal L 2 (µ)-basis (ψ λ ) λ∈Λn can be built by orthonormalisation on each sub-rectangle of (ϕ λ ) λ∈Λn , the orthonormal basis of S n . We denote by r 1 (respectively r 2 ) the maximal degree in the x-direction (resp.