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ADAPTIVE ESTIMATION OF THE CONDITIONAL INTENSITY OF
MARKER-DEPENDENT COUNTING PROCESSES

F. COMTE®, S. GATFFAS® & A. GUILLOUX®

ABSTRACT. We propose in this work an original estimator of the conditional intensity
of a marker-dependent counting process, that is, a counting process with covariates.
We use model selection methods and provide a non asymptotic bound for the risk of
our estimator on a compact set. We show that our estimator reaches automatically a
convergence rate over a functional class with a given (unknown) anisotropic regularity.
Then, we prove a lower bound which establishes that this rate is optimal. Lastly, we
provide a short illustration of the way the estimator works in the context of conditional
hazard estimation.

October 23, 2008

AMS (2000) subject classification. 62N02, 62G05.

Keywords. Marker-dependent counting process. Conditional intensity. Model selection.
Adaptive estimation. Minimax and Nonparametric methods. Censored data. Conditional
hazard function.

1. INTRODUCTION

As counting processes can model a great diversity of observations, especially in medicine,
actuarial science or economics, their statistical inference has received a continuous atten-
tion since half a century - see Andersen et al. (1993) for the most detailed presentation on
the subject. In this paper, we propose a new strategy, based on model selection, for the
inference for counting processes in presence of covariates. The model considered can be
described as follows.

Let (22, F,P) be a probability space and (F;);>¢ a filtration satisfying the usual condi-
tions. Let N be a marker-dependent counting process, with compensator A with respect
to (Ft)t>0, such that N — A = M, where M is a (F;);>o-martingale. We assume that N is
a marker-dependent counting process satisfying the Aalen multiplicative intensity model
in the sense that :

(1) A(t) = /Ot a(X,2)Y (z)dz, forallt >0

where X is a vector of covariates in R? which is Fy-measurable, the process Y is nonneg-
ative and predictable and « is an unknown deterministic function called intensity.

The purpose of this paper is to estimate the intensity function « on the basis of the
observation of a n-sample (X;, N*(z),Y%(2),2 < 7) for i = 1,...,n, where 7 < +00.
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(2) LSTA University Pierre et Marie Curie, France. email: stephane.gaiffas@upme.fr,
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There are many examples, crucial in practice, which fulfill this model. For the seek of
conciseness, we restrict our presentation to the three following ones.

Ezample 1 (Regression model for right-censored data). Let 7' be a nonnegative random
variable (r.v.) and X a vector of covariates in R?, with respective cumulative distribution
functions (c.d.f.) Fr and Fx. We consider in addition that 7' can be censored. We
introduce the nonnegative r.v. C, with c.d.f. G, such that the observable r.v. are Z =
TANC,d=1(T <C) and X. We assume that:

(C) : T and C are independent conditionally to X.

In this case, the processes to consider (see e.g. Andersen et al. (1993)) are given, for
i=1,...,nand z >0, by:

Ni(z) =1(Z; < 2,6; = 1) and Y(2) = 1(Z; > 2).

The unknown intensity function « to be estimated is the conditional hazard rate of the
r.v. T given X = z defined, for all z > 0 by:

fT|X(:C’ Z)

oz, 2) = arx(v,2) = m,

where frx and Fpjx are respectively the conditional probability density function (p.d.f.)
and the conditional c.d.f. of ¥ given X.

Nonparametric estimation of the hazard rate in presence of covariates was initiated
by Beran (1981). Stute (1986), Dabrowska (1987), McKeague and Utikal (1990) and
Li and Doss (1995) extended his results. Many authors have considered semiparametric
estimation of the hazard rate, beginning with Cox (1972), see Andersen et al. (1993) for
a review of the enormous literature on semiparametric models. We refer to Huang (1999)
and Linton et al. (2003) for some recent developments.

As far as we know, adaptive nonparametric estimation for censored data in presence of
covariates has only been considered in Brunel et al. (2007), who constructed an optimal
adaptive estimator of the conditional density.

Ezample 2 (Cox processes). Let n', for i = 1,...,n, be a Cox process (see Kaar (1986))
on R, with random mean-measure A" given by :

Ai(t):/O a(X;, z)dz,

where X; is a vector of covariates in R%. In this context the predictable process Y of
Equation (1) constantly equals 1. As a consequence, these processes can be seen as gen-
eralizations of nonhomogeneous Poisson processes on R} with random intensities. This
is a particular case of longitudinal data, see e.g. Example VII.2.15 in Andersen et al.
(1993). The nonparametric estimation of the intensity of Poisson processes without co-
variates has been considered in several papers. We refer to Reynaud-Bouret (2003) and
Baraud and Birgé (2006) for the adaptive estimation of the intensity of nonhomogeneous
Poisson processes in general spaces.

Example 3 (Regression model for transition intensities of Markov processes). Consider
a n-sample of nonhomogeneous time-continuous Markov processes P!, ..., P" with finite
state space {1,...,k} and denote by «j; the transition intensity from state j to state [. For
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individual ¢ with covariate X;, let N;l(t) be the number of observed direct transitions from
Jj to I before time ¢ (we allow the possibility of right-censoring for example). Conditionally
on the initial state, the counting process N;l verifies the following Aalen multiplicative
intensity model:

. t . .
) = /0 a;i( Xy, 2)Yj (2)dz + M'(t) for all t > 0,

where in(t) = 1{Pi(t—) = j} for all t > 0, see Andersen et al. (1993) or Jacobsen (1982).
This setting is discussed in Andersen et al. (1993), see Example VII.11 on mortality and
nephropathy for insulin dependent diabetics.

We finally cite three papers, where different strategies for the estimation of the intensity
of counting processes is considered, gathering as a consequence all the previous examples,
but in none of them the presence of covariates was considered. Ramlau-Hansen (1983)
proposed a kernel-type estimator, Grégoire (1993) studied cross-validation for these esti-
mators. More recently, Reynaud-Bouret (2006) considered adaptive estimation by model
selection.

Our aim in this work is to provide an optimal adaptive nonparametric estimator of the
conditional intensity. Our estimation procedure involves the minimization of a so-called
contrast. To achieve that purpose, we proceed as follows. In Section 2, we describe the
estimation procedure: we explain how the contrast is built, on which collections of spaces
the estimators are defined and how the relevant space is selected via a data driven penalized
criterion. In Section 3, we state an oracle inequality for our estimator (see Theorem 1),
a resulting upper bound (see Corollary 1) and a lower bound (see Theorem 2), the latter
asserts the optimality in the minimax sense. An auxiliary estimation of the density of
the reference measure is also studied. The examples of Section 4 are taken in the setting
of Example 1, in order to provide a short illustration of the practical properties of our
estimator. Lastly, proofs are gathered in Sections 5-6-7. We mention that the deviation
inequalities proved in Section 6 may be of intrinsic interest.

Remark 1. An inherent remark about this model is that there is no reason for the condi-
tional intensity «(z, z) to have the same behavior with respect to the z (time) and x (covari-
ates) variables. This is the reason why it is mandatory in our purely nonparametric setting
to consider anisotropic regularity for ce. Think for instance of the very popular case of pro-
portional hazards Cox model, see Cox (1972), it is assumed that a(z,z) = ag(2) exp(3' z)
for some unknown function oo and unknown vector 3 € R?. Of course, in this model, the
smoothness in the x direction is higher than in the z direction.

For the sake of simplicity, we will assume in the following that the covariate X is
one-dimensional. Similar procedures and results for multivariate covariates are an almost
effortless extension, as discussed in Remark 3.

2. DESCRIPTION OF THE PROCEDURE

Our estimation procedure involves the minimization of a contrast. This contrast is
tuned to the problem considered in this paper, as explained in the next section.
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2.1. Definition of the contrast. Let A = A; x Ay be a compact set on R xRy on which
the function « will be estimated. Without loss of generality, we set A = [0, 1] x [0, 1], and
in particular 7 = 1. Let h be a function in (L? N L>)(A). Define the contrast function:

1 12‘21‘22_2" ! VAN (2
®) mh)—n;/O W (X, )Y () nz/o A(X, )N (2).

This contrast is of least-squares type adapted to the problem considered here. Since each
N'" admits a Doob-Meyer decomposition (N* = A* + M"), we have:

_ln 12,Zz~zz_2” ! . iz_gn ' . iy
i) =03 [ e = 53 [T - 13 [

so that:

E(ya(h)) = E( /0 (X, 2)Y (2)dz) — E(2 /0 h(X, 2)dA(2)).

