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Abstract. We propose in this work an original estimator of the conditional intensity
of a marker-dependent counting process, that is, a counting process with covariates.
We use model selection methods and provide a non asymptotic bound for the risk of
our estimator on a compact set. We show that our estimator reaches automatically a
convergence rate over a functional class with a given (unknown) anisotropic regularity.
Then, we prove a lower bound which establishes that this rate is optimal. Lastly, we
provide a short illustration of the way the estimator works in the context of conditional
hazard estimation.
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1. Introduction

As counting processes can model a great diversity of observations, especially in medicine,
actuarial science or economics, their statistical inference has received a continuous atten-
tion since half a century - see Andersen et al. (1993) for the most detailed presentation on
the subject. In this paper, we propose a new strategy, based on model selection, for the
inference for counting processes in presence of covariates. The model considered can be
described as follows.

Let (Ω,F ,P) be a probability space and (Ft)t≥0 a filtration satisfying the usual condi-
tions. Let N be a marker-dependent counting process, with compensator Λ with respect
to (Ft)t≥0, such that N −Λ = M , where M is a (Ft)t≥0-martingale. We assume that N is
a marker-dependent counting process satisfying the Aalen multiplicative intensity model
in the sense that :

Λ(t) =

∫ t

0
α(X, z)Y (z)dz, for all t ≥ 0(1)

where X is a vector of covariates in R
d which is F0-measurable, the process Y is nonneg-

ative and predictable and α is an unknown deterministic function called intensity.
The purpose of this paper is to estimate the intensity function α on the basis of the

observation of a n-sample (Xi, N
i(z), Y i(z), z ≤ τ) for i = 1, . . . , n, where τ < +∞.
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There are many examples, crucial in practice, which fulfill this model. For the seek of
conciseness, we restrict our presentation to the three following ones.

Example 1 (Regression model for right-censored data). Let T be a nonnegative random
variable (r.v.) with cumulative distribution functions (c.d.f.) FT , and X a vector of
covariates in R

d. We consider in addition that T can be censored. We introduce the
nonnegative r.v. C, with c.d.f. G, such that the observable r.v. are Z = T ∧C, δ = 1(T ≤
C) and X. We assume that:

(C) : T and C are independent conditionally to X.

In this case, the processes to consider (see e.g. Andersen et al. (1993)) are given, for
i = 1, . . . , n and z ≥ 0, by:

N i(z) = 1(Zi ≤ z, δi = 1) and Y i(z) = 1(Zi ≥ z).

The unknown intensity function α to be estimated is the conditional hazard rate of the
r.v. T given X = x defined, for all z > 0 by:

α(x, z) = αT |X(x, z) =
fT |X(x, z)

1 − FT |X(x, z)
,

where fT |X and FT |X are respectively the conditional probability density function (p.d.f.)
and the conditional c.d.f. of T given X.

Nonparametric estimation of the hazard rate in presence of covariates was initiated
by Beran (1981). Stute (1986), Dabrowska (1987), McKeague and Utikal (1990) and
Li and Doss (1995) extended his results. Many authors have considered semiparametric
estimation of the hazard rate, beginning with Cox (1972), see Andersen et al. (1993) for
a review of the enormous literature on semiparametric models. We refer to Huang (1999)
and Linton et al. (2003) for some recent developments.

Adaptive nonparametric estimation for censored data in presence of covariates has been
considered by LeBlanc and Crowley (1999) or Castellan and Letué (2000) for particular
functional Cox models: in these works, α(x, z) = exp(f(x))α0(z), only f is estimated.
On the other hand, Brunel et al. (2007) constructed an optimal adaptive estimator of the
conditional density in a general model.

Example 2 (Cox processes). Let ηi, for i = 1, . . . , n, be a Cox process (see Kaar (1986))
on R+ with random mean-measure Λi given by :

Λi(t) =

∫ t

0
α(Xi, z)dz,

where Xi is a vector of covariates in R
d. In this context the predictable process Y of

Equation (1) constantly equals 1. As a consequence, these processes can be seen as gen-
eralizations of nonhomogeneous Poisson processes on R+ with random intensities. This
is a particular case of longitudinal data, see e.g. Example VII.2.15 in Andersen et al.
(1993). The nonparametric estimation of the intensity of Poisson processes without co-
variates has been considered in several papers. We refer to Reynaud-Bouret (2003) and
Baraud and Birgé (2009) for the adaptive estimation of the intensity of nonhomogeneous
Poisson processes in general spaces.
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Example 3 (Regression model for transition intensities of Markov processes). Consider
a n-sample of nonhomogeneous time-continuous Markov processes P 1, . . . , Pn with finite
state space {1, . . . , k} and denote by αjl the transition intensity from state j to state l. For
individual i with covariate Xi, let N i

jl(t) be the number of observed direct transitions from

j to l before time t (we allow the possibility of right-censoring for example). Conditionally
on the initial state, the counting process N i

jl verifies the following Aalen multiplicative
intensity model:

N i
jl(t) =

∫ t

0
αjl(Xi, z)Y

i
j (z)dz +M i(t) for all t ≥ 0,

where Y i
j (t) = 1{P i(t−) = j} for all t ≥ 0, see Andersen et al. (1993) or Jacobsen (1982).

This setting is discussed in Andersen et al. (1993), see Example VII.11 on mortality and
nephropathy for insulin dependent diabetics.

We finally cite three papers, where different strategies for the estimation of the intensity
of counting processes is considered, gathering as a consequence all the previous examples,
but in none of them the presence of covariates was considered. Ramlau-Hansen (1983)
proposed a kernel-type estimator, Grégoire (1993) studied cross-validation for these esti-
mators. More recently, Reynaud-Bouret (2006) considered adaptive estimation by model
selection.

Our aim in this work is to provide an optimal adaptive nonparametric estimator of the
conditional intensity. Our estimation procedure involves the minimization of a so-called
contrast. To achieve that purpose, we proceed as follows. In Section 2, we describe the
estimation procedure: we explain how the contrast is built, on which collections of spaces
the estimators are defined and how the relevant space is selected via a data driven penalized
criterion. In Section 3, we state oracle inequalities for our estimator (see Theorems 1 and
2), a resulting upper bound (see Corollary 1) and a lower bound (see Theorem 3), the
latter asserts the optimality in the minimax sense. The examples of Section 4 are taken in
the setting of Example 1, in order to provide a short illustration of the practical properties
of our estimator. Lastly, proofs are gathered in Sections 5 and 6.

Remark 1. An inherent remark about this model is that there is no reason for the condi-
tional intensity α(x, z) to have the same behavior with respect to the z (time) and x (covari-
ates) variables. This is the reason why it is mandatory in our purely nonparametric setting
to consider anisotropic regularity for α. Think for instance of the very popular case of pro-
portional hazards Cox model, see Cox (1972), it is assumed that α(x, z) = α0(z) exp(β>x)
for some unknown function α0 and unknown vector β ∈ R

d. Of course, in this model, the
smoothness in the x direction is higher than in the z direction.

For the sake of simplicity, we will assume in the following that the covariate X is one-
dimensional.

2. Description of the procedure

Our estimation procedure involves the minimization of a contrast. This contrast is
tuned to the problem considered in this paper, as explained in the next section.
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2.1. Definition of the contrast. Let A = A1 × [0, τ ] be a compact set of R × R+ on
which the function α will be estimated. Without loss of generality, we set A = [0, 1]×[0, τ ].
Let h be a function in (L2 ∩ L∞)(A). Define the contrast function:

γn(h) =
1

n

n∑

i=1

∫ τ

0
h2(Xi, z)Y

i(z)dz − 2

n

n∑

i=1

∫ τ

0
h(Xi, z)dN

i(z).(2)

This contrast is of least-squares type adapted to the problem considered here. Since each
N i admits a Doob-Meyer decomposition (N i = Λi +M i), we have:

γn(h) =
1

n

n∑

i=1

∫ τ

0
h2(Xi, z)Y

i(z)dz − 2

n

n∑

i=1

∫ τ

0
h(Xi, z)dΛ

i(z) − 2

n

n∑

i=1

∫ τ

0
h(Xi, z)dM

i(z),

so that:

E
(
γn(h)

)
= E

( ∫ τ

0
h2(X, z)Y (z)dz

)
− E

(
2

∫ τ

0
h(X, z)dΛ(z)).

Let FX denote the c.d.f. of the covariate X and ‖ · ‖µ the norm defined by:

‖h‖2
µ := E

( ∫ τ

0
h2(X, z)Y (z)dz

)
=

∫∫

A
h2(x, z)dµ(x, z),

where dµ(x, z) := E(Y (z)|X = x)FX(dx)dz. By the Aalen multiplicative intensity model,
see Equation (1), we get:

E
(
γn(h)

)
= ‖h‖2

µ − 2

∫∫
h(x, z)α(x, z)E(Y (z)|X = x)FX (dx)dz = ‖h− α‖2

µ − ‖α‖2
µ.

This explains why minimizing γn(·) over an appropriate set of functions described below,
is a relevant strategy to estimate α.

Example 1 continued. In the particular case of regression for right-censored data, the
conditional hazard function is estimated and the contrast function has the following form:

γn(h) =
1

n

n∑

i=1

∫ τ

0
h2(Xi, z)1(Zi ≥ z)dz − 2

n

n∑

i=1

δih(Xi, Zi).

We have in addition an explicit formula for dµ(x, z):

(3) dµ(x, z) = (1 − LZ|X(z, x))FX (dx)dz,

where

1 − LZ|X(z, x) := P(Z ≥ z|X = x) = (1 − FT |X(x, z))(1 −GC|X(x, z))

and GC|X is the conditional c.d.f. of C given X.

Remark 2. In our setting, it is possible to let the censoring depend on the covariates, as
in Dabrowska (1989) or, more recently Heuchenne and Van Keilegom (2006). Assumption
(C) above is weaker than the assumption: T and C are independent and P(T ≤ C|X,T ) =
P(T ≤ C|T ) in Stute (1996). See Delecroix et al. (2008), p.249, for further discussions on
this matter.
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2.2. Assumptions and notations. Before defining the estimation procedure, we need
to introduce some assumptions and notations. Define the norms

‖h‖2
A :=

∫∫

A
h2(x, z)dxdz and ‖h‖∞,A := sup

(x,z)∈A
|h(x, z)|,

and assume that the following condition holds:

• (A1) The covariates Xi admit a p.d.f. fX such that supA1
|fX | ≤ f1 < +∞.

Assumption (A1) implies that µ admits a density w.r.t. the Lebesgue measure. We denote
by f this density:

(4) dµ(x, z) = f(x, z)dxdz where f(x, z) = E(Y (z)|X = x)fX(x).

We also assume:

• (A2) There exists f0 > 0, such that ∀(x, z) ∈ A1 × [0, τ ], f(x, z) ≥ f0.
• (A3) ∀(x, z) ∈ A1 × [0, τ ], α(x, z) ≤ ‖α‖∞,A < +∞.
• (A4) ∀i,∀t, Y i(t) ≤ CY where CY is a known fixed constant.

Remark 3. Assumption (A2) is fulfilled if Y is bounded from below in expectation and if
fX is bounded from below. The requirement that the density of the design is bounded away
from zero is standard in a regression model, for instance. Assumption (A2) reduces to such
a condition in Example 2 (Cox processes), where we have f(z, x) = I(z ∈ [0, τ ])fX (x).
In the general setting of counting processes, a lower bound on the expectation of Y is
classical, see Reynaud-Bouret (2006) p.648. In the censored case (Example 1), we can
write:

E(Y (z)|X = x) = E(1(T ∧ C ≥ z)|X = x) = (1 − FT |X(x, z))(1 −GC|X(x, z−)).

It is a well-known fact (see e.g. Andersen et al. (1993), p 193-194) that the Kaplan-Meier
estimator is consistent, for each x (with no further assumption) only on intervals of the
form [0, τx], where τx < sup{s ≥ 0, (1 − FT |X(x, s))(1 − GC|X(x, s)) > 0}. We can take
τ = infx∈[0,1] τx. In view of (3), this justifies our Assumption (A2) in this case.

Lastly, in the examples described in Section 1, Assumption (A4) is clearly fulfilled with
CY = 1. We will set CY = 1 in the following for simplicity. This implies together with
(A1) that ∀(x, z) ∈ A, |f(x, z)| ≤ f1.

2.3. Definition of the estimator. We use the usual model selection paradigm (see,
for instance, Massart (2007)): first minimize the contrast γn(·) over a finite-dimensional
function space Sm, then select the appropriate space by penalization. We introduce a
collection {Sm : m ∈ Mn} of projection spaces: Sm is called a model and Mn is a set of
multi-indexes (see the examples in Section 2.4). For each m = (m1,m2), the space Sm of
functions with support in A = [0, 1] × [0, τ ] is defined by:

Sm = Fm1 ⊗Hm2 =
{
h : h(x, z) =

∑

j∈Jm

∑

k∈Km

amj,kϕ
m
j (x)ψmk (z), amj,k ∈ R

}
,

where Fm1 and Hm2 are subspaces of (L2 ∩ L∞)(A1) and (L2 ∩ L∞)([0, τ ]) respectively
spanned by two orthonormal bases (ϕmj )j∈Jm with |Jm| = Dm1 and (ψmk )k∈Km with |Km| =
Dm2 . For all j and all k, the supports of ϕmj and ψmk are respectively included in A1 and

[0, τ ]. Here j and k are not necessarily integers, they can be pairs of integers, as in the
piecewise polynomial or the wavelet cases, see Section 2.4.
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Remark 4. From a theoretical point of view, we could consider that the covariates X are
in R

d. For this end, we would have to consider models of the form Sm = Fm1 ⊗ · · · ⊗
Fmd

⊗ Hmd+1
. However, this would make the proofs more intricate. Note also that the

convergence rate would be slower because of the curse of dimensionality. For the sake of
clarity, we restrict ourselves to X ∈ R.

The first step would be to define α̂m = argminh∈Sm
γn(h). To that end, let h(x, y) =∑

j∈Jm

∑
k∈Km

aj,kϕ
m
j (x)ψmk (y) be a function in Sm. To compute α̂m, we have to solve:

∀j0∀k0,
∂γn(h)

∂aj0,k0
= 0 ⇔ GmAm = Υm,

where Am denotes the matrix (aj,k)j∈Jm,k∈Km,

Gm :=
( 1

n

n∑

i=1

ϕmj (Xi)ϕ
m
l (Xi)

∫ τ

0
ψmk (z)ψmp (z)Y i(z)dz

)
(j,k),(l,p)∈Jm×Km

and

Υm :=
( 1

n

n∑

i=1

ϕmj (Xi)

∫ τ

0
ψmk (z)dN i(z)

)
j∈Jm,k∈Km

.

Unfortunately Gm may not be invertible. To overcome this problem, we modify the defi-
nition of α̂m in the following way:

α̂m :=
{ argminh∈Sm

γn(h) on Γ̂m
0 on Γ̂{

m

,(5)

where

Γ̂m :=
{

min Sp(Gm) ≥ max(f̂0/3, n
−1/2)

}

where Sp(Gm) denotes the spectrum of Gm i.e. the set of the eigenvalues of the matrix

Gm (it is easy to see that they are nonnegative). The estimator f̂0 of f0 (the minimum of
the density f , see (A2)) is required to fulfill the following assumption:

• (A5) For any integer k ≥ 1, there are positive constants C0 and n0 such that

P(|f̂0 − f0| > f0/2) ≤ C0/n
k for any n ≥ n0.

An estimator satisfying (A5) is defined in Section 3.5, where the constants C0 and n0

depend on k, f0, f1, τ, φ1, φ2. In fact, k = 7 is enough for the proofs. We refer the reader
to the proof of Lemma 1, see Section 6, for an explanation of the presence of n1/2 in the
definition of Γ̂m. In practice, this constraint is generally not used (the matrix is invertible,
otherwise another model is considered).

The final step is to select the relevant space via the penalized criterion:

(6) m̂ = argmin
m∈Mn

(
γn(α̂m) + pen(m)

)
,

where pen(m) is defined in Theorem 1 below, see Section 3. Our estimator of α on A is
then α̂m̂.
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2.4. Assumptions on the models and examples. Let us introduce the following set of
assumptions on the models {Sm : m ∈ Mn}, which are usual in model selection techniques.

• (M1) For i = 1, 2, D(i)
n := maxm∈Mn Dmi

≤ n1/4/
√

log n. We shall denote by Fn
(respectively Hn) the space with dimension D(1)

n (resp. D(2)
n ).

• (M2) There exist φ1 > 0, φ2 > 0 such that, for all u in Fm1 and for all v in Hm2,
we have

sup
x∈A1

|u(x)|2 ≤ φ1Dm1

∫

A1

u2 and sup
x∈[0,τ ]

|v(x)|2 ≤ φ2Dm2

∫

[0,τ ]
v2.

By letting φ0 =
√
φ1φ2, that leads to

(7) ∀h ∈ Sm ‖h‖∞,A ≤ φ0

√
Dm1Dm2‖h‖A.

• (M3) Nesting condition:

Dm1 ≤ Dm′
1
⇒ Fm1 ⊂ Fm′

1
and Dm2 ≤ Dm′

2
⇒ Hm2 ⊂ Hm′

2
.

Moreover, there exists a global nesting space Sn = Fn⊗Hn in the collection, such
that ∀m ∈ Mn, Sm ⊂ Sn and dim(Sn) := Nn ≤

√
n/ log n.

Remark 5. We emphasize that φ2 depends on τ and is in most examples proportional to
1/τ .

Assumptions (M1)–(M3) are not too restrictive. Indeed, they are verified for the spaces
Fm1 (and Hm2) on A1 = [0, 1] spanned by the following bases (see Barron et al. (1999)):

• [T ] Trigonometric basis: span(ϕ0, . . . , ϕm1−1) with ϕ0 = 1([0, 1]), ϕ2j(x) =
√

2

cos(2πjx) 1([0, 1])(x), ϕ2j−1(x) =
√

2 sin(2πjx)1([0, 1])(x) for j ≥ 1. For this
model Dm1 = m1 and φ1 = 2 hold.

• [DP ] Regular piecewise polynomial basis: polynomials of degree 0, . . . , r (where
r is fixed) on each interval [(l − 1)/2D , l/2D[ with l = 1, . . . , 2D. In this case, we
have m1 = (D, r), Jm = {j = (l, d), 1 ≤ l ≤ 2D, 0 ≤ d ≤ r}, Dm1 = (r + 1)2D and
φ1 =

√
r + 1.

• [W ] Wavelet basis on an interval: span(Ψj,k : j = l − 1, . . . ,m1, k ∈ Λ(j)), where
l and m1 are integers (l corresponds to the number of vanishing moments of the
basis). The Ψj,k are, depending on the localization parameter k, either translations
and dilatations of a pair {φ,ψ} of scaling function and wavelet with a compact
support, or so-called edge scaling functions and wavelets. We give more details
in Appendix A.1. By construction, the elements of this basis have their supports
included in A1, and they have as many vanishing moments as ψ.

• [H] Histogram basis: for A1 = [0, 1], span(ϕ1, . . . , ϕ2m1 ) with ϕj = 2m1/21([(j −
1)/2m1 , j/2m1 [) for j = 1, . . . , 2m1 . Here Dm1 = 2m1 , φ1 = 1. Notice that [H] is a
particular case of both [DP ] and [W ].

Clearly, if ϕ1, . . . , ϕD is an orthonormal basis in L2([0, 1]), then τ−1/2ϕ1(·/τ), . . . , τ−1/2ϕD(·/τ)
is an orthonormal basis in L2([0, τ ]).

Remark 6. The first assumption (M1) prevents the dimension from being too large com-
pared to the number of observations. We can relax considerably this constraint for lo-
calized basis: for histogram basis, piecewise polynomial basis and wavelets, (M1) can

be relaxed to the weaker condition: D(i)
n ≤

√
n/ log n. Analogously in (M3), we would
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get Nn ≤ n/ log n. The condition (M2) implies a useful link between the L2 norm and
the infinite norm. The third assumption (M3) implies in particular that ∀m,m′ ∈ Mn,
Sm + Sm′ ⊂ Sn. This condition is useful for the chaining argument used in the proofs, see
Section 6.4.

3. Main results

3.1. Oracle inequality. We define αm as the orthogonal projection of α1(A) on Sm.
The estimator α̂m̂ where α̂m is given by (5) and m̂ is given by (6) satisfies the following
oracle inequality.

Theorem 1. Let (A1) – (A5) and (M1) – (M3) hold. Define the following penalty :

(8) pen(m) := K0(1 + ‖α‖∞,A)
Dm1Dm2

n
,

where K0 is a numerical constant. We have

(9) E(‖α1(A) − α̂m̂‖2
µ) ≤ κ0 inf

m∈Mn

{‖α1(A) − αm‖2
µ + pen(m)} +

C

n

for any n ≥ n0, where n0 is a constant coming from Assumption (A5) (see Section 2.3),
where κ0 is a numerical constant and C is a constant depending on φ1, φ2, ‖α‖∞,A, f0, f1

and τ .

The proof of Theorem 1 involves a deviation inequality for the empirical process

νn(h) :=
1

n

n∑

i=1

∫ τ

0
h(Xi, z)dM

i(z),

where M i(t) = N i(t) −
∫ t
0 α(Xi, z)Y

i(z)dz are martingales, see Section 1, and a L2 − L∞

chaining argument.

3.2. Adaptive upper bound. From Theorem 1, we can derive the rate of convergence
of α̂m̂ over anisotropic Besov spaces. We recall that anisotropy is almost mandatory in
this context, see Remark 1. For that purpose, assume that α restricted to A belongs to

the anisotropic Besov space Bβ
2,∞(A) on A with regularity β = (β1, β2). Let us recall

the definition of Bβ
2,∞(A). Let {e1, e2} the canonical basis of R

2 and take Arh,i := {x ∈
R

2;x, x+ hei, . . . , x+ rhei ∈ A}, for i = 1, 2. For x ∈ Arh,i, let

∆r
h,ig(x) =

r∑

k=0

(−1)r−k
(
r

k

)
g(x+ khei)

be the rth difference operator with step h. For t > 0, the directional moduli of smoothness
are given by

ωri,i(g, t) = sup
|h|≤t

( ∫

A
ri
h,i

|∆ri
h,ig(x)|2dx

)1/2
.

Consider the Besov norm

(10) ‖α‖
Bβ

2,∞(A)
:= ‖α‖A + |α|

Bβ
2,∞(A)

= ‖α‖A + sup
t>0

2∑

i=1

t−βiωri,i(g, t),
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and define the Besov space Bβ
2,∞(A) as the set of functions g such that ‖g‖

Bβ
2,∞(A)

< +∞,

and for L > 0, consider the ball

Bβ
2,∞(A,L) = {α ∈ Bβ

2,∞(A) : ‖α‖
Bβ

2,∞(A)
≤ L}.

More details concerning Besov spaces can be found in Triebel (2006). The next corollary
shows that α̂m̂ adapts to the unknown anisotropic smoothness of α.

Corollary 1. Assume that α restricted to A belongs to Bβ
2,∞(A,L), with smoothness β =

(β1, β2) such that β1 > 1/2 and β2 > 1/2. We consider the piecewise polynomial or wavelet
spaces described in Subsection 2.4 (with the regularity of the polynomials and the wavelets
larger than βi − 1). Then, under the assumptions of Theorem 1, we have

E‖α− α̂m̂‖2
A ≤ Cn

− 2β̄

2β̄+2

where β̄ is the harmonic mean of β1 and β2 (i.e. 2/β̄ = 1/β1 + 1/β2) and C depends on
L, τ , φ0, f0, f1 and ‖α‖∞,A.

The rate of convergence achieved by α̂m̂ in Corollary 1 is optimal in the minimax sense
as proved in Theorem 3 below. For trigonometric spaces, the result also holds, but for
β1 > 3/2 and β2 > 3/2 (because of (M1)).

Moreover, assuming for example that β2 > β1, one can see in the proof of Corollary 1

that the estimator chooses a space of dimension Dm̂2 = D
β1/β2

m̂1
< Dm̂1 . This shows that

the estimator is adaptive with respect to the approximation space for each directional
regularity.

3.3. Random penalty. It is worth noting that the penalty defined in Equation (8) in-
volves the unknown quantity ‖α‖∞,A. This problem occurs occasionally in penalization
procedures, see for instance Comte (2001) or Lacour (2007a). The solution is to replace it
by an estimator:

(11) p̂en(m) = K1(1 + ‖α̂m∗‖A,∞)
Dm1Dm2

n
,

where K1 is a numerical constant and α̂m∗ is a rough estimator of α computed on an
arbitrary space Sm∗ with dimension Dm∗ = Dm∗

1
Dm∗

2
. Let us consider

(12) ˆ̂m = arg min
m∈Mn

(γn(α̂m) + p̂en(m)) .