Let Fx denote the c.d.f. of the covariate X and || - ||, the norm defined by:

1
Hh||i = E(/O h2(X,z)Y(z)dz) ://AhZ(x,z)d,u(x,z),

where du(z, z) :== E(Y(2)|X = z)Fx(dz)dz. By the Aalen multiplicative intensity model,
see Equation (1), we get:

B(on() = 113 - 2 [ [ . 2)a(e, (Y ()X = ) Fx(da)dz = |1~ all2 = ol

This explains why minimizing 7, () over an appropriate set of functions described below,
is a relevant strategy to estimate a.

Example 1 continued. In the particular case of regression for right-censored data, the
conditional hazard function is estimated and the contrast function has the following form:

n 1 n
W) = -3 :/ BA(Xo 2)1(Z: > )z — 2 S 6ih(Xi, Z0).
n < 0 n “
=1 =1

We have in addition an explicit formula for du(z, z):
d(z, 2) = (1 — Lz (2,2)) Fx (da)dz,
where
1—Lyx(z,2) =P(Z > 21X =2) = (1 - Frx(z,2))(1 - Go|x(z,2))
and G|y is the conditional c.d.f. of C' given X.

Remark 2. In our setting, it is possible to let the censoring depend on the covariates, as
in Dabrowska (1989) or, more recently Heuchenne and Van Keilegom (2006). Assumption
(C) above is weaker than the assumption: 7" and C' are independent and P(T' < C|X,Y) =
P(T < C|Y) in Stute (1996).
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2.2. Assumptions and notations. Before defining the estimation procedure, we need
to introduce some assumptions and notations. Define the norms

IRl = //h?(x,z)dxdz,uhug - // B2(2, 2)dwdz and |Bllea = sup |h(z, 2),
A (

z,z)EA

and assume that the following holds:
e (A1) The covariates X; admit a p.d.f. fx such that sup,, |fx| < +oo0.

Assumption (A1) implies that p admits a density w.r.t. the Lebesgue measure. We denote
by f this density:

(3) du(z, z) = f(x,z)drdz where f(z,z) =E(Y(2)|X =) fx(x).

We also assume:

e (A2) There exists fo > 0, such that V(z,z2) € A1 x As, f(x,2) > fo.
o (A3) V(x,2) € A1 x Az, a(z,2) < |affec,a < +00.
o (A4) Vi,Vt, Y'(t) < Cy where Cy is a known fixed constant.
Note that in the examples described in Section 1, Assumption (.44) is clearly fulfilled with
Cy = 1. We will set C'y =1 in the following for simplicity.

2.3. Definition of the estimator. We use the usual model selection paradigm (see,
for instance, Massart (2007)): first minimize the contrast 7,(-) over a finite-dimensional
function space S,,, then select the appropriate space by penalization. We introduce a
collection {S,,,m € M,} of projection spaces: Sy, is called a model and M,, is a set of
multi-indexes (see the examples in Section 2.4). For each m = (my, ma), the space S, of
functions with support in A = Ay x A, is defined by:

Sm = Fony @ Hny = {h h(2,2) = 32 D aliol @), af € R},

JE€EIm kEKm

where F,,, and H,,, are subspaces of (L?N L°)(R) respectively spanned by two orthonor-
mal bases (¢7')je,, With [Jin| = Dy, and (¢} )kek,, With [Ki| = Dyy,. For all j and
all k, the supports of ¢" and ¢} are respectively included in A; and Ay. Here j and k
are not necessarily integers, they can be couples of integers, as in the case of a piecewise
polynomial space, see Section 2.4.

Remark 3. From a theoretical point of view, we could consider that the covariates X are
in R? and even that their density has an anisotropic regularity. For this end, we would
have to consider models of the form Sy, = Fjp, @ Hyp, ® -+ @ Hyyy,, . However, this would
make the proofs more intricate. Notice also the convergence rate would be slower because
of the curse of dimensionality. For the sake of clarity, we deliberately restrict ourselves to
X eR.

The first step would be to define &, = argming,cg vn(h). To that end, let h(z,y) =
D jedm 2okeky kP ()Y} (y) be a function in Sp,. To compute &, we have to solve:

Oy (h)
0ajq k,

VjoVko, = 0% GuAn =Th,
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where A,, denotes the matrix (a; ) e, kekms

(4:k),(L,p)EJm X Km

G = (L3t () [w gy o)az)
=1
and

jeJm,keKm.

Y= (2 e [vr i)
i=1

Unfortunately G, may not be invertible. To overcome this problem, we modify the defi-
nition of &, in the following way:

() G = { argmingcg ,(h) on 1;81 ’
0 on Iy,
where

L, = {min Sp(Gp,) > max(f’o/?,,n*l/?)}

where Sp(G,,,) denotes the spectrum of G,, i.e. the set of the eigenvalues of the matrix
G, (it is easy to see that they are nonnegative). The estimator fy of fy (the minimum of
the density f, see (LA2)) is required to fulfill the following assumption:

o (A5) For any integer k > 1, P(|fo — fol > fo/2) < Ci/n*.
An estimator satisfying (A5) is defined in Section 3.4. In fact, k¥ = 7 is enough for the
proofs. We refer the reader to the proof of Lemma 1, see Section 7, for an explanation of
the presence of n'/2 in the definition of I',,. In practice, this constraint is generally not
used (the matrix is invertible, otherwise another model is considered).
The final step is to select the relevant space via the penalized criterion:

(5) 7h = argmin (’yn(dm) + pen(m)),
meMy

where pen(m) is defined in Theorem 1 below, see Section 3. Our estimator of o on A is
then &y;,.

2.4. Assumptions on the models and examples. Let us introduce the following set of
assumptions on the models {S,, : m € M,,}, which are usual in model selection techniques.
o (M1) Fori=1,2, pY = max,ne, D, < n'/*/y/logn.
e (M2) There exist positive reals ¢i, ¢2 such that, for all u in F,,,, and for all v in
H,,,, we have

sup ”U,(.%')P < ¢1Dm1 u2 and Sup ‘U(.%')P < ¢2Dm2 ’U2.

TEAL Ay TEA2 Ao
By letting ¢g = /@102, that leads to
(6) Vh € Sp, ||hHOO,A < oo DmleQHhHA~

e (M3) Nesting condition:
Dm1 < Dm’l = le C lel and Dm2 < Dm/2 = Hm2 C fIm/2

Moreover, there exists a global nesting space S,, in the collection, such that Vm €

My, Sy C S, and dim(S,,) := N, < /n/logn.
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Assumptions (M1)-(M3) are not too restrictive. Indeed, they are verified for the spaces
F,,, (and H,,,) on A; = [0,1] spanned by the following bases (see Barron et al. (1999)):

o [T] Trigonometric basis: span(go, ..., @m—1) with wo = 1([0,1]), ¢2;(z) = V2
cos(2mjz) 1([0,1])(x), @aj—1(z) = V2sin(2mjz)1([0,1])(x) for j > 1. For this
model D,,, =m; and ¢; =2 hold.

e [DP] Regular piecewise polynomial basis: polynomials of degree 0,...,r (where
r is fixed) on each interval [(I — 1)/2P,1/2P[ with [ = 1,...,2P. In this case, we
have my = (D,7), Jy, = {j = (I,d), 1 <1<2P,0<d <7}, Dy, = (r +1)2P and
¢1 =+r+1.

o [W] Regular wavelet basis: span(¥y,l = —1,...,mq,k € A(l)) where ¥_, j, is the
translates of the father wavelet W_; and Wy, (z) = 2/20(2'2 — k) where ¥ is the
mother wavelet. We assume that the supports of the wavelets are included in A;
and that W_; belongs to the Sobolev space W3, see Hérdle et al. (1998).

e [H] Histogram basis: for A; = [0,1], span(gi,...,pam ) with ¢; = 2™/21([(j —
1)/2m j/2m) for j = 1,...,2™. Here D,,, = 2™, ¢; = 1. Notice that [H] is a
particular case of both [DP] and [W].