Then we can prove the following result:

Theorem 2. Let the assumptions of Theorem 1 be satisfied. Consider the estimator α̂ ˆ̂m
defined by (5)-(12)-(11), where the term α̂m∗ is computed with (5) on a space Sm∗ in
collection [T] with dimension Dm∗ such that

Dm∗
1

= Dm∗
2

= n1/4.

If α restricted to A belongs to the anisotropic Besov space Bβ
2,∞(A) with regularity β =

(β1, β2) such that β1 > 2 and β2 > 2, then, for n large enough,

(13) E(‖α1(A) − α̂ ˆ̂m‖2
µ) ≤ κ1 inf

m∈Mn

{‖α1(A) − αm‖2
µ + (1 + ‖α‖∞,A)

Dm1Dm2

n
} +

C

n
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where κ1 is a numerical constant and C is a constant depending on φ1, φ2, ‖α‖∞,A, f0, f1

and τ .

Obviously, we can deduce from Theorem 2 a Corollary similar to Corollary 1 concerning
the asymptotic rate of the estimator on Besov balls.

3.4. Lower bound. In the next Theorem, we prove that the rate n−2β̄/(2β̄+2) is opti-

mal over Bβ
2,∞(A) where we recall that 2/β̄ = 1/β1 + 1/β2. Recall that the Besov ball

Bβ
2,∞(A,L) is defined in Section 3.2. Let us denote by Eα the integration w.r.t. the joint

law Pα, when the intensity is α, of the n-sample (Xi, N
i(z), Y i(z); z ≤ τ, i = 1, . . . , n).

Theorem 3. Assume that Assumption (A1) holds. Then there is a constant C > 0 that
depends on β, L, τ and f1 such that

inf
α̃

sup
α∈Bβ

2,∞(A,L)

Eα‖α̃ − α‖2
A ≥ Cn−2β̄/(2β̄+2)

for n large enough, where the infimum is taken among all estimators.

Remark 7. There is a slight difference between the statements of Theorem 3 and Corol-
lary 1: the upper bound in Corollary 1 needs Assumption (A2) [which requires that
f(x, z) = E(Y (z)|X = x)fX(x) ≥ f0] while Theorem 3 does not. However Corollary 1 and
Theorem 3 are stated on the same functional sets. This kind of difference between the
statements of upper and lower bounds is classical, and can be found in regression models
as well, see the dicussion in Stone (1980) p.1351 for a regression model.

3.5. Estimation of f0. We recall that f is the density of µ, which is defined in Equa-
tion (4). We define

(14) f̂m = argmin
h∈Sm

υn(h) where υn(h) = ‖h‖2 − 2

n

n∑

i=1

∫ τ

0
h(Xi, z)Y

i(z)dz.

This estimator admits a simple explicit formulation:
(15)

f̂m(x, z) =
∑

(j,k)∈Jm×Km

b̂j,kϕ
m
j (x)ψmk (y), with b̂j,k =

1

n

n∑

i=1

ϕmj (Xi)

∫ τ

0
ψmk (z)Y i(z)dz.

As before, we consider estimation of f over the compact set A = [0, 1] × [0, τ ]. We choose
the space Hm2 as the space with maximal dimension, as explained below. Let us denote it

by Hn, by D(2)
n = dim(Hn) its dimension (see (M1)) and by `n its index so that H`n = Hn.

Hence, we consider, instead of a general f̂m, the estimator

f̂m1 := argmin
h∈Fm1×Hn

υn(h).

We are now in a position to define an estimator of f0 by considering any inf(x,z)∈A f̂m1(x, z)
with a given m1. Indeed, an arbitrary choice is sufficient for our estimation problem
concerning f0. In our setting, only a rough estimation of the lower bound on f is useful.

Therefore, the estimator f̂0 used in (5) for the construction of α̂m can be defined by:

f̂0 := inf
(x,z)∈A

f̂m∗
1
(x, z) with Dm∗

1
= dim(Fm∗

1
).(16)
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Then, the following result holds:

Proposition 1. Consider f̂0 defined by (16) in the basis [T] with Dm∗
1

= D(2)
n = n1/4/

√
log n.

Assume that f ∈ B(β̃1,β̃2)
2,∞ (A) with β̃1 > 2, β̃2 > 2. Then, for any k ∈ N, there are positive

constants n0 and C0 such that

P(|f̂0 − f0| > f0/2) ≤ C0/n
k

for any n ≥ n0, where C0 and n0 are constant depending on k, τ , f0, f1, φ1 and φ2. This
proves that f̂0 fulfills Assumption (A5).

The proof of this result is given in Section 6.

4. Illustration
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Figure 1. Case (NL) Estimated (top left) and true (top right) conditional
hazard rates and example of sections (bottom) for a fixed value of x (left)
or y (right).

In this section, we give a numerical illustration of the adaptive estimator α̂m̂, defined
in Section 2, computed with the dyadic histogram basis [H]. We sample i.i.d. data
(X1, T1), . . . , (Xn, Tn) in three particular cases of the regression model of Example 1 from
Section 1. For the sake of simplicity, we simulate the covariates Xi with the uniform
distribution on [0, 1]. The size of the data set is n = 1000.

• Case (NL). Non-Linear regression:

Ti = b(Xi) + σεi.

We simulate εi with a χ2(4) distribution, σ = 1/4 and b(x) = 2x+ 5. Note that in
this case, the hazard function to be estimated is =

αNL(x, t) =
1

σ
αε

( t− b(x)

σ

)
,

where αε denotes the hazard function of ε.
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• Case (AFT). Accelerated Failure Time model:

log(Ti) = a+ bXi + εi,

where the εi are standard normal and a = 5 and b = 2. The hazard function to be
estimated is then:

αAFT (x, t) =
αε(log(t) − (a+ bx))

t
.

• Case (PH). Proportional Hazards model (see Castellan and Letué (2000), LeBlanc
and Crowley (1999)): in this case, the hazard writes

α(x, t) = exp(b(x))α0(t).

We take b(x) = bx with b = 0.4 and α0(t) = aλta−1, which is a Weibull hazard
function with a = 3 and λ = 1.

We choose to compute and plot our estimators with histogram bases for two reasons:
first, it makes the estimator much easier to compute; secondly, it shows very well how
the changes are captured, and when an anisotropic choice is performed by the estimation
procedure. More sophisticated implementation is beyond the scope of the paper.

The penalty is taken as

p̂en(m1,m2) = κ(1 + ‖α̂‖∞,A)
2m1+m2

n
,

with κ = 4. Note that, for sake of simplicity, ‖α̂‖∞,A is estimated by maxj,k âj,k (the largest
histogram coefficients) instead of the trigonometric basis, which was used for technical
reasons in Theorem 2: this is because it makes the procedure faster, since all âj,k are
already computed for estimation. These coefficients are computed on the largest space
which is considered (taken with dimension

√
n).

We can see from Figures 1-3 that the algorithm exploits the opportunity (Figures 1
and 3) of choosing different dimensions in the two directions, and that it gives a good
account of the general form of the surfaces.

5. Proofs of the main results

5.1. Proof of Theorem 1. We define, for h1, h2 in L2 ∩ L∞(A), the empirical scalar
product

〈h1, h2〉n =
1

n

n∑

i=1

∫ τ

0
h1(Xi, z)h2(Xi, z)Y

i(z)dz1(Xi ∈ [0, 1])(17)

and the associated empirical norm ‖h1‖2
n = 〈h1, h1〉n which is such that

E(‖h1‖2
n) =

∫∫

A
h2

1(x, y)dµ(x, y) =

∫∫

A
h2

1(x, y)f(x, y)dxdy = ‖h1‖2
µ
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Figure 2. Case (AFT) Estimated (top left) and true (top right) condi-
tional hazard rates and example of sections (bottom) for a fixed value of x
(left) or y (right).
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Figure 3. Case (PH) Estimated (top left) and true (top right) conditional
hazard rates and example of sections (bottom) for a fixed value of x (left)
or y (right).

where we recall that f denotes the density of µ w.r.t. the Lebesgue measure on A. We
shall use the following sets:

Γ̂m = {min Sp(Gm) ≥ max(f̂0/3, n
−1/2)}, Γ̂ :=

⋂

m∈Mn

Γ̂m,

∆ :=
{
∀h ∈ Sn :

∣∣∣‖h‖
2
n

‖h‖2
µ

− 1
∣∣∣ ≤ 1

2

}
, and Ω :=

{∣∣∣ f̂0

f0
− 1

∣∣∣ ≤ 1

2

}
.(18)
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For m ∈ Mn, we denote by αm the orthogonal projection on Sm of α restricted to A. The
following decomposition holds:

E(‖α̂m̂ − α1(A)‖2
µ) ≤ 2‖α1(A) − αm‖2

µ + 2E(‖α̂m̂ − αm‖2
µ1(∆ ∩ Ω))

+ 2E(‖α̂m̂ − αm‖2
µ1((∆ ∩ Ω){)).(19)

The last term is bounded via the following Proposition:

Proposition 2. Under the Assumptions of Theorem 1,

(20) E(‖α̂m̂ − αm‖2
µ1((∆ ∩ Ω){)) ≤ C1/n,

where C1 is a constant depending on τ , φ1, φ2, ‖α‖∞,A, f0, f1.

To study the term E(‖α̂m̂−αm‖2
µ1(∆∩Ω)), two preliminary remarks have to be made.

The first one is the following Lemma:

Lemma 1. Under the Assumptions of Theorem 1, the following embedding holds: for
n ≥ 4/f2

0 , we have

∆ ∩ Ω ⊂ Γ̂ ∩ Ω.

As a consequence, for all m ∈ Mn, the matrices Gm are invertible on ∆∩Ω. The second
remark is the following useful decomposition. Let us define

νn(h) =
1

n

n∑

i=1

(∫ τ

0
h(Xi, z)dN

i(z) −
∫ τ

0
h(Xi, z)α(Xi, z)Y

i(z)dz
)

=
1

n

n∑

i=1

∫ τ

0
h(Xi, z)dM

i(z),(21)

where we use the Doob-Meyer decomposition. For any h1, h2 ∈ (L2 ∩ L∞)(A), we have

γn(h1) − γn(h2) = ‖h1 − h2‖2
n + 2〈h1 − h2, h2〉n −

2

n

n∑

i=1

∫ τ

0
(h1 − h2)(Xi, z)dN

i(z)

= ‖h1 − h2‖2
n + 2〈h1 − h2, h2 − α〉n − 2νn(h1 − h2)

= ‖h1 − h2‖2
n + 2〈h1 − h2, h2 − α1(A)〉n − 2νn(h1 − h2),(22)

where the indicator 1(A) is inserted because all other functions in the product are A-
supported. Let us assume that n ≥ 4/f2

0 . Now, on ∆ ∩ Ω, we have thanks to Lemma 1,
by the definition of m̂, that

γn(α̂m̂) + pen(m̂) ≤ γn(αm) + pen(m) ∀m ∈ Mn.

It follows from (22) and from the fact that 2xy ≤ x2/θ + θy2 for any x, y, θ > 0 that, on
∆ ∩ Ω,

‖α̂m̂ − αm‖2
n ≤ 2〈α̂m̂ − αm, α1(A) − αm〉n + pen(m) + 2νn(α̂m̂ − αm) − pen(m̂)

≤ 1

4
‖α̂m̂ − αm‖2

n + 4‖α1(A) − αm‖2
n + pen(m)

+
1

4
‖α̂m̂ − αm‖2

µ + 4 sup
h∈Bµ

m,m̂
(0,1)

ν2
n(h) − pen(m̂),
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where Bµ
m,m′(0, 1) := {h ∈ Sm + Sm′ : ‖h‖µ ≤ 1}. Now, we need to introduce a centering

factor denoted by p(m,m′), related to the supremum of the empirical process νn(h):

Proposition 3. Grant the assumptions of Theorem 1. There exists a numerical constant
κ > 0 such that the following holds. If

p(m,m′) = κ(1 + ‖α‖∞,A)
Dm +Dm′

n
,

then
∑

m′∈Mn

E

(
sup

h∈Bµ

m,m′ (0,1)

(ν2
n(h) − p(m,m′))+1(∆)

)
≤ C2

n
,

for n large enough, where C2 is a constant depending on f0, ‖α‖∞,A and the chosen basis
(see Section 2.4).