Remark 4. The first assumption prevents the dimension to be too large compared to
the number of observations. We can lighten considerably this constraint for localized
basis: for histogram basis, piecewise polynomial basis and wavelets, (M1) reduces to
pY < v/n/logn. Analogously in (M3), we would get N,, < n/logn. The condition (M2)
implies a useful link between the L? norm and the infinite norm. The third assumption
(M3) implies in particular that Vm,m’ € M,,, Sy + Sy € Sp,. This condition is useful
for the chaining argument used in the proofs, see Section 6.

3. MAIN RESULTS

3.1. Oracle inequality. For a function h and a space S, let

_ _ ) 1/2
() = int [~ g = imf ( / h(z.y) — gy Pdrdy)

The estimator &y where é&,, is given respectively by (4) and 7 is given by (5) satisfies
the following oracle inequality.

Theorem 1. Let (A1) — (A5) and (M1) — (M3) hold. Define the following penalty:

Dy, Dy,
(7) pen(m) := Ko(1 + [|o]|oc,a) ——2,
where Ky is a numerical constant. We have
C/
(8) E(|lal(A) - &)%) < C inf {d*(al(A), Sm) + pen(m)} + g
meMp

where C' = C(fo, ||fllaco) and C" is a constant depending on ¢1, d2, ||ct|lcc,4, fo-

The proof of Theorem 1 involves a deviation inequality for the empirical process

1w [! ;
vn(h) = EZ;/O h(X;,z)dM* (),
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where M(t) = N(t) — fg a(X;, 2)Y(2)dz are martingales, see Section 1, and a L? — L™
chaining argument.

Remark 5. The penalty involves the unknown quantity ||c|/c, 4. This is a usual situation,
and the solution is to replace it by an estimator ||, |c,4 Where d,,, is an estimator
of the collection, chosen on a space .S,,, which is arbitrary, generally middle sized. Note
that, by doing this, the penalty function becomes random. For details, we refer to Lacour
(2007), Theorem 2.2.

3.2. Upper bound for the rate. From Theorem 1, we can derive the rate of convergence
of &y over anisotropic Besov spaces. We recall that anisotropy is almost mandatory in
this context, see Remark 1. For that purpose, assume that « restricted to A belongs to
the anisotropic Besov space Bg (A) on A with regularity 8 = (51,02). Let us recall

the definition of Bgoo(A). Let {e;,es} the canonical basis of R? and take A ={z €
R%, z, 2 + he;, ...,z +rhe; € A}, for i = 1,2. For z € A, let

) = S (ate + ke

k=0

be the rth difference operator with step h. For ¢t > 0, the directional moduli of smoothness
are given by

. 1/2
wryi(9,1) = Sup< / \Ahiig(w)lzcm) :
h<t A

We say that ¢ is in the Besov space Bgm(A) if supyg Yoot Piw,,i(g,t) < oo for 7
integers larger than ;. More details concerning Besov spaces can be found in Triebel
(2006). The next corollary shows that &, adapts to the unknown anisotropic smoothness
of a.

T
h,i

Corollary 1. Assume that « restricted to A belongs to the anisotropic Besov space BSOO(A)
with reqularity B = (81, B2) such that 1 > 1/2 and P > 1/2. We consider the piecewise
polynomial or wavelet spaces described in Subsection 2.4 (with the regularity v of the poly-
nomials and the wavelets larger than 3; —1). Then, under the assumptions of Theorem 1,
we have

) 2B
A= O(n 2ﬁ+2).

EHa — (Sém
where (3 is the harmonic mean of B and B2 (i.e. 2/3 =1/ + 1/Bs).

The rate of convergence achieved by &,; in Corollary 1 is optimal in the minimax sense
as proved in Theorem 2 below. For trigonometric spaces, the result also holds, but for
1 > 3/2 and f2 > 3/2 (because of (M1)).

Moreover, assuming for example that S5 > (31, one can see in the proof of Corollary 1
that the estimator chooses a space of dimension D,;, = Dgnll/ b o Dy,,. This shows that
the estimator is adaptive with respect to the approximation space for each directional
regularity.
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3.3. Lower bound. In the next Theorem, we prove that the rate n=28/(28+2) ig optimal
over Bgoo(A) where we recall that 2/8 = 1/, + 1/5. Since the lower bound stated in

Theorem 2 is uniform over Bg ~(A), we need to introduce the ball
By (A L) = {a € B (4) : |lall gy < L},

where
2

(9) lolng_ay = llodla + el gy = llolla +sup >~ ¢ i(g.1).
’ = =1

Let us denote by E, the integration w.r.t. the joint law P7, when the intensity is «, of
the n-sample (X;, N'(2),Y"(2);2 < 1,i=1,...,n).

Theorem 2. There is a positive constant C, such that

inf  sup  Eolla—al} > Cpn 252
¢ aeBf (AL

for n large enough, where the infimum s taken among all estimators and where Cp, is a
constant that depends on 3,L and A only.

3.4. Estimation of f and fy. We recall that f is the density of u, which is defined in
Equation (3). We define

R 2 1 A
(10) fm = argmin v, (h) where v, (h) = R[> = = / hX;,2)Y(z)dz.
hESm n =1 0

This estimator admits a simple explicit formulation:

) f= Y buel @), with b= Y 9P () [ )Y (s
i=1

(jak)EJmXKm

As before, we consider estimation of f over the compact set A = [0, 1] x [0, 1]. We choose
the space H,,, as the space with maximal dimension, as explained below. Let us denote it
by H,, by PP = dim(H,,) its dimension (see (M1)) and by ¢, its index so that Hy, = H,,.
Hence, we consider, instead of a general fm, the estimator

fmy = argmin v, (h).
hElean

We are now in a position to define an estimator of fo by considering any inf(; .)c 4 fml (z, z)
with a given mi. Indeed, an arbitrary choice is sufficient for our estimation problem
concerning fy. In our setting, only a rough estimation of the lower bound on f is useful.
Therefore, for the purpose of estimating a, we can define

(12) fo = (wlgfe fmz (%, 2) with m} = (Dys, DP)).

Then, the following result holds:
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n'/4//logn and DY = n'/4/\/logn. Assume that f € B’gl ’62)(/1) with B > 1, then

P(|fo — fol > fo/2) < Cy /n*, for any integer k, where Cy is a constant and therefore fo
fulfills assumption (A5).

Proposition 1. Consider fo defined by (12) in the basis [T], with logn < Dy <

The proof of this result is given in Section 7.

Hereafter, we develop a remark concerning the estimation of f in order to explain
why we have selected the second dimension D,,, the largest as possible. Let f,,, be
the orthogonal projection of the restriction of f to A on the space EF, xH,, ie for

2
My = (M1, 4n)y frmy = Z (k)€ Jony K bjkey™ , with |Jp, | = Dy, and |G| = ). We
obtain the following bias-variance decomp051t10n.

Proposition 2. Under (M1), (M2), (A1) and (A4), we have

. (A2)é1 Do,
(13) By~ S15) < N — S+ 220D

where ((Asg) is the Lebesque measure of As.

Proof. We clearly have

(14) s = F1E = oy = VA A 1 fors = Fo I,

where the first term is the bias term and HfAmlA — fo A = Z(j,k)eJmlxlCn(Bj,k‘ —bjr)? is
the variance term. In view of (11), we have E(b; 1) = b x, and, as a consequence:

E(|lfry = fri ) = Y Var(bi)

(4,k)ETmq xKn,

=Y (e Xl/w v'(2)dz)

(4,k)ETmq xKn
< Y CE(reap / U (Y ()] )
(j,k:)eJmlxlCn

Now, we note that for any As-square integrable function &,
2
S wreeed] < [ eea
A A

by a simple projection argument (the left-hand-side term is the squared norm of the
projection of £ on H,,), and thus under assumption (.44),

; e(AQ) m E(A2)¢1Dm
E(llf ~ fnl2) < =22 30 Bl (0)]?) < ==
€ Jm,
Gathering the terms, the risk of the estimator is bounded as in (13). O

Let us discuss the asymptotic rate of estimation of fa, the restriction of f to A, using

the above procedure. For that purpose, assume that f4 belongs to Bg o~ (A) with regularity
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B = (ﬁl, 32) Now, consider the collection of trigonometric polynomials for ¢;, 1y, and
apply lemma of Lacour (2007) (see Section 5 below). The bias term is bounded by

| fma = fI2 < C{DZ* + D727},
It is worth noticing that the variance term (i.e. the last term of (13)) does not depend

on ¢, nor on Dq(zz). This explains why the size of the projection space in the z-direction

must be chosen the largest as possible, when the mean square risk is under study. Take
DR = v/n/logn and assume that B, > 1, then (13) becomes

ﬁ(Az)Dml]

C'logn
4 2080

E(|lfmy = fI3) < CIDLZ +
Therefore, choosing D, = nl/(201+1) gives the rate

E(Hfml — fAHQ) < "~ 201/(261+1)

which is the standard asymptotic rate for a single variable function with regularity .
We could study a model selection procedure and find a penalty function of order D,,, /n,
so that a relevant space is chosen in an automatic way. We do not go into further details
since a rough estimation of fj is sufficient to estimate the conditional intensity a.

4. JLLUSTRATION

FIGURE 1. Case (NL) Estimated (top left) and true (top right) conditional
hazard rates and example of sections (bottom) for a fixed value of = (left)
or y (right).
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In this section, we give a numerical illustration of the adaptive estimator &, defined
in Section 2, computed with the dyadic histogram basis [H]. We sample ii.d. data
(X1,T1),...,(Xp,Ty,) in three particular cases of the regression model of Example 1 from
Section 1. For the sake of simplicity, we simulate the covariates X; with the uniform
distribution on [0,1]. The size of the data set is n = 1000.

e Case (NL). Non-Linear regression:
T; = b(X;) + os;.

We simulate &; with a x2(4) distribution and b(z) = 2z +5. Note that in this case,
the hazard function to be estimated is

o)~ Lo (£212)

where «, denotes the hazard function of .
e Case (AFT). Accelerated Failure Time model:

log(T;) = a + bX; + &,

where the ¢; are standard normal and a = 5 and b = 2. The hazard function to be
estimated is then:

ac(log(t) — (a + bx))
" .
e Case (PH). Proportional Hazards model: in this case, the hazard writes

az,t) = exp(bz)ag(t).

We take b = 0.4 and ag(t) = a\t®"!, which is a Weibull hazard function with a = 3
and A = 1.

The penalty is taken as

aarr(z,t) =

- —— 9mi+m2
pen(mi,ma) = 5[[a|co,4 n

where ||r]|o0, 4 is estimated as the maximal of the estimated histogram coefficients (max; , a; )
on the largest space which is considered (taken with dimension \/n).

We can see from Figures 1-3 that the algorithm exploits the opportunity (Figures 1
and 3) of choosing different dimensions in the two directions, and that it captures well the
general form of the surfaces.

5. PROOFS OF THE MAIN RESULTS

5.1. Proof of Theorem 1. We define, for hy,hy in L? N L>®(A), the empirical scalar
product

(15) (h1,ha)n Z/ hi (X5, 2)ho(X;, 2)Y(2)dz1(X; € [0,1])

and the associated empirical norm ||h1||? = (h1, h1), which is such that

E([h2) //hlxydwy //hy (2, y)didy = a2



ESTIMATION OF THE CONDITIONAL INTENSITY 13

0
0 500 1000 0 0.5 1

FIGURE 2. Case (AFT) Estimated (top left) and true (top right) condi-
tional hazard rates and example of sections (bottom) for a fixed value of z
(left) or y (right).

where we recall that f denotes the density of y w.r.t. the Lebesgue measure on A. We
shall use the following sets:

fm = {min Sp(G,,,) > max(fo/S,nfl/z)}, I= ﬂ f‘m,

meMy
s ‘ 1 fo ‘ 1
= : -1 <= =R = =1 < =5
(16) A {Vh eSS, a2 1 2}, and €2 { a 1 2}

For m € M,,, we denote by «,, the orthogonal projection on .S,, of & restricted to A. The
following bounds hold:

E(lam —ald) < 2la—amli +2E(|6s — amlZ1(ANQ)
(

+ 2E(||ap — amlZ1(AS N Q) 4+ 2E(|dr, — anm[A1(00))
< 2lla — aml} + 2E(|énn — am|31(A NQ))
(17) + AE((|dn ) + ) 2)1(AL N Q)+ 4B((lanm | + [laf2)1(Q5)).

We use the following results, whose proofs can be found in Sections 6.2 and 7.

Proposition 3. We have E(||és||*) < C'n®, where C' is a constant.

Proposition 4. If (M) is fulfilled, we have ]P’(AC) < Cy/nF for any k > 1, when n is
large enough, where Cy, is a constant.
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FIGURE 3. Case (PH) Estimated (top left) and true (top right) conditional
hazard rates and example of sections (bottom) for a fixed value of = (left)
or y (right).

Moreover, (A5) ensures that P(QC) < Cj,/n* for any integer k. Thus, using Proposi-
tions 3 and 4 and Assumption (A5), we get

E(([|an | + la2)1(AE N Q) + E(([lan? + llal3)1(25))
a4 (B(Q5) + P(AS)) + EV2(Jlan | ) (BY2(0F) + PY2(AD))

<
< Cy/n.

(18)
Thus it remains to study E(||és — aum |31 (A N K)). We state the following Lemma:
Lemma 1. The following embedding holds:

ANQcTINQ.
As a consequence, for all m € M, the matrices G, are invertible on A N Q.

Let us now define the centered empirical process
1 ¢ i i
wﬂg:E};(/hu%@mvgy—/huaamxhay@ma

(19) =Y [ zanc),
i=1
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where we use the Doob-Meyer decomposition. For any hq, hy € (L2 N L>®)(A), we have
2 2 ¢ i
Ta(hn) = wmhe) = |l = bl + 2(ht — ha, ho)n — — > [ (= ho)(Xi, 2)dN"(z)
i=1

= |l = holl} + 2(h1 — ha, he — a)n — 2vn(hy — ha).
Now, as on A N2 we have

'Yn(éém) + Pen(m) < 'Yn(am) + pen(m)-
It follows, from the inequality 22y < x2/6% + 0?y?, with z,y,0 € RT, that, on A NQ,

||, — ozm||721 < 2l — am, @ — ap)n + pen(m) + 2vy, (Gs — agy) — pen(mh)

L.
< 4l — amllz + 4la = am| + pen(m)

L .
+3l@m —amlli +4  sup  vi(h) — pen(ii),
heBy, ;(0,1)

where B)' | (0,1) := {h € Sy + Sy ¢ ||h]l < 1}. This yields

3. 1, .
llam —amlln < dlla = anll; + pen(m) + 7 lam — amll;

+4< sup  v2(h) — p(m, m)) + 4p(m,m) — pen(m).
heBy, ;,(0,1)

Now, let us choose the penalty such that
(20) Vm,m', 4p(m,m') < pen(m) + pen(m'),

and use the definition of A. We obtain on A N :

L.
Slldm —amlli < 4lla = amll; + 2pen(m)

1 .
+Z||am - ozm||i +4 Z ( sup  v2(h) — p(m’m’))
mEM,, heB;jm,(o,l)
and thus on A N Q:

L.
6 = amlli < 4l = am|[5 + 2pen(m)

+4 Z ( sup Vﬁ(h)—p(m,m’)).
m!EMn, hGBZl’m,(O,l)

Using the following proposition, we can achieve the proof of Theorem 1.

Proposition 5. Let

D, + D,
p(m,m’) = k(1 + ||afjoc,a) ——=

where Cy is a numerical constant. Under the assumptions of Theorem 1, we have
C
E( swp  (E(h) - p(m,m)41(8)) < =

memM, heB::l’m, (0,1) n



16 F. COMTE, S. GAIFFAS & A. GUILLOUX

This proposition entails:

B Cy
(21) 1E(la5 — anlZ1(A N Q) < 4lla — am|f; + 2pen(m) + —.
Gathering (17), (18) and (21) leads to
E(lan —al3) < 2lam —al + > (4l - anl? +2pen(m) + ) + &2
m A = m A fO mily p n n
16 00 16 C
(22) < 2(1+ M) llown, — el + —pen(m) + =
fo Jo n
for any m € M,,. This concludes the proof of Theorem 1. O

5.2. Proof of Corollary 1. To control the bias term, we state the following lemma proved
in Lacour (2007) and following from Hochmuth (2002) and Nikol’skii (1975):
Lemma. Lacour (2007) Let s belong to Bgoo(A) where B = (p1,32). We consider that
S/, is one of the following spaces on A of dimension D, Dy, :
e a space of piecewise polynomials of degrees bounded by s; > 3; — 1 (i =1,2) based
on a partition with rectangles of sidelengthes 1/Dy,, and 1/Dy,,,
e a linear span of {dxvu, A € UG A(j), p € Uy M (k)} where {¢x} and {1} are
orthonormal wavelet bases of respective regularities s; > 1 — 1 and so > [P — 1
(here Dy, =2™i,i=1,2),
o the space of trigonometric polynomials with degree smaller than Dy,, in the first
direction and smaller than Dy, in the second direction.