The proof of Proposition 3 is given in Section 6.4 below. It yields

3

4
‖α̂m̂ − αm‖2

n ≤ 4‖α1(A) − αm‖2
n + pen(m) +

1

4
‖α̂m̂ − αm‖2

µ

+ 4
(

sup
h∈Bµ

m,m̂(0,1)

ν2
n(h) − p(m, m̂)

)
+

+ 4p(m, m̂) − pen(m̂).

Now, let fix K0 ≥ 4κ, so that

4p(m,m′) ≤ pen(m) + pen(m′) ∀m,m′,

and use the definition of ∆. We obtain on ∆ ∩ Ω:

3

8
‖α̂m̂ − αm‖2

µ ≤ 4‖α1(A) − αm‖2
n + 2pen(m)

+
1

4
‖α̂m̂ − αm‖2

µ + 4
∑

m′∈Mn

(
sup

h∈Bµ

m,m′ (0,1)

ν2
n(h) − p(m,m′)

)
+

(23)

and thus on ∆ ∩ Ω:

1

8
‖α̂m̂ − αm‖2

µ ≤ 4‖α1(A) − αm‖2
n + 2pen(m) + 4

∑

m′∈Mn

(
sup

h∈Bµ

m,m′ (0,1)

ν2
n(h) − p(m,m′)

)
+
.

Now, Proposition 3 entails:

(24)
1

8
E(‖α̂m̂ − αm‖2

µ1(∆ ∩ Ω)) ≤ 4‖α1(A) − αm‖2
µ + 2pen(m) +

C2

n
.

Gathering (19), (20) and (24), we obtain that, for n ≥ 4/f2
0 ,

E(‖α̂m̂ − α1(A)‖2
µ) ≤ 2‖αm − α1(A)‖2

µ + 16
(
4‖α1(A) − αm‖2

µ + 2pen(m) +
C2

n

)
+

2C1

n

for anym ∈ Mn. On the other hand, if n ≤ 4/f2
0 , then 1/n ≥ f2

0/4 and it is easy to see that
Lemma 3 (see below) entails E(‖α̂m̂ − α1(A)‖2

µ) ≤ C/n where C is a constant depending

on CB from Lemma 3, f0 and ‖α1(A)‖2
µ. This concludes the proof of Theorem 1. �
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5.2. Proof of Corollary 1. To control the bias term, we use Lemma 6, see Appendix A.2,
that gives the approximation result allowing to derive the rate of convergence. If we choose
Sm as one of the finite linear span considered in Section A.2, we can apply Lemma 6 to
the function αA, the restriction of α to A. Since αm has been defined as the orthogonal
projection of αA on Sm, we get using (A1) and (A4) :

‖α1(A) − αm‖µ ≤ f1‖α− αm‖A ≤ C3[D
−β1
m1

+D−β2
m2

]

where C3 depends on the Besov norm of α and on f1. Now, according to Theorem 1 and
(A2), we obtain:

E‖α̂m̂ − α‖2
A ≤ f−1

0 E
(
‖α̂m̂ − α‖2

µ

)
≤ C4 inf

m∈Mn

{
D−2β1
m1

+D−2β2
m2

+
Dm1Dm2

n

}

where C4 depends on the Besov norm of α, and on f0, f1, φ1, φ2 and τ . In particular, if
m∗ = (m∗

1,m
∗
2) is such that

Dm∗
1

= bn
β2

β1+β2+2β1β2 c and Dm∗
2

= b(Dm∗
1
)

β1
β2 c

then

E‖α̂m̂ − α‖2
A ≤ 2C4

(
D−2β1

m∗
1

+
D

1+β1/β2

m∗
1

n

)
≤ 4n

− 2β1β2
β1+β2+2β1β2 = 4C4n

− 2β̄

2β̄+2 ,

where we recall that the harmonic mean of β1 and β2 is β̄ = 2β1β2/(β1 + β2). The condition
Dm1 ≤ √

n/ log n allows this choice of m∗ only if β2/(β1 + β2 + 2β1β2) < 1/2 i.e. if
β1 − β2 + 2β1β2 > 0. In the same manner, the condition β2 − β1 + 2β1β2 > 0 must be
satisfied. Both conditions hold if β1 > 1/2 and β2 > 1/2. �

5.3. Proof of Theorem 2. The proof follows the line of the proof of Theorem 2.2 p. 67
in Lacour (2007b), so we only give a sketch of proof. Let us define

Λ =

{∣∣∣∣
‖α̂m∗‖∞
‖α‖∞,A

− 1

∣∣∣∣ <
1

2

}
,

and recall that ∆ and Ω are given by (18). Then we decompose the risk of α̂ ˆ̂m as follows:

E(‖α̂ ˆ̂m − α1(A)‖2
µ) = E(‖α̂ ˆ̂m − α1(A)‖2

µ1(Λ ∩ ∆ ∩ Ω))

+ E(‖α̂ ˆ̂m − α1(A)‖2
µ1((Λ ∩ ∆ ∩ Ω){)).

The study of the term E(‖α̂ ˆ̂m − α1(A)‖2
µ1(Λ ∩ ∆ ∩ Ω)) is very similar to the study of its

analogous in the proof of Theorem 1, by using that, on Λ,

(25)
1

2
pen(m) ≤ K0

K1
p̂en(m) ≤ 3

2
pen(m).

Thus, the algebra starts with p̂en(m) instead of pen(m), and on Λ, it is proportional to
pen(m) thanks to (25). At the end, only constant multiplicative factors are changed. In
other words, taking K1 = 2K0, (24) is simply replaced by

(26)
1

8
E(‖α̂ ˆ̂m − αm‖2

µ1(∆ ∩ Ω ∩ Λ)) ≤ 4‖α1(A) − αm‖2
µ + 4pen(m) +

C2

n
.

The conclusion follows from the following Lemma, which is proven in Section 6.5:
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Lemma 2. Under the assumptions of Theorem 2,

E(‖α̂ ˆ̂m − α1(A)‖2
µ1((Λ ∩ ∆ ∩ Ω){)) ≤ CR/n,

where CR depends on φ1, φ2, τ, f0, f1 and ‖α‖∞,A.

This ends the proof of Theorem 2. �

5.4. Proof of Theorem 3. In order to prove Theorem 3, we use the following theorem
from Tsybakov (2003), which is a standard tool for the proof of such a lower bound. We
say that ∂ is a semi-distance on some set Θ if it is symmetric and if it satisfies the triangle
inequality and ∂(θ, θ) = 0 for any θ ∈ Θ. We consider K(P,Q) :=

∫
log(dP/dQ)dP the

Kullback-Leibler divergence between probability measures P and Q such that P � Q.

Theorem (Tsybakov (2003)). Let (Θ, ∂) be a set endowed with a semi-distance ∂. We
suppose that {Pθ : θ ∈ Θ} is a family of probability measures on a measurable space (X ,A)
and that v > 0. If there exist {θ0, . . . , θM} ⊂ Θ, with M ≥ 2, such that

(1) ∂(θj , θk) ≥ 2v ∀ 0 ≤ j < k ≤M
(2) Pθj

� Pθ0 ∀ 1 ≤ j ≤M ,

(3) 1
M

∑M
j=1K(Pθj

, Pθ0) ≤ a log(M) for some a ∈ (0, 1/8),

then

inf
θ̂

sup
θ∈Θ

Eθ[(v
−1∂(θ̂, θ))2] ≥

√
M

1 +
√
M

(
1 − 2a− 2

√
a

log(M)

)
,

where the infimum is taken among all estimators.

In this proof, we denote by Pα the distribution of (X,N(z), Y (z); z ≤ τ) when the
intensity of N is α and by P

n
α the distribution of the n-sample (Xi, N

i(z), Y i(z); z ≤ τ, i =
1, . . . , n).

We construct a family of functions {α0, . . . , αM} that satisfies points (1)–(3). We use
the notation |A| for the area of the rectangle A (or the length of an interval) and #(R)
denotes the cardinality of a set R. Let α0(x, t) = |B|−1

1(t ∈ B) where B is a compact

set such that A = [0, 1] × [0, τ ] ⊂ B × B and |B| ≥ 2|A|1/2/L. As a consequence, we
have α0(x, t) > 0 for (x, t) ∈ A and ‖α0‖Bβ

2,∞(A)
= ‖α0‖A + |α0|Bβ

2,∞(A)
≤ L/2 since

|α0|Bβ
2,∞(A)

= 0, see (10). We shall denote for short a0 = |B|−1 in the following. Let ψ be

a very regular wavelet with compact support (the Daubechies’s wavelet for instance), and
for j = (j1, j2) ∈ Z

2 and k = (k1, k2) ∈ Z
2, let us consider

ψj,k(x, t) = τ−1/22(j1+j2)/2ψ(2j1t/τ − k1)ψ(2j2x− k2),

so that ‖ψj,k‖A = 1. Let Sj,k stands for the support of ψj,k. We consider the maximal set
Rj ⊂ Z

2 such that

(27) Sj,k ⊂ A,∀k ∈ Rj and Sj,k ∩ Sj,k′ = ∅,∀k, k′ ∈ Rj, k 6= k′.

The cardinality of Rj satisfies #(Rj) = c2j1+j2, where c is a positive constant that depends

on τ and on the support of ψ only. Consider the set Ωj = {0, 1}#(Rj ) and define for any
ω = (ωk) ∈ Ωj

α(·;ω) := α0 +

√
b

n

∑

k∈Rj

ωkψj,k,
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where b > 0 is some constant to be chosen below. In view of (27) we have

‖α(·;ω) − α(·;ω′)‖2
A =

bρ(ω, ω′)
n

where

ρ(ω, ω′) :=
∑

k∈Rj

1(ωk 6= ω′
k)

is the Hamming distance on Ωj . Using a result of Varshamov-Gilbert - see Tsybakov

(2003) - we can find a subset {ω(0), . . . , ω(Mj)} of Ωj such that

ω(0) = (0, . . . , 0), ρ(ω(p), ω(q)) ≥ #(Rj)/8

for any 0 ≤ p < q ≤Mj , whereMj ≥ 2#(Rj)/8. We consider the family Aj = {α0, . . . , αMj
}

where αp = α(·, ω(p)). This family satisfies for any 0 ≤ p < q ≤Mj

‖αp − αq‖A ≥
(b#(Rj)

8n

)1/2
= 2vj

for vj :=
√
b#(Rj)/(32n). This proves point (1). Now, let us gather here some properties

for this family of functions. We have

‖α(·;ω) − α0‖∞,A ≤
√
b2(j1+j2)

τn
‖ψ‖2

∞ ≤ a0/3

and consequently α(x, t;ω) ≥ 2a0/3 > 0 for any (x, t) ∈ A and ω ∈ Ωj whenever

(28)
(b2j1+j2

τn

)1/2
≤ a0

3‖ψ‖2∞
.

Using the Bernstein’s estimate from Hochmuth (2002) (see Theorem 3.5 p.194), we have
for ψ smooth enough that

‖
∑

k∈Rj

ωkψj,k‖Bβ
2,∞(A)

≤ cτ (2
j1β1 + 2j2β2)‖

∑

k∈Rj

ωkψj,k‖A ≤ cτ,ψ(2j1β1 + 2j2β2)(2j1+j2)1/2,

where cτ,ψ is a constant that depends on τ and ψ. Note that the Bernstein’s estimate from
Hochmuth (2002) is stated on the space L

2([0, 1]2) while we consider here L
2([0, 1]× [0, τ ]).

An obvious (but tedious) modification of the proof of Hochmuth (it suffices to change the
scaling of the moduli of continuity ωri,i herein) allows to show that the Bernstein’s estimate
is the same as for L

2([0, 1]2), up to a multiplicative constant that depends on τ . Hence, if

(29)
cτ,ψ(2j1β1 + 2j2β2)(2j1+j2)1/2√

n
≤ L

2
√
b
,

we have ‖α(·;ω)‖
Bβ

2,∞(A)
≤ L, so α(·;ω) ∈ Bβ

2,∞(A,L) for any ω ∈ Ωj. This proves that

Aj ⊂ Bβ
2,∞(A,L).

Points (2) and (3) are derived using Jacod’s formula (see Andersen et al. (1993)). Indeed,
we can prove that the log-likelihood `(α,α0) := log(dPα/dPα0) of N writes

`(α,α0) =

∫ τ

0
(log α(X, t) − log α0(X, t))dN(t) −

∫ τ

0
(α(X, t) − α0(X, t))Y (t)dt.
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For any α ∈ Aj, we have ‖α − α0‖∞,A ≤ a0/3 ≤ α(x, t)/2 for any (x, t) ∈ A. The
Doob-Meyer decomposition allows to write that, under Pα0:

`(α,α0) =

∫ τ

0

(
Φ1/α(X,t)(α(X, t) − α0(X, t)) − (α(X, t) − α0(X, t))

)
Y (t)dt

+

∫ τ

0
(log α(X, t) − log α0(X, t))dM(t)

where Φa(x) := − log(1 − ax)/a for a > 0 and x < 1/a. But since Φa(x) ≤ x + ax2 for
any x ≤ 1/(2a), we obtain

`(α,α0) ≤
3

2a0

∫ τ

0
(α(t,X) − α0(t,X))2Y (t)dt +

∫ τ

0
(log α0(t,X) − logα(t,X))dM(t)

which gives by integration with respect to Pα

K(Pα,Pα0) ≤
3‖α − α0‖2

µ

2a0
≤ 3f1‖α− α0‖2

A

2a0
≤ 3bf1#(Rj)

2na0
,

for any α ∈ Aj. Since the counting processes (N1, . . . , Nn) are independent, we have
K(Pnα,P

n
α0

) = nK(Pα,Pα0) and

1

M

M∑

p=0

K(Pnαp
,Pnα0

) ≤ 3bf1#(Rj)

2a0
≤ a logMj

with
a := 12bf1/(a0 log 2).

So, we take b small enough, so that a < 1/8 (this is the only constraint on b) and point (3)
is met in Tsybakov (2003)’s theorem. It only remains to choose the levels j1 and j2 so
that (28) and (29) holds, and to compute the corresponding vj. We take j = (j1, j2) such
that

c1/2 ≤ 2j1n−β2/(β1+β2+2β1β2) ≤ c1 and c2/2 ≤ 2j2n−β1/(β1+β2+2β1β2) ≤ c2

where c1 and c2 are positive constants satisfying cτ,ψ(cβ1
1 + cβ2

2 )
√
c1c2 ≤ L/(2

√
b). For this

choice, 2j1+j2/n ≤ c1c2n
−2β̄/(2β̄+2) so (28) holds for n large enough and (29) holds and

vj ≥ c3n
−β̄/(2β̄+2) where c3 = cτ,ψ

√
bc1c2/128. �

6. Proof of the auxiliary results

6.1. Proof of Proposition 1. Let f̂m∗
1

and f̂0 be defined by (16), with m∗
1 = (Dm1 ,D

(2)
n )

and Dm1 = D(2)
n = n1/4/

√
log n. We remark that, for all (x, z) ∈ R2,

f̂m∗
1
(x, z) = f(x, z) + f̂m∗

1
(x, z) − f(x, z) ≥ f0 − ‖f̂m∗

1
− f‖∞,A.

We deduce that ‖f̂m∗
1
− f‖∞,A ≥ f0 − f̂0. In the same manner, ‖f̂m∗

1
− f‖∞,A ≥ f̂0 − f0.

Thus
P(Ω{) = P(|f0 − f̂0| > f0/2) ≤ P(‖f̂m∗

1
− f‖∞,A > f0/2).

Therefore, we just have to prove that P(‖f̂m∗
1
− f‖∞,A > f0/2) ≤ C0/n

k. First, remark

that ‖f̂m∗
1
− f‖∞,A ≤ ‖f̂m∗

1
− fm∗

1
‖∞,A+ ‖fm∗

1
− f‖∞,A. As f ∈ B

(β̃1,β̃2)
2,∞ (A) with

¯̃
β > 1, the

embedding theorem proved in Nikol’skii (1975) p.236 implies that f belongs to B
(β∗

1 ,β
∗
2 )

∞,∞ (A)
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with β∗1 = β̃1(1 − 1/ ¯̃β) and β∗2 = β̃2(1 − 1/ ¯̃β). Moreover, Nikol’skii (1975) proves that
there exists a function Fm∗ in the space Sm∗ of trigonometric polynomials such that

‖Fm∗ − f1(A)‖ ≤ C(D−β̃1

m∗
1

+ D−β̃2
n ) and ‖Fm∗ − f1(A)‖∞ ≤ C(D

−β∗
1

m∗
1

+ D−β̃∗
2

n ),

where C depends on the Besov norm of f on A. Then

‖fm1∗ − f1(A)‖∞ ≤ ‖fm1∗ − Fm∗‖∞ + ‖Fm∗ − f1(A)‖∞

≤ φ0

√
Dm1∗D

(2)
n ‖fm1∗ − Fm∗‖ + ‖Fm∗ − f1(A)‖∞

≤ φ0

√
Dm1∗D

(2)
n (‖fm1∗ − f1(A)‖ + ‖f1(A) − Fm∗‖) + ‖Fm∗ − f1(A)‖∞

≤ C ′[
√
Dm1∗D

(2)
n (D−β̃1

m∗
1

+ D−β̃2
n ) +D

−β∗
1

m1∗ + (D(2)
n )−β

∗
2 ],

where C ′ depends on φ0 and the Besov norm of f . But since Dm∗
1

= D(2)
n = n1/4/ log(n),

this proves that ‖fm1∗ − f1(A)‖∞ → 0 when n→ +∞ as soon as β̃1 > 2 and β̃2 > 2. So,
there is n0 such that for any n ≥ n0, we have ‖fm1∗ − f‖∞,A ≤ f0/4 and

P(‖f̂m∗
1
− f‖∞,A > f0/2) ≤ P(‖f̂m∗

1
− fm∗

1
‖∞,A > f0/4).

Using (M2), we get

‖f̂m∗
1
− fm∗

1
‖∞,A ≤

√
φ1φ2Dm∗

1
D(2)
n ‖f̂m∗

1
− fm∗

1
‖.

Now we define

(30) ϑn(h) =
1

n

n∑

i=1

∫ τ

0

(
h(Xi, y)Y

i(y) − E
(
h(Xi, y)Y

i(y)
))
dy = ‖

√
h‖2

n − ‖
√
h‖2

µ.

With this notation, and recalling the definition of f̂m (see Equation (15)), we have E(b̂j,k) =
bj,k and

‖f̂m∗
1
− fm∗

1
‖2 =

∑

j,k

(b̂j,k − bj,k)
2 =

∑

j,k

ϑ2
n(ϕ

m∗
1

j ⊗ ψ
m∗

1
k ),

thus:

P(‖f̂m∗
1
− f‖∞,A > f0/2) ≤ P

(∑

j,k

ϑ2
n(ϕ

m∗
1

j ⊗ ψ
m∗

1
k ) ≥ f2

0

16φ1φ2Dm∗
1
D(2)
n

)

≤
∑

j,k

P

(
|ϑn(ϕm

∗
1

j ⊗ ψ
m∗

1
k )| ≥ f0

4
√
φ1φ2Dm∗

1
D(2)
n

)
.

Note that ϑn(ϕ
m∗

1
j ⊗ ψ

m∗
1

k ) = 1
n

∑n
1 (U j,ki − E(U j,ki )), where U j,ki = ϕj(Xi)

∫ τ
0 ψk(y)Y

i(y)dy
are i.i.d. random variables. We apply the Bernstein inequality to to the sum of the random

variables U j,ki . We have

|U j,ki | ≤ ‖ϕj‖∞
∫ τ

0
|ψk(y)|dy ≤ ‖ϕj‖∞

(
τ

∫ τ

0
ψ2
k(y)dy

)1/2
≤

√
τφ1Dm∗

1
:= c
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and E[(U j,ki )2] ≤ τf1 =: v2, so the Bernstein inequality gives

P

(
|ϑn(ϕm

∗
1

j ⊗ ψ
m∗

1
k )| ≥ x

)
≤ 2 exp

(
− nx2

2(v2 + cx/3)

)

with x = f0/(4
√
φ1φ2Dm∗

1
D(2)
n ) and v and c defined above. This entails:

P

(
|ϑn(ϕm

∗
1

j ⊗ ψ
m∗

1
k )| ≥ f0

4
√
φ1φ2Dm∗

1
D(2)
n

)
≤ 2 exp

(
− Cn

(Dm∗
1
D(2)
n )2

)
,

where C is a constant depending on f0, f1, τ, φ1, φ2, and since Dm∗
1

= D(2)
n = n1/4/

√
log(n)

we obtain:

P(Ω{) ≤ 2
√
n exp

(
−C(log n)2

)
≤ C0

nk
,

where C0 is a constant depending on k, f0, φ1, φ2, τ and f1. This concludes the proof of
Proposition 1. �

6.2. Proof of Proposition 2.

6.2.1. Proof of Proposition 2. One can write

E(‖α̂m̂ − αm‖2
µ1((∆ ∩ Ω){)) ≤ E(‖α̂m̂ − αm‖2

µ1(∆{)) + E(‖α̂m̂ − αm‖2
µ1(Ω{))

≤ f1[E(‖α̂m̂ − αm‖2
1(∆{)) + E(‖α̂m̂ − αm‖2

1(Ω{))]

using (A1) and (A4). This yields

E(‖α̂m̂ − αm‖2
µ1((∆ ∩ Ω){)) ≤ 2f1

[
E

1/2(‖α̂m̂‖4)(P1/2(∆{) + P
1/2(Ω{))

+ ‖α‖2
A(P(Ω{) + P(∆{))

]
.

Now, (A5) with k = 7 ensures that P(Ω{) ≤ C0/n
7 for any n ≥ n0. We need the following

Lemmas:

Lemma 3. Under the assumptions of Theorem 1, E(‖α̂m̂‖4) ≤ CBn
5, where CB is a

constant depending on φ1, φ2, τ and ‖α‖∞,A.

Lemma 4. Under the assumptions of Theorem 1, we have P(∆{) ≤ C
(∆)
k /nk for any

k ≥ 1, where C
(∆)
k is a constant depending on k, on the basis, and on f0, f1.

Using Lemmas 3 and 4 and Assumption (A5), we get

(31) E(‖α̂m̂ − αm‖2
µ1((∆ ∩ Ω){)) ≤ C1/n,

where C1 is a constant depending on τ , φ1, φ2, ‖α‖∞,A, f0, f1. This concludes the proof
of Proposition 2. �
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6.2.2. Proof of Lemma 3. Note that α̂m̂ is either 0 or argmint∈Sm̂
γn(t). Let us denote for

short ϕj := ϕm̂j and ψk := ψm̂k . In the second case, min Sp(Gm̂) ≥ max(f̂0/3, n
−1/2), so

‖α̂m̂‖2 =
∑

j,k

(âm̂j,k)
2 = ‖Am̂‖2 = ‖G−1

m̂ Υm̂‖2

≤ (min Sp(Gm̂))−2‖Υm̂‖2 ≤ min(9/f̂2
0 , n)

∑

j,k

( 1

n

n∑

i=1

ϕj(Xi)

∫ τ

0
ψk(z)dN

i(z)
)2

≤ min(9/f̂2
0 , n)

1

n

n∑

i=1

∑

j

ϕ2
j (Xi)

∑

k

(∫ τ

0
ψk(z)dN

i(z)
)2

≤ min(9/f̂2
0 , n)φ1D(1)

n

1

n

n∑

i=1

∑

k

(
1A1(Xi)

∫ τ

0
ψk(z)dN

i(z)
)2
,

and

‖α̂m̂‖4 ≤ n2φ2
1(D(1)

n )2
1

n

n∑

i=1

( ∑

k

(
1A1(Xi)

∫ τ

0
ψk(z)dN

i(z)
)2)2

≤ n2φ2
1(D(1)

n )2D(2)
n

1

n

n∑

i=1

∑

k

(
1A1(Xi)

∫ τ

0
ψk(z)dN

i(z)
)4
.(32)

Now, we have:

E

( 1

n

n∑

i=1

∑

k

(
1A1(Xi)

∫ τ

0
ψk(z)dN

i(z)
)4)

≤ 23

n

n∑

i=1

∑

k

E

((
1A1(Xi)

∫ τ

0
ψk(z)α(Xi, z)Y i(z)dz

)4)
(33)

+
23

n

n∑

i=1

∑

k

E

(( ∫ τ

0
ψk(z)dM

i(z)
)4)

.