Let sy, be the orthogonal projection of s on S),. Then, there exists a positive constant Cy
such that

1/2 - -
ls=sula = ([ s =) < ol + D21

If we choose for S,, as one of the S/ s, we can apply the above lemma to the function
a4, the restriction of o to A. As «,;, has been defined as the orthogonal projection of a4
on Sy, we get:

lor = avml|4 < Co[ D + Dy =)
Now, according to Theorem 1, we obtain:
Ellay, — o3 <" inf {D;2% + D2 +
In particular, if m* = (m}, m}) is such that
____ B2 B
Dy: = mmwgfzmg | and Dyps = [(Dyr) P2 |

then
14-61/062

D 288 25
E||éw — o4 < C’”{D;éﬁl 4 mlT} _ 0(n ﬂ1+ﬂ21+22ﬂ1ﬁ2) = O(n~ 512),

where the harmonic mean of 3; and 32 is § = 283132/(B1 + B2). The condition D,,, <
n1/2 / log n allows this choice of m only if By /(31 +B2+26182) < 1/21i.e. if f1—F2+261 02 >
0. In the same manner, the condition 8 — 31 +2061 82 > 0 must be verified. Both conditions
hold if 8; > 1/2 and By > 1/2.
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5.3. Proof of Theorem 2. In order prove Theorem 2, we use the following theorem
from Tsybakov (2003), which is a standard tool for the proof of such a lower bound. We
say that d is a semi-distance on some set © if it is symmetric and if it satisfies the triangle
inequality and 9(6,6) = 0 for any § € ©. We consider K (P, Q) := [log(dP/dQ)dP the
Kullback-Leibler divergence between probability measures P and ) such that P < Q.

Theorem (Tsybakov (2003)). Let (0,0) be a set endowed with a semi-distance 0. We
suppose that {Py : 0 € O} is a family of probability measures on a measurable space (X, A)
and that v > 0. If there exist {0y, ...,0p} C O, with M > 2, such that

(1) 8(0;,05) >20 YO<j<k<M

(2) Pp, < Py, V1<j<M,

(3) 47 1L, K(Py,, Py,) < alog(M) for some a € (0,1/8),
then

. —1a/h g\\2 ﬂ _9q — a
nfang Bl 00,0 > 1 7 (1202, ).

where the infimum is taken among all estimators.

We construct a family of functions {ao,...,an} that satisfies points (1)-(3). Let
ao(x,t) = |B|~'(t € B) where B is a compact set such that A = A; x A, C B x B
and |B| > 2|A|Y?/L. As a consequence, we have ag(z,t) > 0 for (z,t) € A and
HQOHBQB,OO(A) = ||aolla + |a0|325,00(A) < L/2 since |aO|BQﬁ,oo(A) =0, see (9). We shall denote
for short ag = |B|~! in the following. Let 1 be a very regular wavelet with compact support
(the Daubechies’s wavelet for instance), and for j = (j1,72) € Z? and k = (k1, ko) € Z2,
let us consider

Vjk(w, t) = 20092y (20t — ke )op(2P2a — ko).
Let S; 1 stands for the support of v; ;. We consider the maximal set K; C 72 such that
(23) S]‘,k C AVk e R; and Sjyk N Sj,k/ =0,Vk, k' € R;, k # K.

The cardinality of R; satisfies |R;| = ¢271772 where ¢ is a positive constant that depends
on A and on the support of ¥ only. Consider the set ; = {0, 1}A5l and define for any

w = (wg) € Qy
alw) = ag+ \/g Z WEj ks

kER;
where b > 0 is some constant to be chosen below. In view of (23) we have

bp(w, ')
la(;w) —a(Ii = ==
where
p(w, W) = Z 1wk # wy,)
kJER]'
is the Hamming distance on ;. Using a result of Varshamov-Gilbert - see Tsybakov
(2003) - we can find a subset {w©®, ... WM} of Q; such that

WO = (0,...,0), p®,w®) > [R,|/8
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for any 0 < p < ¢ < M;, where M; > 21851/8  We consider the family Aj ={ao,...,on;}
where o, = a(-,w®)). This family satisfies for any 0 < p < ¢ < M;
b|R;|\1/2
| ]|> = 2u;
8n

for v; := \/b|R;|/(32n). This proves point (1). Now, let us gather here some properties
for this family of functions. We have

h2(1+52)
[a(sw) — aolloc,a <4/ TWH&, < ag/3

and consequently o(x,t;w) > 2a9/3 > 0 for any (z,t) € A and w € Q; whenever

lop = aglla = (

(24) (M) V2 _ag

< —.
~ 3z,
Using Hochmuth (2002), we have for 1) smooth enough that

H Z wkqu)j:kHBgoo(A) < (2]'151 + 2j2ﬁ2)‘| Z Wkﬂ/)j,k;HA < (2]'151 + 2j2ﬁ2)(62j1+j2)1/2.
kER; ’ keR;

n

Hence, if
(2j1ﬁ1 + 2j2ﬁ2)(2j1+j2)1/2 19
< 7
Vvn ~ 2Vbe

< L, so a(;w) € Bgm(A, L) for any w € ;. This proves that

(25)

we have Ha(-;w)Hng(A)

Aj C B (A L).
Points (2) and (3) are derived using Jacod’s formula (see Andersen et al. (1993)). Indeed,

we can prove that the log-likelihood ¢(«, o) := log(dP,/dP,,) of N writes

1 1
e, o) = /0 (log a/(X, t) — log ag(X, £))dN(t) — /0 ((X,t) — ao(X, )Y (t)dt.

For any a € Aj, we have ||a — aglloc,a < ao/3 < a(z,t)/2 for any (x,t) € A. The
Doob-Meyer decomposition allows to write that, under P,,:

1
(o, 00) = /0 (10 (@(X.£) — 00(X,1)) — (X, 1) — ag(X. 1)) )Y (t)d

1
+/ (log a(X,t) — log ang(X, t))dM (t)
0

where ®,(z) := —log(l — az)/a for a > 0 and x < 1/a. But since ®,(z) < z + az? for
any = < 1/(2a), we obtain

3 [l 1

t(a00) < 5~ / (at, X) — ag(t, X))2Y (1)t + / (log ao (£, X) — log a(t, X))dM(t)
0 Jo 0

which gives by integration with respect to P,

Blla = aolli _ 3llfxllsclle — a0l _ 30]Sx ool Byl

K(P, P, )<
(Pay Pay ) < 2a0 - 2a0 - 2nag
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for any o € A;. Since the counting processes (N 1 ...,N") are independent, we have

K (P2, PP) = nK(Pa, P,) and

Bl fxllol Rl _ |

M.
2&0 08 M

L M
LS KPR P <
p=0
with @ = 12b|| fx||co/(ao log 2) € (0,1/8) for b small enough. It only remains to choose the
levels ji and jo so that (24) and (25) holds, and to compute the corresponding v;. We
take j = (j1,72) such that

01/2 < 2j1n*ﬁ2/(51+ﬁ2+251ﬁ2) < ¢y and 62/2 < 2j2n*ﬁ1/(ﬁ1+ﬁ2+2ﬁ1ﬁ2) < ¢y

where ¢; and ¢y are positive constants satisfying (c’f L4 c)?) /s < L/(2v/be)'/2. For this
choice, 21172 /n, < ¢1eon =27/ (2P+2) 50 (24) holds for n large enough and (25) holds and

vj > c3n B/ (2842) where c3 = \/beeyea [128. O

6. DEVIATION AND MAXIMAL INEQUALITIES FOR THE EMPIRICAL PROCESS

Usually, in model selection (see for instance Massart (2007)), the penalty is explained us-
ing the so-called Talagrand’s deviation inequality for the maximum of empirical processes.
Because the empirical process v(-) (see Equation (19)) considered here has a particular
structure, we cannot use directly Talagrand’s inequality. In this Section, we prove Ben-
nett and Bernstein inequalities for v, (), and derive a maximal bound using the so-called
chaining technique which explains the penalty (7).