Using the Bürkholder Inequality as recalled in Liptser and Shiryayev (1989) p.75, and the
fact that the quadratic variation process of each M i is N i (i = 1, . . . , n), we know that
there exists a universal constant κb such that:

E

( 1

n

n∑

i=1

∑

k

(∫ τ

0
ψk(z)dM

i(z)
)4)

≤ κb
1

n

n∑

i=1

∑

k

E

((∫ τ

0
ψ2
k(z)dN

i(z)
)2)

≤ κb
1

n

n∑

i=1

∑

k

E

(
N i(τ)

∑

s:∆N i(s)6=0

ψ4
k(s)

)
≤ κb

1

n

n∑

i=1

E

(
N i(τ)

∑

s:∆N i(s)6=0

∑

k

ψ4
k(s)

)

≤ κbφ
2
2(D(2)

n )2
1

n

n∑

i=1

E

(
N i(τ)

∑

s:∆N i(s)6=0

1
)
≤ κbφ

2
2(D(2)

n )2
1

n

n∑

i=1

E[(N i(τ))2],(34)

where we used Assumption (M1). Using Assumptions (A3) and (A4) we have

[N1(τ)]2 =
(
M1(τ) +

∫ τ

0
α(X1, z)Y

1(z)dz
)2

≤ 2(M1(τ))2 + 2
( ∫ τ

0
α(X1, z)Y

1(z)dz
)2
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Therefore, as E[(M1(τ))2] = E
∫ τ
0 α(X1, z)Y

1(z)dz ≤ τ‖α‖∞,A, we find

(35) E[(N1(τ))2] ≤ 2τ‖α‖∞,A + 2(τ‖α‖∞,A)2.

Combining (33), (34) and (35) gives

E

( 1

n

n∑

i=1

∑

k

(∫ τ

0
ψk(z)dN

i(z)
)4)

≤ 8κbφ
2
2(D(2)

n )2E[(N1(τ))2] + 8
∑

k

E

((
1A1(X)

∫ τ

0
ψk(z)α(X, z)Y (z)dz

)4))

≤ 8κbφ
2
2(D(2)

n )2E[(N1(τ))2] + 8‖α‖4
∞,Aτ

2
∑

k

(∫ τ

0
ψ2
k(z)dz

)2

≤ 8κbφ
2
2(D(2)

n )2E[(N1(τ))2] + 8‖α‖4
∞,Aτ

2D(2)
n .(36)

Then we have, by inserting (36) in (32),

E(‖α̂m̂‖4) ≤ (φ1nD(1)
n )2D(2)

n E

( 1

n

n∑

i=1

∑

k

( ∫ τ

0
ψk(z)dN

i(z)
)4)

≤ CBn
2(D(1)

n )2(D(2)
n )3 ≤ CBn

4.5 ≤ CBn
5,

where CB is a constant depending on φ1, φ2, τ and ‖α‖∞,A. We use here that D(i)
n ≤√

n/ log(n) in the case of localized bases [DP], [W], [H]. Note that for basis [T], under
(M1), the final order is smaller (namely n3.25 instead of n4.5). This concludes the proof
of Lemma 3. �

6.2.3. Proof of Lemma 4. Define, for ρ > 1, the set

(37) ∆ρ = {∀h ∈ Sn,
∣∣∣‖h‖2

n/‖h‖2
µ − 1

∣∣∣ ≤ 1 − 1/ρ},
where Sn is the set of maximal dimension of the collection. Remark that ∆ = ∆2, see
(18). First we observe that:

P(∆{
ρ) ≤ P

(
sup

h∈Bµ
Sn

(0,1)

|ϑn(h2)| > 1 − 1/ρ
)

where ϑn(·) is defined by (30) and Bµ
Sn

(0, 1) = {t ∈ Sn, ‖t‖µ ≤ 1}. We denote by (ϕj ⊗ψk)
the L2-orthonormal basis of Sn. If h(x, y) =

∑
j,k aj,kϕj(x)ψk(y), then

(38) ϑn(h
2) =

∑

j,k,j′,k′

aj,kaj′,k′ϑn((ϕj ⊗ ψk)(ϕj′ ⊗ ψk′)).

We obtain

(39) sup
h∈Bµ

Sn
(0,1)

|ϑn(h2)| ≤ f−1
0 sup∑

a2
j,k

≤1

∣∣∣
∑

j,k,j′,k′

aj,kaj′,k′ϑn((ϕj ⊗ ψk)(ϕj′ ⊗ ψk′))
∣∣∣.

Lemma (Baraud et al. (2001a)). Let Bj,j′ = ‖ϕjϕj′‖∞,A and Vj,j′ = ‖ϕjϕj′‖2. Let, for
any symmetric matrix (Aj,j′)

ρ̄(A) := sup∑
b2j≤1

∑

j,j′

|bjbj′ |Aj,j′
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and L(ϕ) := max{ρ̄2(V ), ρ̄(B)}. Then, if (M2) is satisfied, we have L(ϕ) ≤ φ1(D(1)
n )2,

and L(ϕ) ≤ 5φ4
1D

(1)
n , if the basis is localized (cases [P] or [W]).

Let us define

x :=
f2
0 (1 − 1/ρ)2

4f1(D(2)
n )2L(ϕ)

and

Θ :=
{
∀(j, k)∀(j′, k′) |ϑn((ϕj ⊗ ψk)(ϕj′ ⊗ ψk′))| ≤ 4

(
Bj,j′x+ Vj,j′

√
2f1x

)}
.

Starting from (39), we have, on Θ:

sup
h∈Bµ

Sn
(0,1)

|ϑn(h2)| ≤ 4f−1
0 sup∑

a2j,k≤1

∑

j,j′

(
∑

k,k′

|aj,kaj′,k′ |)
(
Bj,j′x+ Vj,j′

√
2f1x

)
.

Thus setting bj =
∑

k |aj,k|, we have
∑

j b
2
j ≤ D(2)

n and it follows that, on Θ,

sup
h∈Bµ

Sn
(0,1)

|ϑn(h2)| ≤ f−1
0 D(2)

n sup∑
b2j=1

∑

j,j′

|bjbj′ |
(
Bj,j′x+ Vj,j′

√
2f1x

)

≤ f−1
0 D(2)

n

(
ρ̄(B)x+ ρ̄(V )

√
2f1x

)

≤ (1 − 1/ρ)
(f0(1 − 1/ρ)

4D(2)
n f1

ρ̄(B)

L(ϕ)
+

1√
2

( ρ̄2(V )

L(ϕ)

)1/2)

≤ (1 − 1/ρ)
(1

4
+

1√
2

)
≤ (1 − 1/ρ).

Therefore,

P

(
sup

t∈Bµ
Sn

(0,1)

|ϑn(t2)| > 1 − 1

ρ

)
≤ P(Θ{).

Let φλ = ϕj ⊗ ψk for λ = (j, k). To bound P(ϑn(φλφλ′) ≥ Bj,j′x+ Vj,j′
√

2f1x), we will
apply the Bernstein inequality given in Birgé and Massart (1998) to the i.i.d. r.v.

Uλ,λ
′

i = U
(j,k),(j′,k′)
i = ϕj(Xi)ϕj′(Xi)

∫ τ

0
ψk(y)ψk′(y)Y

i(y)dy.(40)

Under (A4), the r.v. are bounded

|Uλ,λ′i | ≤ ‖ϕjϕj′‖∞,A

∫ τ

0
|ψk(y)ψk′(y)|dy ≤ ‖ϕjϕj′‖∞,A = Bj,j′.

Moreover, using (A4) again, we obtain:

(Uλ,λ
′

i )2 ≤ (ϕj(Xi)ϕj′(Xi))
2

∫ τ

0
ψ2
k(y)dy

∫ τ

0
ψ2
k′(y)dy = (ϕj(Xi)ϕj′(Xi))

2

and thus

E[(Uλ,λ
′

i )2] ≤ E[(ϕj(Xi)ϕj′(Xi))
2] ≤ f1V

2
j,j′.

We get

P(|ϑn(φλφλ′)| ≥ Bj,j′x+ Vj,j′
√

2f1x) ≤ 2e−nx.
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Given that P(∆{
ρ) ≤ P(Θ{) =

∑
λ,λ′ P

(
|ϑn(φλφλ′)| > Bj,j′x+ Vj,j′

√
2f1x

)
, we can write:

P(∆{
ρ) ≤ 2(D(1)

n D(2)
n )2 exp

{
− nf2

0 (1 − 1/ρ)2

4f1(D(2)
n )2L(ϕ)

}

≤ 2n2 exp
{
− f2

0 (1 − 1/ρ)2

4f1

n

(D(2)
n )2L(ϕ)

}
.

Following the Lemma of Baraud et al. (2001a) above, and using Assumption (M1), we
have

(D(2)
n )2L(ϕ) ≤ φ1(D(2)

n D(1)
n )2 ≤ φ1n/ log2(n).

And then, for any k, there exists a constant C
(∆ρ)
k depending on k, f0, ‖f‖∞,A, φ1 and ρ

such that

(41) P(∆{
ρ) ≤ 2n2 exp

{
− f2

0 (1 − 1/ρ)2

40f1φ1
log2(n)

}
≤ C

(∆ρ)
k

nk
.

Now, if the basis is localized, the result is better. In this case, L(ϕ) ≤ 5φ4
1D

(1)
n . More-

over, take histogram basis in (38), then all terms with k 6= k′ vanish and then we can take

bj = (
∑

k a
2
j,k)

1/2 directly. Then, as then
∑

j b
2
j ≤ 1, we obtain

P(∆{
ρ) ≤ 2(D(1)

n )2D(2)
n exp

{
− nf2

0 (1 − 1/ρ)2

40f1L(ϕ)

}
≤ 2n2 exp

{
− f2

0 (1 − 1/ρ)2

40f1

n

L(ϕ)

}
.

Thus L(ϕ) ≤ 5φ4
1D

(1)
n ≤ φ1n/ log2(n) is enough to get (41) again. The proof is easy to

extend to any localized basis as [P ] or [W ] (with D(2)
n in the bound of

∑
j b

2
j replaced by

r + 1 in case [P ] for instance). This concludes the proof of Lemma 4. �

6.3. Proof of Lemma 1. Let m ∈ Mn be fixed and let ` be an eigenvalue of Gm. There
exists Am 6= 0 with coefficients (aλ)λ such that GmAm = `Am and thus A>

mGmAm =
`A>

mAm. Now, take h :=
∑

λ aλϕλ ∈ Sm. We have ‖h‖2
n = A>

mGmAm and ‖h‖2
A = A>

mAm.
Thus, on ∆ (see (18)):

A>
mGmAm = ‖h‖2

n ≥ 1

2
‖h‖2

µ ≥ 1

2
f0‖h‖2

A =
1

2
f0A

>
mAm.

Therefore, on ∆, for all m ∈ Mn, we have min Sp(Gm) ≥ f0/2. Moreover, on Ω, we have

f0 ≥ 2f̂0/3 and max(f̂0/3, n
−1/2) = f̂0/3, for n ≥ 4/f2

0 . �

6.4. Proof of Proposition 3. Usually, in model selection (see for instance Massart
(2007)), the penalty is obtained by using the so-called Talagrand’s deviation inequality
for the maximum of empirical processes. Since the empirical process νn(·) (see Equa-
tion (21)) considered here is not bounded, we cannot use directly Talagrand’s inequality.
Using tools from van de Geer (1995), we prove Bennett and Bernstein type inequalities for
νn(·), and using a L2(µ) − L∞ generic chaining type of technique (see Talagrand (2005)
and Baraud (2010)), we derive an uniform deviation.



26 F. COMTE, S. GAÏFFAS & A. GUILLOUX

Lemma 5. For any positive δ, ε and for any function h ∈ (L2 ∩ L∞)(A), we have the
following Bennett-type deviation inequality :

P
(
νn(h) ≥ ε, ‖h‖n ≤ δ

)
≤ exp

(
− nδ2‖α‖∞,A

‖h‖2
∞,A

g
( ε‖h‖∞,A

‖α‖∞,Aδ2

))

where g(x) = (1 + x) log(1 + x) − x for any x ≥ 0. As a consequence, we obtain the
following Bernstein-type inequalities:

(42) P
(
νn(h) ≥ ε, ‖h‖n ≤ δ

)
≤ exp

(
− nε2/2

‖α‖A,∞δ2 + ε‖h‖A,∞/3
)
,

and

(43) P

(
νn(h) ≥ δ

√
2‖α‖∞,Ax+ ‖h‖∞,Ax, ‖h‖2

n ≤ δ2
)
≤ exp(−nx).

Proof. Notice that the process

nν(h, t) :=
n∑

i=1

∫ t

0
h(Xi, z)dM

i(z) :=
n∑

i=1

ν(h, t)i

is a locally square integrable martingale with jumps of size less than n‖h‖∞,A. As a
consequence, Corollary 2.3. of van de Geer (1995) applies almost directly. However to
introduce the empirical norm ‖h‖n in the deviation inequality, we re-derive the majoration
of the term

Sτ :=

n∑

i=1

∑

k≥2

ak

k!

∫ τ

0
|h(Xi, z)|kdV i

k (z),

where, for all i = 1, . . . , n, V i
2 (t) := 〈M i(t)〉 and, for k ≥ 3, we define V i

k (t) as the

compensator of the k-variation process
∑

s≤t |∆M i(t)|k of M i(t) (see Equation (A3) on

page 1795 in van de Geer (1995)).
In our case, we have, n−1

∑n
i=1

∫ τ
0 h(Xi, z)

2dV i
2 (z) ≤ ‖h‖2

n‖α‖∞,A, so that

Sτ ≤
nδ2‖α‖∞,A

‖h‖2
∞,A

(
exp

(
a‖h‖∞,A

)
− 1 − a‖h‖∞,A

)
,

see the proof of Corollary 2.3. of van de Geer (1995). This majoration together with the
proof of Lemma 2.2. in van de Geer (1995) yields the Bennett-type deviation inequality
in our lemma. To obtain (42) and (43), we use the fact that g(x) ≥ 3x2/(2(x+3)) for any
x ≥ 0 and g(x) ≥ g2(x) for any x ≥ 0 where g2(x) := x+1−

√
1 + 2x and g−1

2 (y) =
√

2y+y,
see Birgé and Massart (1998) p.366-367. �

The next Proposition is obtained from (43) by using a recent L2(µ)−L∞ generic chaining
type of technique (see Talagrand (2005) and Baraud (2010)). This method is close to other
L2(µ)−L∞ chaining methods, see among others Proposition 4 p. 282-287 in Comte (2001),
Theorem 5 in Birgé and Massart (1998) and Proposition 7, Theorem 8 and Theorem 9 in
Barron et al. (1999).
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Proposition 4. Let S̄ be a D-dimensional linear subspace of L2 ∩ L∞(µ), and define Bδ
as the L2(µ) closed ball of S̄ with radius δ. The L∞-index of S̄ is defined in the following
way:

(44) r̄ =
1√
D

inf
(ψλ)

sup
β 6=0

‖∑
λ∈Λ βλψλ‖∞,A

|β|∞
,

where the infimum is taken over every orthonormal basis (ψλ)λ∈Λ of S̄, and where |β|∞ is
the `∞-norm of β ∈ R

Λ. For any x > 0 and δ > 0, we have

P∆ρ

[
sup
h∈Bδ

νn(h) ≥ κ0

(
δρ

√
‖α‖∞,A(D + x)

n
+ δρr̄

D + x

n

)]
≤ e−x,

where κ0 = 11.8, and where we recall that δρ = δ(2 − 1/ρ), where ρ > 1 and where ∆ρ is
defined in (37).

Proof. Let us construct a sequence of partitions (Ak)k≥0 of Bδ with the following proper-
ties:

(1) It is increasing, in the sense that any element of Ak+1 is included in an element
of Ak [note that this is the key property of the generic chaining argument, see
Talagrand (2005)].

(2) It is such that A0 = {Bδ} and for each k ≥ 1, one has |Ak| ≤ (2πe)D/2(1 + 2k)D.
(3) The diameters of the elements of Ak are controlled in the following way:

diam(A,L2(µ)) ≤ 2−kδ and diam(A,L∞) ≤ r̄2−kδ ∀A ∈ Ak ∀k ≥ 1,

where we recall that diam(A, d) = supa,b∈A d(a, b).

The construction of such a partition follows the construction given in Proposition 1 in Birgé
and Massart (1998), or in Lemma 7.14 from Massart (2007). Below, we denote by |x|2
and |x|∞ the `2 and `∞ norms of x ∈ R

D. Without loss of generality we can assume that
r̄ = r̄(ψ) for some orthonormal basis ψ = (ψλ)λ∈Λ. Using the natural isometry between
R
D and S̄, we first construct a sequence (A′

k)k≥0 of partitions of B′
δ = {β ∈ R

D : |β|2 ≤ δ}
with suitable properties. First, put A′

0 = {B′
δ}. Then, construct A′

1 in the following way.

Consider disjoint cubes {C ′
1, . . . , C

′
N} with vertices δ/

√
D that cover B′

δ, one of them being
centered at 0. The partition A′

1 is then simply given by the C ′
j ∩ B′

δ. Then, in order to

construct A′
k+1 from A′

k, simply partition each cube in A′
k using cubes with vertices half

as small (and then equal to 2−(k+1)δ/
√
D), and only keep the ones that have a nonempty

intersection with B′
δ. By doing so, one has

diam(C, `∞) ≤ 2−kδ/
√
D and diam(C, `2) ≤ 2−kδ ∀C ∈ A′

k,

and this construction entails that the sequence of partition (A′
k)k≥0 is increasing. More-

over, the volumetric argument from the proof of Lemma 7.14 in Massart (2007), gives

|A′
k| ≤ (2πe)D/2(1 + 2k)D ∀k ≥ 0.

It is now easy to construct (Ak)k≥0. For each k ≥ 1, if A′
k := {C ′

1, . . . , C
′
N}, consider

Cj :=
{ ∑

λ∈Λ

βλψλ : (βλ) ∈ C ′
j

}
,
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and simply put

Ak :=
{
Cj −

( ⋃

1≤i<j
Ci

)
∩Bδ : 1 ≤ j ≤ N

}
,

with the convention that ∪∅ = ∅. This provides a sequence of partitions with the proper-
ties (1)-(3), thanks to the definition of r̄1.

Now, we want to use the generic chaining type of argument (see Talagrand (2005)),
that was proposed in Baraud (2010), see the proofs of Theorems 2.1 and 5.1 therein. The
difference between what we do here and the proof of Baraud (2010) is minor: here the L2

and L∞ norms are explicit, so we are able to take advantage of the covering by cubes (see
above) while Theorems 2.1 and 5.1 in Baraud (2010) are move general, since they hold for
any distances (so two partitions and two volumetric arguments are used, while this can be
avoided here).

For any k ≥ 1 and A ∈ Ak, fix an arbitrary element hk(A). Then, for any h ∈ Bδ,
define πk(h) in the following way: take the unique A ∈ Ak such that h ∈ A, and define
πk(h) = hk(A). Define also π0(h) = 0 (since 0 ∈ Bδ). Now, for any h ∈ Bδ, the following
decomposition holds:

νn(h) =
∑

k≥0

(
νn(πk+1(h)) − νn(πk(h))

)
,

so, if z =
∑

k≥0 zk where zk are positive numbers, we have

P∆

(
sup
h∈Bδ

νn(h) ≥ z
)
≤

∑

k≥0

∑

(s,u)∈Ek

P∆

(
νn(s) − νn(u) ≥ zk

)
,

where Ek := {(πk(h), πk+1(h)) : h ∈ Bδ}. It must be noted that, since the partitions
(Ak)k≥0 are increasing, both πk(h) and πk+1(h) belong to the same element of Ak for any

h ∈ Bδ, so ‖s−u‖∞ ≤ r̄δρ2
−k and ‖s−u‖µ ≤ δρ2

−k for any (s, u) ∈ Ek. Moreover, πk+1(h)

uniquely determines πk(h), so that |Ek| ≤ |Ak+1| = Nk where Nk := (2πe)D/2(1+2k+1)D.
Consider

zk := 2−kδρ

√
2‖α‖∞xk

n
+ 2−k r̄δρ

xk
n

where xk = x+ log(2k+1Nk).

Using (43), one has for any (s, u) ∈ Ek:

P∆

(
νn(s) − νn(u) ≥ zk

)
≤ (2k+1Nk)

−1e−x,

so

P∆

(
sup
h∈Bδ

νn(h) ≥ z
)
≤ e−x,

and an easy computation shows that

z =
∑

k≥0

zk ≤ κ0

(
δρ

√
‖α‖∞(D + x)

n
+ δρr̄

D + x

n

)
,

where κ0 = 11.8. This concludes the proof of Proposition 4. �

1The only minor difference between this construction and the constructions of Birgé and Massart (1998)
and Massart (2007) is that here the center of the cubes are such that the embedding Ak+1 ⊂ Ak holds.
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Now, we can turn to the proof of Proposition 3. We denote by D(m,m′) the dimension
of the linear space Sm + S′

m.

Proof of Proposition 3. In Proposition 4, take x = Dm′ + u, δ = 1, Bδ = Bµ
m,m′(0, 1) =

{t ∈ Sm + Sm′ : ‖t‖µ ≤ 1} and ρ = 2 in order to get:

P∆

[
sup

h∈Bµ

m,m′ (0,1)

ν2
n(h) ≥ η2

]
≤ 2P∆

[
sup

h∈Bµ

m,m′ (0,1)

νn(h) ≥ η
]
≤ 2e−Dm′−u,

where

η2 =
9

4
κ2

0

(√
‖α‖∞,A

D(m,m′) +Dm′ + u

n
+ r̄m,m′

D(m,m′) +Dm′ + u

n

)2

≤ 9

2
κ2

0

(
‖α‖∞,A

D(m,m′) +Dm′ + u

n
+ 2r̄2m,m′

(D(m,m′) +Dm′

n

)2
+ 2r̄2m,m′

u2

n2

)

≤ 18κ2
0

(
(1 + ‖α‖∞,A)

Dm +Dm′

n
+

(‖α‖∞,Au

n
∨ r̄2m,m′

u2

n2

))
,

where we used the fact that

r̄2m,m′

(D(m,m′) +Dm′

n

)2 ≤ D(m,m′)
n

,

for n large enough (see Appendix B) and D(m,m′) ≤ Dm +Dm′ . This gives

P∆

[
sup

h∈Bµ

m,m′ (0,1)

ν2
n(h) ≥ κ

(
(1 + ‖α‖∞,A)

Dm +Dm′

n
+

(‖α‖∞,Au

n
∨ r̄2m,m′

u2

n2

))]

≤ 2e−Dm′−u,(45)

where κ = 18κ2
0. Now, we set p(m,m′) = κ(1 + ‖α‖∞,A)(Dm + Dm′)/n with κ = 18κ2

0.
This gives

P∆

[
sup

h∈Bµ

m,m′ (0,1)

ν2
n(h) ≥ p(m,m′) + z

]
≤





2e−Dm′−nz/(κ‖α‖∞,A) if z ≤ κ‖α‖2
∞,A/r̄

2
m,m′

2e
−Dm′−n

√
z/

√
κr̄2

m,m′ if z > κ‖α‖2
∞,A/r̄

2
m,m′ ,

and we obtain that

E

[(
sup

h∈Bµ

m,m′ (0,1)

ν2
n(h) − p(m,m′)

)
+
1(∆)

]

≤
∫ ∞

0
P∆

(
sup

h∈Bµ

m,m′ (0,1)

ν2
n(h) > p(m,m′) + z

)
dz

≤ 2e−Dm′

(∫ ∞

0
e−nz/(κ‖α‖∞,A)dz +

∫ +∞

0
e
−n√z/

√
κr̄2

m,m′dz
)

≤ 2e−Dm′
κ

n

(
‖α‖∞,A

∫ ∞

0
e−vdv +

r̄2m,m′

n

∫ ∞

0
e−

√
vdv

)

≤ 2e−Dm′
κ

n
(‖α‖∞,A +

2r̄2m,m′

n
) ≤ καe

−Dm′

n
,
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where we used the upper bounds of r̄m,m′ given in Appendix B and where κα is a constant

depending on ‖α‖∞,A, f0 and the basis. It remains to bound from above
∑

m′∈Mn
e−Dm′ .

This term is at most

∑

j,k≥1

e−jk =
∞∑

j=1

∞∑

k=1

(e−j)k =
∞∑

j=1

e−j

1 − e−j
≤ 1

1 − e−1

∞∑

j=1

e−j =
e−1

(1 − e−1)2
.

This concludes the proof of Proposition 3 when n is large enough. The statement of
Proposition 3 is obvious for small n, up to an increased constant C2. �

6.5. Proof of Lemma 2. First, we write

E[‖α̂ ˆ̂m − α‖2
A1(Λ ∩ ∆ ∩ Ω){)] ≤ E[‖α̂ ˆ̂m − α‖2

A1(∆ ∩ Ω){)]

+ E[‖α̂ ˆ̂m − α‖2
A1(Λ{ ∩ (∆ ∩ Ω))].

The first term is bounded by C1/n as in the proof of Theorem 1 by using Lemma 3,
Lemma 4 and Assumption (A5). For the second term, we get

E[‖α̂ ˆ̂m − α‖2
A1(Λ{ ∩ (∆ ∩ Ω))] ≤ 8(E1/2(‖α̂ ˆ̂m‖4) + ‖α‖2

A)
(
P(Λ{ ∩ (∆ ∩ Ω))

)1/2
.