6.1. Deviation inequality.

Lemma 2. For any positive §, € and for any function h € (L? N L*)(A), we have the
following Bennett-type deviation inequality:

2
P(yn(h) > eIkl < 5) < oxp ( B 10~ ||l oo, 4 (‘EHhHOO,A ))

2., \afloo e

where g(x) = (1 + x)log(l + ) — x for any © > 0. As a consequence, we obtain the
following Bernstein-type inequalities:

ne? /2
(26) P(vp(h) > € |||l <6) <exp( — ,
( ) ( el 4,000% + %eHhHA,oo)

and

(27) P(vn(h) > 0/ loflco a2 + loc,a/3, I3 < 6°) < exp(—na).

Proof. Remark that v, (h) = v(h,1) where v(h,-) is the stochastic process given by
n t n
nv(h,t) = Z/ h(X;,2)dM(z) == nZl/(h,t)i.
i=1 70 i=1
The predictable variation of M? is given by (M*(t)) = fg a(X;, 2)Yi(2)dz, so we have

(v (h, 1)) = /0 h(X;, 2)2a(Xi, 2)Vi(z)dz



20 F. COMTE, S. GAIFFAS & A. GUILLOUX

for any ¢ € [0,1]. Moreover, we have AM(t) € {0,1} for any i = 1,...,n since the
counting processes N’ admit intensities. We can write v(h,t)’ = v(h, )" +v(h,t)"? where
v(h,t)>¢ is a continuous martingale and where v(h,t)"? is a purely discrete martingale
(see e.g. Liptser and Shiryayev (1989)). For some a > 0 (to be chosen later on) we define
Ui(t) := anvi(h,t) — Si(t), where S%(t) is the compensator of

1 ic i i
(28) {anv(h,t) >+; (exp(a|An1/(h, s)i) = 1 — alAnv(h, s) |).
We know from the proof of Lemma 2.2 and Corollary 2.3 of van de Geer (1995), that

exp(UL(t)) is a supermartingale. Using the standard Cramér-Chernoff method (see for
instance Massart (2007), Chapter 2), we have, for any a > 0:

( h) > e, ||hln < 5)

n
(exp anvy(h)) > exp(nae), |||, < 5)
E

< (&[exp (a Z zsz )" (E[exp(ﬁ;s;(l)_me)n{nhnnga}])”
< (E{exp(zsg(l) —ane)]l{||h||n < 5}]) v

The last inequality holds since exp(Ui(t)) = exp(anvi(h,t) — Si(t)) are independent su-
permartingales with UZ(0) = 0, so that Elexp(Ui(t))] < 1,fori=1,...,n

Let us decompose M* = M%»¢ + M»% with M*¢ a continuous martingale and A%
a purely discrete martingale. The process Vi (t) := (M*(t)) is the compensator of the
quadratic variation process [M*(t)] = (M"“(t))+ >, |AM(t)[?. If k > 3, we define V()
as the compensator of the k-variation process Y ., |AM(t)[¥ of M(t). Since AM(t) €
{0,1} for all 0 < ¢ < 1, the V} are all equal for k > 3 and such that Vi (t) < Vi (t), for all
k > 3. The process S%(1) has been defined as the compensator of (28). As a consequence,
we have:

; ; g IOOA
=> k'/ |h(X;, 2)|FdVi(z) < / h(Xi, 2)%dV3(z) x Y ——==d
k>2 k>2

and if ||h|, <0

B
Z S = W(GXP (a”hHoo,A) -1- a’HhHOO:A)

The minimum of S? — ane for a > 0 is achieved by

1 e||l]oo.a
a = lo ( 2 —i—l)
oo 2 \Joloo 262

and is equal to

_ n0%||aloo,a ( €l alloo, 4 )
1Rl13,4 " Mletlloo, 462
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where we recall that g(z) = (1 + z)log(1 + z) — z. This concludes the proof of the
Bennett inequality. Inequality (26) follows from the fact that g(x) > 32%/(2(x + 3)) for
any x > 0. To prove (27), we use the following trick from Birgé and Massart (1998): we

have g(z) > go(x) for any z > 0 where go(2) := 2 +1—+/1+ 2z and g5 ' (y) = 2y +y. O

6.2. Proof of Proposition 5 (maximal inequality via L? — L> chaining). Using
a L? — L™ chaining method, as in Barron et al. (1999) or Comte (2001), we obtain the
following result, which leads to Proposition (5):

Lemma 3. Let B} | (0,1) ={t € Sy + Sy, It < 1}. Then

e*Dm/

E( s () plmm)) 4 1(8)) < €O+ o)
heBm,m’(O71) n

where

D, + D,
p(m,m’) = £(1 + [|af|oo,a) ——.

Proof. The result of Lemma 3 is obtained from Inequality (26) by a L?(u) — L> chaining
technique. The method is analogous to the one given in Proposition 4 p. 282-287 in
Comte (2001), in Theorem 5 in Birgé and Massart (1998) and in Proposition 7, Theorem 8
and Theorem 9 in Barron et al. (1999). Since the context is different, we give, for the sake
of completeness, the details of the proof. It relies on the following lemma (Lemma 9 in
Barron et al. (1999)):

Lemma (Barron et al. (1999)). Let u be a positive measure on [0,1]. Let (r)ren be a
finite orthonormal system in L? N L>(u) with |A| = D and S be the linear span of {1y}
Let

1

up | e Bitillee

VD 8£0 |Bloo
For any positive 8, one can find a countable set T C S and a mapping p from S to T with
the following properties:

e for any ball B with radius o > 56,

(29) T =

TN B| < (B'c/5)P with B' <5,
o |lu—pu)|, <38 foralluin S, and

sup |lu —tlloo <79, forallt inT.
uep~L(t)

To use this lemma, the main difficulty is often to evaluate 7 in the different contexts.
We consider a collection of product models (Sy,)menm, which can be [DP] or [T]. For the
sake of place, we omit collection [W] as it right similar to collection [DP]. Recall that
BT’f%m,(O7 1) = {t € S + Sy, |Itllx < 1}. We have to compute 7 = 7y, corresponding
to S = S, + S,y C S, on which the norm connection holds. We denote by D(m,m’) =
dlm(Sm + Sm/)
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e Collection [DP] — As S,, + S, is a linear space, an orthonormal L?(u)-basis
(¥A)ren,, can be built by orthonormalisation on each sub-rectangle of (¢x)aea,,s
the orthonormal basis of S,,. Then

12 xen, Batalloc,a
sup 122€hn =2 < Y Walllso,a < (r+ 1) sup ([ ]loo,a
50 |Blso A€hn A

< (r+1)*2/N, sup ||zl
AEA,

<+ DY2VN swp il Vo
SNV

< (r+ 12N/ fo.
Thus here 7, 1y < ((r + 1)3/2/\/Fo)/Ni/D(m, m").

e Collection [T]- For trigonometric polynomials, we write

| Saen, Atrlsoa _ CVRLIS,Axtall _ CVNall ) Byl

o 1Bl = Bl S T TolBle
- CVNuy /225 0% < C\/N,D(m,m')
S T B Vo

Therefore, 7,y < C/Ny/ fo.

We may now prove Lemma 3. We apply the Lemma from Barron et al. (1999) to
the linear space Sy, + Sy of dimension D(m,m’) and norm connection measured by
Tm,m' bounded above. We consider d;-nets T}, = T, N BT’f%m,(O7 1), with 0 = 5027% and
do < 1/5 (to be chosen later). Moreover we set Hy = log(|Tx|) < D(m,m’)log(5/0x) =
D(m,m")[klog(2) + log(5/dp)]. Given some point h € BZL’m,(O, 1), we can find a sequence
{hi}r>0 with hy € Ty such that ||h — h|? < 67 and ||h — hilloo,a < FrmmeOk. Thus we

have the following decomposition that holds for any h € B! (0,1):

h=ho+ Z(hk — hkfl),
E>1

with [[holl, < 1, [[hollco,a < T(m,ms), and
bk = e[l < 2007 + 07_1) = 567_1/2, |7k — Pi—1lloo,a < 37(mmr)Ok—1/2

for any £ > 1. In the sequel we denote by Pa(:) the measure P(- N A), see (16). Let in
addition (nx)r>0 be a sequence of positive numbers that will be chosen later on and 7 such
that no + > p>1 Mk < 7. We have:

Pa[  sup w(h) >
hern, (0,1)

m/!