Lemma 3 can be applied again: this gives E(‖α̂ ˆ̂m‖4) ≤ CBn
5, so we have to prove that

(46) P(Λ{ ∩ (∆ ∩ Ω)) ≤ Ckn
−k,

for k ≥ 7/2. Let us do the decomposition

P(Λ{ ∩ (∆ ∩ Ω)) = P [(|‖α̂m∗‖∞ − ‖α‖∞,A| > ‖α‖∞,A|) ∩ (∆ ∩ Ω)]

≤ P [(‖α̂m∗ − α‖∞,A > ‖α‖∞,A/2) ∩ (∆ ∩ Ω)]

≤ P [(‖α̂m∗ − αm∗‖∞,A > ‖α‖∞,A/4) ∩ (∆ ∩ Ω)]

+ P [(‖αm∗ − α‖∞,A > ‖α‖∞,A/4) ∩ (∆ ∩ Ω)] .

Assumption (M2) implies that ‖α̂m∗−αm∗‖∞,A ≤ φ0
√
Dm∗

1
Dm∗

2
‖α̂m∗−αm∗‖A. Moreover,

it follows from (23) in the proof of Theorem 1, that we have, on ∆ ∩ Ω:

‖α̂m∗ − αm∗‖2
A ≤ 32

(
‖α1(A) − αm∗‖2

n + sup
h∈Bµ

m∗ (0,1)

ν2
n(h)

)
.

As ‖h‖2
n ≤ τ‖h‖2

∞,A for any h supported by A, we get

P(Λ{ ∩ (∆ ∩ Ω)) ≤ P

[
(32φ2

0Dm∗
1
Dm∗

2
sup

h∈Bµ

m∗(0,1)

ν2
n(h) > ‖α‖2

∞,A/32) ∩ (∆ ∩ Ω)
]

+ P

[
φ0

√
Dm∗

1
Dm∗

2
‖αm∗ − α‖∞,A > ‖α‖∞,A/(32

√
τ)

]

+ P

[
‖αm∗ − α‖∞,A > ‖α‖∞,A/4

]
.

The last two probabilites are studied with the same Nikol’skii (1975)’s argument as in the
proof of Proposition 1, for n large enough and using the assumption that β1 > 2, β2 > 2.
Since Dm∗

1
Dm∗

2
≤ √

n, we can bound the first probability from above by

(47) P

[{
sup

h∈Bµ

m∗(0,1)

ν2
n(h) >

‖α‖2
∞,A

210φ2
0

√
n

}
∩ ∆ ∩ Ω

]
.
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Using (45) with the upper bound of r̄m,m′ for the collection [T] which is given in Appen-
dix B, we obtain that for κα := κ(1 + ‖α‖∞,A):

P∆

[
sup

h∈Bµ

m∗ (0,1)

ν2
n(h) > κα

(Dm∗

n
+ (

u

n
+

√
nu2

n2
)
)]

≤ 2e−u.

So, taking u = ‖α‖∞,A
√
n/(210φ2

0) and since Dm∗ ≤ √
n, we obtain that (47) is smaller

than 2e−‖α‖∞,A

√
n/(210φ2

0). This ensures (46) for any integer k and concludes the proof of
Lemma 2. �

Appendix A. Some useful tools from wavelet and approximation theory

A.1. The basis [W ]. Consider a pair {φ,ψ} of scaling function and wavelet, where ψ has
K vanishing moments. Then φ and ψ have a support width of at least 2K − 1, and there
is a pair with minimal support, see Daubechies (1988). This is the starting point of the
construction of an orthonormal wavelet basis of L

2[0, 1], as proposed in Cohen et al. (1993).
Roughly, the idea is to retain the interior scaling functions (those “far” from the edges 0
and 1), and to add adapted edge scaling functions. This is done in Cohen et al. (1993),
see Section 4 and Theorem 4.4, where the construction allows to keep the orthonormality
of the system and the number of vanishing moment unchanged, as well as the number 2j

of scaling function at each resolution j (which improves a previous construction by Meyer
(1991)). Indeed, if l is such that 2l ≥ 2K, consider for j ≥ l − 1:

Ψj,k :=





ψ0
j,k if j ≥ l and k = 0, . . . ,K − 1

ψj,k if j ≥ l and k = K, . . . , 2j −K − 1

ψ1
j,k if j ≥ l and k = 2j −K, . . . , 2j − 1

φ0
l,k if j = l − 1 and k = 0, . . . ,K − 1

φl,k if j = l − 1 and k = K, . . . , 2l −K − 1

φ1
l,k if j = l − 1 and k = 2l −K, . . . , 2l − 1

where φj,k = 2j/2φ(2j · −x) and ψj,k = 2j/2ψ(2j · −x) are the ”interior” dilatations and
translations of {φ,ψ}, and φ0

j,k, ψ
0
j,k, φ

1
j,k, ψ

1
j,k are, at each resolution j, dilatations of 2K

edge scaling functions and wavelets (K for each edge). We know from Cohen et al. (1993)
that the collection

W := {Ψj,k : j ≥ l − 1, k = 0, . . . , 2j − 1}
is an orthonormal basis of L

2[0, 1], and the interior and edge wavelets have K vanishing
moments, which ensures that the elements of this collection have the same smoothness as
φ and ψ.

A.2. Some approximation results. An orthonormal basis of L
2[0, 1]2 is simply obtained

by taking tensor products of two bases [W ] for instance. If W (1) and W (2) are two basis
[W ] (we can use two different pairs {φ(1), ψ(1)} and {φ(2), ψ(2)} with possibly different
number of vanishing moments), we can simply consider

W (1) ⊗W (2) := {Ψ(1)
j1,k1

⊗ Ψ
(2)
j2,k2

: j1 ≥ l1 − 1, j2 ≥ l2 − 1,

k1 = 0, . . . , 2j1 − 1, k2 = 0, . . . , 2j2 − 1},
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where Ψ
(1)
j1,k1

⊗ Ψ
(2)
j2,k2

(x1, x2) := Ψ
(1)
j1,k1

(x1)Ψ
(2)
j2,k2

(x2). We can also obtain an orthonormal

basis of L
2[0, 1]2 by taking tensor products of two collections among the ones considered

in Section 2.4. Let us consider Sm as one of the following:

• A space of piecewise polynomials (see Section 2.4, basis [DP ]) of degrees smaller
than si > βi − 1 (i = 1, 2) based on a partition with rectangles of sidelengthes
1/Dm1 and 1/Dm2 ;

• A space spanned by tensors products of [W ], namely the span of the Ψ
(1)
j1,k1

⊗Ψ
(2)
j2,k2

for j1 ∈ {l−1, . . . ,m1}, j2 ∈ {l−1, . . . ,m2}, k1 ∈ {0, . . . , 2j1−1}, k2 ∈ {0, . . . , 2j2−
1}, where the Ψ

(1)
j,k and Ψ

(2)
j,k have respective regularities s1 > β1−1 and s2 > β2−1

(here Dmi
= 2mi , i = 1, 2);

• The space of trigonometric polynomials with degree smaller than Dm1 in the first
direction and smaller than Dm2 in the second direction.

Note that the dimension of each space is Dm1Dm2 . The following result is an easy
consequence of results by Hochmuth (2002) and Nikol’skii (1975) (see Lacour (2007a)).

Lemma 6. Let s belong to Bβ
2,∞(A) where β = (β1, β2). We consider that Sm is one of

the spaces above, with dimension Dm1Dm2 . If sm is the orthogonal projection of s on Sm,
then there is a positive constant C such that

‖s − sm‖A =
( ∫

A
|s− sm|2

)1/2
≤ C[D−β1

m1
+D−β2

m2
],

where C depends on the Besov norm of s and on the basis.

Appendix B. Upper bounds for the L∞-index

In this section we provide controls on the L∞-index r̄ = r̄m,m′ of S̄ = Sm+Sm′ (which is
defined in Proposition 4, see Section 6.4). Recall that each Sm is a tensor product model,
which can be spanned by any of the basis [DP ], [T ] or [W ], see Section 2.4. Recall that
Bµ
m,m′(0, 1) = {t ∈ Sm+Sm′ , ‖t‖µ ≤ 1}, that Sm+Sm′ ⊂ Sn and that the norm connection

holds, see Condition (M2) in Section 2.4. We denote for short D(m,m′) = dim(Sm+Sm′).
We give below upper bounds for r̄m,m′ and for

r̄2m,m′

(D(m,m′)
n

+
Dm′

n

)2
,

which is a quantity that appears in the proof of Proposition 3.

B.1. Collection [DP]. As Sm+Sm′ is a linear space, an orthonormal L2(µ)-basis (ψλ)λ∈Λn

can be built by orthonormalisation on each sub-rectangle of (ϕλ)λ∈Λn , the orthonormal
basis of Sn. We denote by r1 (respectively r2) the maximal degree in the x-direction (resp.
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in the y-direction). Then

sup
β 6=0

‖∑
λ∈Λn

βλψλ‖∞,A

|β|∞
≤ ‖

∑

λ∈Λn

|ψλ|‖∞,A ≤ (r1 + 1)(r2 + 1) sup
λ∈Λn

‖ψλ‖∞,A

≤ φ0(r1 + 1)(r2 + 1)
√
Nn sup

λ∈Λn

‖ψλ‖

≤ φ0(r1 + 1)(r2 + 1)
√
Nn sup

λ∈Λn

‖ψλ‖µ/
√
f0

≤ φ0(r1 + 1)(r2 + 1)
√
Nn/f0,

thus

r̄m,m′ ≤ φ0(r1 + 1)(r2 + 1)
√
Nn√

f0D(m,m′)
.

Moreover, since Nn ≤ n/ log n and Dm′ ≤ D(m,m′), we have

r̄2m,m′

(D(m,m′)
n

+
Dm′

n

)2
≤ 2φ2

0(r1 + 1)2(r2 + 1)2Nn

f0D(m,m′)
D(m,m′)2

n2

≤ 2φ2
0(r1 + 1)2(r2 + 1)2

f0 log n

D(m,m′)
n

≤ D(m,m′)
n

for n large enough.

B.2. Collection [T]. For trigonometric polynomials, we write for β 6= 0:

‖∑
λ∈Λn

βλψλ‖∞,A

|β|∞
≤ φ0

√
Nn‖

∑
λ βλψλ‖µ√

f0|β|∞
≤
φ0

√
Nn

√∑
λ β

2
λ√

f0|β|∞
≤ φ0

√
NnD(m,m′)√

f0
,

so that r̄m,m′ ≤ φ0

√
Nn/f0. Moroever, since Nn ≤ √

n/ log n, we obtain

r̄2m,m′

(D(m,m′)
n

+
Dm′

n

)2
≤ 2φ2

0NnD(m,m′)2

f0n2
≤ 2φ2

0

f0 log n

D(m,m′)
n

≤ D(m,m′)
n

for n large enough.

B.3. Collection [W]. Recall that this collection is precisely defined in Appendix A. It

suffices to use the fact that for j1 ≥ l1 and j2 ≥ l2 fixed, the tensor products Ψ
(1)
j1,k1

⊗Ψ
(2)
j2,k2

have disjoint supports, expected for a finite number of indexes k1, k2, that depends only
on the support of the scaling and mother wavelet functions used in the construction of
the basis [W ], for both dimensions. Then, using as for the case [DP] the embedding
Sm + Sm′ ⊂ Sn, and if {Ψλ : λ ∈ Λn} is the collection that spans Sn (the one with the
largest dimension in each direction), we obtain

‖
∑

λ∈Λn

βλΨλ‖∞,A ≤ C(Ψ(1),Ψ(2))
√
Nn|β|∞,

where C(Ψ(1),Ψ(2)) is a constant that depends only the scaling and mother wavelet func-
tions used in the construction of the basis, and not on the resolution level. Hence,
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r̄m,m′ ≤ C(Ψ(1),Ψ(2))
√
Nn/D(m,m′). Moreover, since Nn ≤ n/ log n we obtain:

r̄2m,m′

(D(m,m′)
n

+
Dm′

n

)2
≤ 2C(Ψ(1),Ψ(2))2Nn

D(m,m′)
D(m,m′)2

n2

≤ 2
C(Ψ(1),Ψ(2))2

log(n)

D(m,m′)
n

≤ D(m,m′)
n

,

for n large enough.
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