+oo
= Pa [H(hk)ke]N e [1 T / vn(ho) + D valbx — hir) > mo + an}
keN k=1 k>1

< P 4+Py
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where

Z Pa(vn(ho) > o), Z Z PA(vn(hi — hi—1) > nk)-

ho€To k=1 hkhlegk 1
k€T

Then using Inequality (27), we straightforwardly infer that P; < exp(Hy — nzp) and
Py < 2@1 exp(Hy—1 + Hy, — nxy) if we choose

{ Ny = 3.%'0“0&”00’,4/2+F(m’m/)x0/3
M = (1/2)0k—1(\/15]|etlloc, ATk + T(mmmr)Tk)-

Fix u > 0 and choose xg such that
nrg = Ho+ Dpy +u
and for k > 1, x;, such that
nxep = Hp_1+ Hy + kDyy + D,y + u.
If D,y > 1, we infer that
PA( sup  vp(h) >0+ ) nk) < e Pmr (1 + i e*kDm/) < 1.6e Pme,
heBt (0,1) >1 k=1

Now, it remains to compute » ,~,nk. We note that > 27 0, = > po ko = 20p. This
implies that:

[oe)
o+ E Op—12k
k=1

S~ (k1) D(m,m’)
< [1og(5/00) + 80 >~ 2~ D[(2k — 1) 10g(2) + 2log(5/8) + k]| T
k=1
<1+5022 (k— 1) <1+50227(k71))3
k>1 k>1 "
!/
(30) < a(éo)DTEm,m) L 1 +n250 (D + 1),
where a(dg) = log(5/d0) + 09(4log(5/d0) + 6log(2) + 4). This leads to

[e.9]
2
[V2(\/3llalloe,a0/2 + Fon o /3) + 3 b (/15 alloc, a2k + Fon )|

]

(gw)z <

< 7[(V3lole.azo +25k /15l 425 ) + o (\/_x0/3+25k el
< 1Z K\/SC_O + Z5k—1\/$_k) [elloo,a + Ty (330 + Zék—lxk) ]

k=1 k=0
< 4 [2 (960 + i 5k—1xk) [elloc, A + T (wo + i 519719%) 2} -

k=1 k=1
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Now, fix 6y < 1/5 (say, dp = 1/10) and use the bound (30). The bound for (32} n;)? is
less than a quantity proportional to:

(Pl ey

D(m,m’ D, 2 @ U u?
o) | Doyt Jallau o 0

oo, + 72 —-

n n n
For collection [DP], we use that an’m, < (r+1)3N,/(foD(m,m')) and N,, < n/logn to
obtain the bound:
=2 /(D(m,m’) N Dm/)2 Ny, D(m,m')?
e n n foD(m,m’) n?

c(r+12 N,D(m,m') _c(r+1)® 1 D(m,m') < D(m,m’)

- fo n? - fo logn n - n
For collection [T], we have 7,y < Cv/N,, and N,, < \/n/logn. We get

5 (D(m,m’) N Dm/)2 < CN,D(m,m’)? < C D(m,m’) < D(m,m’).

<c(r+ 1)3

T ’ ~ ~
m,m n n n?2 logn n n

Thus, for both the cases, the bound for (3" n;)? is proportional to:
{D(m,m’) N D;ln/

lodloo,av | o w?

n

(1 + [, 4)
We obtain, as D(m,m’) < Dy, + Dy,

|+

m7m/ n2 .

D, + D, « u u
n* D + (ladloc.a VR, o))

Pa| sup () > £((1+ llofx.) =

hEBfn,m/ (0,1)

< Pa| s P> 0?| S2Pa] swp (k) > ] <327 Pw
heB, .(01) heB" (0,1)
so that, if we take kg := k(1 + ||t|[00,4),

E [( hele,f (071)V2(h) — p(m, m’)) +11(A)]

< / IP’A( sup  v2(h) > p(m,m’) + u) du
0 hEBfn,m/(O,l)

2

00 2K /T ,
< eiDm/ (/ einu/(Qlia)du + / / mhm e—n\/ﬁ/(2 Hafm,'m/)du)
2Ka /an , 0

2 [e'e} 2772 , [e’)
< ¢ P o (/ e Vdv + —1 / e‘ﬁdv)
n 0 n 0

92 _

2k, dre K. e~ DPm/

S e—Dm/ 04(1+ m,m ) S « ,
n n n

where £, is a constant depending on |||/« 4. This ends the proof of Lemma 3.
To conclude the proof of Proposition 5, we just have to bound ) . M, e~ Pm’ . This term
is at most

) 00 —j 1

» o0 P 1L & _
Ze]k = Z (e ])k221ie—j§1—6_1;e]:(1—671)2'

Fk>1 j=1k=1 j=1
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7. PROOF OF THE AUXILIARY RESULTS

7.1. Proof of Proposition 1. Let fmf and fo be defined by (12), with m* = (Dml,Dﬁf))
with logn < D,,, < n1/4/\/logn and Dg) < n1/4/\/10g n, see (M1p). We remark that, for
all (x,z) € R%

Fomi (#,2) = [(2,2) + fing (2,2) = F(@,2) 2 fo = |l fmg = lloe.-

We deduce that Hfml — flloo.a > fo — fo- In the same manner, Hfml — flloo.a = fo — fo-
Thus

Q%) = P(lfo — fol > fo/2) < P(llfim; = Fllsc.a > fo/2).
Therefore, we just have to prove that P(Hfm; — flloo.a > fo/2) < Cy/n*.

First remark that || fs — flloot < [ fons — fort oot + g — Fllooa. As € BELH) ()
with 8 > 1, the imbedding theorem proved in Nikol’skii (1975) p.236 implies that f belongs
to Bég}o’gQ)(A) with 87 = 61(1 —1/3) and 35 = fB2(1 — 1/3). Then the approximation
lemma of Lacour (2007) recalled in Section 5.2, which is still valid for the trigonometric
polynomial spaces with the infinite norm instead of the L? norm, yields to

s — Fllooa < C(Drih + (D@))~5%).

As we assumed that Dp,: > logn, it follows that [|fim,« — f[loc,a tends to zero when
n — +o0o. Thus, for n large enough, we have || fr,« — flloo,a < fo/4 and

P(|| fnz = flloo,a > f0/2) < P frns — finzlloo,a > fo/4).
Now, following (M2), we get

| fmz = Fnt llooya </ ¢1¢2Dm;D£zQ)Hfm; = fmz
Now we define

B) ) = > [ (hCGY ) ~ ERCX0)Y ) ) dy = VIR ~ VA

With this notation, and reminding of (11) and of the proof of Proposition 2 in Section 3.4,

we have X R . .
I fmr = Pz 1P =D (bjn = bje)? =D 02 (0 @4 h).
j’k“ ]’k“
Thus
~ 2, mt my f2
B(Il foni = flloea > f0/2) < P(D 0200 @uph) > )
I 16¢)1 99 Dyt D,
my mi fg
< D P(On(e)t @yt >
T ( ’ 16¢1¢2(Dm;D7(12))2>
mi m} fO
< Y Bl @ w2 ).

Gk  4v/G192 Dy DY
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Notice that ﬂn((p;’q ®¢ITT) = %Z?(Uzjk — E(Uljk)), where Uzjk = ;(X;) [e(y)Y'(y)dy
are i.i.d. r.v. We can apply the Bernstein inequality to 9, i.e. to the iid. r.v. Ul-j k.
Indeed, we have

1700 < Hsoj'lloo/lzbk(y)ldy < \I@jllm(/¢ﬁ(y)dy)1/2 </ 01Dm; i=c

and E[(U7")2] < || fxloo.a = v?2. We get

mi Jo nz?/2
P([|9n(p; ' ® < 2exp(—
(’ v )’ 4\/$162 Dy, *D )) exp( v2—|—cx)

with © = fo/(4«/q§1q§2Dm;D7(12)) and v and c are right above. That is:

my fo Cnfd
Pl |9, (p, " <2 — .
<| e @ v e 4/ Q102D DY) ) o ( 16¢1¢2(DmID7(12))2)

As both Dy,+ and D) are less than n'/*/./log(n), we obtain:

2 !
P(0F) < 2D,,: DR exp ( _ Cniy : ) < 2y/nexp ( — C'(log n)Q) < Qf
16¢1¢2(Dm{D§L )2 "

for any k arbitrarily large, when n is large enough.

Proof of Proposition 3. Note that &, is either 0 or argmin,cg 7, (t). Let us denote
for short ¢; := gog-ﬁ and ¢y, == 7. In the second case, min Sp(Gy,) > max(fo/3,n"/2)
and thus

el = > (@) = [Aal® = 1G Tl
j?k

(i Sp(Gn)) Tl < ming9/ 5, 3 ( Z% ) [ ot
< min 9/f0, ZZSOJ (/?/)k(z)dNi(z)
=1 7
< min(9/f2,n) )1 DY — ZZ /W; )AN'(z
=1 k
Therefore,
. 2
laalt < nta@PRL ( (/ ¢k<z>dNZ<z>)>
i=1 \ k
(32) < n? f(Dﬁf))zDﬁf)%Z (/wk(z)d]\”(z)>4
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Now, we have:

(X (funve)
§23122E ([ w2 >+231§:ZE ([ a2y ie:)).
=1 k

Using the Biirkholder Inequality as recalled in Liptser and Shiryayev (1989) p 75, and the
fact that the quadratic variation process of each M* is N* (i =1,..., n), we obtain:

liz ([oncran)
< 23(3’1; ZZE /% )AN? (2 +23;‘ ZE((/wk(z)a(Xi,z)Yi(z)dz)4>
roly YE( Y wﬁ(s)>)+23%ZZE( [
=1 k

s:AN*(s)#0 =1 k
i k

IN

IN

([ ra(x,2)
ron3n(( F ) e Sy s(( [t ario) )
(

s:ANi(s)#0 k i=1

230b¢2(D7(12))2%ZE(( > 1)) +2‘%2an1€ (/wk(z)a(xi,z)yi(z)dz)4>
i=1 =1 k

$: AN (8)7£0
< 2800 (DP))? TlliE ) +2°~ ZZE«/W (X', 2)Y i('z)d’z)4>
i=1

This yields, using Assumptions (.A3) and (.A4):

(A ([ man

=1 k
€PN (1) + 3B / vrls >dZ)4>>
< (DN W) + el vl T /wk

(33) < C(6(DPPR(IN(1)) + ||auio,,4¢2<1>;2 ?).

Then we have, by inserting (33) in (32),

IN

IN

E(lanl') < (omDD)DOE ZZ ([wavi
i=1 k
S CnQ(anl)) (ngQ)) S Cl 4.5 S C'n5,
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as we claim that we can reach DY) < v/n/log(n) in the case of localized bases [DP], [W],

[H]. Note that for basis [T], under (M1), the final order is much less (namely n32° instead
of n*?).

Proof of Proposition 4. Define, for p > 1, the set

A, ={VheS,,

IRI2/IAIE = 1] < 1= 1/p},

where S, is the set of maximal dimension of the collection. Remark that A = As, see
(16). First we observe that:

PAD <P sup  [9n(h?)| > 1-1/p)
heBgn(O,l)

where 9,,(-) is defined by (31) and B (0,1) = {t € Sy, [[t]|,, < 1}. We denote by (¢; @ty
the L2-orthonormal basis of S,,. If h(z,y) = >k @ k®s (2)Pk(y), then

(34) On(h?) = > ajkay wIn((0; @ ) (05 @ p)).
j,k7j/7k/
We obtain
(35) sup [0, (R*)] < fo! sup ‘ D ajrajpIn((e; @ Uiy @ )|
heBgn (0,1) Zaikﬁl Gk,gl k!

Lemma (Baraud et al. (2001a)). Let B; j = |[¢j@j/|loc,a and V; v = ||pjpjll2. Let, for
any symmetric matriz (A; ;)

p(A) == sup > |bby|A;
YIS

and L(p) = max{p?(V),p(B)}. Then, if (M2) is satisfied, we have L(yp) < ¢1(D£L1))2,
and L(p) < 5¢‘11D511), if the basis is localized (cases [P] or [W]).
Let us define

2(1 _ 2
o Ra-vyer

4] £xlls0.4(DRV 2L ()
{YGRVG K 9n((e5 @ ) (o5 @ v))| < 4( By + Vi /2l fx aw) |-

Starting from (35), we have, on O:

sup |19n(h2)| < 4f0*1 sup Z(Z|aj,kaj’,k’|)<Bj,j’x+‘/j,j”/2||fXHOO,A:C>'

heBs, (0,1) DA RSg kk

©
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Thus setting bj = > [a; x|, we have . b? <D and it follows that, on ©,

e 1] < D ;urlelb byl (Biyra + Vigr 2l fxlloe,a2)
< f&lD@( B)z + p(V) (/2] fx lx.a2)
p) B(B) 1 (PP(V)\12
= <D(2HfH ()+f(Lso)) )
< 1—1/p( ) (1-1/p).
Therefore,

1
1@( sup  [On(t2)] > 1 — —) < P(eb).
teBY4 (0,1) P

Let qb>\ = ¥;j (%) ¢k; for A = (], k‘) To bound P(’ﬂn(gf))\gf))\/) > Bj,j/SC + Vj,j/w/2‘|fX||oo,A$)a
we will apply the Bernstein inequality given in Birgé and Massart (1998) to the i.i.d. r.v.

(36) U = UPDOR) = (X (X0 [ n(we )Y ().
Under (A4), the r.v. are bounded
U1 < syl [ 10)oldy < leseylea = By
Moreover, using (.A4) again, we obtain:
O < (ps(Xoy (X)) [ vy [ G2y = (oK) (X))

and thus /
E[(UM)?] < El(0;(Xo)e(Xi))?] < 1fx loo,a V7

P(|9n(@r¢)| 2 By + Vjjry/ 20| fxlloo,az) < 27

Given that IP’(AE,) < P(Ob) = Z)“/\,P(Wn(gb)\gb)\/)\ > Bjjx + Vj,ju/QHfXHOQAx), we can

write:

We get

f3(1=1/p)?
< o2 exp{ _ fe(1=1/p) n }

A fxllooa (DP2L(p))

Following the lemma of Baraud et al. (2001a) above, and using Assumption (M;), we
have

(DP)Llp) < 61(DP DY) < g1/ log? ().
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And then, we have for any k arbitrarily large, when n is large enough,

2 1-1 2 C
40[|flloo, a1 n
Now, if the basis is localized, the result is better. In this case, L(y) < 5(]5‘1*7)7(11). Moreover,

take histogram basis in (34), then all terms with & # k' vanish and then we can take
bi =k a,?,k)l/2 directly. Then, as then }, b? < 1, we obtain

(37) IP’(AE) < 2n?exp {

n

B nfg(l — 1//))2 } < 2n2€Xp{ _ f02(1 — 1/,0)2 n }

40[ fx lloo,aL () — 40[| fx[oo,a L(¢)
Thus L(p) < 5(#1*7)7(11) < ¢1n/log?(n) is enough to get (37) again. The proof is easy to
extend to any localized basis as [P] or [W], (with D) in the bound of > b? replaced by
r + 1 in case [P] for instance).

P(AS) < 2(D<1>)2D<2>exp{

Proof of Lemma 1. Let m € M,, be fixed and let ¢ be an eigenvalue of GG,,,. There exists
A, # 0 with coefficients (ay)y such that Gy, A,, = ¢A,, and thus A G, A, = (A} A,
Now, take h := ", axpx € Sp. We have ||h|?2 = A} GnAy, and [|R]|% = Al Ay, Thus,
on A (see (16)):

1 1 1
AT G = B2 > SIBI2 > 5 follbIA = 5 foAT, Am.

Therefore, on A, for all m € M,,, we have min Sp(G,,,) > fo/2. Moreover, on {2, we have
fo > 2fo/3 and max(fo/3,n"/2) = fo, for n > 36/f2. O
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